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Abstract: Log-concavity and log-convexity play a key role in various scientific fields, especially in
those where the distinction between exponential and non-exponential distributions is necessary
for inferential purposes. In the present study, we introduce a testing procedure for the tail part
of a distribution which can be used for the distinction between exponential and non-exponential
distributions. The conspiracy and catastrophe principles are initially used to establish a characteriza-
tion of (the tail part of) the exponential distribution, which is one of the main contributions of the
present work, leading the way for the construction of the new test of fit. The proposed test and its
implementation are thoroughly discussed, and an extended simulation study has been undertaken to
clarify issues related to its implementation and explore the extent of its capabilities. A real data case
is also investigated.

Keywords: exponentiality test; tail characterization; log-concavity; log-convexity; extreme events;
heavy-tailed distributions; light-tailed distributions

1. Introduction

In Statistics, the problem of determining the underlying mechanism, i.e., the model
governing the data, is a classical statistical problem. Some of the most popular continuous
distributions in biomedicine, survival and reliability analysis, actuarial science and risk
management and in engineering and technical systems are among others, the exponential,
the lognormal, the Gamma, the inverse Gaussian, the Weibull and the Pareto distribu-
tions. Indeed, for instance, the inverse Gaussian distribution is frequently encountered
in fields such as medicine (e.g., cardiology), environmental sciences (e.g., hydrology) or
humanities (e.g., linguistics) (Chhikara and Folks 1977). On the other hand, distributions
like the Weibull, the Gamma or the Pareto are applicable among others, in insurance,
survival modeling and lifetime problems (see for instance Huber-Carol and Vonta 2004;
Tremblay 1992). Observe that each of these distributions is frequently referred to as light-
or heavy-tailed distribution according to whether the tail part is lighter or heavier than that
of the exponential distribution (see e.g., Bryson 1974).

The catastrophe and conspiracy principles provide the fundamental distinction be-
tween phenomena characterized by distributions with tails heavier and those with tails
lighter than the exponential distribution. Extreme and rare events stemming from these
principles can be found in areas such as economics, insurance science, queuing theory and
reliability, and in practice, they are represented as large insurance claims, long queues,
strong earthquakes and hurricanes, heavy rains, or critical components in structural relia-
bility that fail due to extremely large values, etc. Although the cause of occurrence of such
rather exceptional rare events is associated with the tail part of the probability distribution,
the mechanisms underlying such occurrences are fundamentally different.
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According to the catastrophe principle (or single big jump, Foss et al. (2007)), which in
general refers to more that two (n ≥ 2) heavy-tailed random variables, rare events occur
most likely due to the smallest possible number of contributing components. Indeed, let us
denote by X1, . . . , Xn, n ≥ 2, a random sample of heavy-tailed variables, the summation
of which is assumed to be large. Then, it is most likely that this is due to one of these
variables being large and all others being typical. If one considers the claims received by an
insurance company, it is straightforward to realize that the financial instability may occur as
a result of just one extremely high claim. In fact, the class of heavy-tailed distributions and
all its subclasses, like the subexponential class of distributions, assists in understanding the
occurrence of such outliers or rather the occurrence of extremely large outliers which occur
for a single extreme value, which is so large that all other values appear to be negligible
in comparison.

As opposed to the class of heavy-tailed distributions, light-tailed ones tend to obey
the so-called conspiracy principle, according to which rare events most likely occur as a
result of a combination of a large number of equally contributing components. A classical
example for the above principle materializes in the context of queues, where rare events
such as large delays or backlogs occur as a result of a “conspiracy” which involves a large
number of customers or jobs, all arriving at the same moment.

It should be noted that light-tailed distributions are associated with log-concavity
while heavy-tailed ones are associated with log-convexity (Asmussen and Lehtomaa 2017).
It is vital for instance in actuarial science, geosciences, survival analysis or reliability settings
to distinguish between an exponential distribution, a light-tailed or a heavy tailed one
when the researcher is interested in the tail part of the distribution or more generally, the
part of the distribution exceeding a certain threshold. Thus, such settings are of great
importance due to their practical implications, making the investigation and the modeling
of the tail part of such distributions an important problem with practical implications.

In this work, we present and investigate a test of fit by focusing on the tail part of
a distribution, i.e., by relying exclusively on the extreme portion of the available data.
The fact that the specific small portion of data is sufficient for testing purposes is due
to the fact that this part of the data is associated with a tail characterization that distin-
guishes exponential and non-exponential distributions. As opposed to classical tests (see
e.g., Baratpour and Rad 2012; Huber-Carol et al. 2002; Jimenez-Gamero and Batsidis 2017;
Novikov et al. 2015; Rogozhnikov and Lemeshko 2012; Vonta et al. 2012), in this work, the
emphasis is placed exclusively on the tail by ignoring the rest of the distribution. It should
be noted that although classical tests based on the entire dataset often fail to reject a null
hypothesis, the proposed testing procedure checks the fit of the tail and makes a decision
exclusively on the available data from the extreme part of the distribution. At the same
time, it should be also noted that the proposed test does not provide any indication on the
heaviness (or lightness) of the tail part of the distribution, as is often completed through
the class of tail index tests (as e.g., in Jureckova and Picek 2001; Kim and Lee 2016). In
that sense, the proposed test can be considered as a goodness of fit test for exponentiality
via the use of the extreme region of data. Note that the proposed tail test is triggered by
the catastrophe and conspiracy principles to be used for distinguishing between exponen-
tial and non-exponential distributions, i.e., light or heavy-tailed distributions when the
interest lies on the part of the dataset exceeding a certain threshold. At the same time, this
paper contributes to the relevant literature by paving the way to verify the properties of
log-concavity and log-convexity. The importance of the proposed technique has significant
practical implications. Indeed, the motivation behind the proposed test is the assessment of
risk from high damages, large claims, economic collapses, etc., all of which are associated
with the right tail of the distribution being of interest. Some preliminary results have
been presented in Karagrigoriou et al. (2022) and Papasotiriou (2021). The details of the
formulation of the test statistic are provided in Section 2. The proposed test statistic with
extended simulations which clarify issues related to the implementation of the test is given



in Section 3. A real case application on fire insurance data is presented and analyzed in
Section 4, and some concluding remarks are provided in Section 5.

2. Log-Concavity, Log-Convexity and the Subexponential Class of Distributions

In this section, we present the details connecting log-concavity and log-convexity to
light and heavy-tailed distributions and discuss the subexponential class of distributions.
Furthermore, a special random variable for distinguishing between exponential, heavy and
light-tailed distributions will be defined, and its properties will be presented and discussed.
This variable will be later used for presenting a test for the tail part of the distribution.

2.1. Log-Concavity and Log-Convexity

For heavy-tailed distributions, the tail part is asymptotically heavier than the tail
of the exponential distribution. In other words, one could state that the tail part of the
distribution decays to zero at a rate slower than that of the exponential distribution,
which further implies that in such phenomena, extremely large values materialize with
non-negligible probabilities.

On the other hand a light-tailed distribution has the “opposite” property of a heavy-
tailed one, i.e., the tail part of the distribution is asymptotically bounded by that of an
exponential distribution, and thus, it decays to zero at most as fast as the exponential
distribution, i.e., P(X > d) ≤ e−λd, for some threshold d.

A random variable is considered to be log-concave (log-convex) if the logarithm of
its probability density function (pdf) is concave (convex). Both classes are substantially
broad with appealing properties. It was recently demonstrated that light-tailed asymp-
totic behavior is associated with log-concave densities, while log-convexity seems to be
connected to heavy-tailed behavior (Asmussen and Lehtomaa 2017). Indeed, a pdf of a
log-concave variable is necessarily light-tailed, while the pdf is log-convex in the tail in
classical heavy-tailed distributions like a regular varied distribution (RV), a lognormal
distribution, or a Gamma distribution with a shape parameter less than 1. Note that the log-
concavity of a density in a survival or reliability setting implies monotonically increasing
hazard (and reversed hazard) rates (Gupta and Balakrishnan 2012), which further implies a
sub-additive logarithm of the survivor function which, in turn, is equivalent to the property
of new-is-better-than-used (NBU).

2.2. Subexponential Class of Distributions

The class of heavy-tailed distributions is quite broad consisting of various special
subclasses which satisfy special extra regularity conditions. The focus in this work is on a
very popular and important subclass, the subexponential class, which for two independent
random variables X1 and X2 is defined by

lim
d→∞

P[max{X1, X2} > d]
P(X1 + X2 > d)

= 1 (1)

for any threshold d. The above definition is closely related to the so-called catastrophe
principle, also known as the single jump principal, according to which the summation of
X1 and X2 is large most likely if one of the X values involved is large, whereas the other re-
mains typical. This subclass includes most of the common heavy-tailed parametric families
like Pareto, negative exponential, Gamma and Weibull with a shape parameter α < 1, the
beta distribution with both parameters being smaller than 1 and the F distribution with the
degrees of freedom of the numerator being smaller than the degrees of freedom of the de-
nominator. It should be pointed out that the Weibull and Pareto distributions are related to
the theory of extremes (Fisher and Tippett 1928; Gnedenko 1943; Bagdonavičius et al. 2013).
The Weibull distribution is used in industrial engineering to represent manufacturing and
delivery times, in weather forecasting to describe the distribution of wind speed and in
wireless communications for the modeling of fading channels. Many more applications can
be found in reliability and industrial engineering, survival analysis, hydrology, etc. The



special case of the Rayleigh distribution is often used to describe measurement data in the
field of communications engineering and in the life testing of electrovacuum devices. On
the other hand, as one should expect, the class of light-tailed distributions includes, among
others, the Gamma and the Weibull with a shape parameter α ≥ 1 and the beta with both
parameters larger than or equal to 1.

2.3. The Background for the Proposed Test

Given two independent random variables X1 and X2, the preceding discussion stem-
ming from (1) motivates the use of the following quantity as a way to distinguish between
the heavy and the light-tailed case:

R =
|X1 − X2|
X1 + X2

. (2)

Indeed, R will be close to 1 for heavy-tailed variables since only one of them will
be dominant and close to 0 for light-tailed variables due to their equal contribution. In
fact, as shown by Lehtomaa (2015), the above observation holds true in great generality.
Specifically, the conditional random variable

Yd = R
∣∣{X1 + X2 > d} (3)

provides a sharp borderline between log-convexity and log-concavity, the values of which
are expected to lie in the region [0, 1] for any threshold d. Thus, the function

E(Yd) = E
[
|X1 − X2|
X1 + X2

∣∣∣X1 + X2 > d
]

(4)

can be considered as a generalization of the above with a similar interpretation: being
close to 0 if the two variables contribute equally to the summation and being close to
1 if one of the variables is of the same magnitude as the summation for large d values.
It is easy to observe that values of Yd in the center of the interval (0, 1) are associated
with exponentially distributed random variables, whereas log-concave (log-convex) dis-
tributed variables are associated with values in the lower (upper) half of the (0, 1) interval.
Asmussen and Lehtomaa (2017) proved that for distributions that become eventually log-
concave, we have the following:

lim sup
d→∞

E(Yd) ≤ 0.5 (5)

while for distributions that become eventually log-convex, we have

lim infd→∞E(Yd) ≥ 0.5. (6)

At the same time, it is observed that for exponentially distributed variables and for
any positive threshold d,

E(Yd) = 0.5. (7)

The latter result holds for any threshold (even for the entire data set) due to the fact
that the conditional random variable Yd is symmetric under exponentiality, which is a
property that ceases to hold for non-exponential distributions having a lighter or heavier
tail. In fact, for non-exponential distributions, the smaller the tail part (i.e., the larger the
threshold), the sharper the limit in (5) and (6). It is important to point out that the distinction
between exponential and non-exponential distributions having a lighter or heavier tail is
required to be established on the tail part, since a distribution becomes eventually (i.e., as
d→ ∞) log-concave or log-convex as compared to the exponential distribution.

The results in Equations (5)–(7) clearly show that as we go away from the exponential
distribution to heavier or lighter distributions, E(Yd) in (4) moves away from 0.5 on either



side of the real line (to the left for light and to the right for heavy-tailed distributions) with
the only distribution on this class with E(Yd) = 0.5 being the exponential for all values of d.
This characterization in terms of (5)–(7) will be used for setting up testing procedures for

i. Exponential Distribution versus Heavy-Tailed Distribution:

H0 : E(Yd) = 0.5 vs. H1 : E(Yd) > 0.5 (8)

ii. Exponential Distribution versus Light-Tailed Distribution:

H0 : E(Yd) = 0.5 vs. H1 : E(Yd) < 0.5. (9)

Asmussen and Lehtomaa (2017) used the empirical counterpart of (4) for a graphical
analysis. In this work, we are fully analyzing the behavior of the empirical counterpart of (4),
to be presented in the following section, and to be used for testing (8) and (9). It is important
to emphasize that the test is based on Yd, i.e., a quantity that eventually characterizes the tail
part of a distribution, and thus, it is based exclusively on data exceeding a threshold that
tends to infinity.

3. The Proposed Test of Fit
3.1. The Test Statistic

The characterization discussed in the previous section will be used in this section as
the vehicle for constructing a test of fit for testing (8) and (9) with the test statistic being the
empirical counterpart of (4) given by

R(d, n) =
∑nRi

i=1 1(Xi + Yi > d)
∑n

i=1 1(Xi + Yi > d)
(10)

where 1(A) is the indicator of A and

Ri =
|Xi −Yi|
Xi + Yi

(11)

where X1, . . . , Xn and Y1, . . . , Yn are random samples from two independent random vari-
ables belonging to the class given in (1), and d is a threshold usually representing a
percentile of the associated distribution under the null hypothesis in (8) and (9), i.e., under
exponentiality.

For illustrative purposes, Figures 1–3 based on 25,000 simulations provide the empiri-
cal density of R(d, n) for the exponential distribution and for representative examples of a
light-tailed distribution (Weibull with shape = 1.5) and a heavy-tailed distribution (Weibull
with shape = 0.5) for samples of size n = 100 and for different values of d. Observe
that all figures provide the density for the entire data set (using as a threshold the 0th
percentile—Q0) accompanied by the densities for the portion of the data set above the 50th,
70th, 80th, 90th and 95th percentiles (Q50, Q70, Q80, Q90 and Q95). The same behavior
is observed for small (n = 30, 50, 75) as well as for large sample sizes (n = 200, 500, 1000)
(results not shown). For the exponential distribution, observe that the general shape of the
density of R(d, n) is not affected by the value of d and is in fact symmetric and centered at
0.50, which confirms that (7) holds true for any value of d. At the same time, the variability
varies for different sample sizes, being larger than the one depicted in Figure 1 for small
sample sizes (n < 100) and smaller for larger sample sizes (n > 100).
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Figure 1. Exponential distribution.
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Empirical density of R(d, n) under Log−Concavity.

Test statistic R(d, n) (n = 100).
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Figure 2. Light-tailed distributions—Weibull (shape = 1.5).
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Test statistic R(d, n) (n = 100).
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Figure 3. Heavy-tailed distributions—Weibull (shape = 0.5).

On the other hand, Figures 2 and 3 fully confirm expressions (5) and (6). Indeed, it
is observed that as d increases (and the number of available data decreases), the limiting
result in (5) is evident. One additional observation for the heavy-tailed case is the smaller
variability as compared with the one observed for the light-tailed case as d increases. At
the same time, as the threshold d tends to zero (including the case Q0 of the full data set),
the distinction between the exponentiality and light- or heavy-tailed distributions becomes
difficult. This is the reason classical tests, i.e., tests based on the entire data sets, are not
always able to distinguish between exponential and non-exponential distributions. The
test to be proposed below is resolving this matter by providing a tail test which manages to
make the distinction and identify correctly the underlying distribution by examining solely
the tail part over the threshold d.

As expected, the results are even more extreme as we move further away from the
exponential distribution on either side of the particular value of the shape parameter of the
distribution (being taken equal to 0.5 in the above case).

Finally, note that the parameter values used in Figures 1–3 do not affect the position of
the associated distribution due to the invariance property of the scale parameter satisfied
by all distributions considered in this and the subsequent sections. Also note that the
position of the distribution of the test statistic in the exponential case in Figure 1 is the same
irrespectively of the value of the shape parameter (here, it is taken to be equal to 1).



3.2. The Pairing and the Choice of Threshold

Based on the definition of the test statistic in (10) and the preceding discussion, we
have to take under consideration two issues: namely, the sample pairing and the choice of
the threshold d. Indeed, the test statistic in (10) requires two independent r.v. values, i.e.,
i.i.d. sample pairs and a threshold d that should be large enough due to the asymptotic
nature of (5) and (6) but not too large, since a sufficient number of pairs should be available
to ensure the reliable performance of the test. These two issues are addressed and dealt
with in this subsection.

3.2.1. The Pairing

Observe that (10) requires as input a two-dimensional sequence of random variables.
In case of a single random sample Z1, . . . , Zn, without loss of generality, one could create
two sequences by choosing any random pairing of the observations involved, as is the case
when constructing the figures in the previous subsection. In the simplest case and for an
even sample size n, one could take X1i = Z2i−1 and X2i = Z2i, i = 1, . . . , n/2 and thus
create the two random samples required by the relevant theory. Although the original single
sample is random and any random pairing will produce two random (sub)samples, one may
question the pairing chosen. Any concern associated with the pairing could be resolved by
choosing a fixed number of permutations. Indeed, before pairing, a number of permutations
(i.e., random re-orderings) could help in overcoming concerns and diminish the influence
of an extreme (outlier) value of the test statistic based on a single pairing chosen either
randomly or intentionally or even the influence of a kind of dependence, sequential or
otherwise. Then, the R(d, n) statistic given in (10) could be calculated as many times as
the number of permutations, and then, the test statistic is set equal to the mean value of
all repetitions. Figures 4–6 attempt to shed some light into the issue of pairing with the
use of a number of random pairings of independent samples from various distributions.
All three figures reveal the consequences of pairing by providing the upper and lower
limits and thus the extent of the range of the test statistic values for different permutations.
Thus, the analysis shows a possibly downgraded (in relation to a real case scenario where
independence may not be present) effect of pairing and the importance of choosing the
mean value (or alternatively the median) of all test statistic values over all permutations.
Note that for a two-sample problem, permutations may not be necessary, but they are still
recommended to diminish the possibility of dependence between the observations of the
two data sets.

In what follows, we have chosen to perform 50 permutations, which is a number
that appears to be more than satisfactory for practical purposes. In fact, our extended
simulations show that any number of permutations at least equal to 50 gives a distribution
with sufficient speed (insignificant computational cost) and a very small variability. At the
same time, the execution of at least some permutations is highly recommended so that a
balance or compromise is materialized to overcome possible sequential dependencies and
diminish influential pairings. Figures 4–6 present the distribution of R(d, n) for various
thresholds based on 50 permutations (blue points and blue curve) of random samples of
size n = 100 from the exponential distribution with parameter values equal to 1 (Figure 4)
and representative light and heavy-tailed distributions (Weibull with shape = 1.5 and
0.5—Figures 5 and 6). The figures also show the mean (orange bullet) and the standard
deviation of the 50 repetitions (denoted by sd perms) of the test statistic as well as the mean
(red bullet) and the empirical pdf of the test statistic (red curve) under the null hypothesis in
(8) and (9). Observe that these results reconfirm the theoretical results appearing in (5)–(7).



0
2

4
6

8
10

12

Exp(1),  d : 0, n : 100,  mean n(d) : 100,  perms : 50

R(d, n)

E
m

pi
ric

al
 D

en
si

ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

perms epdf
null epdf
sd perms: 0.03
failed perms: 0

50 perms
perms mean
null mean

0
2

4
6

8
10

12

Exp(1),  d : 50, n : 100,  mean n(d) : 86,  perms : 50

R(d, n)

E
m

pi
ric

al
 D

en
si

ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

perms epdf
null epdf
sd perms: 0.04
failed perms: 0

50 perms
perms mean
null mean

0
2

4
6

8
10

12

Exp(1),  d : 70, n : 100,  mean n(d) : 75,  perms : 50

R(d, n)

E
m

pi
ric

al
 D

en
si

ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

perms epdf
null epdf
sd perms: 0.04
failed perms: 0

50 perms
perms mean
null mean

0
2

4
6

8
10

12

Exp(1),  d : 85, n : 100,  mean n(d) : 43,  perms : 50

R(d, n)

E
m

pi
ric

al
 D

en
si

ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

perms epdf
null epdf
sd perms: 0.05
failed perms: 0

50 perms
perms mean
null mean

0
2

4
6

8
10

12

Exp(1),  d : 90, n : 100,  mean n(d) : 28,  perms : 50

R(d, n)

E
m

pi
ric

al
 D

en
si

ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

perms epdf
null epdf
sd perms: 0.05
failed perms: 0

50 perms
perms mean
null mean

0
2

4
6

8
10

12

Exp(1),  d : 95, n : 100,  mean n(d) : 16,  perms : 50

R(d, n)

E
m

pi
ric

al
 D

en
si

ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

perms epdf
null epdf
sd perms: 0.08
failed perms: 0

50 perms
perms mean
null mean

Figure 4. Exponential distribution.
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Figure 5. Heavy-tailed distribution—Weibull, shape = 0.5.
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Figure 6. Light-tailed distribution—Weibull, shape = 1.5.

Remarks:

(1) For an odd sample size n, the smallest observation in the sample is removed, as it
contributes the least amount of information to the test statistic as d increases.

(2) For extremely large values of d, a larger number of permutations should be considered
to ensure that sufficient number of observations and pairs will be available for the
evaluation of the test statistic.



(3) Note that although independence is a required assumption, the proposed pairing
technique may be used even when a kind of dependence (even a weak one) is present.
Although in such a case, the assumptions required for implementing the proposed
methodology are not satisfied, the use of permutations is expected to minimize the
effect of the particular type of dependence. As it turns out, the implementation of the
proposed methodology on sequential or in general, dependent data, raises an issue
that needs to be explored: namely, to thoroughly investigate whether the assumption
of independence could be entirely dropped. This appears to be an important problem
by itself not only from the theoretical point of view but also due to great practical
implications, which we intend to investigate as part of an upcoming project.

3.2.2. The Threshold

Another vital issue is the selection of the threshold d in (10), which will satisfactorily
distinguish between exponential, light and heavy-tailed distributions in terms of (5)–(7).
Observe in Figures 4–6 that as the threshold moves from d = 0 (upper left corner) to d = 95
(lower right corner), indicating the corresponding percentile of the associated distribution,
the available number of observations n(d), i.e., the number of observations having their
matched paired summation larger than d, decreases. Indeed, observe for instance that for
the light-tailed distribution with d = 95 in Figure 6, n(d) is equal to 7, which is very small
compared to exponential or heavy-tailed distributions being equal to 16 and 33, respectively
(see Figures 4 and 5).

As expected, small values of n(d) force several permutations to fail to contribute to the
test statistic, resulting in less reliable and less accurate inferences, especially for extremely
large values of d. It is reminded that the asymptotic nature in (5) and (6) refers to r.v
values having eventually (i.e., as d→ ∞) heavy or light-tailed distributions. As a result, it is
quite natural that as the sample size increases, the threshold d chosen should represent an
extremely high percentile for catching the asymptotic behavior of the tail part implied by
those theoretical results.

3.2.3. The Test Statistic Evaluation

The behavior of R(d, n), n(d) and the number of failed permutations based on
50 permutations have been fully explored for thresholds ranging from d = 0 (the entire
data set) to d = 99.95 for distributions with various light as well as heavy-tailed parts.

Figures 7–9 show representative results based on the Weibull distribution with shape
values ranging from 0.1 (for a representative heavy-tailed distribution) to 1 (for the exponen-
tial distribution) and up to 1.9 (for a representative light-tailed distribution). Observe that
the R(d, n) values remain in the vicinity of 0.5 (top-part of Figure 7) for the exponential dis-
tribution irrespectively of the value of the threshold d. On the other hand, the test statistic
stays away from 0.5 and more specifically over 0.5 (toward 1) for heavy-tailed distributions
(see the top part of Figure 8) and under 0.5 (toward 0) for light-tailed distributions (see top
part of Figure 9).

Observe that in all three cases but mostly for light-tailed distributions, the test statistic
exhibits a fluctuation for large values of d which is due to a small number n(d) of available
observations. The n(d) values for each threshold d are provided in the middle part of each
figure, showing clearly that for any distribution but mostly for light-tailed ones, as the
sample size decreases (from n = 200 to n = 50), there are veryfew observations left for the
analysis. Extensive simulations have shown that n(d) = 10 (represented by a red horizontal
line in the middle part of Figures 7–9) is a reasonable minimum number of observations for
reliable inferences. Observe that n(d) stays over the red horizontal line for all d values for
heavy-tailed distributions (middle part of Figure 8) but crosses the red horizontal line for
d ∈ (90, 95) depending on n for light-tailed distributions (middle part of Figure 9) as well
as for the exponential case but for a higher threshold (middle part of Figure 7).
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Figure 7. Exponential distribution.

Weib(0.1) : Mean R(d, n)  (n = 50 100 150 200, perms = 50)
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Figure 8. Heavy-tailed distribution—Weibull, shape = 0.1.



Weib(1.9) : Mean R(d, n)  (n = 50 100 150 200, perms = 50)
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Figure 9. Light-tailed distribution—Weibull, shape = 1.9.

We finally notice (lower part of Figures 7–9) that mostly for light-tailed distributions,
several permutations fail to contribute toward the test statistic when n(d) is small. Indeed,
observe the lower part of Figure 9 where at least 40 permutations (represented by the
red horizontal line in the lower part of Figure 9) fail to produce a value for R(d, n) when
d ∈ (95, 98). Similar issues rarely appear in exponential or heavy-tailed distributions (low
part of Figures 7 and 8).

Based on all the above, we proceed to the recommendations given in Table 1 for
proper thresholds d separately for light and heavy-tailed distributions and various sample
sizes (n = 20 to n = 2000), which ensure simultaneously that the number n(d) at the
specific threshold and the associated number of available permutations for calculating
the test statistic are at least equal to 10, which appears to be a satisfactory choice for all
practical purposes.

Table 1. Recommended thresholds based on sample size.

Sample Size n d Light-Tailed Distributions d Heavy-Tailed Distributions

20 75% 80%

35 87% 90%

50 90% 92%

100 92% 95%

200 93.5% 98%

500 95.5% 99.7%

1000 97% 99.9%

2000 >99.99% >99.99%



3.3. Implementation of the Test Statistic

Based on the discussion in the previous sections, the test statistic for the testing
problems in (8) and (9) is defined as the average of the empirical counterpart of E(Yd) given
in (10), over B permutations executed, with the recommended number of permutations
being equal to B = 50, namely:

avepermR(d, n) = averageperm
∑n

i=1 Ri1(Xi + Yi > d)
∑n

i=1 1(Xi + Yi > d)
(12)

where Ri =
|Xi−Yi |
Xi+Yi

and 1(A) is the indicator of A. According to the above discussion, the
algorithmic procedure for the proposed tail test is as follows:

Algorithmic Procedure for the Evaluation of the Test Statistic

1. For a data set with an even number of observations Z1, . . . , Zn, set X1i = Z2i−1 and
X2i = Z2i, i = 1, . . . , n/2 (for n = odd, remove first the smallest observation).

2. Produce B random reorderings (permutations) of the data set and repeat Step 1 for
each permutation.

3. Identify the proper threshold d by choosing the value of d corresponding to the sample
size in Table 1, which is closer to n.

4. Evaluate R(d, n) for each of B permutations in Step 2 and for d obtained in Step 3, and
calculate the value of avepermR(d, n) in (12).

One of the most important facts for the proposed test statistic is that under the null
hypothesis of exponentiality in (8) and (9), it is extremely stable in terms of the mean, while
the variability is quite satisfactory, allowing for an easy way to handle critical points for
testing purposes. Table 2, based on 25,000 simulations, provides for the series of thresholds
and sample sizes of Table 1 the empirical values of the standard deviation of the test statistic
in (12) under the null hypothesis. It is worth pointing out that the mean remains stable and
equal to 0.50 for any sample size n and any threshold d (results not shown).

Table 2. Recommended thresholds based on sample sizes and the corresponding standard deviations
of the test statistic.

n d—Light-Tailed Distr. St. Dev. d— Heavy-Tailed Distr. St. Dev.

20 75% 0.1240 80% 0.1352

35 87% 0.1138 90% 0.1287

50 90% 0.1052 92% 0.1156

100 92% 0.0789 95% 0.0953

200 93.5% 0.059 98% 0.0969

500 95.5% 0.0426 99.7% 0.1434

1000 97% 0.035 99.9% 0.1666

2000 >99.99% 0.1111 >99.99% 0.2503

It is easily concluded that under the null hypothesis of exponentiality, the standardized
test statistic follows a standard normal distribution, making its implementation straightfor-
ward. Observe that the normality under the null hypothesis comes naturally as a result of
the discussion in Section 3.1 and Figure 1, where the distribution of the unstandardized test
statistic is depicted. Additional visual verification is provided by Figure 10, which based on
15,000 simulations presents the behavior of the empirical distribution of the standardized
test statistic for n = 30 and four (4) extreme percentiles used for the threshold, namely Q80,
Q85, Q90 and Q95. The result is presented below:



Theorem 1. Under the null hypothesis of exponentiality in (8) and (9) and for Ri given in (11) i.i.d.
random variables with finite mean and variance, the distribution of the standardized test statistic
given in (13) for fixed d is asymptotically normal:

R(d, n)− 1/2
std{R(d, n)}

D−−−→
n→∞

N(0, 1). (13)

Proof. For fixed d, define wi = 1(Xi + Yi > d) so that

R(d, n) =
1

∑n
i=1 wi

n

∑
i=1

wiRi,

where the Ri values are i.i.d. random variables with finite mean and finite variance, while
the wi values are independent random variables which are not independent of Ri, so that

R(d, n) =
1

∑n
i=1 wi

n

∑
i=1

wiRi ≡
1

∑n
i=1 wi

n

∑
i=1

Zi,

where Zi values are i.i.d.. Observe that

E(Zi) = E(wiRi) = E(Ri · 1(Xi + Yi > d)) < E(Ri) < ∞,

since, under the null hypothesis of exponentiality,

E(1(Xi + Yi > d)) = P(Xi + Yi > d) ≡ p = 1/2 < ∞.

Observe also that Var(1(Xi + Yi > d)) = p(1− p) < ∞, which in turn implies that

Var(Zi) = Var(Ri · 1(Xi + Yi > d)) < Var(Ri) < ∞.

Then, it is easy to see utilizing Slutzky’s theorem that the following central limit
theorem holds and in particular, we have as n→ ∞, thatR(d, n)− E(Zi)√

Var(Zi)
∑n

i=1 wi

 D−−−→
n→∞

N(0, 1)

where D represents convergence in distribution.

Figure 10. Standardized test statistic, exponential distribution, n = 30—various thresholds.



Remarks:

(1) We should point out that if d = 0, we have the classical central limit theorem with
∑n

i=1 wi = n.
(2) For the avepermR(d, n) given in (12), we consider B = 50 random re-orderings, i.e., boot-

strap samples of size n without replacement, and apply Theorem 1 to the average of
the B values of R(d, n) obtained, say Rm(d, n), m = 1, . . . , B namely avepermR(d, n) =
1
B ∑B

m=1 Rm(d, n) (see for instance Csorgo and Nasari 2013 and Rosalsky and Li 2017).

3.4. Performance of the Test—Size

In this and the subsequent section, we explore the capabilities of the proposed test in
terms of the size and the power of the test against log-concave and log-convex distribu-
tions using for comparative purposes classical tests like the Kolmogorov–Smirnov (KS),
Gnedenko (GN), Gini (GI) and the Shapiro–Wilk (SW) (see e.g., Shapiro and Wilk (1972);
Gail and Gastwirth (1978); Ascher (1990)). Details about these competing tests can be found
in Henze and Meintanis (2005); Pfaff et al. (2012) and Novikov et al. (2015).

In reference to the size, 15,000 simulations have been used for various sample sizes with
extremely satisfactory results. In all cases, the nominal level has been achieved. Although
several sample sizes (n = 30, 50, 75, 100, 200, 500) have been used and the nominal levels
1%, 5% and 10% have been considered, the results in Table 3 refer to a representative case
for n = 100 and α = 5%. The results are presented for values of d ranging from 0% to
99% since under exponentiality, the proposed R(d, n) test statistic is symmetric and its
theoretical equivalent (Equation (7)) holds for all values of the threshold d.

Table 3. Size of the proposed test for 5% nominal level-various threshold values (n = 100).

d 0% 5% 10% 20% 30% 40%

size 0.05075 0.05068 0.05079 0.5110 0.05012 0.05151

d 50% 60% 70% 80% 85% 90%

size 0.05080 0.05022 0.05096 0.05013 0.04954 0.05062

It should be stressed that classical tests are not capable of reaching any nominal level
set by the researcher, since they cannot deal with a small portion of observations from
specific parts of the distribution, especially when such observations are from the tail part. It
is rather expected that such tests are not equipped with internal mechanisms to figure out
that such data represent a specific portion (like the tail part) of the entire distribution, which
makes the proposed methodology necessary for filling the gap in the relevant literature. It
comes as no surprise that all available classical tests fail to reach the desired nominal level.
In fact, the larger the threshold, the bigger the extent of failure.

3.5. Performance of the Test—Power

For the performance of the proposed test in terms of the power, we have chosen to
focus on the Weibull distribution which for α > 1 becomes an increasing failure rate (IFR)
distribution and for α < 1 becomes a decreasing failure rate (DFR) distribution. Notice that
in the former case, it is used to model wearout (old aging) and in the latter case, it is used
to model wear-in (infant mortality) for mechanical and technical units and systems with
similar problems encountered in geosciences (e.g., for earthquakes with magnitude over a
threshold), in queuing theory (e.g., for jobs arrive all at once) or in actuarial science (e.g., for
extreme claims). In addition to the Weibull distribution, for comparative purposes, we have
included in our analysis below the Gamma distribution with values of the shape parameter
less than as well as larger than 1 so as to cover both log-convex and log-concave scenarios.

Since the size of each test differs from the targeted nominal one, we have decided
to proceed further with the comparison of the tests in terms of power, making some
necessary adjustments. For this purpose, we rely on the Lloyd method (Lloyd 2005;
Jimenez-Gamero and Batsidis 2017), which is based on receiver operating characteristic



(ROC) curves. Consider the reliability (or survival) function F̄(d) = P(X > d) of a
continuous random variable X and let d∗ = inf{d : F̄(d) ≤ α} represent the critical value
for the nominal value α. Then, ROC curves can be constructed by plotting the power
F̄(d∗|H0 = f alse) against the size F̄(d∗|H0 = true) for various α values.

The top left of Figure 11 provides the ROC curve for the full data set of a represen-
tative light-tailed distribution (Weibull with shape = 1.5), where all tests provide a very
satisfactory overall performance with the exception of the Kolmogorov–Smirnov (KS) test.
Observe that even though the proposed test has been designed for data coming exclusively
from the tail part of a distribution, it appears to reach a very respectable power—size
behavior quite comparable to available tests for the case of the entire data set (Q0). The
bottom left of Figure 11 provides the same curves for a representative case of a heavy-tailed
distribution (Gamma with shape = 0.8). On the other hand, a medium length tail part is
considered in Figure 11 (top right—Weibull and bottom right—Gamma) where the 70th
percentile of the exponential distribution has been used as a threshold. It is evident that
the proposed exponentiality test performs quite well. Although the performance can be
considered relatively good for the case of the Gamma distribution, the proposed test per-
forms exceptionally well as compared to all other tests included in the analysis. The same
behavior has been observed (results not shown) for various other thresholds representing
percentiles of the exponential distribution.
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Figure 11. ROC curves for the proposed (NEW), Gnedenko (GN), Gini (GI) and Shapiro–Wilk (SW)
tests. No threshold, Q0 (left), and 70th percentile of the exponential distribution, Q70 (right). Data
from Weibull, shape = 1.5 (Top) and from Gamma, shape = 0.8 (bottom) with n = 100.



Figure 12 provides the ROC curves for the new test for n = 100 with six different
thresholds including the entire data set (Q0). The left part of the figure refers to data
from the Weibull distribution with shape = 1.5, while the right part refers to data from the
Gamma distribution with a shape parameter taken to be equal to 0.8. The two cases cover
log-convex as well as log-concave random variables with one chosen to be relatively close
to the exponential distribution (Gamma with shape = 0.8) and the other slightly further
away (Weibull shape = 1.5). Similar results have been obtained (results not shown) for
different shape parameters ranging from 0.1 to 0.9 and from 1.1 to 1.9 for both the Gamma
and the Weibull distributions with analogous results. Note further that although the results
presented for both the size and power involve samples of size 100, the same results have
been established for smaller samples sizes (n = 20, 30, 50, 75), but due to space limitations,
they cannot all be included in the manuscript. Note that the results for the Gamma case are
not as exceptional as the ones for the Weibull case, but the proposed test is quite satisfactory
as compared to other competitive tests, as Figure 11 shows.
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Figure 12. ROC curves for the proposed test (NEW)—various thresholds of the exponential
distribution—Weibull, shape = 1.5 (left), Gamma, shape = 0.8 (right), n = 100.

4. A Real Case Application

In this section, we wish to apply the proposed methodology to the Fire Insurance
Danish data (Pfaff et al. 2012) with n = 2167 and show that the underlying distribution is a
heavy-tailed one, which will be done based on Theorem 1. For illustrative purposes, the
50 values of the statistic R(d, n) given in (10) for B = 50 permutations and various d values
are presented in Figure 13 (blue bullets). The test statistic avepermR(d, n) given in (12) is
also depicted in the same figure (orange bullet).

Figure 13 clearly shows that the data exhibit eventually a heavy-tail part. Indeed,
observe in Figure 13 that the values of the test statistic move to the right as the threshold
d increases (i.e., as it attempts to reach infinity as per Equation (6)). It should be pointed
out that for d equal to 99.7 or even 99.99, the value of n(d) is significantly large (over 300),
which implies that the tail part of the distribution has not yet been reached, and as a result,
the threshold d should be further increased to be able to capture the nature of the tail part
of the distribution. Indeed, as the analysis of the fire insurance data shows, values at least
equal to d = 99.97 reveal a heavy-tail distribution, although a larger threshold may be
needed for a statistically significant conclusion (as per Theorem 1). Finally, by implementing
Theorem 1 with d = 99.999999999, n = 2167 and n(d) = 59, the standardized test statistic
is equal to Z(d, n) = 1.28 and the exponentiality is rejected at a 10% level of significance.

This data set clearly shows that when the focus is exclusively on the tail part, the choice
of an ideal threshold is vital for accurate inferences. In reality, the proposed procedure



succeeds in identifying the ideal finite value of d, which performs as accurately as the
limiting result of (6) (or (5) for the case of a light-tailed distribution. The usefulness of the
proposed methodology is evident if one notices that all available exponentiality tests in
the literature are not capable of identifying the underlying distribution (like in the case of
the fire insurance data), since as opposed to the proposed test, they are based on the entire
data and fail, incorctly, to reject the null hypothesis.
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Figure 13. Danish Fire Insurance Data—Test Statistic—50 permutations—d ≥ 80.

5. Concluding Remarks

Conclusively, in this work, we focus on the distinction between the exponential
distribution and distributions with log-concave or log-convex densities, i.e., with variables
with light-tailed or heavy-tailed distributions, when the emphasis is placed exclusively on
the tail part of the distribution, ignoring the rest of the distribution. We first identified a
special characterization of the exponential distribution according to which the conditional



random variable given in (4) separates the exponential random variable from log-convex
and log-concave random variables. This is completed by focusing exclusively on a subset
of the original dataset lying over a proper threshold (i.e., on the extreme portion of data),
which is equal to at least the 90th percentile of the distribution for medium to large sample
sizes and between the 75th and the 90th percentile for small sample sizes. In fact, this
variable is centered around one-half (0.5) for the extreme part of an exponential random
variable, with values above or below one-half for the extreme parts of log-convex and
log-concave random variables, respectively. Then, the sample equivalent of the expectation
of the above conditional random variable given in (10) was used to set up a novel goodness
of fit test, the capabilities of which have been discussed by providing a detailed discussion
about the choice of the proper threshold d (Section 3.2.3) and the pairing (Section 3.2.2). Both
these issues provide the appropriate conditions and pave the way for the implementation
of the test statistic, the performance of which has been investigated in terms of the size and
the power and found to be robust for most practical purposes.

In conclusion, the proposed test appears to provide a valuable tool in the researcher’s
toolbox for handling successfully the analysis of extreme events, some typical applications
of which include the analysis of the magnitude of earthquakes, temperatures, floods or the
insurance claims over a certain threshold, like the fire insurance data used in this work.
One of the main contributions of the present work to the analysis of extreme events is that
as opposed to classical tests based on the entire data set which often fail (incorrectly) to
reject a null hypothesis, the proposed testing procedure checks the fit of the tail and makes
the correct decision relying exclusively on the available data falling within the tail part of
the distribution.
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