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A B S T R A C T

This paper describes the coupling of the immersed boundary method and the near-wall modeling of large
eddy simulation for high Reynolds number turbulent flows over complex geometries on Cartesian grids. To
overcome the spurious oscillation problem arising from the imposition of boundary conditions on the stair-case
off-wall boundaries, several key ingredients have been employed, such as interpolating the friction velocity
instead of the flow velocity from near-wall fluid interior points, evaluating the gradients by the weighted
least square method and correcting the wall-normal gradient of the tangential velocity with the law of the
wall at the off-wall boundaries. Furthermore, a hybrid RANS-LES approach has been applied to the near-wall
eddy viscosity, either through an empirical blending function or the Reynolds stress balance constraint. We
systematically discuss the effects of the hybrid eddy viscosity in a turbulent channel flow and a high lift three-
element airfoil. Enforcing the Reynolds stress balance constraint turns out to be very robust in the considered
cases. For the high lift three-element airfoil flow, the overall wall pressure and skin friction are predicted
reasonably well and smoothly. The flow details are in a good agreement with the experimental data as well.
1. Introduction

The ever-increasing demand for handling complex or even moving
boundaries more easily in numerical simulations boosts significantly
the development of non-body fitting grid approaches, among which the
immersed boundary method (IBM) is the most popular one. Initially
proposed by Peskin in 1972 [1] for simulating flows over elastic bound-
aries, the IBM has been extensively explored in the past decades for a
wide range of applications [2–5]. Without conforming to the boundary
shapes, the grid generation is greatly simplified and becomes highly
automatic, for instance the Cartesian grid which facilitates very simple
and highly efficient discretization of flow equations such as the finite
difference method, the lattice Boltzmann method, etc. The influence
of the immersed boundaries on fluids is fulfilled by modifying the
stencils close to wall (sharp interface IBM) [6–8] or by distributing an
equivalent forcing term (diffuse interface IBM) [1,9–11].

The IBM has achieved a great success so far for low to moderate
Reynolds number flows, however the application to high Reynolds
number wall-bounded turbulent flows is very challenging. The primary
reason is that the isotropic refinement of Cartesian grids leads to
prohibitive grid numbers close to wall to resolve the thin turbulence
boundary layer (TBL), much more excessive than the body-fitted coun-
terpart as which can cluster the grids in the wall-normal direction. One
remedy is to use wall models which replace the no-slip wall condition
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with highly refined grids by wall stress boundary condition with much
coarser grids, under the assumption of constant shear stress close to
wall. Even though the turbulence wall models have been well studied
for body-fitted grids, the coupling to IBM is difficult since one has to ap-
ply the stress boundary condition on the off-wall boundaries. The sharp
interface IBM is often considered superior to the diffuse interface IBM
for this type of study [3]. In the sharp interface IBM the computational
boundary lies on the off-wall grid surfaces which become stair-case
when the immersed geometries are not aligned with the grid surfaces,
always being the case for complex geometries. In these scenarios the
distribution of the wall distance along the off-wall boundaries is highly
oscillating. It is known that many wall models are sensitive to the wall
distance even on body-fitted grids. The stair-case off-wall boundaries
cause a lot of troubles in applying the turbulence wall model, among
which one prominent issue is the spurious oscillations of the wall
pressure and skin friction.

Numerous efforts have been devoted to smoothing the wall sur-
face quantities. The fundamental problem lies in the fact that the
near-wall coarse grids travel across different wall layers arbitrarily,
resulting in large velocity variations between grid points that make
the interpolation and gradient computation erroneous. To reduce large
velocity gradients, Capizzano [12], followed by [13–15], suggested to
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linearize the velocity profile artificially from a certain height down
to the wall. The linearization approach is simple to implement but
would potentially change the local flow behavior [16], as it violates
the physical wall-law. Analogous to the body-fitted wall models based
on adaptive grids [17], geometrical adaptation [18] or flow adap-
tation [19,20] techniques have been applied to the IBM based wall
models by eliminating the grids too close to wall or shifting the off-wall
boundaries outwards to reduce the velocity gradient, which turns out
to be very effective in reducing the spurious oscillations. The off-wall
boundary re-identification procedure inevitably introduces additional
computation cost. Alternatively it was proposed in [16] to interpolate
the friction velocity instead of the flow velocity, as the friction velocity
is essentially insensitive to the wall distance. The velocity gradients,
especially the wall-normal component for the shear stress condition,
should be carefully treated in order to obtain smooth wall surface
quantities [16]. The physical wall-law is thus respected and the original
boundary grid layout can be maintained.

Aforementioned work has been dedicated to the Reynolds-averaged
Navier–Stokes equations (RANS). Extending immersed boundary-wall
modeling to the scale-resolving large eddy simulation (LES) gets more
and more appealing nowadays owing to its inherent accuracy in pre-
dicting unsteady flows. Tessicini et al. [21] and Cristallo & Verz-
icco [22] employed the two-layer wall model of Balaras et al. [23] to
prescribe the flow velocity or the shear stress on the off-wall bound-
aries. Further improvements have been made in [24–26] by modifying
the near-wall eddy viscosity for correct imposition of the wall shear
stress. Maeyama et al. [15] proposed to blend the eddy viscosity near-
wall in IBM with a lattice Boltzmann solver. It is worth mentioning
the body-fitted off-wall model, in which fluctuating velocities are pre-
scribed at an artificially lifted wall. Problem arises immediately since
the turbulent fluctuations at the lifted wall are not known a priori.
The wall-normal velocity or transpiration velocity, on the other hand,
is instantaneous at the lifted wall and has to satisfy the continuity
constraint simultaneously. Jiménez and Vasco [27] have observed a
strong sensitivity of the transpiration velocity to the flow. Further de-
velopment can be found in [28–32]. As indicated by Bose & Park [33],
it is practically difficult to identify the appropriate lifted location in
case of complex geometries. This situation gets more complicated when
combined with IBM as the wall distance is arbitrarily distributed along
the off-wall boundary. The dynamic slip model [34,35] offered alter-
native way for imposing non-zero Reynolds stress at wall, in which the
slip velocity boundary condition is formally derived from the filtered
equations with the slip length computed dynamically using a Germano-
like identity. The accuracy heavily depends on the dynamic procedure
for the slip length, the subgrid models as well as the numerical meth-
ods [33]. The present work follows the hybrid RANS-LES approach
and pursue smooth time-averaged wall surface quantities for general
complex geometries with IBM.

The present paper is organized as follows. In Section 2 the LES
governing equations and the flow solver are briefly described. In the fol-
lowing a fully explicit LES wall model consistent with the mixing length
turbulence model is presented in Section 3. Section 4 describes the
coupling of immersed boundary and LES near-wall modeling in detail.
Numerical results are shown and discussed in Section 5, considering
first the well known turbulent channel flow in Section 5.1 allowing for a
fine validation of the present model and then the 30P30N three element
airfoil in Section 5.2 to highlight the performance of the method for
complex geometries. Finally conclusions are offered in Section 6.

2. Governing equations and numerical method

The filtered mass and momentum equations for compressible flows
can be written as follows
𝜕�̄�
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with the Favre filtering given by �̃�𝑖 = 𝜌𝑢𝑖∕�̄�, where 𝑢𝑖, 𝜌, 𝑝 represent
the fluid velocity, density and pressure respectively. �̃�𝑖𝑗 is the viscous
stress term
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where 𝜈 is the molecular viscosity and 𝛿𝑖𝑗 represents the Kronecker delta
function. The resolved strain rate tensor is given by
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The subgrid-scale (SGS) stress or residual stress arising from the filter-
ing process is

𝜏𝑖𝑗 = �̄�(𝑢𝑖𝑢𝑗 − �̃�𝑖�̃�𝑗 ). (5)

Employing the eddy viscosity closure for the subgrid stress tensor leads
to

𝜏𝑖𝑗 = −2�̄�𝜈LES𝑡

(
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3
𝜏𝑘𝑘𝛿𝑖𝑗 . (6)

The classical Smagorinsky model assumes that

𝜈LES𝑡 = (𝐶𝑠𝛥)2|�̃�|, |�̃�| =
√

2�̃�𝑖𝑗 �̃�𝑖𝑗 , (7)

where 𝐶𝑠 is the Smagorinsky constant and 𝛥 is the filter size which is
usually taken as the grid size. The Smagorinsky model is found very
dissipative close to wall, hence near-wall damping function is often
employed to reduce the eddy viscosity, but theoretical justification
is not clear. The dynamic Smagorinsky model [36,37] computes the
constant dynamically using a test filter, provided the assumption that
the constant is invariant between the two filtering levels. The computed
constant however exhibits large oscillations which must be regularized
for stability. In this work the subgrid model of Vreman [38] is used for
the under-resolved eddies. It preserves the simplicity of the classical
Smagorinsky model, using only the first-order velocity derivatives.
Whereas it yields as good performance as the dynamic model but with-
out explicit filtering or ensemble averaging in homogeneous directions.
The Vreman’s eddy viscosity on Cartesian grids is given by

𝜈LES𝑡 = 𝐶𝛥2
|�̃�∗

|, |�̃�∗
| =

√

𝐵𝜷

𝐴𝜷
, (8)

where 𝐶 ≈ 2.5𝐶2
𝑠 . 𝐴𝜷 and 𝐵𝜷 are respectively the first invariant (trace)

and the second invariant of the tensor 𝜷 defined as

𝜷 = 𝜶T ⋅ 𝜶 = 𝛼𝑘𝑖𝛼𝑘𝑗 , 𝛼𝑖𝑗 =
𝜕�̃�𝑗
𝜕𝑥𝑖

, (9)

and

𝐴𝜷 = tr(𝜷) = ‖𝜶‖2 = 𝛼𝑖𝑗𝛼𝑖𝑗 , (10)

𝐵𝜷 = 1
2
[

(tr(𝜷))2 − tr(𝜷2)
]

= 𝛽11𝛽22 − 𝛽212 + 𝛽11𝛽33 − 𝛽213 + 𝛽22𝛽33 − 𝛽223. (11)

The lattice Boltzmann method (LBM) is employed in present work
to solve the flow equations by evolving the mesoscopic particle distri-
bution functions instead of the macroscopic variables. The macroscopic
density and velocity are obtained by taking the moment of the particle
distribution functions. The pressure is recovered by 𝑝 = 𝜌𝑐2𝑠 with 𝑐𝑠
being the speed of sound. Hence the LBM is often viewed as an artificial
compressibility method for the weakly compressible low-Mach flows.

To enhance the stability at high Reynolds numbers, the hybrid
recursive regularized density-based (HRR-𝜌) LBM solver [39] is used
along with the D3Q19 velocity sets, which is extensively validated
in [14,16,18,39,40]. The stability is controlled by introducing a hyper-
viscosity term that is turned on for the coefficient 0 ≤ 𝜎𝜈 < 1 (𝜎𝜈 = 1
corresponds to a null hyper-viscosity). In practical simulations, the



Fig. 1. Explicit wall model for the mixing length eddy viscosity model. (a) The velocity profile of 𝑈+ as a function of 𝑦+; (b) The inverse model with 𝑦+ as a function of 𝑅𝑒𝑦,
where the Lambert 𝑊 function (22) is truncated to the sixth order.
coefficient 𝜎𝜈 is set to be slightly below one or can be computed
dynamically [39].

Another crucial aspect of LBM is the specification of boundary
conditions for the particle distribution functions as they have more
degrees of freedom than the macroscopic variables. In this work, the
particle distribution functions are totally reconstructed by the regu-
larized finite-difference method [41], given the macroscopic boundary
conditions of 𝜌, 𝑢𝑖, the sum of molecule viscosity 𝜈 and eddy viscosity
𝜈𝑡, and the strain rate �̃�𝑖𝑗 .

3. Explicit wall model for LES

When the near-wall grid is too coarse to support the LES modeling,
the RANS model can be incorporated as a wall model to LES and
provides it with a proper wall shear stress as boundary condition. Under
the assumption of quasi-parallel flow close to wall without pressure
gradient, the wall-normal integrated RANS momentum equation gives
to the equilibrium wall model

𝜌(𝜈 + 𝜈RANS𝑡 )𝑑𝑈
𝑑𝑦

= 𝜏𝑤 ≡ 𝜌𝑢2𝜏 , (12)

where 𝑈 ≡ ⟨𝑢⟩ represents the Reynolds averaged wall-tangential ve-
locity and 𝑦 is the wall-normal distance. It implies that the total shear
stresses are equal to the wall shear stress 𝜏𝑤 near wall, with 𝑢𝜏 being
the friction velocity. The equilibrium wall model can be expressed in
viscous wall unit as

(1 + 𝜈RANS,+𝑡 )𝑑𝑈
+

𝑑𝑦+
= 1, (13)

with 𝑈+ = 𝑈∕𝑢𝜏 , 𝑦+ = 𝑦𝑢𝜏∕𝜈 and 𝜈RANS,+𝑡 = 𝜈RANS𝑡 ∕𝜈. The simple mixing
length eddy viscosity model with near-wall damping is employed for
closure, which is given by

𝜈RANS,+𝑡 = 𝜅𝑦+(1 − 𝑒−𝑦
+∕𝐴+

)2, (14)

where 𝜅 = 0.41 and 𝐴+ = 19.
The velocity profile can be obtained by integrating equation (13)

𝑈+ = ∫
1

1 + 𝜈RANS,+𝑡

𝑑𝑦+, (15)

whereas it is difficult to find the analytical form with above mixing
length eddy viscosity model. Hence we propose the following fitted
expression for the velocity as follows

𝑈+ =
[

1 − tanh(
𝑦+

10.71
)
]1.526

𝑦+

+
[

tanh(
𝑦+

10.71
)
]1.526 1

𝜅
log(𝐸𝑦+), 𝐸 = 11.27 (16)

which blends the linear-law and the log-law in order to obtain a unified
profile that is consistent with the specified eddy viscosity model. The
3

constants are fitted to the numerically integrated equation (15). The ve-
locity profile is displayed in Fig. 1(a) over the range of 𝑦+ ∈ [10−3, 104].
The fitted profile (16) is almost superimposed on the exact Eq. (15). The
error mainly manifests in the buffer region with the maximum error
of about 2%. In the logarithmic layer, the error is reduced to 0.01%.
Hence the proposed velocity profile (16) can be considered sufficiently
accurate.

However inverting equation (16) for the friction velocity 𝑢𝜏 is
not trivial. Newton iteration can be performed but it becomes quite
expensive for large scale problems. Moreover the convergence of the
Newton iteration highly depends on the initial guess. Following the
work by Cai and Sagaut [40], an explicit wall model will be derived
with respect to the friction velocity for the mixing length model. We
first define the local Reynolds number as

𝑅𝑒𝑦 =
𝑈𝑦
𝜈

= 𝑈+𝑦+, (17)

In the viscosity sublayer, we have

𝑈+ = 𝑦+ = (𝑅𝑒𝑦)1∕2, (18)

and in the logarithmic layer, it is easy to get

(𝜅𝐸𝑅𝑒𝑦) = (𝐸𝑦+) log(𝐸𝑦+). (19)

Donating 𝑥 = 𝜅𝐸𝑅𝑒𝑦 and 𝑊 = log(𝐸𝑦+), the above log-law can be
rewritten as

𝑥 = 𝑊 (𝑥)𝑒𝑊 (𝑥) (20)

where 𝑊 (𝑥) is actually the Lambert 𝑊 function, computed by

𝑊 (𝑥) = log( 𝑥
𝑊 (𝑥)

). (21)

The explicit wall model can be obtained if the Lambert 𝑊 function is
approximated by series, such as

𝑊 (𝑥) ≈ log( 𝑥
log( 𝑥

log(𝑥) )
) = log(𝑥) − log(log(𝑥) − log(log(𝑥))), (22)

and inserting into the definition 𝑊 = log(𝐸𝑦+) gives to

𝑦+(𝑅𝑒𝑦) =
1
𝐸
𝑒𝑊 (𝜅𝐸𝑅𝑒𝑦), (23)

We again blend the two explicit profiles (18) and (23) and calibrate the
constants as follows

𝑦+(𝑅𝑒𝑦) =
[

1 − tanh(
𝑅𝑒𝑦
180.8

)
]0.789

(𝑅𝑒𝑦)1∕2

+
[

tanh(
𝑅𝑒𝑦
180.8

)
]0.789

1
𝐸
𝑒𝑊 (𝜅𝐸𝑅𝑒𝑦). (24)

Its profile is shown in Fig. 1(b), where the maximum error in the
blending region is below 0.3% and reduces to 0.01% in the logarith-
mic layer, which clearly demonstrates the accuracy of the sixth-order



Fig. 2. Schematic of the immersed boundary and classification of grid points.
truncated Lambert 𝑊 function for the traditional logarithmic law-of-
the-law. Finally the friction velocity can be obtained straightforwardly
by

𝑢𝜏 = 𝑦+(𝑅𝑒𝑦)𝜈∕𝑦. (25)

4. Immersed boundary based LES near-wall modeling

4.1. Definition of computational boundary

The IBM adopts simple computational domain covered by Cartesian
grids for flow simulation over complex geometries, which are repre-
sented by surface tessellations in current work. The wall effects can be
incorporated either through a boundary force for the diffused interface
IBM or a boundary reconstruction procedure for the sharp interface
IBM. For high Reynolds number turbulent flows, the sharp interface
IBM is usually preferred for better local accuracy.

A preliminary procedure for the boundary reconstruction is the
identification of computational grid points, as shown in Fig. 2. The
fluid points are declared as points lying entirely outside the immersed
objects, which can be easily identified by the ray-tracing algorithm for
example. The solid points can be defined conversely which however are
not displayed in Fig. 2, since they are completely removed in current
simulation. The fluid points can be further classified to boundary (non-
fully-fluid) points and interior (fully-fluid) points. The boundary points
are surrounded by at least one solid point, and they finally form the
surrogate boundary of the flow domain for imposing the boundary
conditions.

4.2. Near-wall interpolation

In the body-fitted WMLES, the LES equations are solved down to the
wall, in which the RANS wall model is embedded into the LES domain
from the wall to a modeling height, usually the first off-wall grid point.
The wall model takes the instantaneous resolved velocity from LES as
input at the modeling height and returns the shear stress to LES as
boundary conditions at wall. In the immersed boundary simulation, the
first off-wall grid point now becomes the surrogate boundary, but the
second off-wall grid point does not necessarily in line with the first
off-wall grid point in the wall-normal direction. Hence interpolation
4

is required for obtaining information from LES in the wall-normal
direction. A simple algorithm based on the inverse distance weighting
is applied below [16]

𝜙𝑅 =
∑

𝑘
𝜔𝑘𝜙𝑘∕𝑞, 𝜔𝑘 =

(

1
𝑑𝑘

)2
, 𝑞 =

∑

𝑙

(

1
𝑑𝑙

)2
, (26)

where 𝜙𝑅 means generic quantities like �̃�𝑖 or �̄� at the reference point
and 𝑑𝑘 represents the Euclidean distance between the reference point
and the donor point.

Kawai and Larsson [42] argued that it does not have to take the first
off-wall grid point as the modeling height in body-fitted simulations,
and suggested to use grid points far away from wall to improve the
accuracy where the flow is well resolved by LES. In case of IBM, the
choice of modeling height can be diverse and its location is crucial for
accuracy. If it is too close to wall, the flow would not be well resolved
by LES. If it is too far away from wall, the wall law may not be valid.
Moreover the distribution of the modeling height is important for the
wall surface quantities [16,19] in IBM. In [13,14] a fixed modeling
height is selected. Preferably the modeling height should reside in the
same wall layer with the donor point or at least above the viscous
sublayer, such that the interpolation can be performed accurately [18–
20]. Otherwise large spurious oscillations would occur near-wall and
ruin the results dramatically. Cai et al. [16] presented a more general
approach by which the friction velocity is first computed on each donor
point using an explicit wall model and then interpolate the friction
velocity to the boundary. Since the friction velocity is considered to be
constant in wall-normal direction, the interpolation is performed only
in the tangential direction. As a result, the ambiguous reference point
is eliminated. It is found that the interpolation of the friction velocity
is very accurate even on very coarse grids with low order interpolation
method, such as the inverse distance weighting [16].

4.3. Boundary conditions of velocities and gradients

It is assumed that the tangential velocity follows exactly the wall-
law profile, hence the tangential velocity at the boundary points can
be determined from the wall model given the friction velocity. Since
there is no universal law for the wall-normal velocity component, it
is assumed to be zero in this study. Different treatment such as linear
or quadratic approximations give negligible impacts on the results



Fig. 3. LES near-wall modeling for the body-fitted grid and the immersed boundary grid.
Fig. 4. Computational domain of the turbulent plane channel flow, where the contour shows the instantaneous velocity field on the fine grid.
in RANS [16]. Nevertheless prescribing only velocity values at the
surrogate boundary is not sufficient, as a matter of fact the wall model
indicates a stress boundary condition instead.

As the grid is too coarse to resolve the near-wall flow, the normal
gradient would be considerably under-estimated, as well as the shear
stress boundary condition. Therefore, the normal gradient is corrected
from the wall-law profile. To do this, the velocity gradient tensor is first
transformed into the wall-oriented coordinate

𝐆′ = 𝐉 ⋅𝐆 ⋅ 𝐉T, (27)

where 𝐆 = ∇𝐮 and

𝐉 =
⎡

⎢

⎢

⎣

𝑠𝑥 𝑠𝑦 𝑠𝑧
𝑛𝑥 𝑛𝑦 𝑛𝑧
𝑡𝑥 𝑡𝑦 𝑡𝑧

⎤

⎥

⎥

⎦

, (28)

where 𝑠, 𝑛, 𝑡 represent the streamwise, wall-normal and span-wise direc-
tions respectively. To account for discrete effects, the finite-difference
approximated wall-law gradient is employed for reconstructing the
normal gradient in this work [16,18]. After correction, the velocity
gradient tensor is transformed back into the Cartesian system by

𝐆 = 𝐉T ⋅𝐆′ ⋅ 𝐉. (29)
5

Caution should be taken to the other gradient components as
well. The stair-case surrogate boundary degrades the centered finite-
difference to one-sided finite-difference when one grid neighbor point
is missing in that direction. This degeneration of accuracy order for
gradient evaluation would be harmful to the skin friction. It is sug-
gested in [13,16] to use more elaborate gradient scheme at the stair-
case boundary, such as the weighted least square (WLSQ) method.
The WLSQ gradient scheme minimizes the velocity error among the
neighbor points

𝐞 = 𝝓 − [𝜙𝐵 + 𝐃 ⋅ (∇𝜙)𝐵], (30)

where 𝜙 = 𝑢𝑖, 𝝓 = [𝜙1, 𝜙2,… , 𝜙𝑛𝑏 ] and 𝐃 = [𝐝1,𝐝2,… ,𝐝𝑛𝑏 ]
T with 𝑛𝑏

being the number of neighbor points. The error function is defined as

𝐽 = 𝐞T𝐖𝐞, (31)

where inverse distance is used as the weight 𝐖 = diag(𝜔1, 𝜔2,… , 𝜔𝑛𝑏 ).
Taking 𝜕𝐽∕𝜕𝐞 = 0 gives to

(∇𝜙) = (𝐃T𝐖𝐃)−1𝐃T𝐖(𝝓 − 𝜙 ). (32)
𝐵 𝐵



Fig. 5. Grid study of the turbulent channel flow at 𝑅𝑒𝜏 = 950 using the simplified constrained model. (a) The mean streamwise velocity 𝑈 ; (b) the resolved Reynolds stress
−⟨𝑢′𝑣′⟩+ = −⟨𝑢′𝑣′⟩∕𝑢2𝜏 ; (c) the rms of the streamwise velocity 𝑢′+rms = 𝑢′rms∕𝑢𝜏 ; (d) the rms of the normal velocity 𝑣′+rms = 𝑣′rms∕𝑢𝜏 .
The system can be solved analytically for all the velocity gradient
components. It should be noted that the normal gradient reconstruction
is performed after the WLSQ gradient scheme.

4.4. Near-wall eddy viscosity

As opposed to body-fitted grids, the IBM based WMLES is not solved
down to the wall but to a finite height away from wall 𝑦𝑏, as illustrated
in Fig. 3. The actual flow velocities are fluctuating and the Reynolds
stress does not vanish at that height. Correctly prescribing turbulent
fluctuations at the off-wall surrogate boundary turns out to be very
difficult [27]. When the RANS wall shear stress is specified at the
surrogate boundary, the simulation could be viewed as a kind of hybrid
RANS-LES with the surrogate boundary as the zonal interface, except
that the wall-normal grids are not refined to resolve the steep velocity
gradient.

Without special treatment the current IBM using local reconstruc-
tion is not conservative for both mass and momentum. It was observed
in [43] that the results are highly sensitive to the wall distance of the
surrogate boundary. The stress loss becomes significant as the surrogate
boundary is shifted away from the wall surface even on aligning grids
in current simulations. This contradicts the requirement of reducing
large velocity gradients by shifting the surrogate boundary away from
wall. Furthermore, since coarse grids are used in the near-wall region,
large numerical and SGS modeling errors will be occurred on the
near-wall few grid points. The near-wall eddy viscosity model thus
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should compensate not only the under-resolved eddies but also all these
deficiencies for a correct level of the Reynolds stress.

Enforcing the Reynolds stress constraint in the near-wall region
has been extensively investigated in the body-fitted LES near-wall
modeling, such as in WMLES [44–48] and in hybrid RANS-LES [15,49–
52]. By dropping out the density for the specific stresses in weakly
compressible flows, the balance of the Reynolds stress states that

𝑅𝑖𝑗 = 𝑅LES
𝑖𝑗 + ⟨𝜏𝑖𝑗⟩, (33)

where 𝑅LES
𝑖𝑗 = ⟨�̃�𝑖�̃�𝑗⟩−⟨�̃�𝑖⟩⟨�̃�𝑗⟩ is the resolved Reynolds stress by LES. The

above balance equation (33) holds under the ergodic flow assumption,
namely ⟨�̃�⟩ = ⟨𝜙⟩ for a generic flow field, such that

𝑅LES
𝑖𝑗 + ⟨𝜏𝑖𝑗⟩ = ⟨�̃�𝑖�̃�𝑗⟩ − ⟨�̃�𝑖⟩⟨�̃�𝑗⟩ + ⟨𝑢𝑖𝑢𝑗⟩ − ⟨�̃�𝑖�̃�𝑗⟩

= ⟨𝑢𝑖𝑢𝑗⟩ − ⟨𝑢𝑖⟩⟨𝑢𝑗⟩

= 𝑅𝑖𝑗 ,

(34)

where the true Reynolds stress 𝑅𝑖𝑗 can be approximated by a RANS
model. Chen et al. [53] have observed no significant differences be-
tween the mixing length turbulence model and the Spalart–Allmaras
turbulence model for the Reynolds stress constraint, in the test cases of
turbulent channel flow and turbulent flow over a circular cylinder. In
current work, we adopt the mixing length model for simplicity. As for
the time-averaging, the exponentially weighted moving average [54]
can be employed

⟨𝑢 ⟩

𝑛+1 = (1 − 𝐶 )⟨𝑢 ⟩

𝑛 + 𝐶 �̃�𝑛+1, (35)
𝑖 exp 𝑖 exp 𝑖



Fig. 6. Grid study of the turbulent channel flow at 𝑅𝑒𝜏 = 2000 using the simplified constrained model. (a) The mean streamwise velocity 𝑈 ; (b) the resolved Reynolds stress
−⟨𝑢′𝑣′⟩+ = −⟨𝑢′𝑣′⟩∕𝑢2𝜏 ; (c) the rms of the streamwise velocity 𝑢′+rms = 𝑢′rms∕𝑢𝜏 ; (d) the rms of the normal velocity 𝑣′+rms = 𝑣′rms∕𝑢𝜏 .
with

𝐶exp = 3.628𝑓𝑐𝛥𝑡, (36)

where 𝑓𝑐 is the cutoff frequency and 𝛥𝑡 the time step. In current lattice
Boltzmann method, the physical time step is determined by the grid
size 𝛥𝑡 = 𝛥𝑥∕(

√

3𝑐0) with 𝑐0 being the sound speed. Averaging in
homogeneous directions is preferable but it is generally not feasible for
complex geometries.

There are many ways to fulfill the Reynolds-stress constraint in
the near-wall region. In present work, we focus on the eddy viscosity
closure for LES and RANS, hence the hybrid eddy viscosity can be easily
defined as

𝜈hybrid𝑡 = 𝛽𝜈LES𝑡 + (1 − 𝛽)𝜈RANS𝑡 , (37)

where 𝛽 ∈ [0, 1] is the blending function to be specified.

• Empirical blending model

Kawai and Larsson [42,46] have presented a linear blending function
in the body-fitted WMLES as follows

𝛽 = 1 −𝐾𝛾 , 𝐾 = max
[

min(
𝑦𝑏𝑙 − 𝑦
𝑦𝑏𝑙 − 𝑦𝑐

, 1), 0
]

, 𝑦𝑐 = 𝛼𝑦𝑏𝑙 , (38)

with 𝛾 = 1 and 𝑦𝑏𝑙 = 𝑦𝑚. When applied to IBM based LES near-wall mod-
eling [15], 𝑦𝑏𝑙 represents the blending height above which the turbulent
flow is supposed to be well resolved by LES hence no blending action is
undertaken. 𝑦𝑐 denotes the starting height of blending below which the
turbulence scales are all modeled by RANS. The eddy viscosity blending
7

only acts in the intermediate region (𝑦𝑐 ≤ 𝑦 ≤ 𝑦𝑏𝑙). The parameter 𝛼
(0 ≤ 𝛼 ≤ 1) which controls the blending region is prescribed to 0.36
in [42,46]. Maeyama et al. [15] have studied the sensitivity of these
parameters in the turbulent channel flow and found best results with
𝛾 = 2 and 𝛼 = 0.4. Apparently the optimal parameters may vary for
different problems and the Reynolds stress constraint (33) would not
be strictly verified.

• Dynamic blending model

Applying the Reynolds stress constraint (33) to the eddy viscosity
blending (37) gives to

−2𝜈RANS𝑡 ⟨�̃�𝑖𝑗⟩ = 𝑅LES
𝑖𝑗 − 2⟨𝜈hybrid𝑡 �̃�𝑖𝑗⟩

= 𝑅LES
𝑖𝑗 − 2𝛽⟨𝜈LES𝑡 �̃�𝑖𝑗⟩ − 2𝜈RANS𝑡 ⟨�̃�𝑖𝑗⟩ + 2𝛽𝜈RANS𝑡 ⟨�̃�𝑖𝑗⟩,

(39)

that is,

𝛽
[

2⟨𝜈LES𝑡 �̃�𝑖𝑗⟩ − 2𝜈RANS𝑡 ⟨�̃�𝑖𝑗⟩
]

= 𝑅LES
𝑖𝑗 , (40)

where the blending function can be obtained by least square minimiza-
tion

𝛽 =
𝑅LES
𝑖𝑗 ⟨�̃�𝑖𝑗⟩

2⟨𝜈LES𝑡 �̃�𝑖𝑗⟩⟨�̃�𝑖𝑗⟩ − 2𝜈RANS𝑡 ⟨�̃�𝑖𝑗⟩⟨�̃�𝑖𝑗⟩
, (41)

or

𝛽 =
𝑅LES
𝑖𝑗 ⟨�̃�𝑖𝑗⟩

. (42)

𝑅𝑖𝑗⟨�̃�𝑖𝑗⟩ − ⟨𝜏𝑖𝑗⟩⟨�̃�𝑖𝑗⟩



Fig. 7. Grid study of the turbulent channel flow at 𝑅𝑒𝜏 = 4200 using the simplified constrained model. (a) The mean streamwise velocity 𝑈 ; (b) the resolved Reynolds stress
−⟨𝑢′𝑣′⟩+ = −⟨𝑢′𝑣′⟩∕𝑢2𝜏 ; (c) the rms of the streamwise velocity 𝑢′+rms = 𝑢′rms∕𝑢𝜏 ; (d) the rms of the normal velocity 𝑣′+rms = 𝑣′rms∕𝑢𝜏 .
The blending coefficient here indicates the ratio of actually resolved
turbulent production over the intended one. If the flow region has no
LES content, 𝛽 = 0 recovers to RANS. If the flow is fully resolved by
LES, 𝛽 = 1 gives the original LES formulation. Above blending model
is slightly different from the dynamic hybrid RANS-LES model [50,51]
in which the stress is blended instead of the eddy viscosity.

• Constrained model

Verma et al. [52] presented a Reynolds stress constrained SGS model,
in which the constant in the eddy viscosity is adjusted dynamically to
account for the deficits of the Reynolds stress

−2𝜈RANS𝑡 ⟨�̃�𝑖𝑗⟩ = 𝑅LES
𝑖𝑗 − 2𝐶𝛥2

⟨|�̃�∗
|�̃�𝑖𝑗⟩. (43)

Using the least square method gives to

𝐶𝛥2 =
2𝜈RANS𝑡 ⟨�̃�𝑖𝑗⟩⟨|�̃�∗

|�̃�𝑖𝑗⟩ + 𝑅LES
𝑖𝑗 ⟨|�̃�∗

|�̃�𝑖𝑗⟩

2⟨|�̃�∗
|�̃�𝑖𝑗⟩⟨|�̃�∗

|�̃�𝑖𝑗⟩
, (44)

and consequently,

𝜈hybrid𝑡 =
2𝜈RANS𝑡 ⟨�̃�𝑖𝑗⟩⟨|�̃�∗

|�̃�𝑖𝑗⟩ + 𝑅LES
𝑖𝑗 ⟨|�̃�∗

|�̃�𝑖𝑗⟩

2⟨|�̃�∗
|�̃�𝑖𝑗⟩⟨|�̃�∗

|�̃�𝑖𝑗⟩
|�̃�∗

|. (45)

It should be noted that in [52] the dynamic Smagorinsky model is used
along with the Reynolds stress constraint to determine the constant,
similar to Chen et al. [53]. As mentioned previously, the dynamic
procedure needs averaging in the homogeneous direction for stabiliza-
tion and explicit filtering. Eq. (44) allows for more general LES eddy
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viscosity models with an appropriate choice of |�̃�∗
|, for example using

|�̃�∗
| = |�̃�| for the classical Smagorinsky model. In [52] the constraint is

controlled by a weight function which consists of an scaling factor for
the constraint strength and a threshold value for the constraint region.
In this work, the scaling factor is not considered for strict satisfaction
of the Reynolds stress constraint (33) and the threshold is explicitly
controlled via the wall distance.

• Simplified constrained model

By assuming that the hybrid eddy viscosity and the mean strain rate
tensor are independent [49], the Reynolds stress balance equation (33)
can be rewritten as

−2𝜈RANS𝑡 ⟨�̃�𝑖𝑗⟩ = 𝑅LES
𝑖𝑗 − 2𝜈hybrid𝑡 ⟨�̃�𝑖𝑗⟩, (46)

therefore

𝜈hybrid𝑡 =
2𝜈RANS𝑡 ⟨�̃�𝑖𝑗⟩⟨�̃�𝑖𝑗⟩ + 𝑅LES

𝑖𝑗 ⟨�̃�𝑖𝑗⟩

2⟨�̃�𝑖𝑗⟩⟨�̃�𝑖𝑗⟩
, (47)

which can be viewed as a simplification to the constrained model but
is functionally more closer to the dynamic model.

4.5. Summary of the near-wall treatment

The near-wall treatment of current immersed boundary based LES
can be summarized as follows



Fig. 8. Comparison of blending models for the turbulent channel flow at 𝑅𝑒𝜏 = 2000 on the fine grid. (a) The mean streamwise velocity 𝑈 ; (b) the resolved Reynolds stress
−⟨𝑢′𝑣′⟩+ = −⟨𝑢′𝑣′⟩∕𝑢2𝜏 ; (c) the rms of the streamwise velocity 𝑢′+rms = 𝑢′rms∕𝑢𝜏 ; (d) the rms of the normal velocity 𝑣′+rms = 𝑣′rms∕𝑢𝜏 ; (e) the hybrid eddy viscosity 𝜈+𝑡 = 𝜈𝑡∕𝜈.
1. Computing the tangential velocity and the friction velocity from
the explicit wall model (25) at each donor cell around the
boundary point;

2. Interpolating the friction velocity to the boundary point in wall-
parallel plane using the IDW (26);

3. Calculating the boundary velocity from the explicit wall model
(16) using the interpolated friction velocity;

4. Evaluating the velocity gradients with the WLSQ method and
rectifying the wall-normal component from the wall model;
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5. Imposing the RANS eddy viscosity at the boundary points and
applying the eddy viscosity blending techniques in the near-wall
grid points;

6. Reconstructing the particle distribution function in LBM from
these macroscopic quantities at the surrogate boundary.

5. Numerical results

In order to assess the proposed near-wall treatments, we first con-
sider the turbulent plane channel flow simulation in which the grids



Fig. 9. Comparison of the blending region for the turbulent channel flow at 𝑅𝑒𝜏 = 2000 on the fine grid using the simplified constrained model. (a) The mean streamwise velocity
𝑈 ; (b) the resolved Reynolds stress −⟨𝑢′𝑣′⟩+ = −⟨𝑢′𝑣′⟩∕𝑢2𝜏 ; (c) the rms of the streamwise velocity 𝑢′+rms = 𝑢′rms∕𝑢𝜏 ; (d) the rms of the normal velocity 𝑣′+rms = 𝑣′rms∕𝑢𝜏 .
are aligned to the wall plates. In this case the wall distance of the first
off-wall grid points can be controlled, so that we can easily perform
the sensitivity study of each model to the wall distance. Next we will
consider a more general case with curved wall surfaces of complex
shape, the turbulent flow over a three-element high-lift airfoil. The wall
distance becomes arbitrary and no longer smooth along the wall, which
allows us to demonstrate the capability of the proposed methods for
obtaining smooth and accurate wall surface pressure and skin friction.

5.1. Turbulent channel flow

The turbulent plane channel flow is shown in Fig. 4, where the
grids are parallel to the wall plates, in order to mimic the body-fitted
situation. As a matter of fact, the fluid grids are seldom coincident with
the wall surface in the context of IBM, hence the surrogate boundary
is shifted away from the physical wall with a wall-normal distance
denoted as 𝑦𝑏 in current work (see Fig. 3), to study the sensitivity
of the proposed methods with respect to the boundary wall distance.
The computational domain is 2𝜋𝛿 × 2𝛿 × 2𝜋𝛿 covered by uniform grids
(𝛥𝑥 = 𝛥𝑦 = 𝛥𝑧 = 𝛥), with 𝛿 being the channel half width. Three
grid resolutions are employed, namely the coarse grid, the medium
grid and the fine grid, where the number of wall-normal grid points
is 𝑁 = 10, 20, 30 for the channel half width respectively. To address the
finite Reynolds number effect, a series of Reynolds number 𝑅𝑒𝜏 ≡ 𝑢𝜏𝛿∕𝜈
has been studied, ranging from 950 to 4200. It should be noted that
the first off-wall grid point never resides in the viscous sublayer in all
current simulations, hence the results are principally determined by the
near-wall treatments.
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Periodic boundary conditions are assumed in the streamwise and
spanwise directions, while the near-wall treatments are applied in the
wall-normal direction. In order to achieve the desired Reynolds num-
ber, an external body force is introduced and computed dynamically by

𝑔 =
𝑢2𝜏
𝛿

+
𝑢𝜏 − 𝑢avg𝜏

𝛥𝑡
, (48)

where 𝑢avg𝜏 is the instantaneous friction velocity averaged over the
surrogate boundary and 𝑢𝜏 = 𝜈𝑅𝑒𝜏∕𝛿 is the target value.

The initial flow velocities are prescribed to the wall-law profile with
random perturbations for facilitating rapid turbulence development.
The perturbation strength is about 10% for the streamwise velocity and
5% for the other two components. After a transient state, the turbulent
flow becomes fully established, then the statistics are collected over a
sufficient long time period.

5.1.1. Reynolds number dependency
The mean streamwise velocity and the resolved Reynolds stresses

are shown in Figs. 5–7 for the turbulent channel flow using the sim-
plified constrained model on different grids, at the Reynolds number
𝑅𝑒𝜏 = 950, 2000 and 4200 respectively. The Smagorinsky constant
𝐶𝑠 = 0.1 is used in the Vreman subgrid model. The surrogate boundary
is lifted from the wall plate by 0.5𝛥. The blending distance 𝑦𝑏𝑙 is fixed
to 4𝛥. As the normal velocity is set to zero at the boundary points,
no Reynolds stress is resolved at the first off-wall grid points and the
blending takes effect at the second, third and forth off-wall grid points.
It should be noticed that the turbulent fluctuations are still resolved



Fig. 10. Turbulent channel flow at 𝑅𝑒𝜏 = 2000 on the fine grid, with a boundary wall shift of 𝑦𝑏 = 0.1𝛥. (a) The mean streamwise velocity 𝑈 ; (b) the resolved Reynolds stress
−⟨𝑢′𝑣′⟩+ = −⟨𝑢′𝑣′⟩∕𝑢2𝜏 ; (c) the rms of the streamwise velocity 𝑢′+rms = 𝑢′rms∕𝑢𝜏 ; (d) the rms of the normal velocity 𝑣′+rms = 𝑣′rms∕𝑢𝜏 .
inside the blending area, regardless the augmentation of subgrid eddy
viscosity. It was demonstrated in [52,53] that the blending would not
dissipate away the smaller scales of turbulence.

The mean streamwise velocity 𝑈 on the near-wall grid points that
are impacted by the eddy viscosity blending follows well the DNS data
of [55]. Whereas it shows a small shift-up in the pure LES region in
the inertial layer, known as the log-layer mismatch, which has been
frequently observed in many hybrid RANS-LES methods [56,57]. The
velocity jump occurs near the blending height, which corresponds to
the jump of the Reynolds stress. It was revealed in [52,53] that the
constrained subgrid models could eliminate the log-layer mismatch
effectively on traditional body-fitted grid where the wall-normal grid is
refined to resolve the steep velocity gradient, but the wall-parallel grid
spacing is relatively larger than the boundary-layer thickness. Verma
et al. [52] further relaxed the wall-normal grid resolution and found
that the constrained model, when worked as a wall model, failed to
remove the log-layer mismatch as well.

The resolved Reynolds stress ⟨𝑢′𝑣′⟩+ outside the blending region
converges well to the DNS results under grid refinement. It can be seen
that on the coarse grid, the rms of both the streamwise and normal
velocities deviate considerably from the DNS data with increasing
Reynolds number, implying that a significant portion of turbulent struc-
tures is not well resolved. On the fine grid, the rms of the streamwise
velocity 𝑢′+rms at 𝑅𝑒𝜏 = 950 agrees well with the DNS results, but becomes
under-predicted as the Reynolds number increases. This is because
the grid resolution in wall units 𝛥+ gets coarsen for higher Reynolds
number. Meanwhile the rms of the normal velocity 𝑣′+rms is slightly over-
predicted away from the wall, which however moves closer to the
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DNS result as the Reynolds number increases. The correct boundary
condition for the normal velocity can be tricky in the context of IBM.
The zero normal velocity approximation made in this work provides
rather good predictions anyway. One can also observe that the resolved
Reynolds stresses ⟨𝑢′𝑣′⟩+ and 𝑢′+rms exhibit a sharp transition right after
the blending height, which is due to the sudden reduction of the eddy
viscosity.

5.1.2. Effect of blending models
Fig. 8 compares different eddy viscosity blending models at 𝑅𝑒𝜏 =

2000 on the fine grid. The wall distance of the surrogate boundary
and the blending height are kept to 0.5𝛥 and 4𝛥 respectively. For
the empirical blending method, 𝛼 = 0.4 and 𝛾 = 2 are used, as
recommended in [15]. Therefore, the blending starts from 1.6𝛥, namely
the third off-wall grid points, as opposed to the second point in the
other models.

The mean streamwise velocity is predicted very closely among all
the blending models but the log-layer mismatch issue persists. The
peak values of the Reynolds stresses are slightly higher in the em-
pirical blending model and the transition is relatively smooth across
the blending height, despite that the empirical blending model does
not strictly satisfies the Reynolds stress balance. This can be explained
by the hybrid eddy viscosity in the blending region which is reduced
gradually in the empirical blending model.

The constrained model produces a relatively smaller Reynolds
stresses, consequently the rms of the normal velocity 𝑣′+rms matches well
the DNS results. It can be seen that the profiles almost collapse between



Fig. 11. Turbulent channel flow at 𝑅𝑒𝜏 = 2000 on the fine grid, with a boundary wall shift of 𝑦𝑏 = 0.9𝛥. (a) The mean streamwise velocity 𝑈 ; (b) the resolved Reynolds stress
−⟨𝑢′𝑣′⟩+ = −⟨𝑢′𝑣′⟩∕𝑢2𝜏 ; (c) the rms of the streamwise velocity 𝑢′+rms = 𝑢′rms∕𝑢𝜏 ; (d) the rms of the normal velocity 𝑣′+rms = 𝑣′rms∕𝑢𝜏 .
the simplified constrained model and the dynamic model. This may
come from the use of the time-averaged strain rate tensor ⟨�̃�𝑖𝑗⟩ for the
tensor product in their least square minimization.

Enforcing the Reynolds stress balance in present work principally
aims at overcoming the stress loss. This can be verified from Fig. 9
for different blending height in the simplified constrained model at
𝑅𝑒𝜏 = 2000 on the fine grid. A significant amount of stress loss is
observed when reducing the eddy viscosity blending region towards
zero, which was also observed in [15]. To maintain the total Reynolds
stress, the blending should be applied to at least the second and the
third off-wall grid points, or equivalently 𝑦𝑏𝑙 = 3𝛥 in this case.

5.1.3. Influence of boundary wall distance
The wall distance of the surrogate boundary demonstrates a very

strong impact. Figs. 8, 10 and 11 compare all blending models at
𝑅𝑒𝜏 = 2000 on the fine grid for different boundary wall distances of
𝑦𝑏 = 0.5𝛥, 0.1𝛥 and 0.9𝛥 respectively. The blending height is 𝑦𝑏𝑙 = 4𝛥
for all the blending models.

The non-dimensional mean streamwise velocity is not very sen-
sitive to the boundary wall distance. On the contrary, the resolved
Reynolds stresses are significantly changed with different boundary
wall distances. As the surrogate boundary moves close to the wall,
the level of resolved stresses gets decreased for all blending models,
especially for the constrained model in which the stresses are strongly
under-predicted. Lifting up from the wall, the constrained model is
improved for the resolved stresses whereas the empirical model leads
to considerable under-predictions. That could be explained by the fact
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that the empirical model does not fulfill the Reynolds stress balance,
hence it shows a stronger dependency on the boundary wall distance.

5.2. 30P30N three-element airfoil

Now we consider a more complex benchmark test case that is rele-
vant to industrial applications, the modified-slat 30P30N three-element
high-lift airfoil where the deflection angles of the slat and the flap are
both 30◦. This case has been extensively studied for aerodynamics and
acoustics, for which various experimental and numerical results are
available for comparison [58–60]. The Mach number is 0.17 and the
Reynolds number is 1.71 × 106 based on the free-stream velocity 𝑈∞
and the stowed chord 𝑐. The angle of attack of 5.5◦ is considered by
inclining the incoming flow.

The computational domain is chosen to [90𝑐, 60𝑐, 0.14𝑐] in present
study. The flow travels over a distance of 30𝑐 from the inlet to the airfoil
and exits the domain after 60𝑐. The lateral boundaries are maintained
30𝑐 away from the airfoil. Absorbing layers are applied in the vicinity
of outer boundaries to reduce spurious reflection of the flow back into
the domain. The entire simulation is carried out for 28 flow-through
times (𝑐∕𝑈∞) and the time-averaging is performed over the last 14
flow-though times such that the turbulence statistics are converged.

Two grids are employed to check the sensitivity of the proposed
treatments to the near-wall grid resolution. The grid spacing far away
from the airfoil is around 0.14𝑐 for both grids that is progressively
refined towards the airfoil using the Octree architecture. The near-wall
grid spacing of the coarse grid is around 1.1 × 10−3𝑐 and the number



Fig. 12. Computational grid for the 30P30N high-lift three-element airfoil. (a) the overall grid around the airfoil; (b) the slat region.
Fig. 13. Near-wall grid resolution for the 30P30N high-lift three-element airfoil.

of total grid points is about 8 million. An additional near-wall grid
refinement is taken in the fine grid which leads to the near-wall grid
spacing about 5.5 × 10−4𝑐 and the total grid points of approximate 55
million. Figs. 12 and 13 display the grid distribution near the airfoil and
the grid resolution respectively. Generally speaking the near-wall grid
resolution should be further refined especially near the leading edge
of the main element, but current grids give rather good predictions of
the overall aerodynamic quantities. Table 1 shows the coefficients of
drag and lift integrated on the surrogate boundaries using the far-field
approach [16]. These integral quantities with all blending models are
close to available experimental and numerical results, indicating the
accuracy and efficiency of current near-wall modeling.

The mean wall pressure 𝐶𝑝 = (𝑝𝑤 − 𝑝∞)∕(1∕2𝜌∞𝑈2
∞) and the mean

skin friction 𝐶𝑓 = 𝜌𝑢2𝜏∕(1∕2𝜌∞𝑈2
∞) are shown in Figs. 14 and 15 for

different treatments of the eddy viscosity on the coarse grid and the fine
grid respectively, where 𝑝∞ and 𝜌∞ represent the free-stream pressure
and density. The blending height is fixed to 4𝛥 for all the eddy viscosity
blending models. The overall profiles are smooth, except near the
leading edge of the main element where the turbulent boundary layer
is too thin for current grid resolution. Therefore, it can be said that the
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wall ingredients (interpolation for 𝑢𝜏 , WLSQ gradient scheme and wall-
law normal gradient) in RANS for smoothing wall surface quantities
works equivalently well in current LES near-wall treatment.

The mean wall pressure on the lower surface agrees well with the
experimental data of Murayama et al. [58] and Pascioni et al. [59].
On the upper surface of the main element, the predicted mean wall
pressure lies between the two data sets on the coarse grid. Nevertheless
noticeable deviation is found towards the upper surface of the flap
and slat elements from both experiments, which can be attributed to
the coarse grid resolution. It can be seen that the mean wall pressure
well converges to the experimental results of Murayama et al. [58]
on the fine grid. On the other side, the wall pressure shows negligible
variations with respect to different hybrid eddy viscosity models.

However the mean skin friction is affected by different treatments
of the eddy viscosity. The result obtained with the empirical model
differs from the others on the upper surfaces where the turbulence is
developing. Enforcing the exact Reynolds stress balance near-wall gives
almost indistinguishable mean skin friction among the constrained,
dynamic and simplified constrained models. It is also noticed that the
predicted mean skin friction is increased on the upper surface as the
grid is refined. This quantity is rarely presented in the literature and
large discrepancies are observed in its values even with Navier–Stokes
based body fitted methods. We present it here for future reference.

Fig. 16 displays the sensitivity of blending height in different eddy
viscosity blending models on the coarse grid. It is observed that the
empirical model is more sensitive to blending region. When reducing
the blending height, the mean skin friction is increased significantly
over the entire upper surfaces in the empirical model and the wall
pressure difference becomes visible as well. Models that fulfill the
Reynolds stress constraint are more robust. Although the laminar-
turbulent transition location is still sensitive to the blending height,
but the remaining parts are essentially not changed for the constrained,
dynamic and simplified constrained models. In the following results, we
focus on the blending height 𝑦𝑏𝑙 = 4𝛥.

The flow inside the slat cove contains a lot of physical phenomena
that are very important to the aerodynamic performance. The shear
layer coming from the lower cusp rolls up into spanwise vortices, which
can be visualized from the isosurfaces of the 𝑄-criterion in Fig. 17
and the instantaneous spanwise vorticity in Fig. 18. The coherent
structures impinge on the lower slat surface and create a recirculation
zone between the slat and main element. The mean streamline is
shown in Fig. 18(c) that clearly reveals the flow recirculation inside the
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Fig. 14. Comparison of blending models for the mean wall surface pressure 𝐶𝑝 = (𝑝𝑤 − 𝑝∞)∕(1∕2𝜌∞𝑈 2
∞) and the mean skin friction 𝐶𝑓 = 𝜌𝑢2𝜏∕(1∕2𝜌∞𝑈 2

∞) for the 30P30N high-lift
three-element airfoil, on the coarse grid. The Experimental results are digitized from Murayama et al. [58] (circle) and Pascioni et al. [62] (plus) respectively.

Fig. 15. Comparison of blending models for the mean wall surface pressure 𝐶𝑝 = (𝑝𝑤 − 𝑝∞)∕(1∕2𝜌∞𝑈 2
∞) and the mean skin friction 𝐶𝑓 = 𝜌𝑢2𝜏∕(1∕2𝜌∞𝑈 2

∞) for the 30P30N high-lift
three-element airfoil, on the fine grid. The Experimental results are digitized from Murayama et al. [58] (circle) and Pascioni et al. [62] (plus) respectively.

Fig. 16. Comparison of blending heights for the mean wall surface pressure 𝐶𝑝 = (𝑝𝑤 − 𝑝∞)∕(1∕2𝜌∞𝑈 2
∞) and the mean skin friction 𝐶𝑓 = 𝜌𝑢2𝜏∕(1∕2𝜌∞𝑈 2

∞) for the 30P30N high-lift
three-element airfoil, on the coarse grid. The Experimental results are digitized from Murayama et al. [58] (circle) and Pascioni et al. [62] (plus) respectively.



Table 1
Comparison of blending models for the drag and lift coefficients for the 30P30N high-lift airfoil, where N/A denotes ‘‘not
available’’.

Method 𝐶𝑑 𝐶𝑙

Coarse Fine Coarse Fine

Murayama et al. [58] Experiment N/A ≈2.8
Choudhari et al. [61] Experiment N/A ≈2.6
Pascioni et al. [62] Experiment N/A ≈2.8
Ashton et al. [60] IDDES, structured grid 0.135 2.631

IDDES, unstructured grid 0.184 2.648
Zhang et al. [63] WMLES, structured grid 0.06926 0.06740 2.852 2.848

Present Simplified constrained blending 0.110 0.078 2.628 2.827
Constrained blending 0.107 0.076 2.647 2.824
Dynamic blending 0.109 0.078 2.621 2.829
Empirical blending 0.113 0.078 2.573 2.775
Fig. 17. Isosurfaces of the 𝑄-criterion (𝑄𝑐2∕𝑈 2
∞ = 6257) using the simplified constrained model on the fine grid, colored by the velocity magnitude.
slat cove. Good agreements are found between these results with the
stereoscopic particle image velocimetry results of Pascioni et al. [59].
Further details can be examined on the flow velocity along the sampled
lines defined in Fig. 19. All the blending models show a good trend far
away from the lower slat surface and match well with the experiments.
The deviation becomes evident when approaching the slat wall. The
dynamic model and the simplified constrained model give very accurate
prediction of the velocity behavior, followed by the constrained model.
The empirical model that gives considerable over-estimation of the flow
velocity is the least accurate. This highlights the importance of the
Reynolds stress balance in the near-wall region.

To further demonstrate the capability of the proposed method, a
more challenging case, namely the MDA 30P/30N at the maximum
lift configuration, is simulated at the angle of attack of 21◦ with the
simplified constrained model. The Reynolds number is 5 × 106 and the
Mach number is 0.2. The results are compared to the well established
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experimental data [64]. In order to reduce the computational cost, the
spanwise length is reduced to 0.07𝑐. The finest grid spacing around
the airfoil is about 5.5 × 10−4𝑐 and the total grid number is around 29
million.

Fig. 20 shows the mean wall pressure and the mean skin fric-
tion. Even though some discrepancies can be observed against the
experiments, the overall prediction is fairly good, considering the fact
that the grid resolution at this Reynolds number is actually coarse
(𝛥+ = 3.2∼340). There are certainly rooms for further grid refinement,
however the main contribution of this work is to reduce the grid re-
quirement as much as possible while retaining a good level of accuracy
for complex turbulent flow simulations. The key achievement of the
proposed method is to ensure the Reynolds stress balance near wall
and the physical prediction of the wall surface quantities on immersed
grids under coarse resolution. It should also be highlighted that the
hybrid viscosity in dynamic modes is able to return to the subgrid eddy



Fig. 18. Flow fields near the slat region using the simplified constrained model on the fine grid. (a) Mean vorticity 𝜔𝑧𝑐∕𝑈∞; (b) instantaneous vorticity; (c) mean streamline.
Fig. 19. Comparison of blending models for the mean velocity profiles over sample lines near the slat region on the fine grid. The Experimental results are digitized from Pascioni
et al. [59] (circles).
viscosity near wall, namely the wall-modeled large eddy simulation,
in case of highly refined grids or flow separations. This could be very
advantageous for more complex industrial flow simulations.

6. Conclusions

In this work a coupled IBM-LES near-wall modeling for high
Reynolds number turbulent flows over complex geometries on Carte-
sian grids has been presented. It is based on an extension of the
previously developed near-wall ingredients from RANS to LES mode.
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Furthermore the hybrid RANS-LES strategy is applied to the near-
wall eddy viscosity and various formulations have been investigated.
The empirical blending method is simple to use and effective, but the
results are sensitive to the wall distance of the surrogate boundary and
the blending height. Enforcing the Reynolds stress constraint exactly
turns out to be more robust even if it requires dynamic extraction
of the mean quantities. The choice of the weight for minimizing the
Reynolds stress constraint is of paramount importance, and it has been
found that using the mean strain rate gives the best results. Based on
that, a novel hybrid eddy viscosity model is proposed. Additionally, an



Fig. 20. The mean wall surface pressure 𝐶𝑝 = (𝑝𝑤 − 𝑝∞)∕(1∕2𝜌∞𝑈 2
∞) and the mean skin friction 𝐶𝑓 = 𝜌𝑢2𝜏∕(1∕2𝜌∞𝑈 2

∞) for the MDA 30P30N maximum lift configuration. The
Experimental results are digitized from Klausmeyer and Lin [64] (circle).
adapted explicit wall model covering the viscous sublayer, the buffer
layer and the logarithmic layer is introduced to reduce the unnecessary
computational cost as much as possible.

This new near-wall modeling has been assessed by considering first
the well-known turbulent channel flow configuration and then a com-
plex three-element high-lift airfoil geometry. Very satisfactory results
were obtained in terms of the mean velocity and the Reynolds stress
profiles in comparison with the DNS data for the turbulent channel
flow configuration. The results obtained on the 30P30N airfoil indicate
that the RANS wall ingredients have been successfully extended to
LES to obtain smooth time-averaged wall pressure and skin friction
coefficients on complex curved wall surfaces, even at a significantly
higher angle of attack of 21◦ for the maximum lift configuration.
Moreover, the integral drag and lift coefficients, the flow structures and
the velocity profiles are all well predicted with the proposed method,
highlighting the suitability for industrial applications. Even though the
lattice Boltzmann method has been used in this work, the current near-
wall treatment is versatile as it can be applied to the Navier–Stokes
based solvers straightforwardly. More complex industrial applications,
possibly including massive flow separations, will be considered in the
future work.
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