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INVARIANT MEASURES FOR SUBSTITUTIONS ON COUNTABLE
ALPHABETS

WEBERTY DOMINGOS, SÉBASTIEN FERENCZI, ALI MESSAOUDI, AND GLAUCO VALLE

Abstract. In this work, we study ergodic and dynamical properties of symbolic dynam-
ical system associated to substitutions on an infinite countable alphabet. Specifically we
consider shift dynamical systems associated to irreducible substitutions which have well-
established properties in the case of finite alphabets. Based on dynamical properties of a
countable integer matrix related to the substitution, we obtain results on existence and
uniqueness of shift invariant measures.

1. Introduction

Let A be a countable set (called alphabet), A∗ be the set of finite words on A and AZ+ be
the set of infinite words on A, where Z+ = {0, 1, 2, ...}. A substitution is a map σ : A → A∗.
We assume that for every letter a ∈ A, σ(a) is not empty. We extend σ to A∗ and AZ+ by
concatenation and, to simplify the notation, we also denote these extensions by σ. Hence
σ(u0 . . . un) = σ(u0) . . . σ(un) for all u0 . . . un ∈ A∗ and σ(u0u1 . . .) = σ(u0)σ(u1) . . . for all
u0u1 . . . ∈ AZ+ . We assume that there exists a letter a in A such that the length of the
finite word σn(a) converges to infinity as n goes to infinity.

To any substitution σ, we can associate a shift dynamical system (Ωσ, S), where

Ωσ = {u ∈ AZ+ : any finite factor of u occurs in σn(a) for some n ∈ N and a ∈ A},
N = {1, 2, ...}, and S is the shift map given by

S(u0u1 . . .) = u1u2 . . . for all u = u0u1 . . . ∈ AZ+ .

Shift dynamical systems associated to substitutions provide many important examples
in ergodic theory and they have been well studied in the literature when the alphabet
is finite (see for instance [20, 21]). It is classical that if σ is a primitive substitution on
A = {0, . . . , d − 1}, d ≥ 2, i.e there exists k ∈ N such that for all a, b ∈ A the letter b
occurs in the word σk(a), then the dynamical system is minimal, uniquely ergodic with
topological entropy 0 (see [18] and [21, Chapter 5]). Moreover Ωσ is the closure of the orbit
of any periodic point of σ.

The unique shift invariant probability measure µ is given on cylinders [w], where w =
w0 . . . wn, wi ∈ A for i = 0, ..., n, is a finite word that occurs in u and [w] = {u0u1 . . . ∈
Ωσ, ui = wi, i = 0, . . . , n}, by µ[w] which is the frequency of occurrences of w in the
periodic point u. Moreover the vector (µ[0], . . . , µ[d − 1]) is the normalized left Perron
eigenvector associated to the dominant Perron-Frobenius eigenvalue of the matrix Mσ =
(Mij)0≤i,j≤d−1 associated to σ, where Mij := |σ(i)|j is the number of occurrences of the
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letter j in the word σ(i). On the other hand, it is known (see [2]) that if σ is of Pisot
type, then the dynamical system (Ωσ, S) has good geometrical properties, in particular it
is semi-conjugated to a translation on the torus Td−1.

When the alphabet A is a topological compact set, many results are given in [6, 15, 21].
When A is countably infinite, the situation is more complicated and there are already

some work on the subject, see for instance [1, 6, 9, 15]. One of the difficulties in studying
ergodic properties of the dynamical system (Ωσ, S) in such case lies in the fact that the
countably infinite matrix Mσ may present a larger number of possible behaviors. Specifi-
cally consider an irreducible countably infinite matrix M = (Mij)i,j∈Z+ , that means for all
i, j ∈ Z+, there exists an integer n ≥ 1 such that for all k ≥ n, Mk

ij > 0, where for the sake

of simplicity we write (Mn)ij = Mn
ij. It is known that for all i, j ∈ Z+, limn→∞(Mn

ij)
1/n = λ

exists. We say that M is transient if and only if
∑+∞

n=0

Mn
ij

λn < +∞, otherwise M is said
to be recurrent. It is known that if M is recurrent there are left and right eigenvectors l
and r associated to λ and when the scalar product l · r is finite, we say that M is positive
recurrent, otherwise M is said to be null recurrent. Thus for instance if the countably infi-
nite matrix Mσ is irreducible then it could be either transient or null recurrent or positive
recurrent and each of these cases may be associated to a distinct behavior of (Ωσ, S).

For substitutions on countably infinite alphabets an important study was initiated by
Ferenczi in [9]. In that paper several results were proved, in particular it is considered
the squared drunken substitution defined on A = 2Z by σ(n) = (n − 2)nn(n + 2), n ∈ A
and proved that the dynamical system (Ωσ, S) is not minimal and has non finite invariant
measure. However it is also shown that (Ωσ, S) has an infinite invariant measure µ which
is shift ergodic and has Krengel entropy equal to 0.

Let us recall that σ is called left determined or determined to order 1 if there exists a
nonnegative integer N such that every w of length at least N which occurs on some element
of Ωσ, has a unique decomposition w = w1 . . . ws, where each wi = σ(ai) for some ai ∈ A,
except that w1 may be only a suffix of σ(a1) and ws may be only a prefix of σ(as), and the
ai, 1 ≤ i ≤ s− 1, are unique.

The definition of determined to order 1 was introduced in [16] (see also definition 1 in
[19] ). In [9], the author used the same definition and called it left determined. It is known
that this condition is stronger than recognizability, see [19].

In [9] it is also proved that if σ is of constant length, left determined and has an irreducible
aperiodic positive recurrent matrix Mσ, then the associated shift dynamical system admits
an ergodic probability invariant measure.

In [1], the authors constructed stationary and non-stationary generalized Bratteli-Vershik
models for left determined, irreducible, aperiodic and recurrent substitutions on an infinite
countable alphabet. As a consequence, they proved that for a left determined substitution
σ : Z → Z with Mσ irreducible, aperiodic and recurrent which is also of bounded size (the
letters of all σ(n) belong to the set {n− t, n− t+1, . . . , n+ t} where t ∈ Z is independent
of n), there exists a shift invariant measure µ on Ωσ.

It is also worth mentioning that an arithmetic study of substitutions on countably infinite
alphabets was done in [17].

In this paper, unless explicitly indicated we consider A = Z+ and σ : A → A∗ a bounded
length substitution (sup{|σ(a)|, a ∈ A} is finite) such that σ has a periodic point u and
M = Mσ is irreducible and aperiodic. We prove that if Mσ satisfies

lim
n→+∞

sup
i∈A

Mn
ij∑+∞

k=0 M
n
ik

= 0 for all j ∈ A, (1.1)
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then the dynamical system (Ωσ, S) has no finite invariant measure. In particular, the last
result holds for a subclass of substitutions σ such that Mσ is transient and σ has constant
length, or Mσ is recurrent and has a left Perron eigenvector l = (li)i≥0 ̸∈ l1.

We also prove that if Mσ is positive recurrent, then the dynamical system (Ωσ, S) has
a shift invariant measure µ which is finite if and only if Mσ has a left Perron eigenvector
l ∈ l1. Moreover, if σ has constant length and Mσ has a power that is scrambling, then
(Ωσ, S) has a unique shift invariant probability measure µ. Let us recall that a nonnegative
matrix M = (Mij)i,j≥0 is said to be scrambling if there exists a > 0 such that

+∞∑
j=0

min(Mij,Mkj) ≥ a for all i ̸= k ∈ Z+.

Scrambling stochastic infinite countable matrices are very important, since a stochastic
matrix P = (Pij)i,j≥0 is strongly ergodic (see definition 2.12) if and only if a power of P is
scrambling.

We also consider the case where σ is not a constant length substitution. We introduce the
notions of strongly ergodic and ⋆- strongly ergodic matrices Mσ related to the convergence
of

Mn
ij∑+∞

k=0M
n
ik

, i, j ∈ A,

as n → ∞. Then we show that if Mσ has a right Perron eigenvector in l∞ and has a power
that is scrambling ( Mσ strongly ergodic), then (Ωσ, S) is minimal and has a unique shift
invariant probability measure µ.

A difference concerning substitutions on countable infinite alphabets that we should
point out is that substitutions may not have a periodic point. In this paper we consider
Mσ irreducible and suppose the existence of a periodic point u, thus Ωσ is the closure
of the orbit of any periodic point of σ. However our results will remain valid for σ that
have no periodic point, since instead of using the left determined condition, we use the
true fact that any finite word V occurring in some element of Ωσ, has a decomposition
(not necessarily unique) as V = v0σ(Z)w0 where v0, w0 and Z finite words occurring in
some elements of Ωσ and max(|v0|, |w0|) ≤ sup{|σ(a)|, a ∈ A}, where for all finite word
z ∈ A∗, |z| denotes the length of z.

The paper is organized as follows. In section 2, we give notations, definitions and
preliminary results. Section 3, is devoted to the main results of the paper.

2. Preliminaries and notations

As in Section 1, let A be a countable set (called alphabet), A∗ be the set of finite words
on A and AZ+ the set of infinite words on A. We denote a finite word on A by u0 . . . un−1

for some n ≥ 1 and we call n = |u0 · · ·un−1| its length. An infinite word on A will be
denoted by u = u0u1 . . .. For U = u0 . . . un−1 and V = v0 . . . vm−1 in A∗, where n ≥ m are
positive integers, we denote

|U |V = {0 ≤ k ≤ n−m,uk . . . uk+m−1 = v0 . . . vm−1}
which is the number of occurrences of V in U . Let u = u0u1 . . . ∈ AZ+ and V ∈ A∗, we say
that V occurs in u or V is a factor of u if V = uk . . . ul for some integers 0 ≤ k ≤ l. We
denote by Fu the set of all factors of u.

On AZ+ we consider the discrete product topology, which is metrizable and generated
by the metric d defined on AZ+ by:

d(u0u1 . . . , v0v1 . . .) = 0 if u0u1 . . . = v0v1 . . .
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and

d(u0u1 . . . , v0v1 . . .) =
1

2k0
where k0 = min{i ≥ 0, ui ̸= vi} otherwise.

A base for the discrete product topology is given by the cylinders

[w] = {u0u1 . . . ∈ AZ+ , ui = wi, ∀ 0 ≤ i ≤ k},

for w = w0 . . . wk ∈ A∗. The cylinders are clopen sets. When the alphabet A is finite, the
set AZ+ is compact and is homeomorphic to a Cantor set. If A is infinite, AZ+ is closed
but not compact.

Let σ : A → A∗ be a substitution. We will assume without loss of generality that A = Z+

(and ocasionally A = Z in some examples). We define the infinite matrix Mσ = (Mij)i,j∈Z+

by Mij = |σ(i)|j. Observe that Mσ is the transpose of the substitution matrix given in
[21]. It is easy to prove by induction that for all i, j ∈ A and for all integer n ∈ N,

|σn(i)|j = Mn
ij, |σn(i)| =

∞∑
j=1

Mn
ij.

For example, if σ(n) = 0(n+ 1) for all n ∈ Z+, then

Mσ =


1 1 0 0 0 0 0 · · ·
1 0 1 0 0 0 0 · · ·
1 0 0 1 0 0 0 · · ·
1 0 0 0 1 0 0 · · ·
...

...
...

...
...

...
...

. . .

. (2.1)

We say that a substitution σ : A → A∗ is of constant length (resp. bounded length) if
there exists an integer L ≥ 1 such that |σ(a)| = L ( resp. |σ(a)| ≤ L) for all a ∈ A.
Observe that if σ has constant length L (resp. bounded length by L), then the sum of

the coefficients of each line of the matrix Mn
σ , n ∈ N equals Ln (resp. ≤ Ln).

In this paper, we will assume that σ is a bounded length substitution and there exists
a ∈ A such that |σn(a)| tends to infinity as n converges to infinity.

We define the language of a substitution σ on a A as the set Fσ of finite factors of σn(a)
for some integer n ≥ 0 and a ∈ A.

We will need some classical definitions from the theory of countable nonnegative matrices,
see [11, 26].

Definition 2.1. Let M = (Mij)i,j∈Z+ be an infinite nonnegative matrix (not necessarily
a substitution matrix). We say that M is irreducible if for all i, j ∈ Z+, there exists an
integer k = k(i, j) ≥ 1 such that Mk

ij > 0. Let i ∈ Z+, the number

pi = gcd{n ∈ N, Mn
ii > 0}

is called the period of the state i. If M is irreducible, then there exists p ≥ 1 such that
pi = p for every i ∈ Z+ and we say that M has period p ≥ 1. We say that an irreducible
matrix M is aperiodic if p = 1 and periodic otherwise.

Observe that Mσ in (2.1) is irreducible and aperiodic and σ is a constant length substi-
tution which has a fixed point u = limn→∞ σn(0) since σ(0) = 01 begins with 0.

Remark 2.2. (see [11]) If a matrix M = (Mij)i,j∈Z+ is irreducible and aperiodic, then for
all i, j ∈ Z+, there exists an integer n = n(i, j) ≥ 1 such that for all k ≥ n, Mk

ij > 0.

Remark 2.3. Let σ : A → A∗ be a substitution which has a fixed point andMσ is irreducible.
Since there exists i ∈ Z+ such that Mii > 0, we deduce that Mσ is aperiodic.
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Assume that M = (Mij)i,j∈Z+ is an irreducible and aperiodic nonnegative matrix until
the end of this section. It is known (see [21, 22]) that there exists λM ∈ [0,∞], called the
Perron value of M , such that for all i, j ∈ Z+

lim
n→∞

(Mn
ij)

1/n = λM . (2.2)

For all i, j ∈ Z+ put as usual M0
ij = δij, then consider the series

M ij(z) =
+∞∑
n=0

Mn
ijz

n, z ∈ C.

Observe that the convergence radius of the series M ij(z) is equal to λ−1
M . When there is

no possibility of confusion we will omit the subscript in λM and write simply λ.

Remark 2.4. Directly from the definition, if M̂ = CM for some C > 0, then λM̂ = CλM .
If σ is a substitution with constant length L, then P = M/L is a stochastic matrix and
λM = LλP . Moreover for the stochastic matrix P , clearly λP ≤ 1 and if P ij(1) = +∞,
then λP = 1. Thus λM ≤ L. Indeed it is enough to have σ with bounded length L, see
Lemma 2.10.

We either have M ij(1/λ) < ∞ for every i, j ∈ Z+, in this case we say that M is
transient, or M ij(1/λ) = ∞ for every i, j ∈ Z+, and we say that M is recurrent. The
class of irreducible, aperiodic recurrent matrices can be divided into two classes: Positive
recurrent matrices and null recurrent ones. To present the definitions, we need to introduce
the series

Lij(M, z) = Lij(z) =
+∞∑
n=0

lij(M,n)zn ,

where lij(M,n) = li,j(n) is defined by: lij(0) = 0, lij(1) = Mij and

lij(n+ 1) =
+∞∑
s ̸=i

lis(n)Msj for all n ≥ 1.

The matrix M is said to be positive recurrent if

+∞∑
n=0

nlii(n)

λn
< +∞ ,

otherwise we say that M is null recurrent.
An interesting result is that if M is an irreducible, aperiodic and recurrent matrix with

finite Perron value λ > 0, then λ has strictly positive left and right eigenvectors l and r,
unique up to multiples by a constant. Moreover the scalar product l · r is finite if and only
if M is positive recurrent.

Remark 2.5. In Section 3.2 we will give examples of null recurrent nonnegative matrices
with constant length L having Perron value strictly smaller than L. These cases are
associated to stochastic matrices with Perron value strictly smaller than 1, so they are
transient in probabilistic sense (see [8]), but they might be null recurrent according to the
above definition. This is not a novelty, see [11]. What is important here is also that we
provide substitution matrices in our examples.

To state the next result, we still need to introduce another important series

Rij(M, z) = Rij(z) =
+∞∑
n=0

rij(M,n)zn ,
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where rij(M,n) = rij(n) is defined by: rij(0) = 0, rij(1) = Mi,j and

rij(n+ 1) =
+∞∑
s ̸=j

Misrsj(n) for all n ≥ 1.

Lemma 2.6. (see [23] and [11, page 211]). Let M be a nonnegative, irreducible and
aperiodic matrix, with finite Perron value λ > 0. Let i, j ∈ Z+.

(1) If M is positive recurrent, then

lim
n→∞

Mn
ij

λn
=

Lij(1/λ)

µ(i)
=

Rij(1/λ)

µ(j)
> 0,

where µ(i) =
∑+∞

n=1 nlii(n)/λ
n.

(2) If M is transient or null recurrent, then limn→∞Mn
ij/λ

n = 0.

For all i, j ∈ Z+, let

l(i) = (Lik(1/λ))k≥0 and r(j) = (Rsj(1/λ))s≥0.

Lemma 2.7. (see [11, page 203]). Let M be a nonnegative, irreducible, aperiodic matrix,
with finite Perron value λ > 0.

(1) If M is recurrent, then for all i, j ∈ Z+,

l(i)M = λl(i) and Mr(j) = λr(j).

(2) If M is transient then for all i, j ∈ Z+,

l(i)M ≤ λl(i) and Mr(j) ≤ λr(j).

Remark 2.8. Let M = (Mij)i,j≥0 be a nonnegative, irreducible, aperiodic positive recurrent
matrix, with finite Perron value λ > 0. By item (1) of Lemma 2.6 and item (1) of Lemma
2.7, the vector

Ti = (tij)j≥0 where tij = lim
n→∞

Mn
ij/λ

n (2.3)

is a left eigenvector for λ associated to M . Moreover, we have

lim
n→∞

Mn
i,j

λn
=

ljri∑+∞
k=0 lkrk

(2.4)

where l = (lk)k≥0 and r = (rk)k≥0 are respectively a left and a right Perron eigenvector of
M (see [26]).

Lemma 2.9. (see [11, Proposition 7.1.11, page 204]). Let M = (Mij)i,j≥0 be a nonnegative,
irreducible, aperiodic and recurrent matrix with finite Perron value λ. Let Z = (zi)i≥0

be a sub invariant nonnegative and non zero eigenvector of Mσ associated to λ, that is
(ZM)i ≤ λzi for all i ≥ 0 and Z ̸= 0, then Z is a left Perron eigenvector associated to M .

Lemma 2.10. Let M = (Mij)i,j∈Z+ be a nonnegative, irreducible and aperiodic matrix with
finite Perron value λ. The following results hold:

(1) If M has line sums uniformly bounded by L > 0, then λ ≤ L.
(2) If M is positive recurrent and has constant line sums equal to L, then λ = L.

Moreover L is the unique eigenvalue of M having nonnegative probability left eigen-
vector.
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Proof. (1) Suppose that M has line sums bounded by L, then for all integers j ≥ 0 and
n ≥ 1, we have

Mn
jj ≤

+∞∑
k=0

Mn
jk ≤ Ln.

We deduce by (2.2), that λ ≤ L.
(2) If M is positive recurrent and has constant line sums equal to L, then there exists
l = (li)i≥0 ∈ l1 such that

∑∞
i=0 li = 1 and lM = λl, then

∑∞
j=0

∑∞
i=0 liMij = λ, then L = λ.

Using the same idea, we obtain that L is the unique eigenvalue of M having nonnegative
probability left eigenvector. □

Definition 2.11. Let M = (Mij)i,j≥0 be a nonnegative matrix. We say that M is scram-
bling if there exists a > 0 such that

+∞∑
j=0

min(Mij,Mkj) ≥ a for all i ̸= k ∈ Z+.

Note that a substitution matrix Mσ has a power that is scrambling, if and only if for
some n ≥ 1

∀i, k ∈ A, ∃j ∈ A which occurs in σn(i) and σn(k). (2.5)

Definition 2.12. Let P = (Pij)i,j≥0 be a nonnegative stochastic matrix. We say that P is

• ergodic if limn→∞ P n
ij = πj > 0 for all i, j ∈ N, where (πj)j≥0 is a probability vector;

• strongly ergodic if P is ergodic and if there exists a probability vector (πi)i≥0 of
nonnegative real numbers such that limn→∞ ∥P n −Q∥s = 0 where Q is the infinite
stochastic matrix with rows equal to (πj)j≥0 and ∥N∥s = supi≥0

∑+∞
j=0 |Nij| for any

infinite complex matrix N = (Nij)i,j≥0. In other words

lim
n→∞

sup
i≥0

∞∑
j=0

|P n
ij − πj| = 0.

Remark 2.13. It was proved in [10] that if P is strongly ergodic, then P is uniformly
geometrically ergodic, i.e., there exist β ∈ (0, 1) and a constant C > 0 such that

|P n
ij − πj| ≤ Cβn, ∀ i, j, n ∈ Z+.

The converse is proved in [14]. In particular it is showed that P is strongly ergodic if and
only if for some j ≥ 0 with πj ≥ 0, we have

lim
n→∞

sup
i≥0

|P n
ij − πj| = 0. (2.6)

There is a nice characterisation of the strong ergodicity (see [25]). It is defined as follows.
If P = (Pij)i,j∈N is a stochastic nonnegative countable matrix, then P is strongly ergodic
if and only if there exists an integer n ≥ 1, such that δ(P n) < 1, where the δ coefficient of
any nonnegative countable stochastic matrix N = (Nij)i,j∈N is

δ(N) =
1

2
sup
i,k∈N

+∞∑
j=0

|Nij −Nkj|. (2.7)

The number δ(N) is called Dobrushin coefficient of N or coefficient of ergodicity of N (see
for instance [4], [10], [13], [14]). It’s not difficult to show that

δ(N) = 1− inf
i ̸=k

+∞∑
j=0

min(Nij, Nkj). (2.8)
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Observe that δ(N) < 1 if and only if N is scrambling. Hence P is strongly ergodic if and
only if there exists an integer n ≥ 1, such that P n is scrambling.

3. Irreducible aperiodic substitutions

3.1. Nonexistence of finite invariant measure. In [9], the author proved that if A = Z
and σ(n) = (n − 1)nn(n + 1), n ∈ A, then the dynamical system (Ωσ, S) has no finite
invariant measure. We will extend this result in the next theorem.

Theorem 3.1. Let σ : Z+ → Z∗
+ be a bounded length substitution such that σ has a periodic

point u and M = Mσ is irreducible and aperiodic. If M satisfies

lim
n→+∞

sup
i∈Z+

Mn
ij∑+∞

k=0M
n
ik

= 0 for all j ∈ Z+, (3.1)

then the dynamical system (Ωσ, S) has no finite invariant measure.

Remark 3.2. One natural question is if condition (3.1) can be replaced by the weaker
condition

lim
n→+∞

Mn
ij∑+∞

k=0 M
n
ik

= 0 for all i, j ∈ Z+. (3.2)

This last condition is more natural and holds for a large class of substitutions σ such that
Mσ is transient or null recurrent and σ has constant length, or Mσ is positive recurrent
with left Perron eigenvector l = (lk)k≥0 ̸∈ l1, see Lemma 3.4 at the end of this section and
also Remark 3.3 just below.

Proof of Theorem 3.1. Assume without loss of generality that u = u0u1 . . . is a fixed
point of σ. By (3.1), we have that for all j ∈ Z+

lim
n→+∞

sup
a∈A

|σn(a)|j
|σn(a)|

= 0. (3.3)

Now, assume that (Ωσ, S) has a finite invariant measure, then there exists a finite ergodic
invariant measure µ. By Birkhoff’s ergodic theorem, we deduce that for µ almost all x ∈ Ωu

lim
N→∞

1

N
card{0 ≤ k ≤ N − 1 : Sk(x) ∈ [j]} = µ[j] ∀ j ∈ Z+. (3.4)

Now, let x ∈ Ωσ satisfying (3.4) and N ∈ N. Let V = um . . . um+N−1, m ∈ N be a prefix
of x. The word V can be written as

V = v0σ(v1) . . . σ
n−1(vn−1)σ

n(vn)σ
n−1(wn−1) . . . σ(w1)w0, (3.5)

where n ≥ 1 is an integer and vi, i ∈ {0, . . . , n}, wj, j ∈ {0, . . . , n − 1}, are elements of
Fu possibly empty words of lengths smaller or equal to K = max{|σ(b)|, b ∈ A} and vn is
not empty. Equality (3.5) comes from the fact that since u = σ(u), there exists a ∈ A and
n ∈ N such that V is a factor of σn+1(a) and V is not a factor of σn(a). Hence there exist
v0, w0, V1 in Fu such that

V = v0σ(V1)w0

and |v0|, |w0| ≤ K. We proceed analogously with V1, continuing by induction until the
process stops and we obtain (3.5).

With our choice of x and its prefix V , from (3.4) and (3.5) we have that

1

N
card{0 ≤ k ≤ N − 1, Sk(x) ∈ [j]} =

|V |j
|V |

=
|σn(vn)|j +

∑n−1
k=0(|σk(vk)|j + |σk(wk)|j)

|σn(vn)|+
∑n−1

k=0(|σk(vk)|+ |σk(wk)|)
.
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By (3.3), we deduce that

lim
k→∞

sup
{ |σk(v)|j
|σk(v)|

, v ∈ Fu, |v| ≤ K
}
= 0. (3.6)

Using (3.6), and the Stolz-Cesaro Theorem, we deduce that

lim
n→∞

|σn(vn)|j +
∑n−1

k=0(|σk(vk)|j + |σk(wk)|j)
|σn(vn)|+

∑n−1
k=0(|σk(vk)|+ |σk(wk)|)

= 0.

Therefore

lim
N→∞

1

N
card{0 ≤ k ≤ N − 1, Sk(x) ∈ [j]} = µ[j] = 0.

Since j is arbitrary µ(Ω) = 0 which yields a contradiction. □

Remark 3.3. It is important to notice that condition (3.1) may or may not hold on both
the transient and the null recurrent cases. To see this we consider examples where M is a
multiple of an irreducible stochastic matrix P . In this situation (3.1) is equivalent to

lim
n→+∞

sup
i∈A

P n
ij = 0 for all j ∈ A. (3.7)

It is simple to find examples of stochastic matrices for which (3.7) does not hold. So
we start with a first example that can be adapted to both transient and recurrent cases.
Consider A = Z and set P−n,−n−1 = qn = 1 − P−n,−n+1 for n ≥ 1, where qn ∈ (0, 1) and∑+∞

n=1 qn < ∞. Also put P0,−1 = P0,1 = 1/2 and Pm,−n = 0 for m,n ≥ 1. No matter how
we complete the definition of P to obtain a irreducible and aperiodic matrix which may be
recurrent or transient, we have that

sup
a∈A

P n
a,0 ≥ P n

−n,0 ≥
+∞∏
k=1

(1− qk) > 0, for every n ≥ 1.

Thus (3.7) does not hold. However, since limn→∞ qn = 0, there is no multiple of P which
is a matrix M associated to a substitution. Thus we will provide another example.

Again we consider A = Z and set P−2n,0 = 1/2 = P−2n,−2n−1 and P−2n−j,−2n−j−1 = 1 for
j = 1, ..., 2n − 1 and n ≥ 1. We can check that P 2n

−2n−1−1,0 = 1/2. Again, no matter how
we complete the definition of P , which may be recurrent or transient, we have that

lim sup
n→∞

sup
a∈A

P n
a,0 ≥ 1/2 > 0,

thus (3.7) does not hold. In this case, we could define M−2n,0 = 1 = M−2n,−2n−1 and
M−2n−j,−2n−j−1 = 2 and complete the definition for the other entries for M in order to
have an irreducible and aperiodic matrix associated to a substitution of constant length
equal to two. We have that P = M/2, thus (3.1) does not hold.

As a third example we consider P as the transition matrix of a simple random walk on
Z, i.e., we fix p ∈ (0, 1) and set Pn,n+1 = p = 1−Pn,n−1 for every n ∈ Z (for basic properties
of random walks, the reader can check [8]). Notice that this Markov chain is irreducible
with period two which is null recurrent if p = 1/2 and transient otherwise. The stochastic
matrix P is irreducible and we can use P 2 instead of P for an example with an aperiodic
chain. A standard computation using the binomial distribution and Stirling formula shows
that

sup
w∈Z

P n
w,w̃ = sup

w∈Z
P n
0,w̃−w ≤ max

0≤k≤n

(
n

k

)
pk(1− p)n−k = O(n− 1

2 ).

Thus (3.7) holds. Here, we also have P = M/2, where M is a substitution matrix of
constant length equals to 2 defined as

Mn,n+1 = Mn,n−1 = 1 ∀n ∈ Z.
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Thus M satisfies (3.1).

Question 3.1. Under the hypothesis of Theorem 3.1, is the dynamical system (Ωσ, S) not
minimal?

Question 3.2. Is the result of Theorem 3.1 still true if Mσ is transient, or recurrent with a
left Perron eigenvector l = (li)i≥0 ̸∈ l1 and without the condition (3.1)? Even in a little less
general setting, is the result of Theorem 3.1 still true if Mσ satisfies the weaker condition
(3.2)?

We finish this section proving a result with conditions that imply condition (3.2).

Lemma 3.4. Let M = (Mij)i,j∈Z+ be a nonnegative, irreducible and aperiodic matrix with
finite Perron value λ. If M is transient with constant line sums, or M is positive recurrent
with a left Perron eigenvector l = (lk)k≥0 ̸∈ l1, then

lim
n→+∞

Mn
ij∑+∞

k=0M
n
ik

= 0 for all i, j ∈ Z+.

Proof. Assume that M is transient with constant line sums equal to L. Let i, j ∈ Z+.
Since λ ≤ L and limn→+∞ Mn

ij/λ
n = 0, then

Mn
ij∑+∞

k=0M
n
ik

=
Mn

ij

Ln
≤

Mn
ij

λn
→ 0, as n → ∞.

Now, let us suppose that M is positive recurrent and l = (lk)k≥0 ̸∈ l1 is a left Perron
eigenvector. Let i, j ∈ Z+. Since M is positive recurrent, we have by remark 2.8 that

lim
n→∞

Mn
ik

λn
= clk for all k ∈ Z,

where c > 0. Using Fatou Lemma for series and the fact l = (lk)k≥0 ̸∈ l1, we deduce that

lim
n→+∞

∑+∞
k=0M

n
ik

Mn
ij

≥
∑+∞

k=0 lk
lj

= +∞

and we are done. □

Question 3.3. 1. If M is transient with non constant line sums, Is

lim
n→+∞

Mn
ij∑+∞

k=0M
n
ik

= 0 for all i, j ∈ Z+?

Note that the answer is affirmative if

lim inf
n→+∞

Mn1

λn
> 0,

which is simple to verify in the finite dimensional case from linear algebra arguments. It
is also true to check in the infinite dimensional case when M is transient and has a right
Perron eigenvector r = (ri)i≥0 ∈ l∞ such that inf{rj, j ≥ 0} > 0, since for all j ≥ 0,

infj rj
supj rj

≤ 1

λn

+∞∑
k=0

Mn
ik ≤

supj rj

infj rj
. (3.8)

2. Assume that M is recurrent with a left Perron eigenvector l = (lk)k≥0 ∈ l1. Does
there exist i, j ∈ A such that

lim
n→+∞

Mn
ij∑+∞

k=0 M
n
ik

> 0?
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Again, from (2) in Lemma 2.6, (2) in Lemma 2.10 and (3.8), it is simple to check that this
holds when M is positive recurrent and has a right Perron eigenvector r = (ri)i≥0 ∈ l∞

such that inf{rj, j ≥ 0} > 0. In particular in the case of lines with constant sums.

3.2. A class of examples: Let σ := σa,b,c defined by

σ(0) = 0a+b1c and σ(n) = (n− 1)anb(n+ 1)c for all n ≥ 1

where a, b, c are nonnegative integers such that a > 0, c > 0 and ik = ii . . . i (k times).
The matrix Mσ is irreducible and aperiodic. We have

Mσ =



a+ b c 0 0 0 0 0 · · ·
a b c 0 0 0 0 · · ·
0 a b c 0 0 0 · · ·
0 0 a b c 0 0 · · ·
0 0 0 a b c 0 · · ·
...

...
...

...
...

...
...

. . .

 .

Note that σ is a substitution of constant length L = a + b + c. The stochastic matrix
P = Mσ/L is the transition matrix of a homogeneous nearest-neighbor random walk in
{0, 1, 2, ...} partially reflected at the boundary, see also the last example in Remark 3.3.
It is well known, see [8], that the random walk is (in the probabilistic sense) positive
recurrent if c < a, null recurrent if c = a and transient if c > a. The difference for the
matrix theoretical definition is that we also have null recurrence in the case c > a, see also
[11, Example 7.1.28] for the case b = 0 and a = c.

Proposition 3.5. The following properties hold:

• If c < a, then Mσ is positive recurrent.
• If c ≥ a, then Mσ is null recurrent and (Ωσ, S) has no finite invariant measure.

Proof. For the cases c < a and c = a, we have λP = 1, thus λMσ = L. From the probabilistic
results on transience/recurrence of random walks, we have that Mσ is positive recurrent
for c < a and null recurrent for c = a.

Before we deal with the case c > a, let us point out that we can prove the result in the
cases c < a and c = a by directly computing the Perron eigenvectors.

Let λ be the Perron value of Mσ, then by Lemma 2.10, we have λ ≤ L = a+ b+ c. Let
l = (li)i≥0 be a left eigenvector of Mσ associated to L. A simple computations implies that
l1 =

c
a
l0 and

cln + aln+2 = (a+ c)ln+1 for all n ≥ 0.

Hence

ln = (
c

a
)nl0 for all n ≥ 1.

Assume that Mσ is positive recurrent, then by Lemma 2.10, we deduce that λ = L. Thus
l ∈ l1 (since a right Perron eigenvector of Mσ has constant entries) and we deduce that
c < a.

Now assume that c ≤ a. If λ = L, then l is a left Perron eigenvector, hence Mσ is positive
recurrent if c < a and null recurrent if c = a. Now suppose that λ < L and let u = (ui)i≥0

be a non zero nonnegative left Perron sub-invariant eigenvector of Mσ associated to λ.
Thus uM < LM. Hence

un+1 ≤
c

a
un for all n ≥ 0
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and there exists a real number s > 0 and an integer k ≥ 1 such that uk =
c
a
uk−1 − s, Since

cuk−1 + auk+1 ≤ (a+ c)uk, we deduce that uk+1 ≤ c
a
uk − s. Thus

un+1 ≤
c

a
un − s for all n ≥ k. (3.9)

Therefore

un ≤
( c
a

)n−k
uk − s for all n ≥ k + 1.

If c < a, we deduce that there exists a positive integer N such that un < 0 for all integer
n ≥ N . This is absurd, then u = u0l. Therefore λ = L and hence Mσ is positive recurrent.

If c = a, we deduce by (3.9) that

un ≤ uk − (n− k)s for all n ≥ k + 1.

Then λ = L and Mσ is null recurrent.

Now consider the case c > a. We will consider a probabilistic approach to show that
λP < 1 and that P 00(1/λP ) = ∞, this implies null recurrence. Let (Xn)n≥0 be a Markov
chain with transition matrix P and Px the distribution of (Xn)n≥0, when X0 = x for
x ∈ Z+. Set p = c/(a + c), which is the conditional probability that the random walk
jumps to the right, when it necessarily leaves its current position and this is not 0, i.e.,

p = Px
(
Xn+1 = Xn + 1

∣∣Xn+1 ̸= Xn

)
∀x ̸= 0.

We want to estimate P n
00, i.e., the probability that the random walk is visiting state 0 at

time n given that it has also started at 0. For this last event to happen, necessarily we
must have a number of jumps to the right equal to the number of jumps to the left. Here
we need to important observations:

(i) Note that #{1 ≤ j ≤ n : Xn+1 ̸= Xn} counts the total number of jumps to the
right or to the left. There exist strictly positive constants c, δ ∈ (0, 1) such that

P0
(
#{1 ≤ j ≤ n : Xn+1 ̸= Xn} ≥ cn

)
> 1− (δq)n.

(ii) In 2k transitions to the left or to the right, the number of transitions to the right
is distributed as a binomial random variable with parameters 2k and p. Thus the
probability of having an equal number of jumps to the left or to the right is

P
(
Bin(2k, p) = k

)
=

(
2k

k

)
pk(1− p)k ≈ C√

k

(
4p(1− p)

)k
.

(the approximation could be appropriately described using Stirling’s formula). Note
that q = 4p(1− p) < 1.

Using (i) and (ii) we are able to show that P n
00 is of order O(qn/

√
n). This implies that

λP = q and P 00(1/λP ) = P 00(1/q) = ∞. Therefore P and Mσ are null recurrent matrices.
It is worth mentioning that Mσ satisfies (3.1) for every a ≤ c and b. This follows as in

the last example in Remark 3.3 in the case a = c and from computation as in the proof of
Proposition 3.5. Indeed one can prove that supi∈Z+

P n
i,j is of order O(1/

√
n), which implies

that Mσ satisfies (3.1). This can also be proved using the Local Central Limit Theorem
for simple random walks [12, Theorem 1.2.1]. □

Remark 3.6. It is worth mentioning that apparently small modifications on the matrix can
completely change its behavior. For instance, consider the case b = 0 and a = c which
implies that Mσ is null recurrent. Instead of σ(0) = 0a1c, put σ(0) = 1c, then, from [11, (i)
in example 7.1.29], we have that Mσ is transient. For the case b > 0, a ≤ c and σ(0) = 1c,
we also have transience as a consequence of our Proposition 3.5 and [11, Lemma 7.1.23].
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Remark 3.7. We consider the substitution σ of [9] defined on A = Z by σ(n) = (n −
1)nn(n + 1). The associated matrix is null recurrent and satisfies condition (3.1). Hence
by using Theorem 3.1, we deduce that the dynamical system (Ωσ, S) associated to σ has
non finite invariant measure.

Let σ := σan,bn,cn defined by

σ(0) = 0a0+b01c0 and σ(n) = (n− 1)annbn(n+ 1)cn for all n ≥ 1

where an, bn, cn are nonnegative integers such that an > 0, cn > 0 for every n ≥ 1 and
L = sup{an + bn + cn : n ≥ 1} < ∞. The matrix Mσ is irreducible and aperiodic with
bounded length L and can be represented as

Mσ =



a0 + b0 c0 0 0 0 0 0 · · ·
a1 b1 c1 0 0 0 0 · · ·
0 a2 b2 c2 0 0 0 · · ·
0 0 a3 b3 c3 0 0 · · ·
0 0 0 a4 b4 c4 0 · · ·
...

...
...

...
...

...
...

. . .


We will see in Proposition 3.8 below that (Ωσ, S) is not minimal for these substitutions. We
does not discuss the transience/recurrence in this general case, but we discuss an example.
Consider (an, bn, cn) = (2, 1, 1) for n even and (an, bn, cn) = (1, 1, 1) otherwise. Our first
step is to compute the Perron value λ. For this we will estimate (Mn

σ )0,0. Consider a

matrix M̂n
σ which has the form above but with (an, bn, cn) = (2, 1, 1) for every n. The

Perron eigenvalue of M̂n
σ is 4, since it has constant row sums equal to 4. Now for each path

of length n leaving and returning to n, we will have the number of jumps to the left equal
to the number of jumps to the right. So for a total of 2m ≤ n jumps with m jumps to the
left and m jumps to right (neglecting jumps from 0 to 1 and jumps from an state to itself),
m/2 jumps to the left are made from an odd position and these jumps contributes with a

factor of ( 4
√
2)2m = 2

m
2 to the product of weights (M̂n

σ )0,0. This shows that( 4
√
2

4

)n

(Mn
σ )0,0 ≥

(M̂n
σ )0,0
4n

,

which implies λ ≥ 4/ 4
√
2. On the other hand, (Mn

σ )0,0 ≤ (M̂n
σ )0,0 and λ ≤ 4. Thus

λ ∈ [4/ 4
√
2, 4]. With this bound on λ we can show that Mσ is positive recurrence. For this

we follow the computation in [11, Example 7.1.29 (iii)] to obtain that

lim
n→∞

2n
√

ℓ00(2n) = 2
5
4 < λ,

then apply [11, Lemma 7.1.25] to conclude.

Proposition 3.8. Let (Ωσ, S) be the shift dynamical system associated to σan,bn,cn, then it
is not minimal.

Proof. For all n ≥ 2, we have

σk−1(k) = (σk−2(k − 1))an(σk−2(k))bn(σk−2(k + 1))cn .

Hence the infinite word w beginning with σk−1(k) for all k ≥ 2 is well defined and belongs
to Ωσ. Moreover the letter 0 does not occur in w. Thus the orbit of w does not visit the
cylinder [0], hence (Ωσ, S) is not minimal. □
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Remark 3.9. The last proposition gives examples of positive or null recurrent, aperiodic
irreducible substitutions such that its shift dynamical systems are not minimal. The first
example was given by Ferenczi in [9] by considering σ(n) = (n− 1)nn(n+ 1), n ∈ Z.

We will see in Theorem 3.33 that given a substitution σ on A = Z+, not necessarily
with constant length, such that σ has a periodic point u and Mσ is irreducible, aperiodic
and has a scrambling positive power, then (Ωσ, S) is minimal. Observe that the matrices
associated to substitutions σan,bn,cn have not a scrambling power, since for any positive
integer k, there is no letter occurring both in the words σk

an,bn,cn
(k) and σk

an,bn,cn
(4k).

To end this section we describe an interesting substitution whose matrix is transient.
The construction of the matrix is based on multidimensional random walks in dimension
greater or equal to 3. Thus we set A = Zd, let {ej : 1 ≤ j ≤ d} and define the substitution

σ(x) = (x+ e1)(x− e1)(x+ e2)(x− e2)...(x+ ed)(x− ed).

We have that Mσ is a matrix of length 2d. The stochastic matrix P = Mσ/2d is transient
with λP = 1. Indeed from classical results in probability theory one has that P n

00 ∼
O(n−d/2) and P 00(1) < ∞. Therefore, Mσ is a transient matrix with λMσ = 2d. Using
again the Local Central Limit Theorem [12, Theorem 1.2.1], we have that Mσ also satisfies
(3.1).

3.3. Shift invariant measures and unique ergodicity. In this subsection, we prove
the following results.

Theorem 3.10. Let σ be a bounded length substitution on A = Z+ such that Mσ is
irreducible, aperiodic, positive recurrent, then the dynamical system (Ωσ, S) has a shift
invariant measure µ which is finite if and only if any left Perron eigenvector l belongs to
l1.

Remark 3.11. Theorem 3.10 improves [1, Theorem 7.6], where it is assumed the additional
hypothesis that σ is bounded size left determined substitution.

Theorem 3.12. Let σ be a constant length substitution on A = Z+ such that σ has a
periodic point u and Mσ is irreducible and aperiodic. If there exists a positive integer n
such that Mn

σ is scrambling, then there exists a unique probability shift invariant measure
of (Ωσ, S).

Remark 3.13. The same proof of Theorem 3.12 will show that if σ is a constant length
substitution on A = Z+ without periodic point such that Mσ is irreducible, aperiodic and
Mn

σ is scrambling positive integer n , then there exists a unique probability shift invariant
measure of (Ωσ, S).

Before proving Theorems 3.10 and 3.12 we need to introduce some notation and state
some preliminary results.

Let σ : A → A∗ be a bounded length substitution, not necessarily with constant length.
Let t ≥ 2 be an integer and At be the set of finite words of length t that occur in u.
Now, consider a substitution σt on the alphabet At defined in the following way: If w =
w0 . . . wt−1 ∈ At and σ(w) = y0 . . . y|σ(w0)|−1y|σ(w0)| . . . y|σ(w)|−1, then

σt(w) = (y0 . . . yt−1)(y1 . . . yt) . . . (y|σ(w0)|−1 . . . y|σ(w0)|+t−2). (3.10)

Considering that |σt(w)| counts letters in At (not in A), note that

|σt(w0 . . . wt−1)| = |σ(w0)|, (3.11)



INVARIANT MEASURES FOR SUBSTITUTIONS ON COUNTABLE ALPHABETS 15

and for all i1 . . . it ∈ At, we have

|σ(w0)|i1...it ≤ |σt(w0 . . . wt−1)|i1...it ≤ |σ(w0)|i1...it + t. (3.12)

We extend σt by concatenation to A∗
t and to A

Z+

t . The substitution σt was defined in
[21] (in the case of substitutions on finite alphabets).

For example, for A = {0, 1} and σ(0) = 01, σ(1) = 0. We have A2 = {00, 01, 10} and

σ2(00) = (01)(10), σ2(01) = (01)(10), σ2(10) = (00).

If A = Z+ and τ(n) = 0(n+ 1) for all n ∈ A, then A2 = {0n, n0, n ≥ 1} and

τ2(0n) = (01)(10), τ2(n0) = (0(n+ 1))((n+ 1)0) for all n ≥ 1.

Lemma 3.14. The following results hold:

(1) For all integers n ≥ 1 and t ≥ 2, we have (σn)t = (σt)
n.

(2) Let u = u0u1 . . . be a periodic point of σ, then for all integer t ≥ 2, the infinite
word (u0 . . . ut−1).(u1 . . . ut) . . . (ui . . . ut+i−1) . . . is a periodic point (with the same
period) of σt.

(3) If Mσ is irreducible and aperiodic, then so is Mσt for all integers t ≥ 2.

Proof. The proof is analogous to that for the case of finite alphabet, which is given in [21,
pages 138-139]. □

Lemma 3.15. Let A = Z+ and σ : A → A∗ be a bounded length substitution such that
Mσ irreducible and aperiodic with Perron value λ, then for all integer t ≥ 2 the matrix
Mt = Mσt associated to σt also has Perron value λ. Moreover if Mσ is positive recurrent
(resp. null recurrent, transient), then Mσt is also positive recurrent (resp. null recurrent,
transient).

Proof. Let t ≥ 2 be an integer and denote by λt the Perron value of Mt. First observe that
by (3) in Lemma 3.14, Mt is irreducible and aperiodic. For i1 . . . it, j1 . . . jt ∈ At we have

|σn
t (i1 . . . it)|j1...jt ≤ |σn(i1)|j1...jt + t ≤ |σn(i1)|j1 + t.

Hence

(Mn
t )i1...it,j1...jt ≤ (Mn)i1,j1 + t, for all n ∈ N. (3.13)

We deduce by (2.2) that 1 ≤ λt ≤ λ.
On the other hand, let k,m ∈ N such that j1 . . . jt is a factor of σm(k). Hence

|σn+m(i1)|j1...jt ≥ |σn(i1)|k.
Thus for all n ∈ N, we have |σn+m

t (i1 . . . it)|j1...jt ≥ |σn(i1)|k. Therefore
(Mn+m

t )i1...it,j1...jt ≥ (Mn)i1,k for all n ∈ N. (3.14)

Thus λt ≥ λ and hence λt = λ.
Assume that Mσ is positive recurrent. By (3.14), we have

lim inf
n→+∞

(Mn+m
t )i1...it,j1...jt

λn+m
≥ λ−m lim

n→+∞

(Mn)i1,k
λn

. (3.15)

Hence by (3.15) and Lemma 2.6, we deduce that limn→+∞
(Mn

t )i1...it,j1...jt
λn
t

> 0. Thus Mσt is

positive recurrent.
Now suppose that Mσ is null recurrent, then we have by (3.14) that

+∞∑
n=0

(Mn
t )i1...it,j1...jt

λn
= +∞. (3.16)
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Hence by (3.13), we deduce that

lim
n→∞

(Mn
t )i1...it,j1...jt

λn
= 0. (3.17)

By (3.16) and (3.17), we deduce that Mσt is null recurrent.
Finally if Mσ is transient, we deduce by (3.13) that

+∞∑
n=0

(Mn
t )i1...it,j1...jt

λn
< +∞.

Hence Mσt is transient. □

Before proving Theorem 3.10, we need the following Lemma.

Lemma 3.16. Let σ be a bounded length substitution on A = Z+ such that Mσ is irre-
ducible, aperiodic, recurrent and has finite Perron value λ. Let r = (ri)i≥0 be a right Perron
eigenvector of Mσ. For all integer t ≥ 2, Let r(t) = (rI)I∈At be an infinite vector defined by

rI = ri0 for all I = i0 . . . it−1 ∈ At,

then r(t) is a right Perron eigenvector of Mt = Mσt associated to λ.

Proof. Let I = i0 . . . it−1 ∈ At, we have

(Mtr
(t))I =

∑
J=j0...jt−1∈At

|σt(I)|J rj0 =
∑
j0∈A

rj0
∑

J∗=j1...jt−1,j0J∗∈At

|σt(I)|j0J∗ .

On the other hand, for all j0 ∈ A, we have∑
J∗=j1...jt−1,j0J∗∈At

|σt(I)|j0J∗ ≤ |σ(i0)|j0 = Mi0j0 .

Thus
(Mtr

(t))I ≤
∑
j0∈A

Mi0j0rj0 = λri0 = λ(r(t))I .

Since Mt is an aperiodic, irreducible and recurrent matrix, Lemma 2.9 implies that r(t)

is a right eigenvector of Mt associated to λ. □

Proof of Theorem 3.10. Let u = u0u1 . . . = σ(u) be an element of Ωσ. For j ∈ A set

µ[j] := lim
n→∞

|σn(u0)|j
λn

= lim
n→∞

Mn
u0,j

λn
.

The last limit exists since Mσ is positive recurrent with Perron eigenvalue λ. For t ≥ 2
integer and It = i1 . . . it ∈ At set

µ[i1 . . . it] = lim
n→∞

|σn(u0)|i1...it
λn

. (3.18)

Applying (3.12) for σn in place of σ and the fact that λ > 1, we deduce that

µ[i1 . . . it] = lim
n→∞

|σn
t (u0 . . . ut−1)|i1...it

λn
= lim

n→∞

(Mn
t )Ut,It

λn
,

where Ut = u0 . . . ut−1 and It = i1 . . . it . Observe that limn→∞
(Mn

t )Ut,It

λn exists since Mt is
positive recurrent with Perron value λt = λ.

By Kolmogorov consistency Theorem, there exists a unique measure µ with cylinder
specification (3.18) if for every integer t ≥ 1 and I = i1 . . . it ∈ At we have

µ[I] =
∑

b∈A,Ib∈At+1

µ[Ib]. (3.19)
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and

µ[I] =
∑

a∈A,aI

µ[aI]. (3.20)

For the proof of (3.19), let l = (li)i≥0 and r = (ri)i≥0 be respectively left and right Perron
eigenvectors of M such that the scalar product l · r = 1. For all t ≥ 2, let l(t) = (lI)I∈At

and r(t) = (rI)I∈At be left and right Perron eigenvectors of Mt such that

ri1...it = ri1 for all i1 . . . it ∈ At and l(t) · r(t) = 1.

We could choose ri1...it = ri1 because of Lemma 3.16.
For all I = i1 . . . it, t ≥ 2, we have by (2.4) that

µ[I] = rUtlI = ru0lI .

Hence (3.19) is equivalent to

lI =
∑

b∈A,Ib∈At+1

lIb. (3.21)

On the other hand, for all I = i1 . . . it ∈ At, we have by Fatou’s Lemma that∑
b∈A,Ib∈At+1

µ[Ib] ≤ lim
n→∞

1

λn

∑
b∈A,Ib∈At+1

|σn
t+1(u0 . . . ut)|Ib = lim

n→∞

1

λn
|σn

t (u0 . . . ut−1)|I .

Hence ∑
b∈A,Ib∈At+1

µ[Ib] ≤ µ[I],

i.e., ∑
b∈A,Ib∈At+1

lIb ≤ lI . (3.22)

Since
∑

I∈At
rI lI =

∑
J∈At+1

rJ lJ = 1 and r(Ib) = r(I) for all I ∈ At and Ib ∈ At+1, we
deduce that ∑

I∈At

rI lI =
∑
I∈At

rI
∑

b∈A,Ib∈At+1

lIb = 1.

Using this last equality and (3.22), we obtain (3.21) and hence we get (3.19).
Analogously, (3.20) is equivalent to

lI =
∑

a∈A,aI∈At+1

laI . (3.23)

Using Fatou’s Lemma, we have for all I ∈ At,∑
a∈A,aI∈At+1

µ[aI] ≤ lim
n→∞

1

λn

∑
a∈A,aI∈At+1

|σn
t+1(u0 . . . ut)|aI .

Note that

βI :=
∑

a∈A,aI∈At+1

|σn
t+1(u0 . . . ut)|aI − |σn

t (u0 . . . ut−1)|I ∈ {−1, 0, 1},

indeed βI = −1 if the first letter of σn
t+1(u0 . . . ut) begins with I and and the last letter of

σn
t+1(u0 . . . ut) does not end with I. The number βI = 1 if the first letter of σn

t+1(u0 . . . ut)
does not begin with I and and the last letter of σn

t+1(u0 . . . ut) ends with I. In the comple-
mentary case, we have βI = 0.
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Since λ > 1, we deduce that

lim
n→∞

1

λn

∑
a∈A,aI∈At+1

|σn
t+1(u0 . . . ut)|aI = lim

n→∞

1

λn
|σn

t (u0 . . . ut−1)|I .

Hence ∑
a∈A,Ia∈At+1

µ[aI] ≤ µ(I),

i.e, ∑
a∈A,Ia∈At+1

laI ≤ lI . (3.24)

On the other hand, by (3.21), we have∑
J∈At+1

lJ =
∑
I∈At

(
∑

b∈A,Ib∈At+1

lIb) =
∑
I∈At

lI .

Thus ∑
I∈At

(
∑

a∈A,aI∈At+1

laI) =
∑
I∈At

lI .

By using (3.24), we obtain (3.20). Hence µ is an invariant measure for (Ωu, S). □

3.3.1. Constant length substitution and unique ergodicity. Let σ be a substitution on A =
Z+ with constant length L > 0. By (2.8), the stochastic matrix Mσ/L is strongly ergodic
if and only if there exists a positive power of Mσ which is scrambling.

As an example, the dyadic substitution σ defined by σ(n) = 0(n + 1) has a strongly
ergodic matrix Mσ/2 since the matrix Mσ is scrambling.

Another way to see that Mσ/2 is strongly ergodic comes from the fact that for all
i, j ∈ Z+

lim
n→∞

sup
i∈Z+

+∞∑
j=0

∣∣∣ |σn(i)|j
|σn(i)|

− 1

2j+1

∣∣∣ = 0. (3.25)

Indeed, for all integers n ∈ N, i, j ∈ Z+, we have

|σn(i)|j = |σn−1(i)|j−1 = 2n−j−1 for all 0 ≤ j < n

and
|σn(i)|j = |σ(i)|j+1−n for all j ≥ n,

Thus for all j ≥ n,
|σn(i)|j = 1 if j = i+ n and 0 otherwise.

Hence
+∞∑
j=0

∣∣∣ |σn(i)|j
|σn(i)|

− 1

2j+1

∣∣∣ = +∞∑
j=n

1

2j+1
+ (

1

2n
− 1

2i+n
) for all i ≥ 0,

which implies that

sup
i∈Z+

+∞∑
j=0

| |σ
n(i)|j

|σn(i)|
− 1

2j+1
| = 1

2n−1

and we obtain (3.25).

Another example are the substitutions σa,b,c, a, b, c ∈ N and a > c. We have seen in
Proposition that for all positive integers a, b, c with a > c, the matrix Mσa,b,c

is positive

recurrent. Furthermore the stochastic matrix
Mσa,b,c

a+b+c
is not strongly ergodic since Mσa,b,c

does not have a scrambling power (see Remark 3.9).
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Remark 3.17. Let σ be a substitution on A = Z+ with constant length L > 0 and a
periodic point u such that the stochastic matrix Mσ/L is strongly ergodic, then Mσ is
positive recurrent and, by Theorems 3.10, Ωσ has a finite invariant measure.

Lemma 3.18. Assume that σ is a constant length substitution on A = Z+ and Mσ is
irreducible and aperiodic. If Mσ is strongly ergodic, then for all integer t ≥ 2, Mσt is also
strongly ergodic.

Proof. Let L > 0 be the length of σ. Fix and interger t ≥ 2 and i1 . . . it, k1 . . . kt ∈ At.
Since Mσ is strongly ergodic, then (2.5) implies that there exists an integer n > 0 and
j1 ∈ N such that

j1 occurs in σn(i1) and σn(k1).

Let m > 0 be an integer such that

m =
[ ln(2t)
lnL

]
+ 1,

then
σm(j1) = a1 . . . as where s ≥ 2t.

Hence a1 . . . a2t occurs in σn+m(i1) and σn+m(k1). Thus

a1 . . . at occurs in σn+m
t (i1 . . . it) and σn+m

t (k1 . . . kt)

and we are done again by (2.5). □

Proof of Theorem 3.12. Assume without loss of generality that σ has a fixed point
u = σ(u) = u0u1 . . . = limn→∞ σ(u0) and let L > 0 be the length of σ. Recall that for all
i, j ∈ Z+ and n ≥ 0

|σn(i)|j
|σn(i)|

=
Mn

ij

Ln
.

Since Mσ is irreducible, aperiodic and strongly ergodic, we have that λ = L and

lim
n→+∞

|σn(i)|j
|σn(i)|

= vj > 0

independently of i. Moreover strong ergodicity implies that there exist c > 0 and 0 < β < 1
such that

sup
i≥0

∣∣∣ |σn(i)|j
|σn(i)|

− vj

∣∣∣ ≤ cβn for all n ≥ 0.

To compute, limn→+∞
|σn(i)|w
|σn(i)| where w is a word of length t ≥ 2, we will consider a

substitution σt on the alphabet At. From Lemma 3.14 and Lemma 3.18 we deduce that
Mσt is irreducible, aperiodic and strongly ergodic. Thus if w = w0 . . . wt−1 and B =

b0 . . . bt−1 ∈ At, then there exists dB > 0 such that limn→+∞
|σn

t (w)|B
|σn

t (w)| = dB independently of

w. Now, since

|σn
t (w)| = |σn(w0)| = Ln and |σn(w0)|B ≤ |σn

t (w)|B ≤ |σn(w0)|B + t,

we obtain

lim
n→+∞

|σn(w0)|z
|σn(w0)|

= dB. (3.26)

Moreover there exists ct > 0 and 0 < βt < 1 such that

sup
w0≥0

∣∣∣ |σn(w0)|B
|σn(w0)|

− dB

∣∣∣ ≤ ctβ
n
t for all n ≥ 0. (3.27)

To finish the proof, we have to show the following claim:
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Claim: Let t ≥ 2 and B = b1 . . . bt ∈ Fu, then limN→∞
1
N
|uk . . . uk+N−1|B = dB uni-

formly on k.
The proof is the same as that for finite alphabet and σ primitive given in [21, Theorem

4.6, page 141-142]. Indeed, let Vk = uk . . . uk+N−1 ∈ Fu, k ∈ Z+, N ∈ N. As cited in the
proof of Theorem 3.1, the word Vk can be written as

Vk = v0σ(v1) . . . σ
n−1(vn−1)σ

n(vn)σ
n−1(wn−1) . . . σ(w1)w0 (3.28)

where n ≥ 0 is an integer and vi, i ∈ {0, . . . , n}, wj, j ∈ {0, . . . , n − 1}, are elements of
Fu possibly empty words of Lengths ≤ L and vn is not empty.
Since L ≥ 2, there exist C > 0 and 1 < τ < L such that Cτn ≥ ct(2n−1)((max(βtL, 1))

n

for every n ≥ 1. Now for Vk = uk . . . uk+N−1, k ∈ Z+, for N ∈ N, and B ∈ Fu such that
|B| < N , we use (3.28) and (3.27) to obtain that

||Vk|B − dBN | ≤
n∑

j=0

∣∣|σj(vj)|B − dB|σj(vj)|
∣∣+ n−1∑

j=0

∣∣|σj(wj)|B − dB|σj(wj)|
∣∣

≤
n∑

j=0

ct(βtL)
j +

n−1∑
j=0

ct(βtL)
j ≤ ct(2n− 1)((max(βtL, 1))

n ≤ Cτn. (3.29)

Since N ≥ |σn(vn)| = Ln, we obtain that

sup
k≥0

∣∣∣ |Vk|B
N

− dB

∣∣∣ ≤ Cγn, (3.30)

for some γ < 1 and we obtain the claim. □

3.3.2. Strong ergodicity for non constant bounded length substitution.

Definition 3.19. Let M = (Mij)i,j≥0 be a nonnegative matrix such that M is irreducible,
aperiodic and positive recurrent with finite Perron value λ > 0. Let P = (Pij)i,j≥0 be the
stochastic matrix defined by

Pij =
Mijrj
λri

for all i, j ≥ 0,

where r = (rk)k≥0 is a right Perron eigenvector of M . We say that M is strongly ergodic
if P = (Pij)i,j≥0 is too.

Remark 3.20. (1) It’s easy to see that the stochastic matrix P defined in the last definition

satisfies Pij =
Mjilj
λli

for all i, j ≥ 0, where l = (lk)k≥0 is a left Perron eigenvector of M .

Furthermore we have that P n
i,j =

Mn
ijrj

λnri
for all integer n ≥ 1.

(2) The Definition 3.19 appeared in [26] in the case where M is a finite irreducible,
aperiodic matrix, it is also an extension of the definition in the case where M has constant
row sums L. This comes from the fact that ri = 1 for all i ≥ 0 and λ = L.

Remark 3.21. Let M = (Mij)i,j≥0 be a nonnegative, irreducible, aperiodic and positive
recurrent matrix with finite Perron value λ > 0. Then M is strongly ergodic if and only if
there exists positive integer n and a vector of probability (πj)j≥0 such that

lim
n→∞

sup
i≥0

+∞∑
j=0

∣∣∣Mn
ijrj

λnri
− πj

∣∣∣ = 0, (3.31)

furthermore πj = ljrj where l and r are respectively Perron left and right eigenvectors such
that l · r = 1. By using Remark 2.13, we deduce that M is strongly ergodic if and only if
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there exists a positive integer n and a positive constant a such that for all integer i ̸= k,
we have

+∞∑
j=0

min
(Mn

ijrj

λnri
,
Mn

kjrj

λnrk

)
≥ a. (3.32)

Remark 3.22. Let M = (Mij)i,j≥0 be a nonnegative, irreducible, aperiodic and positive
recurrent matrix with finite Perron value λ > 0. Assume that M has a right Perron
eigenvector r = (ri)i≥0 ∈ l∞ which satisfies inf{ri : i ≥ 0} > 0, then by Remark 3.21, we
deduce that M is strongly ergodic if and only if there exists a positive integer n such that
Mn is scrambling.

Theorem 3.23. Let σ be a non-constant bounded length substitution on A = Z+ with a
periodic point u and such that M = Mσ is irreducible, aperiodic, positive recurrent and has
a finite Perron value. Assume that Mσ has a right Perron eigenvector r = (ri)i≥0 ∈ l∞

and there exists a positive integer such that Mn
σ is scrambling, then the dynamical system

(Ωσ, S) has a unique invariant probability measure.

For the proof, we need the following results.

Lemma 3.24. Let M = (Mij)i,j∈Z+ be an irreducible, aperiodic, positive recurrent non-

negative matrix such that ∥M∥ = sup{
∑+∞

j=0 Mij, i ∈ Z+} < ∞ and inf{Mij : i, j ∈
Z+, Mij > 0} > 0. Assume that there exists a positive integer such that Mn is scrambling,
then M has a right Perron eigenvector r = (ri)i≥0 which satisfies inf{ri : i ≥ 0} > 0.

Proof. Assume without loss of generality that M is scrambling. Let r = (ri)i≥0 be a
nonnegative right Perron eigenvector of M . Since M is irreducible, ri > 0 for every i ≥ 0.
Moreover ∥M∥ < ∞ and inf{Mij : i, j ∈ Z+, Mij > 0} > 0 imply that there exists L > 0
such that M0k = 0 for all k > L. Since M is scrambling, then for all i ∈ Z+, there exists
ki ∈ {0, . . . , L} such that Mi,ki > 0. Since

∑+∞
k=0Mikrk = λri, we deduce that

ri ≥
Mi,kirki

λ
≥ C inf{rk : 0 ≤ k ≤ L}

λ
> 0 for all i ∈ Z+,

where C = inf{Mij : i, j ∈ Z+, Mij > 0}. □

Lemma 3.25. Let σ be a nonconstant bounded length substitution on A = Z+ with a
periodic point u such that M = Mσ is irreducible, aperiodic and has a finite Perron value.
Assume that Mσ is strongly ergodic and has a right Perron eigenvector r = (ri)i≥0 ∈ l∞

which satisfies inf{ri : i ≥ 0} > 0, then for all integer t ≥ 2, Mσt is strongly ergodic and
has a right Perron eigenvector r(t) = (rI)I∈Al

∈ l∞ such that inf{rI : I ∈ At} > 0.

Proof. Using the same proof given in Lemma 3.18, we can show thatMσ is strongly ergodic,
then Mσt is also strongly ergodic. Moreover since r = (ri)i≥0 ∈ l∞ and inf{ri : i ≥ 0} > 0,
Lemma 3.16 implies that r(t) = (rI)I∈At ∈ l∞ and inf{rI : I ∈ At} > 0. □

Lemma 3.26. Let M = (Mij)i,j≥0 be a nonnegative strongly ergodic matrix with finite
Perron value λ > 0. Assume that M has a right Perron eigenvector r = (ri)i≥0 ∈ l∞ which
satisfies inf{ri : i ≥ 0} > 0, then

lim
n→+∞

sup
i≥0

∞∑
j=0

∣∣∣ Mn
ij∑+∞

k=0M
n
ik

− zj

∣∣∣ = 0,

where zj =
lj∑+∞

k=0 lk
and l = (li)i≥0 ∈ l1 is a left Perron eigenvector of M .
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Proof. Since M is strongly ergodic, we deduce by (3.31) that for all i, j ∈ Z+,

lim
n→∞

Mn
ij

λn
= πj

ri
rj

and

lim
n→∞

+∞∑
k=0

Mn
ik

λn
=

+∞∑
k=0

πk
ri
rk
,

where the last two limits are finite and uniform on i. Hence

lim
n→+∞

sup
i≥0

∞∑
j=0

∣∣∣ Mn
ij∑+∞

k=0M
n
ik

− zj

∣∣∣ = 0,

where

zj =
πj/rj∑+∞
k=0 πk/rk

=
lj∑+∞
k=0 lk

, for all j ≥ 0.

□

Corollary 3.27. Let M = (Mij)i,j≥0 be a nonnegative strongly ergodic matrix with finite
Perron value λ > 0. Assume that M has a right Perron eigenvector r = (ri)i≥0 ∈ l∞ which
satisfies inf{ri : i ≥ 0} > 0, then

lim
n→∞

∑+∞
j=1 M

n
ij

λn
= cri,

for some c > 0.

Proof of Theorem 3.23. Without loss of generality, assume that σ has a fixed point
u = σ(u) = u0u1 . . .. For all i, j ∈ Z+ and n ∈ N, we have

|σn(i)|j
|σn(i)|

=
Mn

ij∑+∞
k=0M

n
ik

.

Hence by Lemma 3.26, we have

lim
n→+∞

sup
i≥0

∞∑
j=0

∣∣∣ |σn(i)|j
|σn(i)|

− lj∑+∞
k=0 lk

∣∣∣ = 0.

Let j ∈ Z+ and put

µ[j] = lim
n→∞

|σn(u0)|j
|σn(u0)|

=
lj∑+∞
k=0 lk

.

Let t ≥ 2 be an integer and It = i1 . . . it ∈ At and put

µ[i1 . . . it] = lim
n→∞

|σn(u0)|i0...it−1

|σn(u0)|
.

By (3.12) and the fact that λ > 1, we deduce that

µ[i1 . . . it] = lim
n→∞

|σn
t (u0 . . . ut−1)|i1...it
|σn

t (u0 . . . ut−1)|
= lim

n→∞

(Mn
t )Ut,It∑

J∈At
Mn

Ut,J

,

where Ut = u0 . . . ut−1, It = i1 . . . it. By the Proposition 3.25 and Lemma 3.26, we have

µ[i1 . . . it] =
l
(t)
It∑

J∈At
l
(t)
J

,

where (l
(t)
I )I∈At is a left Perron eigenvector of Mσt associated to its Perron value λ.
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The measure µ is the same given in the proof of Theorem 3.10. Hence µ is a shift
invariant measure. The uniqueness is a direct consequence of the following claim:

Claim: Let E be a measurable subset of Ωσ such that µ(E) > 0. For all x ∈ E we have

lim
N→∞

1

N
card{0 ≤ k ≤ N − 1, Sk(x) ∈ E} = µ(E). (3.33)

It remains to prove the claim. First assume that E = [i0]. Suppose x = u = σ(u) =
u0u1 . . . and N = |σn(u0)|, then

lim
n→∞

1

N
card{0 ≤ k ≤ N − 1, Sk(x) ∈ E} = lim

n→∞

|σn(u0)|i0
|σn(u0)|

= µ(E).

Now, let x ∈ Ωσ and N ∈ N. Let V = uk . . . uk+N−1 ∈ Fu, k ∈ Z+, be a prefix of x.
As seen before, the word V can be written as a concatenation of at most 2n + 1 words
v0, σ(v1), . . . , σ

n(vn), σ
n−1(wn−1) . . . w0 that is

V = v0σ(v1) . . . σ
n−1(vn−1)σ

n(vn)σ
n−1(wn−1) . . . σ(w1)w0

where n ≥ 1 is an integer and vi, i ∈ {0, . . . , n}, wj, j ∈ {0, . . . , n − 1}, are elements of
Fu possibly empty words of lengths ≤ K = max{|σ(b)|, b ∈ A} and vn is not empty. Thus

1

N
card{0 ≤ k ≤ N − 1, Sk(x) ∈ E} =

|V |i0
|V |

=
|σn(vn)|i0 +

∑n−1
i=0 (|σi(vi)|i0 + |σi(wi)|i0)

|σn(vn)|+
∑n−1

i=0 (|σi(vi)|+ |σi(wi)|)
. (3.34)

Since Mσ is strongly ergodic, we have

lim
k→∞

sup
{ |σk(j)|i0

|σk(j)|
, j ∈ A

}
= lim

k→∞
sup

{ Mk
j,i0∑+∞

i=0 M
k
j,i

, j ∈ A
}
= µ[i0].

We deduce that

lim
k→∞

sup
{ |σk(v)|i0

|σk(v)|
, v ∈ Fu, |v| ≤ K

}
= µ[i0]. (3.35)

Using (3.34), (3.35), and the Stolz-Cesaro Theorem, we obtain that

lim
N→∞

1

N
card{0 ≤ k ≤ N − 1, Sk(x) ∈ E} = µ[i0] = µ(E).

Hence we obtain the claim for E = [i0].
Now, suppose that I = i0 . . . it−1 and E = [I]. Proceeding as in the case E = [i0], we

have

card{0 ≤ k ≤ N − 1, Sk(x) ∈ E}
N

=
|σn(vn)|I +

∑n−1
i=0 (|σi(vi)|I + |σi(wi)|I) + Cn

|σn(vn)|+
∑n−1

i=0 (|σi(vi)|+ |σi(wi)|)
,

where Cn is the cardinality of times such that i0 . . . it−1 occurs in the concatenation of at
least two consecutive words among the 2n+1 words forming V . Observe that 0 ≤ Cn ≤ 2n.

Now for all j ∈ A, we have

lim
k→∞

|σk(j)|i0...it−1

|σk(j)|
= lim

k→∞

|σk
t (jz1 . . . zt−1)|i0...it−1

|σk
t (jz1 . . . zt−1)|

= µ[i0 . . . it−1],

where jz1 . . . zt−1 ∈ Fu, we deduce by using the fact that σt is strongly ergodic that

lim
k→∞

sup
{ |σk(j)|i0...it−1

|σk(j)|
, j ∈ Z+

}
= µ[i0 . . . it−1].
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Thus

lim
k→∞

sup
{ |σk(v)|i0...it−1

|σk(v)|
, v ∈ Fu, |v| ≤ K

}
= µ[i0 . . . it−1]. (3.36)

Using (3.36), and the Stolz-Cesaro Theorem, we deduce that

lim
n→∞

|σn(vn)|I +
∑n−1

i=0 (|σi(vi)|I + |σi(wi)|I)
|σn(vn)|+

∑n−1
i=0 (|σi(vi)|+ |σi(wi)|)

= µ[i0 . . . il−1].

Since 0 ≤ Cn ≤ 2n, limn→∞
|σn(vn)|0

λn > 0 and λ > 1, we deduce that

lim
N→∞

1

N
card{0 ≤ k ≤ N − 1, Sk(x) ∈ E} = µ[i0 . . . it−1]

and this finishes the proof. □

Proposition 3.28. Let σ be a bounded length substitution on A = Z+ such that σ has a
periodic point u and Mσ is irreducible and aperiodic. Assume that there exists an integer
n such that Mn

σ is scrambling, then (Ωσ, S) is minimal.

Proof. Assume without loss of generality that u = u0u1 . . . is a fixed point and Mσ is
scrambling. Let V = uk . . . uk+N , k,N ∈ Z+ be a factor of u. Let us prove that V occurs
infinitely on u with bounded gaps. Indeed, let n0 ∈ N such that V occurs in σk(u0) for all
k ≥ n0 and put

σ(u0) = t0 . . . ts, s ∈ N.
Let m0 ∈ N such that u0 occurs on σk(ti) for all k ≥ m0 and i = 0, . . . , s. Hence V occurs
in σk(ti) for all k ≥ n0 +m0 and i = 0, . . . , s. On the other hand, since Mσ is scrambling,
then for all i ∈ N, there exists ji ∈ {0, . . . , s} such that tji occurs in σ(ui). Hence V occurs
in σk(ui) for all k ≥ n0 +m0 and i ∈ Z+. Since u = σk(u) = σk(u0)σ

k(u1) . . ., then we are
done. □

Examples:

(1) Let σ (infinite Fibonacci) given by

σ(2n) = 0(2n+ 1), σ(2n+ 1) = 2n+ 2 for all n ≥ 0.

We can prove by induction that

|σn(0)| = Fn and |σn(0)|0 = Fn−1 for all n ≥ 1,

where (Fn)n≥0 is the Fibonacci sequence defined by

F0 = 1, F1 = 2, Fn = Fn−1 + Fn−2 for all n ≥ 2.

The substitution matrix is given by

Mσ =



1 1 0 0 0 0 . . .
0 0 1 0 0 0 . . .
1 0 0 1 0 0 . . .
0 0 0 0 1 0 . . .
1 0 0 0 0 1 . . .
...

...
...

...
...

...
. . .

 .

It is irreducible, aperiodic and its Perron eigenvector is the Golden number β = 1+
√
5

2
=

limn→∞
Fn+1

Fn
. A Perron right and a left eigenvectors are respectively

l = (1, 1/β, . . . , 1/βn, . . .) and r = (1, 1/β, 1, 1/β, 1, 1/β, . . .).
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Hence Mσ is positive recurrent. Furthermore M2
σ is scrambling, r ∈ l∞ and σ has a fixed

point u = limn→∞ σn(0), thus Theorem 3.23 implies that the dynamical system (Ωσ, S) has
a unique probability invariant measure.

(2) Let τ be given by
τ(n) = 0an(n+ 1), for all n ≥ 0.

where 0 ≤ ai ≤ C for all i ≥ 0 for some fixed C > 0 and a0 > 0 and lim sup an ≥ 1.
The substitution matrix is given by

Mτ =



a0 1 0 0 0 0 . . .
a1 0 1 0 0 0 . . .
a2 0 0 1 0 0 . . .
a3 0 0 0 1 0 . . .
a4 0 0 0 0 1 . . .
...

...
...

...
...

...
. . .

 .

The Perron eigenvalue of Mτ is the unique real number λ > 1 satisfying

1 =
∞∑
i=0

aiλ
−i−1.

A right Perron and a left Perron eigenvector are respectively

l = (1, 1/λ, . . . , 1/λn, . . .) and r = (1, α1, . . . , αn, . . .),

where

αn = λn −
n−1∑
i=0

aiλ
n−i−1 for all n ≥ 1.

Observe that

αn =
+∞∑
i=1

an+i−1λ
−i for all n ≥ 1.

Since l · r is finite, Mσ is positive recurrent.
If there exists k ≥ 1 such that akn ≥ 1 for all n ∈ Z+, then inf{αn, n ∈ Z+} > 0..

Moreover Mk
τ is scrambling. Furthermore τ has a fixed point u = limn→∞ τn(0), thus

Theorem 3.23 implies that the dynamical system (Ωu, S) has a unique probability invariant
measure.

Question 3.4. It will be interesting to study dynamical properties of (Ωu, S) associated
to τ in the case where inf{αn, n ∈ Z+} = 0.

3.3.3. ⋆ strong ergodicity for nonconstant bounded length substitution.

Definition 3.29. Let M = (Mij)i,j≥0 be a nonnegative matrix such that M is irreducible,
aperiodic, positive recurrent and ∥M∥ < +∞.We say thatM is ⋆ ergodic if for all i, j ∈ Z+,

lim
n→+∞

Mn
ij∑+∞

k=0 M
n
ik

= zj > 0, (3.37)

where the vector (zj)j≥0 has 1 as coordinates sum and that M is ⋆ strongly ergodic if there

exists a vector (zj)j≥0 of positive real numbers such that
∑+∞

j=0 zj = 1 and

lim
n→∞

supi≥0

∞∑
j=0

∣∣∣ Mn
ij∑+∞

k=0M
n
ik

− zj

∣∣∣ = 0.
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Remark 3.30. If M is ⋆ strongly ergodic, then it is clear that M is ⋆ ergodic.

Question 3.5. Is M = (Mij)i,j≥0 ⋆ ergodic equivalent to M positive recurrent with right
Perron eigenvector in l1? The last question has a positive answer when M is a multiple of
a stochastic matrix.

An important result is the following:

Proposition 3.31. Let M = (Mij)i,j≥0 be an irreducible, aperiodic matrix with finite
Perron value λ. Assume that M has a right Perron eigenvector r = (ri)i≥0 ∈ l∞ satisfying
inf{ri, i ∈ Z+} > 0. If M is strongly ergodic, then M is ⋆ strongly ergodic.

Proof. It is just the Lemma 3.26.
□

Question 3.6. Does there exist a nonnegative matrix M = (Mij)i,j≥0 which is strongly
ergodic (resp. ⋆ strongly ergodic), but not ⋆ strongly ergodic (resp. strongly ergodic)?

Lemma 3.32. Let M = (Mij)i,j≥0 be a ⋆ ergodic matrix with finite Perron value λ and
with right Perron eigenvector r = (ri)i≥0, then any left Perron eigenvector of M belongs to
l1, moreover

lim
n→∞

+∞∑
k=0

Mn
ik

λn
=

+∞∑
k=0

lim
n→∞

Mn
ik

λn
= c ri, ∀i ∈ Z+, (3.38)

for some c > 0, and

lim
n→+∞

Mn
ij∑+∞

k=0M
n
ik

=
lj∑+∞
k=0 lk

> 0, ∀i, j ∈ Z+. (3.39)

Proof. By ⋆ ergodicity

lim
n→+∞

Mn
ij∑+∞

k=0M
n
ik

= zj.

Moreover, since M is positive recurrence, we have that

lim
n→+∞

Mn
ij

λn
= ljri. (3.40)

where l = (lj)j≥1 is a left Perron eigenvector such that l · r = 1. Thus

lim
n→+∞

+∞∑
k=0

Mn
ik

λn
= lim

n→+∞

∑+∞
k=0 M

n
ik

Mn
ij

Mn
ij

λn
=

lj
zj
ri.

the left hand side above does not depend on j, thus l is a multiple of (zj)j≥1 ∈ l1. Thus
l ∈ l1 and we also have (3.39), and (3.38) follows from the last equality and (3.40).

□

Theorem 3.33. Let σ be a bounded length substitution on A = Z+ with nonconstant length
such σ has a periodic point u and Mσ is irreducible, aperiodic. If Mσ and Mσt , t ≥ 2 are ⋆
strongly ergodic, then the dynamical system (Ωσ, S) has a unique probability shift invariant
measure.

Proof of Theorem 3.33. Similar to the proof of Theorem 3.23. □
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Sébastien Ferenczi. Aix Marseille Université, CNRS, Centrale Marseille, Institut de
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