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1 Introduction
Industrial systems have a crucial need for communication to collect and send information about
their state, trigger alerts or prevent maintenance. In the specific context of farms, data trans-
missions require long-range radio communications and extended lifetime. To overcome these
challenges, energy battery-powered devices are used. These devices play a key and decisive role
in monitoring irrigation related data and activating valves to start or stop irrigation. However,
the discharge of the device battery can cause faults[1] that lead to the loss of essential data
needed to monitor the system and automate irrigation. It is therefore essential to detect the
battery end of life before it is fully discharged to avoid any loss of service. The most commonly
used methods in analyzing the state of lithium batteries are Discharge test, Ah balance and
Open circuit voltage [2]. All of these methods use the current drawn from the battery to de-
termine the battery SoC (State of Charge). However, measuring this current mainly requires a
battery gauge or a specific measurement circuit that are not always embedded in low cost, low
power and low maintenance systems. On the other hand, battery voltage and temperature are
easier to measure and more commonly used. Another effective method to determine the battery
SoC is by using artificial neural networks [3] as they can learn and model the battery behavior
based on historical data and non linear relations between several variables. The Kalman filter
can be used to estimate the SoC [3], which relies on measuring the current and/or open circuit
voltage. Unfortunately, we do not have access to the necessary information regarding the SoC
specifications, features, and capabilities. This lack of data is preventing us from accurately
estimating the SoC. The choice of the method to analyze the state of life of a lithium battery
mainly depends on the available information: battery voltage and ambient temperature since
access to current and historical data of SoC is not always available. This led us to explore
alternative methods that can effectively detect the end of life of batteries without relying on
current measurements or historical data of SoC and compare them to the more conventional
methods. Battery SoC is often used in literature [2, 5] as an indicator of battery life, but in
our case we cannot estimate it for the lack of access to data information. For these reasons,
we focus on the detection of the battery end of life behavior.



2 Objective and assumptions
The objective of this work is to detect the degradation mode associated with the end of life
behavior of the battery before it is fully discharged by proposing a method for detecting it
using only the measured battery voltage and ambient temperature.

FIG. 1: Model of a Lithium-ion battery

The battery model is illustrated in Fig-
ure 1. The following equation holds

Tm(t) = Tbatt(t) + T0 + wT (t), (1)
Vm(t) = Vocv(t) + V0 + wv(t), (2)

where Vm and Tm are respectively the mea-
sured voltage and the measured temperature,
Vocv is the open-circuit voltage, Tbatt is the
battery temperature, V0 is the voltage across
the resistor R0 and T0 is the associated tem-
perature. We assume that wi ∼ N (0, σi), and
that wv and wT are independent.

3 Methodology approach
We have the following definition for the entropy and the enthalpy [6, 8] of the battery

∆S(t) = F
∂Vocv(t)
∂Tbatt(t)

, (3)

∆H(t) = F

(
Vocv(t) − Tbatt

∂Vocv(t)
∂Tbatt(t)

)
, (4)

where F represents the Faraday constant and Tbatt is the battery temperature. The relationship
between the entropy, enthalpy and SoC is given by the theorem of Yazamy [8]:

SoC(t) = α + β∆S(t) + γ∆H(t). (5)
Thus, to detect the battery end of life, we propose to use the measured voltage Vm(t), along

with an estimation of the entropy ∆S(t) and a biased estimation of the enthalpy ∆H(t). The
contribution of this paper is a proposition on how to estimate ∆S(t) and ∆H(t) and the
associated methods to detect the battery end of life. Using [7], the battery voltage can be
modeled using the following equation, for tc ∈ [t − ∆t, t]:

Vm(tc) = A(t) + B(t)Tbatt(tc) + C(t)tc, (6)
where A, B and C are constants with respect to tc. Note that ∆t corresponds to the size
of the sliding window which is defined as one week. Using (6), we can deduce the estimator
of ∆S(t) and ∆H(t) with ∆Ŝ(t) = B, and ∆Ĥ(t) = A + Ct. These estimators are related
to ∆S(t) and ∆H(t) by a proportional factor and an affine relation respectively. Moreover,
the equation holds with experimental data. Furthermore, we use the correlation computation
in order to determine the window length ∆t. This means that for any t, we estimate the
equation associated with a backward window of length ∆t. Considering y(tc) = b(t)x(tc), b(t)
is estimated using ordinary least square estimation b(t) = (XT X)−1XT Y .

Ordinary least square estimation is known to be sensitive to outliers, which can nega-
tively impact the accuracy of the estimation [9, 10]. To address this issue, there are var-
ious methods that can be employed. In this study, we propose using the Weighted Least
Squares presented in [4], specifically for time-series data. After estimating b(t), we suggest
investigating four different battery end of life detection methods, namely: first we will set a
threshold based on voltage by analyzing the available data, then entropy, enthalpy, and fi-
nally the proposed approach will also be used to set the thresholds for fault detection indices,
Hotelling’s T 2 statistic and Q statistic which is squares prediction error (SPE) [11, 12, 13]
by performing principal component analysis (PCA) on the three parameters (V, ∆S, ∆H).



FIG. 2: Voltage time series

By considering these different
methods, we aim to enhance
the accuracy and reliability of
our results in detecting battery
end of life. To validate the ac-
curacy of our chosen threshold
determination method, we will
test these thresholds on batter-
ies that have reached their end
of life.

Figure 2 shows the hourly
voltage measurements taken
for a sample of discharged bat-
teries, which have an average
lifespan of about 15 months.

4 Conclusions and perspectives
In conclusion, the detection of the battery end of life is a crucial task for ensuring the reliability
and safety of various applications. By leveraging the measured voltage, entropy, and enthalpy
estimations, a more accurate and comprehensive understanding of the battery health can be
achieved. This approach, based on Yazamy’s theorem and statistical methods, allows for the
estimation of ∆S(t) and ∆H(t), which are parameters for monitoring the battery performance.
Our objective is to achieve less than 10% false alarm and less than 5% missed detection rates.
We will discuss, in future work, threshold determination, remaining end of life estimation, and
provide a statistical comparison of the methods.
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