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A B S T R A C T

Predicting the Remaining Useful Lifetime (RUL) of a system has become one of the primary goals of engineering
and reliability researchers. RUL prediction is based on the measurement data collected from sensors (e.g.
vibration data, temperature data). The collected data is may be inaccurate owing to sensor problems. These
problems are often ignored or modeled by a Gaussian noise in most previous work. However, due to various
operation circumstances and the aging impact, the sensor itself will ultimately deteriorate and its performance
will deteriorate. The Gaussian noise with a constant mean is then not appropriate to fully capture the sensor
degradation. In this context, this study focuses on predicting the RUL considering the sensor degradation. For
this purpose, a joint model of sensor degradation and system degradation is firstly developed. In this model,
the sensor degradation is modeled by Wiener and Gamma processes instead of Gaussian noise. Then, different
estimation methods based on the particle filter, a popular model-based technique, were proposed to predict
the RUL based on the joint degradation model. To study the performances of our methods, numerical analyzes
were carried out. The obtained results confirm the performance and advantages of the proposed methods.

1. Introduction

Predictive Maintenance (PdM) is nowadays one of the most im-
portant key technologies of Industry 4.0. The main idea of the PdM
is to make maintenance decisions based on the future condition of
system/component’s health instead of based on the current condition
(condition-based maintenance) or on the calendar time (calendar-based
maintenance). The future condition is usually quantified by Remaining
Useful Lifetime (RUL), i.e. a prediction of the remaining time that the
system is able to perform its intended function [1,2]. Compared to the
other maintenance strategies, the PdM is theoretically more powerful.

as Relevant Vector Machine (RVM) [5], Convolutional Neural Networks
(CNN) [6], Long-Short Term Memory Networks (LSTM) [7], etc. It is
also possible to propose hybrid prognosis methods combining physical
models and monitoring or historical data, where the prognosis results
could give very efficient results [8].

A model-driven approach estimates the RUL based on the mathe-
matical models of the considered process/system. The main benefit of
this approach is the ability to incorporate physical understanding of
the system under observation [9]. Thus predicted results are proper
in case when the knowledge about the considered system is sufficient
It can help to anticipate failures, improve service quality, increase sys- to build accurate and robust system mathematical models. However,
tem availability, and reduce significantly maintenance costs. However,
the PdM’s performance highly depends on the accuracy of the RUL
prediction approaches (prognostic approaches) [3].

At the highest level, the prognostic approaches can be divided
into two categorizations: Model-driven and Data-driven approaches.
Data-driven prediction approach is used when the complexity of the
considered system makes it impossible to derive accurate mathematical
models or when the knowledge about the system is very limited. In this
framework, the prediction process is only based on the historical data
collected from sensors. The precision in predicting then depends a lot
on the quality and quantity of the collected data [4] . In the literature, a
number of data-driven prediction techniques has been developed such
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in many situations, it is usually impossible to obtain the analytic
and high-fidelity models of the systems. To this end, dynamic models
with unknown parameters are firstly designed to model the system
degradation mechanisms. Then, the historical data are used to estimate
the unknown parameters of the dynamic models. The dynamic model-
driven approach has been intensively developed and applied in real
applications thanks to its ability to model complex process/systems.
Note that the approach utilizes the historical data in its prediction
process, it cannot be classified into data-driven approach because its
performance strongly depends on the designed dynamic models. In
this framework, various prediction techniques have been developed in
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the literature such as techniques relying on stochastic processes prop-
erties [10–12], Kalman filter [13,14], Particle filter [15,16]. Among
them, particle filters (PFs) are more and more studied and implemented
for the prognostics of industrial component/system thanks to their pow-
erful performance and their flexibility in predicting the RUL of systems
with non-linear and non-Gaussian data [17–19]. Their main idea is to
use a set of samples (particles) with associated weights to represent
the state density function. The state estimates are then computed based
on these particle and weights. The sequential importance sampling is
employed to reduce the number of particles which are required to
approximate the state probability distribution. PFs are therefore more
efficient than the classical Monte Carlo. Given a number of advantages
of PFs as well as of the model-driven approaches, the accuracy of
the dynamic model describing the degradation mechanisms plays a
critical role for the effective operation of the RUL prediction using
model-driven approaches and that of the predictive maintenance. More
sophisticated PF are proposed and used in the framework of prognosis
where the efficiency in terms of prediction error and computational
time goes beyond that of the simple PF [20]. These methods can also
be combined by other estimation and inference (machine learning)
methods to improve the prognosis quality [21–23].

In the literature, to predict the RUL, the system deterioration is
usually modeled by a stochastic process [24–26] such as Gamma pro-
cess, Wiener process. Unfortunately, deterioration data are not always
directly observable and their measurements are subject to sensor er-
rors [27–30]. These errors, additive, proportional or in other forms
make the precision of the simple stochastic process models decrease
significantly. To improve the performance of RUL prediction based on
the noisy degradation data, these sensor errors are usually introduced in
the system degradation model as white Gaussian noises [31–34]. Given
a field degradation case, the type of sensors used for data collection,
the system under consideration and historical data give some hints
on whether or not sensors deterioration is possible and plausible. For
instance, in case of a train, helicopter or airplane the sensors are
embedded and they undergo harsh environmental conditions that is
why the degradation in some specific data collection is systematically
considered. By using the white Gaussian noises to model the sensor
errors, we consider that these errors are stationary (remain unchanged
over time). Due to this assumption, these models face a lot of difficulties
in real applications. Indeed, sensors as systems can be deteriorated
and this deterioration leads to increases of the sensor errors over time
[35–42]. Unfortunately, to the best of our knowledge sensor deteriora-
tion in the framework of prognosis (RUL prediction) has been scarcely
studied [43–45]. For this reason, our objective is to take into account
the sensor degradation in the RUL prediction. The main contributions
of the paper are then the following:

• Sensor degradation modeling by the different stochastic processes
and construct joint system-sensor degradation model;

• Proposition of three PF-based prediction methods in presence of
sensor degradation and an additive noise;

• Models parameters estimation embedded with Pf-based RUL esti-
mation through bayesian inference with different prior;

• Sensitivity analysis to model parameters, to sensor degradation,
to estimation method and to the prediction method.

The remainder of the paper is as follows. First the joint system
and sensor degradation model is presented in Section 2. Afterward, in
Section 3, different solutions to predict the RUL based on the particle
filters are introduced and their implementation is detailed. A sensitivity
analysis and comparison of the solutions for prognosis are carried
through numerical examples in Section 5. Finally, some conclusions
drawn from this work are shown in Section 6.
2

2. Problem statement

Let 𝑍𝑡 be the degradation measure at time 𝑡 defined as follows:

𝑍𝑡 = ℎ(𝑋𝑡, 𝑌𝑡, 𝜖) = 𝑔(𝑋𝑡, 𝑌𝑡) + 𝜖, (1)

where 𝑋𝑡 and 𝑌𝑡 are the system and sensor degradation level at time 𝑡
respectively. 𝜖 is the measurement error, 𝜖 ∼  (0, 𝜎2). This model is in-
spired by [46,47] where the sensor degradation is additively impacting
the degradation measure. Moreover, this model results in investigation
based on Kappa X sensor data collected on industrial machine vibration
and sensor temperature.

The system is considered ad failed when the degradation level
reaches a specific threshold called as failure threshold. Let us denote
𝐿 the failure threshold. Hence the lifetime of the system is considered
as the first time the degradation level exceeds 𝐿 denoted by 𝑇𝐿 defined
as follows:

𝑇𝐿 = inf{𝑡 ⩾ 0 ∶ 𝑋𝑡 ⩾ 𝐿}. (2)

The aim is to predict the system lifetime, all along the system
monitoring. In other words, the main objective is to estimated residual
lifetime of the system according to observation which is called progno-
sis. To this end, the Remaining Useful Life (RUL) of the system at each
time should be estimated. In the framework of this paper, the remaining
useful life is defined as follows:

𝑅𝑈𝐿𝑋 (𝑡) = inf{ℎ ⩾ 0, 𝑋𝑡+ℎ > 𝐿 such that 𝑋𝑡 < 𝐿} (3)

In sum, the objective is to derive the probability distribution func-
tion of 𝑇𝐿 and 𝑅𝑈𝐿𝑋 based on collected observations during the system
lifetime and plan actions accordingly. Since the degradation level of
the system and the sensor are not directly observable, in order to
predict the system failure, the degradation level estimation is of major
importance.

In this paper, as mentioned in the introduction, the degradation
phenomenon is considered as random and is modeled by a stochastic
process. Due to the uncertainties associated to the observations and
the degradation processes, the degradation level estimation induces
the degradation level probability density function estimation condi-
tionally to observations. This latter requires the conditional probability
derivation which involves numerous integral calculations. As it will
be explained in the next sections this difficulty will be bypassed by
numerical techniques such as particle filters.

In the following paragraphs, two stochastic processes are considered
to model the degradation of the system and the sensor (𝑋𝑡)𝑡≥0 and
(𝑌𝑡)𝑡≥0.

2.1. Gamma process

Gamma process is a Lévy subordinator (Lévy process with non-
decreasing trajectories) which is largely used to model the degrada-
tion [48,49] The choice of this process to model the degradation of a
system is mainly motivated by a desire to consider systems that cannot
improve without maintenance actions. In its homogeneous form the
gamma process with shape parameter 𝛼 > 0 and scale parameter 𝛽 > 0
is defined as a stochastic process (𝐺𝑡)𝑡⩾0, [49], having the following
properties:

• 𝐺0 = 0.
• The nonoverlapping increments of (𝐺𝑡)𝑡⩾0 are independent.
• For every 0 < 𝑠 < 𝑡, the random variable of increment 𝐺𝑡 − 𝐺𝑠

follows a gamma distribution 𝐺𝑎(𝛼(𝑡 − 𝑠), 𝛽). Which is

𝑓𝐺𝑡−𝐺𝑠
(𝑥) =

𝛽𝛼(𝑡−𝑠)

𝛤 (𝛼(𝑡 − 𝑠))
𝑥𝛼(𝑡−𝑠)−1 exp(−𝛽𝑥)⊮𝑥⩾0, (4)

where ⊮𝑥⩾0 = 1 if 𝑥 ⩾ 0 and ⊮𝑥⩾0 = 0 otherwise, and 𝛤 (𝑥) =
∫ ∞ 𝑥𝛼(𝑡−𝑠)−1𝑒−𝑥𝑑𝑥.
0



As mentioned in [49] the cumulative distribution function of the
lifetime 𝑇𝐿 can be stated as follows:

P(𝑇𝐿 ≤ 𝑡) = P(𝐺𝑡 ⩾ 𝐿) = ∫

∞

𝑥=𝐿
𝑓𝐺(𝑥)𝑑𝑥 =

𝛤 (𝛼, 𝐿𝛽)
𝛤 (𝛼)

(5)

2.2. Wiener process

A Wiener process denoted by (𝑊𝑡)𝑡⩾0 is a stochastic process defined
as follows:

• 𝑊0 = 0.
• The nonoverlapping increments of (𝑊𝑡)𝑡⩾0 are independent.
• For every 0 < 𝑠 < 𝑡, the random variable of increment 𝑊𝑡 − 𝑊𝑠

follows a gaussian distribution  (𝑚(𝑡) −𝑚(𝑠), 𝜎2(𝑡− 𝑠)) where 𝑚(̇)
is the drift function and 𝜎 > 0 is the diffusion parameter.

Unlike the Gamma, which offers a monotonous and increasing path
of evolution, the Wiener process is capable of giving a non-monotonic
model of a random system. This process is widely used as a mathe-
matical object for modeling different random and strongly fluctuating
random phenomena, refer to [50,51].

The lifetime 𝑇𝐿 has an inverse gaussian distribution with the prob-
ability density function:

𝑓𝑇𝐿 (𝑡) =
𝐿 −𝑊0

√

2𝜋𝜎2(𝑡 − 𝑡0)3
exp(−

(𝐿 −𝑊0 − 𝜇(𝑡 − 𝑡0))2

2𝜎2(𝑡 − 𝑡0)
)⊮{𝑡>0} (6)

3. Degradation level estimation and prognosis by particle filtering

Considering observations 𝑧1,… , 𝑧𝑛 at observation times 𝑡1 < ⋯ <
𝑡𝑛 (realizations of 𝑍𝑡1 ,… , 𝑍𝑡𝑛 ), the aim is to derive the conditional
probability distribution function of the degradation levels 𝑋𝑡𝑚 and 𝑌𝑡𝑚
for 𝑡𝑚 ≥ 𝑡𝑛. In other words, the aim is to calculate

𝑝𝑋𝑡𝑚 |𝑍𝑡1 ,…,𝑍𝑡𝑛
(𝑧1,… , 𝑧𝑛), 𝑝𝑌𝑡𝑚 |𝑍𝑡1 ,…,𝑍𝑡𝑛

(𝑧1,… , 𝑧𝑛)

or

𝑝𝑋𝑡1 ,…,𝑋𝑡𝑚 |𝑍𝑡1 ,…,𝑍𝑡𝑛
(𝑧1,… , 𝑧𝑛), 𝑝𝑌𝑡1 ,…,𝑌𝑡𝑚 |𝑍𝑡1 ,…,𝑍𝑡𝑛

(𝑧1,… , 𝑧𝑛)

Let be 𝐗 = (𝑋𝑡1 , 𝑋𝑡2 ,… , 𝑋𝑡𝑛 ), 𝐘 = (𝑌𝑡1 , 𝑌𝑡2 ,… , 𝑌𝑡𝑛 ) and 𝐙 =
(𝑍𝑡1 , 𝑍𝑡2 ,… , 𝑍𝑡𝑛 ). From Bayes rule the following expression can be
derived:

𝑝𝐗,𝐘∣𝐙(𝑥1 … , 𝑥𝑛, 𝑦1 … , 𝑦𝑛) =
𝑝𝐙∣𝐗,𝐘(𝑧1,… , 𝑧𝑛)𝑝𝐗,𝐘(𝑥1,… , 𝑥𝑛, 𝑦1,… , 𝑦𝑛)

𝑝𝐙(𝑧1,… , 𝑧𝑛)

(7)

Since 𝐗 and 𝐘 are independent,

𝑝𝐙∣𝐗,𝐘(𝑧1,… , 𝑧𝑛) =
𝑛
∏

𝑖=1
𝑝𝑍𝑡𝑖 ∣𝑋𝑡𝑖 ,𝑌𝑡𝑖

(𝑧𝑖). (8)

Since (𝑋𝑡)𝑡≥0 and (𝑌𝑡)𝑡≥0 are Markov processes

𝑝𝐗,𝐘(𝑥1,… , 𝑥𝑛, 𝑦1,… , 𝑦𝑛) =
𝑛
∏

𝑖=1
𝑝𝑋𝑡𝑖 ∣𝑋𝑡𝑖−1

(𝑥𝑖)
𝑛
∏

𝑖=1
𝑝𝑌𝑡𝑖 ∣𝑌𝑡𝑖−1 (𝑦𝑖) (9)

Moreover,

𝑝𝐙(𝑧1,… , 𝑧𝑛) = ∫ ⋯∫ 𝑝𝐙∣𝐗,𝐘(𝑧1,… , 𝑧𝑛)𝑝𝐗,𝐘(𝑥1,… , 𝑥𝑛, 𝑦1,… , 𝑦𝑛)

× 𝑑𝑥1 … 𝑑𝑥𝑛𝑑𝑦1 … 𝑑𝑦𝑛

For prognosis, the aim is to estimate the probability density func-
tions of (𝑋𝑡𝑛+1 ,… , 𝑋𝑡𝑛+𝑚 ), (𝑌𝑡𝑛+1 ,… , 𝑌𝑡𝑛+𝑚 ) given the observations 𝑧1,… ,
𝑧𝑛 at observation times 𝑡1 < ⋯ < 𝑡𝑛 and 𝑡𝑛 ≤ 𝑡𝑛+1 < 𝑡𝑛+2 < ⋯ < 𝑡𝑛+𝑚.
In this purpose, first 𝑝𝐗,𝐘∣𝐙 is derived and then by using the transition
probabilities associates to processes (𝑋𝑡)𝑡≥0 and (𝑌𝑡)𝑡≥0 the probability
density functions of (𝑋𝑡𝑛+1 ,… , 𝑋𝑡𝑛+𝑚 ) and (𝑌𝑡𝑛+1 ,… , 𝑌𝑡𝑛+𝑚 ) are obtained.

Due to presence of a large number of integrals in the denominator
of Eq. (7), numerical methods are used to derive this expression. In
3

this paper the conditional density estimation is carried out by using
sequential Monte Carlo simulation techniques also known as particle
filter (PF), refer to [52]. The Particle filter is the most appropriate
approach for non-gaussian and non-linear models, as it is capable
of providing arbitrarily posterior probability distribution. PF – also
called bootstrap filter [52], Monte Carlo filter [53], or Condensation
filter [54] – is a Monte-Carlo based approach that uses a set of particles
with associated weights to obtain the posterior probability density of
the state with the least variance. The Particle filter estimates sequen-
tially 𝑋 = (𝑥1, 𝑥2,… , 𝑥𝑛) and 𝑌 = (𝑦1,… , 𝑦𝑛) using Eqs. (8) and
(9).

Let us consider that the function 𝑔 defined in Eq. (1) is as follows
𝑔 ∶ R × R → R where 𝑔(𝑥, 𝑦) = 𝑥 + 𝑦. Tn this paper, three degradation
estimation and prognosis methods are considered according to

𝑍𝑡 = 𝑋𝑡 + 𝑌𝑡 + 𝜖, (10)

where 𝑋𝑡 and 𝑌𝑡 are the system and sensor degradation level at time
𝑡 respectively. 𝜖 is the measurement error, 𝜖 ∼  (0, 𝜎2). The three
methods differ in the way they handle the noise and estimate the
deterioration state. In the first method, both system and sensor degra-
dations are estimated together by filtering the additive noise. In the
second method, first the additive noise is extracted and then the system
state is filtered regrading the sensor deterioration as an additive noise.
Whereas, in the third method, the sensor deterioration and the additive
noise are considered as noise and the deterioration state is filtered.

3.1. First method

Let be 𝑆(1)
𝑡 =

(

𝑋𝑡
𝑌𝑡

)

, therefore,

𝑍𝑡 = (1 1)𝑆(1)
𝑡 + 𝜖. (11)

In the framework of this method, first we shall estimate the conditional
probability distribution function of the vector 𝑆(1)

𝑡 and then derive
the marginals of 𝑋𝑡 and 𝑌𝑡. As mentioned before, the conditional
probabilities as estimated through particle filter method.

Algorithm 1: First Method

• 𝑘 = 1

Generate 𝑁 particles 𝑥𝑖 using the prior distribution
Generate 𝑁 particles 𝑦𝑖 using the prior distribution

• 𝑘 > 1

while 𝑥𝑖𝑘 < 𝐿, ∀𝑖 ∈ [1, 𝑁] do
Sample: 𝑥𝑖𝑘 = 𝜋𝑋 (𝑥𝑖𝑘−1), 𝑦

𝑖
𝑘 = 𝜋𝑌 (𝑦𝑖𝑘−1)

if 𝑘 ≤ 𝑇 then
Sample: 𝑤𝑖

𝑘 = P(𝑍𝑘|𝑥𝑖𝑘, 𝑦
𝑖
𝑘)

Estimation: 𝑥̂𝑖𝑘 =
∑𝑁

𝑖=1 𝑤
𝑖
𝑘𝑥

𝑖
𝑘 𝑦̂𝑖𝑘 =

∑𝑁
𝑖=1 𝑤

𝑖
𝑘𝑦

𝑖
𝑘

Normalize: 𝑤𝑖
𝑘 =

𝑤𝑖
𝑘

∑

𝑤𝑖
𝑘

𝑘 = 𝑘 + 1

In all the algorithms the following points can be highlighted 𝐿 is the
failure threshold and 𝑇 is the prediction time. There are two phases in
the algorithm:

• Phase 1 (𝑘 ∈ {1,… , 𝑇 }): joint degradation state estimation and
weight updating (𝑤𝑖

𝑘) considering observations (𝑧𝑘)
• Phase 2 (for 𝑘 > 𝑇 and 𝑥𝑖𝑘 < 𝐿): degradation prediction without

updating the weight (𝑤𝑖
𝑘) because in this phase, there is no new

observations. The time that 𝑥𝑖𝑘 exceeds the level 𝐿 is known (when
the while loop stops). For a path 𝑥𝑖𝑘, the remaining useful lifetime
𝑅𝑈𝐿𝑖 = 𝑘 (the value at which the loop while stops)−𝑇 (prediction
time)



3.2. Second method

Let be 𝑆(2)
𝑡 = 𝑋𝑡 + 𝑌𝑡, therefore,

𝑍𝑡 = 𝑆(2)
𝑡 + 𝜖, (12)

in this method, first the conditional probability distribution function
of 𝑆(2)

𝑡 is derived and then the conditional probability distribution
functions of 𝑋𝑡 and 𝑌𝑡 are derived. As mentioned before, the conditional
probabilities as estimated through particle filter method.

Algorithm 2: Second Method

• 𝑘 = 1

Generate 𝑁 particles 𝑥̂𝑖∕𝑦̂𝑖 using the prior distribution

• 𝑘 > 1

while 𝑥̂𝑖𝑘 < 𝐿, ∀𝑖 ∈ [1, 𝑁]/ 𝑦̂𝑖𝑘 < 𝐿′, ∀𝑖 ∈ [1, 𝑁] do
Sample: 𝑥̂𝑖𝑘 = 𝜋𝑋 (𝑥̂𝑖𝑘−1), or 𝑦̂𝑖𝑘 = 𝜋𝑌 (𝑦̂𝑖𝑘−1)
if 𝑘 ≤ 𝑇 then

Sample: 𝑤𝑖
𝑘 = P(𝑍𝑘|𝑥̂𝑖𝑘), or 𝑤𝑖

𝑘 = P(𝑍𝑘|𝑦̂𝑖𝑘)
Estimation: ̂̂𝑥𝑖𝑘 =

∑𝑁
𝑖=1 𝑤

𝑖
𝑘𝑥̂

𝑖
𝑘, or ̂̂𝑦𝑖𝑘 =

∑𝑁
𝑖=1 𝑤

𝑖
𝑘𝑦̂

𝑖
𝑘

Normalize: 𝑤𝑖
𝑘 =

𝑤𝑖
𝑘

∑

𝑤𝑖
𝑘

𝑘 = 𝑘 + 1

3.3. Third method

Let be 𝜖𝑡 = 𝑌𝑡 + 𝜖, therefore,

𝑍𝑡 = 𝑋𝑡 + 𝜖𝑡, (13)

In this method, first the conditional probability distribution function
of 𝑋𝑡 is derived considering 𝜖𝑡 as noise. The conditional probability
distribution function of 𝑌𝑡 is derived by the conditional probability dis-
tribution of 𝜖𝑡. As in the previous methods, the conditional probabilities
as estimated through particle filter method.

Algorithm 3: Third Method

• 𝑘 = 1

Generate 𝑁 particles 𝑥𝑖∕𝑦𝑖 using the prior distribution

• 𝑘 > 1

while 𝑥𝑖𝑘 < 𝐿, ∀𝑖 ∈ [1, 𝑁] / 𝑦𝑖𝑘 < 𝐿′, ∀𝑖 ∈ [1, 𝑁] do
Sample: 𝑥𝑖𝑘 = 𝜋𝑋 (𝑥𝑖𝑘−1) or 𝑦𝑖𝑘 = 𝜋𝑌 (𝑦𝑖𝑘−1)
if 𝑘 ≤ 𝑇 then

Sample: 𝑤𝑖
𝑘 = P(𝑍𝑘|𝑥𝑖𝑘) or 𝑤𝑖

𝑘 = P(𝑍𝑘|𝑦𝑖𝑘)
Estimation: 𝑥̂𝑖𝑘 =

∑𝑁
𝑖=1 𝑤

𝑖
𝑘𝑥

𝑖
𝑘 or 𝑦̂𝑖𝑘 =

∑𝑁
𝑖=1 𝑤

𝑖
𝑘𝑦

𝑖
𝑘

Normalize:𝑤𝑖
𝑘 =

𝑤𝑖
𝑘

∑

𝑤𝑖
𝑘

𝑘 = 𝑘 + 1

The prognosis is to define the probabilities ?? which are particular
cases of ??

4. Prognosis with unknown parameters

In real-life problems, the true values of degradation parameters
are unknown. Hence parameter estimation is essential to predict the
RUL for a practical prognosis method. In this section, the parameters
of the system degradation model are considered to be unknown. To
predict the failure and estimate the RUL the parameters have to be
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estimated. It is supposed that a prior knowledge on parameters might
be available by expert of degradation monitoring or system designers.
Therefore, the focus will be on the bayesian estimation framework.
Bayesian estimation in the framework of Wiener and gamma process
has been largely investigated. Wiener process data fitting has been
largely discussed in [55]. Authors in [56] estimates the unknown pa-
rameters of a Wiener process in a Bayesian framework through Markov
chain Monte Carlo. In [57], Gibbs sampling is used in order to estimate
the unknown parameters of the Brownian stress–strength models. The
unknown parameter of the Wiener process are estimated and updated
through the bootstrap method and Bayesian theorem in [58]. In [59]
the parameters of the change-point wiener process model are estimated
using a hierarchical Bayesian technique. The Bayesian parameter es-
timation of a Gamma process is presented in [49]. Authors in [60]
deal with unknown gamma process parameters through Approximate
Bayesian Computation (ABC). In order to lower the rejection rate of
the ABC method, the Markov Chain Monte Carlo is used within the
ABC method. Dufresne et al. [61] propose using a conjugate Bayesian
analysis with an inverted gamma distribution as the prior for the scale
parameter of the gamma process. Gamma process parameter estimation
has also been considered in other framework, [32,62].

To avoid the well-known issues related to the difficult elicitation
of a prior distribution [63], an objective Bayesian framework can be
chosen [64,65]. Especially defended by Clarke [66], a relevant non-
informative prior measure 𝜋(𝜃) is Jeffreys’ prior. It is basically defined
as the square root of the determinant of the Fisher matrix, and is
therefore intrinsically linked to the form of the likelihood (see [64]
for details). Even though, an informative prior density 𝜋(𝜃) elicitation
is rather difficult since it introduces a level of subjectivity within
the model, nevertheless, the presence of available information, pro-
vided by industrial experts, can sometimes be as much valuable as
the observations. Therefore, a clear methodology of prior elicitation
must be provided, where the (hyper)parametric model for 𝜋(𝜃) have
practical meanings for the practitioners. To our knowledge, no work
was published about the elicitation of parametric prior distributions
on parameters of gamma processes, in the field of industrial reliabil-
ity. Most researchers (working in this field or not) considered more
willingly gamma distribution themselves as prior structures for non-
parametric or semi-parametric intensity models [67–69], or used a
nonparametric framework to propose Bayesian estimators of gamma
process parameters [70].

Let be 𝜃 = (𝜇𝑋 , 𝜎𝑋 , 𝜇𝑌 , 𝜎𝑌 ) the vector of unknown four parameters.
Let be 𝜋𝜃 the prior of 𝜃 and 𝜋𝜇𝑋 , 𝜋𝜎𝑋 , 𝜋𝜇𝑌 , 𝜋𝜎𝑋 be the marginals
associates to 𝜇𝑋 , 𝜎𝑋 , 𝜇𝑌 , 𝜎𝑌 respectively. The parameters are supposed
to be independent, therefore, 𝜋𝜃(𝑚1, 𝑠1, 𝑚2, 𝑠2) = 𝜋𝜇𝑋 (𝑚1)𝜋𝜎𝑋 (𝑠1)𝜋𝜇𝑌 (𝑚2)
𝜋𝜎𝑋 (𝑠2). The idea is to estimate the parameters by calculating their
posterior distributions 𝜋𝑝 of 𝜃 considering observations 𝑧1,… , 𝑧𝑛:

𝜋𝑝
𝜃∣𝐙(𝜇𝑋 , 𝜎𝑋 , 𝜇𝑌 , 𝜎𝑌 ) ∝ 𝑝𝐙∣𝜃(𝑧1,… , 𝑧𝑛)𝜋𝜃(𝜇𝑋 , 𝜎𝑋 , 𝜇𝑌 , 𝜎𝑌 )

where

𝑝𝐙∣𝜃(𝑧1,… , 𝑧𝑛) = ∫ ⋯∫ 𝑝𝐙∣𝐗,𝐘,𝜃(𝑧1,… , 𝑧𝑛)𝑝𝐗,𝐘∣𝜃(𝑥1,… , 𝑥𝑛, 𝑦1,… , 𝑦𝑛)

× 𝑑𝑥1 … 𝑑𝑥𝑛𝑑𝑦1 … 𝑑𝑦𝑛

In order to derive the posterior distribution of 𝜃 filtering techniques
should be implemented. In this paper PF is employed to estimate both
degradations and the model’s parameters. According to [71] in PF, the
Bayesian update is processed sequentially with particles having proba-
bility information of unknown parameters; when a new measurement
is available, the posterior at the previous step is used as the prior
information at the current step, and the parameters are updated by
multiplying it with the likelihood, this procedure is described below.
In Algorithm 4, the estimation and prognosis algorithm is given.

After the parameter estimation and prognosis through PF, the im-
pact of the uncertainty related to parameters on the prognosis results
is investigated.



Fig. 1. Estimation of the system degradation at 𝑡 = 100.
Algorithm 4: First Method: State and Parameters Estimation

• 𝑘 = 1

Generate 𝑁 particles 𝑥𝑖 using the prior distribution
Generate 𝑁 particles 𝑦𝑖 using the prior distribution
Generate 𝑁 particles 𝜇𝑖

𝑋,𝑘−1 using the prior distribution
Generate 𝑁 particles 𝜎𝑖𝑋,𝑘−1 using the prior distribution
Generate 𝑁 particles 𝜇𝑖

𝑌 ,𝑘−1 using the prior distribution
Generate 𝑁 particles 𝜎𝑖𝑌 ,𝑘−1 using the prior distribution

• 𝑘 > 1

for 𝑘 ∈ [0, 𝑇 ] do
Sample: 𝑥𝑖𝑘 = 𝜋𝑋 (𝑥𝑖𝑘−1, 𝜇

𝑖
𝑋,𝑘−1, 𝜎

𝑖
𝑋,𝑘−1) 𝑦

𝑖
𝑘 =

𝜋𝑌 (𝑦𝑖𝑘−1, 𝜇
𝑖
𝑌 ,𝑘−1, 𝜎

𝑖
𝑌 ,𝑘−1) 𝑤

𝑖
𝑘 = P(𝑍𝑘|𝑥𝑖𝑘, 𝑦

𝑖
𝑘)

Estimation: 𝑥̂𝑖𝑘 =
∑𝑁

𝑖=1 𝑤
𝑖
𝑘𝑥

𝑖
𝑘 𝑦̂𝑖𝑘 =

∑𝑁
𝑖=1 𝑤

𝑖
𝑘𝑦

𝑖
𝑘

Normalize: 𝑤𝑖
𝑘 =

𝑤𝑖
𝑘

∑

𝑤𝑖
𝑘

Table 1
MSE and RMSE of the estimation at 𝑡 = 100.

MSE RMSE

Sensor degradation is neglected 1074.056 32.7728
Sensor degradation is considered 3.815926 1.953439

5. Numerical study

5.1. The advantage of sensor degradation consideration

In order to underline the importance of the consideration of sensor
degradation, we consider the case where both the system degradation
(𝑋𝑡)𝑡≥0 and the sensor degradation (𝑌𝑡)𝑡≥0 are modeled by Wiener pro-
cesses with the following parameters: 𝜇𝑋 = 5, 𝜎𝑋 = 3, 𝜇𝑌 = 0.5, 𝜎𝑌 = 0.3.
In addition, a Gaussian noise 𝜖𝑡 ∼  (0, 1), 𝜖′𝑡 ∼  (0, 1) is considered.
We run our PF by using the two following models:

• The sensor degradation is neglected: 𝑍𝑡 = 𝑋𝑡 + 𝜖𝑡
• The sensor degradation is considered: 𝑍𝑡 = 𝑋𝑡 + 𝑌𝑡 + 𝜖′𝑡

The results are reported in Fig. 1 and Table 1). The obtained
results confirm the advantages of taking into account the sensor degra-
dation. The values of MSE and RMSE when the sensor degradation
is considered are much more smaller than those when the it is not
considered.

5.2. Degradation models

A wastewater treatment plant is utilized in this section to demon-
strate the suggested degradation model. In wastewater treatment plants,
5

Table 2
Models parameters.

Case 1: W-W 𝜇𝑋 𝜎𝑋 𝜇𝑌 𝜎𝑌
Case 2: G-G 𝛼𝑋 𝛽𝑋 𝛼𝑌 𝛽𝑌
Case 3: G-W 𝛼𝑋 𝛽𝑋 𝜇𝑋 𝜎𝑋

the activated sludge technique is frequently used to address contami-
nants. However, in the presence of filamentous bulking, the normal
operation of the activated sludge process is frequently hampered.
Sludge bulking is mostly caused by filamentous bacterial growth,
which may be described as a degrading process [72,73]. In practice,
the sludge volume index (SVI) is an empirical measurement that is
often employed to characterize the degradation of filamentous sludge
bulking. Regrettably, actual numbers are not available. The example
we offer is a real-world situation that serves as an illustration. In this
paper it is assumed that the SVI follows a Wiener process, or a Gamma
process.

In this section, the performance of the three proposed method works
is studied. As mentioned in Section 2, three different cases shall be
considered.

• case 1 W-W: Two Wiener processes as the system and the sensor
degradation and a gaussian noise.

𝑋𝑡 −𝑋𝑠 ∼  (𝜇𝑋 (𝑡 − 𝑠), 𝜎2𝑋 ), 𝑌𝑡 − 𝑌𝑠 ∼  (𝜇𝑌 (𝑡 − 𝑠), 𝜎2𝑌 )

• case 2 G-G: Two gamma processes, as the system and the sensor
degradation and a gaussian noise.

𝑋𝑡 −𝑋𝑠 ∼ 𝛤 (𝛼𝑋 (𝑡 − 𝑠), 𝛽𝑋 ), 𝑌𝑡 − 𝑌𝑠 ∼ 𝛤 (𝛼𝑌 (𝑡 − 𝑠), 𝛽2𝑌 )

• case 3 G-W: A gamma process for system degradation and a
Wiener process for the sensor degradation and a gaussian noise.

𝑋𝑡 −𝑋𝑠 ∼ 𝛤 (𝛼𝑋 (𝑡 − 𝑠), 𝛽𝑋 ), 𝑌𝑡 − 𝑌𝑠 ∼  (𝜇𝑌 (𝑡 − 𝑠), 𝜎2𝑌 )

The model parameters are resumed in Table Table 2. For each case,
𝑛 observations are generated independently using the model defined
in Eq. (1). All runs of PF algorithm consist in generating 𝑁 particles.
Two metrics are utilized to study the quality of the estimate of 𝑋𝑡𝑖 and
for 𝑌𝑡𝑖 : Mean Square Error (MSE) and Root Mean Square Error (RMSE);
that is,

𝑀𝑆𝐸 = 1
𝑛

𝑛
∑

𝑖=1
(𝑋𝑡𝑖 − 𝑋̂𝑡𝑖 )

𝑅𝑀𝑆𝐸 =
√

𝑀𝑆𝐸.

The parameters setting used in this section is presented in Table 3.

5.3. State estimation with three methods

In this section, first the state estimation through the three methods
is illustrated through numerical examples. From Fig. 2, it can be noticed



Fig. 2. System state estimation by the three methods for the three different case: first case (top), second case (midst), third case (bottom), at 𝑡 = 100, while varying the sensor’s
degradation parameters (left and midst) and the error 𝜀 variance (right).
Table 3
Parameters setting.

Model 1: W-W 𝜇𝑋 = 5 𝜎𝑋 = 3 𝜇𝑌 = 0.5 𝜎𝑌 = 0.3
Model 2: G-W 𝛼𝑋 = 1 𝛽𝑋 = 3 𝜇𝑋 = 0.1 𝜎𝑋 = 0.3
Model 3: G-G 𝛼𝑋 = 5 𝛽𝑋 = 1 𝛼𝑌 = 0.5 𝛽𝑌 = 0.1

that the models parameters impact significantly the state estimation
and the performance of the three methods. By increasing the variability
of the sensor, the performances of the three methods can be very
different. Each method seems more suitable for a given scenario

we can see that the error’s variance has the greatest influence on the
state estimation. For the first and second cases, we cannot say anything
about the influence of the sensor’s parameter (sometimes we have a
smaller RMSE when the mean or the variance is greater). And one can
say that the first method is better than the two other. For the third
case, we can tell that if the sensor’s parameters are smaller the RMSE
is smaller and that the first method is better than the second. The
sensor’s mean does not differentiate the different methods. In sum, a
large variability in sensor degradation will not permit an efficient state
estimation.

5.4. Prognosis with known degradation parameters

For prognosis the failure threshold 𝐿 related to the degradation
models is set to 𝐿 = 800. First we will study the performance of the
proposed method on the different proposed models.

For a given trajectory, a given time 𝑡 is considered as prognosis
time and the degradation before 𝑡 is considered as the observations
(test data) and the crossing time of the trajectory is considered as the
6

real failure time. For Monte Carlo simulations 10 000 trajectories are
simulated and for Particle filtering 10 000 particles are generated.

5.4.1. Method performances
First we will study the performance of the proposed method on

the different proposed models. The parameters setting is presented in
Table 3.

Tables 4–6, give a comparison of the prognosis results obtained
through particle filtering obtained by each of the three methods with to
results obtained by Monte Carlo Simulations. Monte Carlo simulation
focuses on constantly repeating random samples. Hence, after estimat-
ing the hidden states until time 𝑡 (we suppose that our estimations
are well estimated – according to the MSEs –) we simulate 10 000 tra-
jectories based on their estimated degradation trend (Wiener/gamma
process) until their failure (first time every trajectory exceeds the
predefined threshold), from here we get the probability distribution of
the RUL.

It can be noticed that prognosis results (RUL estimation at time 𝑡)
obtained by particle filtering and Monte Carlo Simulations are very
close and the mean and median of the estimated RUL are close to the
true RUL. The 10% and 90% quantiles lead to acceptable prediction
intervals for Case 1 and 2. In contrary for the third model W-G the true
RUL is not between the two quantiles.

The same results are depicted in Figs. 3, 4, 5 for a prognosis time 𝑡 =
100. After comparing the first method and the Monte Carlo Simulations,
it can be noticed that the histogram’ shapes are different.

It should be highlighted that the three methods are very similar in
running time.

It should be highlighted that the three methods are very similar in
running time.



Table 4
RUL’s descriptive statistics of the system using the different the first estimation method for the different proposed methods.

Parameters True RUL mean 10% quantile Median 90% quantile

First Model: W-W 50 53.27 47 53 59
Monte Carlo Simulations 50 52.97 47 53 59
Second Model G-W 166 166.16 149 165 182
Monte Carlo Simulations 166 165.3 149 166 182
Third Model G-G 68 62.66 58 62 67
Monte Carlo Simulations 68 62.32 58 62 67
Table 5
RUL’s descriptive statistics of the system using the different the second estimation method for the different proposed methods.

Parameters True RUL mean 10% quantile Median 90% quantile

First Model 50 51.69 46 52 56
Monte Carlo Simulations 50 52.97 47 53 59
Second Model 166 165.7 149 165 183
Monte Carlo Simulations 166 165.3 149 166 182
Third Model 68 62.76 58 63 67
Monte Carlo Simulations 68 62.32 58 62 67
Table 6
RUL’s descriptive statistics of the system using the different the third estimation method for the different proposed methods.

Parameters True RUL mean 10% quantile Median 90% quantile

First Model 50 50.66 46 50 56
Monte Carlo Simulations 50 52.97 47 53 59
Second Model 166 165.77 149 167 180
Monte Carlo Simulations 166 165.3 149 166 182
Third Model 68 61.58 57 62 66
Monte Carlo Simulations 68 62.32 58 62 67
Fig. 3. System state estimation (top), Histogram of system’s RUL using the first method (midst) and using Monte Carlo Simulations (bottom) for the different models, at 𝑡 = 100.
5.4.2. Sensitivity analysis to prognosis time
The system’s RUL is predicted while varying the prognosis time,

refer to Figs. 6, 7.
For the first model the results are conservative (the estimation

interval bounds are lower than the true failure time), whereas for
model 2 the prediction seems very suitable and for the third model the
failure prediction is later than the observed values which can induce
unavailability costs in the framework of a predictive maintenance.

Considering Tables 7, 8, 9, it can be noticed that the distribution of
the RUL obtained by different methods could be very different. How-
ever, often the true RUL is in the 90% confidence bound. Therefore, the
7

three methods seem to be all suitable for prognosis even if they seem
to be slightly optimistic and predict a rather later failure times.

5.4.3. Sensitivity analysis to model parameters
The independent and identically distributed 𝜖 is generated accord-

ing to  (0, 1), for the first two models. The system’s RUL is predicted
using different parameters. The prognosis time is fixed to 𝑡 = 100.

Unsurprisingly, it can be noticed in Tables 10, 11, and 12, that when
the sensor’s degradation average trend is slow the state estimation
is better. When the sensor’s degradation rate is higher an accurate
estimation is more difficult and the prognosis results are less precise.
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Fig. 4. System state estimation (top), Histogram of system’s RUL using the second method (midst) and using Monte Carlo Simulations (bottom) for the different models, at 𝑡 = 100.

Fig. 5. System state estimation (top), Histogram of system’s RUL using the third method (midst) and using Monte Carlo Simulations (bottom) for the different models, at 𝑡 = 100.



9

Fig. 6. RUL’s histograms of the system with model W-W for different prognosis times.

Fig. 7. RUL’s histograms of the system with model W-W for different prognosis times.
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Table 7
RUL’s descriptive statistics of the system with model W-W for different prognosis times

Prediction time 𝑡1 = 50 𝑡2 = 100 𝑡3 = 150

True RUL 113 63 13

First method

Mean 110.35 61.94 14.05
10% quantile 110 60 12
Median 115 64 14
90% quantile 120 65 15

Second method

Mean 112.24 62.66 12.04
10% quantile 109 62 11
Median 111 64 14
90% quantile 113 67 16

Third method

Mean 110.78 61.54 11.45
10% quantile 108 60 11
Median 111 62 13
90% quantile 113 64 15

Table 8
RUL’s descriptive statistics of the system with model G-W for different prognosis times

Prediction time 𝑡1 = 50 𝑡2 = 100 𝑡3 = 150

True RUL 107 57 7

First method

Mean 101.82 60.87 7.33
10% quantile 96 56 6
Median 101 62 8
90% quantile 109 66 9

Second method

Mean 101.65 61.6 7.14
10% quantile 96 55 6
Median 105 59 8
90% quantile 108 63 10

Third method

Mean 102.98 54.35 7.17
10% quantile 103 55 6
Median 105 58 7
90% quantile 109 63 8

Table 9
RUL’s descriptive statistics of the system with model G-G for different prognosis times

Prediction time 𝑡1 = 50 𝑡2 = 100 𝑡3 = 150

True RUL 220 170 120

First method

Mean 220.82 173.98 104.4
10% quantile 210 159 114
Median 215 164 116
90% quantile 220 168 119

Second method

Mean 231.23 175.54 116.45
10% quantile 221 163 110
Median 232 173 114
90% quantile 240 182 118

Third method

Mean 219.08 173.46 112.54
10% quantile 207 156 112
Median 214 160 116
90% quantile 220 168 119
10
Table 10
Prognosis sensitivity analysis to model parameters considering Model W-W.

Parameters True RUL mean Confidence interval

First method

𝜇𝑋 = 1, 𝜎𝑋 = 1, 𝜇𝑌 = 0.1, 𝜎𝑌 = 0.1 659 687.32 [655–718]
𝜇𝑋 = 5, 𝜎𝑋 = 1, 𝜇𝑌 = 0.5, 𝜎𝑌 = 0.1 62 59.62 [57–62]
𝜇𝑋 = 5, 𝜎𝑋 = 3, 𝜇𝑌 = 0.5, 𝜎𝑌 = 0.3 50 53.27 [47–59]
𝜇𝑋 = 5, 𝜎𝑋 = 1, 𝜇𝑌 = 5, 𝜎𝑌 = 1 59 57.73 [56–60]
𝜇𝑋 = 1, 𝜎𝑋 = 0.5, 𝜇𝑌 = 5, 𝜎𝑌 = 1 683 693.3 [677–709]

Second method

𝜇𝑋 = 1, 𝜎𝑋 = 1, 𝜇𝑌 = 0.1, 𝜎𝑌 = 0.1 659 685.20 [653–719]
𝜇𝑋 = 5, 𝜎𝑋 = 1, 𝜇𝑌 = 0.5, 𝜎𝑌 = 0.1 62 61.77 [55–67]
𝜇𝑋 = 5, 𝜎𝑋 = 3, 𝜇𝑌 = 0.5, 𝜎𝑌 = 0.3 50 51.69 [46–56]
𝜇𝑋 = 5, 𝜎𝑋 = 1, 𝜇𝑌 = 5, 𝜎𝑌 = 1 59 54.52 [52–57]
𝜇𝑋 = 1, 𝜎𝑋 = 0.5, 𝜇𝑌 = 5, 𝜎𝑌 = 1 683 679.33 [662–696]

Third method

𝜇𝑋 = 1, 𝜎𝑋 = 1, 𝜇𝑌 = 0.1, 𝜎𝑌 = 0.1 659 685.34 [653–720]
𝜇𝑋 = 5, 𝜎𝑋 = 1, 𝜇𝑌 = 0.5, 𝜎𝑌 = 0.1 62 59.89 [58–61]
𝜇𝑋 = 5, 𝜎𝑋 = 3, 𝜇𝑌 = 0.5, 𝜎𝑌 = 0.3 50 50.66 [46–56]
𝜇𝑋 = 5, 𝜎𝑋 = 1, 𝜇𝑌 = 5, 𝜎𝑌 = 1 59 54.66 [53–57]
𝜇𝑋 = 1, 𝜎𝑋 = 0.5, 𝜇𝑌 = 5, 𝜎𝑌 = 1 683 679.22 [663–696]

Table 11
Prognosis sensitivity analysis to model parameters considering the Model G-W.

Parameters True RUL mean Confidence interval

First method

𝛼𝑋 = 1, 𝛽𝑋 = 1, 𝜇𝑌 = 0.1, 𝜎𝑌 = 0.1 707 697.63 [665–734]
𝛼𝑋 = 5, 𝛽𝑋 = 1, 𝜇𝑌 = 0.5, 𝜎𝑌 = 0.1 51 55.76 [51–60]
𝛼𝑋 = 1, 𝛽𝑋 = 3, 𝜇𝑌 = 0.1, 𝜎𝑌 = 0.3 166 166.16 [149–182]
𝛼𝑋 = 5, 𝛽𝑋 = 1, 𝜇𝑌 = 5, 𝜎𝑌 = 1 54 59.18 [54–63]
𝛼𝑋 = 1, 𝛽𝑋 = 0.5, 𝜇𝑌 = 5, 𝜎𝑌 = 1 698 701.68 [668–739]

Second method

𝛼𝑋 = 1, 𝛽𝑋 = 1, 𝜇𝑌 = 0.1, 𝜎𝑌 = 0.1 707 697.63 [665–734]
𝛼𝑋 = 5, 𝛽𝑋 = 1, 𝜇𝑌 = 0.5, 𝜎𝑌 = 0.1 51 55.76 [51–60]
𝛼𝑋 = 1, 𝛽𝑋 = 3, 𝜇𝑌 = 0.1, 𝜎𝑌 = 0.3 166 166.16 [149–182]
𝛼𝑋 = 5, 𝛽𝑋 = 1, 𝜇𝑌 = 5, 𝜎𝑌 = 1 54 59.18 [54–63]
𝛼𝑋 = 1, 𝛽𝑋 = 0.5, 𝜇𝑌 = 5, 𝜎𝑌 = 1 698 701.68 [668–739]

Third method

𝛼𝑋 = 1, 𝛽𝑋 = 1, 𝜇𝑌 = 0.1, 𝜎𝑌 = 0.1 707 699.68 [666–733]
𝛼𝑋 = 5, 𝛽𝑋 = 1, 𝜇𝑌 = 0.5, 𝜎𝑌 = 0.1 51 54.76 [51–59]
𝛼𝑋 = 1, 𝛽𝑋 = 3, 𝜇𝑌 = 0.1, 𝜎𝑌 = 0.3 166 165.77 [149–180]
𝛼𝑋 = 5, 𝛽𝑋 = 1, 𝜇𝑌 = 5, 𝜎𝑌 = 1 54 56.57 [52–62]
𝛼𝑋 = 1, 𝛽𝑋 = 1, 𝜇𝑌 = 5, 𝜎𝑌 = 1 698 696.75 [663–729]

Table 12
Prognosis sensitivity analysis to model parameters considering Model G-G.

Parameters True RUL mean Confidence interval

First method

𝛼𝑋 = 1, 𝛽𝑋 = 1, 𝛼𝑌 = 0.1, 𝛽𝑌 = 0.1 724 714.43 [682–745]
𝛼𝑋 = 5, 𝛽𝑋 = 1, 𝛼𝑌 = 0.5, 𝛽𝑌 = 0.1 68 62.66 [58–67]
𝛼𝑋 = 3, 𝛽𝑋 = 1, 𝛼𝑌 = 0.3, 𝛽𝑌 = 0.1 165 177.9 [167–188]

Second method

𝛼𝑋 = 1, 𝛽𝑋 = 1, 𝛼𝑌 = 0.1, 𝛽𝑌 = 0.1 724 713.05 [679–745]
𝛼𝑋 = 5, 𝛽𝑋 = 1, 𝛼𝑌 = 0.5, 𝛽𝑌 = 0.1 68 62.76 [58–67]
𝛼𝑋 = 3, 𝛽𝑋 = 1, 𝛼𝑌 = 0.3, 𝛽𝑌 = 0.1 165 178.16 [168–188]

Third method

𝛼𝑋 = 1, 𝛽𝑋 = 1, 𝛼𝑌 = 0.1, 𝛽𝑌 = 0.1 724 711.86 [678–746]
𝛼𝑋 = 5, 𝛽𝑋 = 1, 𝛼𝑌 = 0.5, 𝛽𝑌 = 0.1 68 61.58 [57–66]
𝛼𝑋 = 3, 𝛽𝑋 = 1, 𝛼𝑌 = 0.3, 𝛽𝑌 = 0.1 165 176.16 [166–186]



Table 13
Different parameters and their estimation bias.

Case Parameters MSE RMSE

Case 1 𝜇𝑋 = 1, 𝜎𝑋 = 1, 𝜇𝑌 = 0.1 and 𝜎𝑌 = 0.1 0.1816273 0.4261775
Case 2 𝜇𝑋 = 5, 𝜎𝑋 = 1, 𝜇𝑌 = 0.5 and 𝜎𝑌 = 0.1 2.947386 1.716795
Case 3 𝜇𝑋 = 5, 𝜎𝑋 = 1, 𝜇𝑌 = 5 and 𝜎𝑌 = 1 10.18962 3.192118

Table 14
Descriptive statistics for 𝜇𝑋 .

Case 𝜇𝑋 10% quantile 50% quantile 90% quantile mean

Case 1 1 0.8768286 0.9928672 1.122852 1.001519
Case 2 5 4.940482 5.132801 5.218659 5.094787
Case 3 5 4.164185 4.542709 5.063029 4.584907

Table 15
Descriptive statistics for 𝜎𝑋 .

Case 𝜎𝑋 10% quantile 50% quantile 90% quantile mean

Case 1 1 0.9058246 0.9848822 1.087124 0.9878635
Case 2 1 0.9067259 0.9807654 1.074041 0.9826182
Case 3 1 2.554637 2.750578 3.00709 2.782533

Fortunately, in these cases even if the prognosis results are more biased,
often they are conservative in the sense that they predict the failure
before the real failure time which will not induce an unavailability pe-
riod applying a predictive maintenance based on these results. The 90%
confidence bounds proposed by the three methods varies a little bit
and it is difficult to conclude which methods leads to the most efficient
estimations. In can highlighted that all the estimations methods can be
considered as reliable for decision making.

5.5. Prognosis with unknown parameters

As it was pointed out in the previous section that the three methods
lead to close prognosis results, in this section only the first method is
considered for the prognosis uncertainty investigation. The different
prior distributions used for parameter estimation are listed below. In
our case 𝜃 = (𝜇𝑋 , 𝜎𝑋 , 𝜇𝑌 , 𝜎𝑌 ),

5.5.1. Prior distribution
Non-informative prior: Jeffrey’s prior. The Jeffreys prior corresponding
to a sample of normally distributed random variables with unknown
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mean and unknown variance is as follows:

𝜋(𝜇𝑋 , 𝜎𝑋 , 𝜇𝑌 , 𝜎𝑌 ) ∝
1

𝜎2𝑋𝜎
2
𝑌

and for a gamma distributed sample

𝜋(𝛼𝑋 , 𝛽𝑋 , 𝛼𝑌 , 𝛽𝑌 ) ∝
1
𝛽𝑋

√

𝛼𝑋𝛹1(𝛼𝑋 ) − 1 1
𝛽𝑋

√

𝛼𝑋𝛹1(𝛼𝑋 ) − 1

where 𝛹1(.) is the trigamma function. For a G-W model,

𝜋(𝛼𝑋 , 𝛽𝑋 , 𝜇𝑌 , 𝜎𝑌 ) ∝
1

𝛽𝑋𝜎2𝑌

√

𝛼𝑋𝛹1(𝛼𝑋 ) − 1

Informative prior. Let 𝛩𝑖 be the prior information on the value of
parameter 𝜃𝑖. the following priors are defined as follows:

• A uniform prior is defined on each parameters on intervals [𝛩𝑖 −
𝜂, 𝛩𝑖+𝜂], 𝜂 > 0 measures the confidence to the expert knowledge.

• A gaussian prior s defined on each parameters as follows:  (𝜂𝛩𝑖,
𝑝%𝛩𝑖) where 𝜂 > 0, 0 < 𝑝 ≤ 1 measure the confidence to the
expert knowledge.

• A gamma prior with parameters 𝑎𝑖 and 𝑏𝑖 is defined on each
parameters as follows: 𝑎𝑖

𝑏𝑖
= 𝜂𝛩𝑖 and 𝑎𝑖

𝑏2𝑖
= 𝑝%𝛩𝑖 where 𝜂 > 0,

0 < 𝑝 ≤ 1 measure the confidence to the expert knowledge.

For each case, 100 observations are generated independently using
the W-W model. All runs of PF algorithm consist in generating 200 000
particles (even if the number of the particles increases this would not
enhance the estimation). Two metrics are utilized to study the quality
of the estimate of 𝑋, 𝑌 , 𝜇𝑋 , and 𝜎𝑋 : MSE and RMSE. In order to test
the robustness of the estimation method different priors and different
degradation parameters are considered.

5.5.2. Uncertainty analysis
Non-informative prior: Jeffery’s prior. Table 13 gives the parameter es-
timates bias for three different parameters setting. For each parameters
setting in Tables 14 and 15 the quantiles related to the posterior
distribution of degradation parameters are given.

Tables 16 and 17 illustrate the impact of the uncertainty of the
estimates on the failure time estimation. In 14, case 3, due to large
mean and standard deviation associated to the sensor degradation, the
observations are very noisy and possibly very far and scattered from
the system degradation values. This aspect make the estimation very
difficult since it is not possible to separate the both degradations.
Table 16
Impact of the 𝜇𝑋 uncertainty on prognosis results (failure time estimation).
𝜇𝑋 = 1, 𝜎𝑋 = 1, 𝜇𝑌 = 0.1, 𝜎𝑌 = 0.1

Prognosis parameters failure time 10% quantile 50% quantile 90% quantile mean
prognosis with true Parameters 672 653 686 720 685.9515
prognosis with 10% quantile 672 742 782 824 782.3445
prognosis with Median 672 657 690 726 690.98
prognosis with 90% quantile 672 583 611 639 611.09
prognosis with Mean 672 652 684 719 684.9574

𝜇𝑋 = 5, 𝜎𝑋 = 1, 𝜇𝑌 = 0.5 𝜎𝑌 = 0.1

Prognosis parameters failure time 10% quantile 50% quantile 90% quantile mean
True Parameters 54 54 58 60 58.2214
10% 54 57 59 61 58.897
Median 54 55 57 59 56.7286
90% 54 54 56 58 55.7942
Mean 54 55 57 59 57.1433

𝜇𝑋 = 5, 𝜎𝑋 = 1, 𝜇𝑌 = 5 𝜎𝑌 = 1

Prognosis parameters failure time 10% quantile 50% quantile 90% quantile mean
True Parameters 71 58 64 71 60.3756
10% 71 69 77 85 77.1104
Median 71 64 70 78 70.6562
90% 71 58 63 70 63.4267
Mean 71 63 70 77 69.9751



Table 17
Impact of the 𝜎𝑋 uncertainty on prognosis results (failure time estimation).
𝜇𝑋 = 1, 𝜎𝑋 = 1, 𝜇𝑌 = 0.1, 𝜎𝑌 = 0.1

Prognosis parameters failure time 10% quantile 50% quantile 90% quantile mean
prognosis with true Parameters 672 653 686 720 685.9515
prognosis with 10% quantile 672 656 685 716 685.9607
prognosis with Median 672 654 686 719 686.2215
prognosis with 90% quantile 672 650 685 723 686.1244
prognosis with Mean 672 653 686 719 686.2611

𝜇𝑋 = 5, 𝜎𝑋 = 1, 𝜇𝑌 = 0.5 𝜎𝑌 = 0.1

Prognosis parameters failure time 10% quantile 50% quantile 90% quantile mean
True Parameters 54 54 58 60 58.2214
10% 54 56 58 60 58.2037
Median 54 56 58 60 58.2331
90% 54 56 58 60 58.1905
Mean 54 56 58 60 58.2251

𝜇𝑋 = 5, 𝜎𝑋 = 1, 𝜇𝑌 = 5 𝜎𝑌 = 1

Prognosis parameters failure time 10% quantile 50% quantile 90% quantile mean
True Parameters 71 58 64 71 60.3756
10% 71 59 64 69 64.1327
Median 71 59 64 70 64.2037
90% 71 58 64 71 64.2715
Mean 71 59 64 70 64.2006
Fig. 8. State estimation for system’s degradation(left panel) and histogram of 𝜇𝑋 (middle panel) and 𝜎𝑋n (right panel) for the different cases.
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Table 18
Different parameters and their estimation bias.

Case Parameters MSE RMSE

Case 1 𝜇𝑋 = 1, 𝜎𝑋 = 1, 𝜇𝑌 = 0.1 and 𝜎𝑌 = 0.1 0.1636322 0.4045148
Case 2 𝜇𝑋 = 5, 𝜎𝑋 = 1, 𝜇𝑌 = 0.5 and 𝜎𝑌 = 0.1 189.9259 13.78136
Case 3 𝜇𝑋 = 5, 𝜎𝑋 = 1, 𝜇𝑌 = 5 and 𝜎𝑌 = 1 1387.708 37.25196

Table 19
Descriptive statistics for 𝜇𝑋 .

Case 𝜇𝑋 10% quantile 50% quantile 90% quantile mean

Case 1 1 0.7580507 0.8790687 1.035925 0.9067935
Case 2 5 4.570872 5.093009 5.24726 4.904125
Case 3 5 0.745772 5.612498 9.019261 5.174319

Fig. 9. RUL’s histogram while using true parameters.

Uniform distribution. In this part, each parameter has a uniform distri-
bution as prior, with 𝑎 = 𝜃𝑖 − 0.2, and 𝑏 = 𝜃𝑖 + 0.2, where 𝜃𝑖 is the
true parameter 1 ≤ 𝑖 ≤ 4. In Table 18 the MSE and RMSE associated
to state’s estimations are given. Tables 19 and 20 represent 𝜇𝑋 and 𝜎𝑋
the estimates of 𝜇𝑋 and 𝜎𝑋 respectively. Tables 21 and 22 represent
the impact of the uncertainty related to estimates on the failure time
estimation.

Gaussian distribution. For the gaussian prior, the mean is supposed
equal to the 𝛩 , 1 ≤ 𝑖 ≤ 4, and the standard deviation is supposed
13

𝑖

equal to 𝛩𝑖. Fig. 8 represents the state estimation regarding different
values of the posterior distribution (left panel), and the histograms of
both 𝜇𝑋 (middle panel) and 𝜎𝑋 (right panel) estimation for the different
cases. In Figs. 9, 10, 11 the RUL distribution according to the choice
of the parameter estimates (mean, mode, quantiles of the posterior
distribution) is given. The estimates quality are derived in Table 23.
Similarly to the figures, Tables 24, 25, 26, 27 represent the impact of
the estimates on the failure time estimation.

Gamma distribution. Tables 28, 29, 30, 31, 32 represent the impact of
the estimates on the failure time estimation.

5.6. Empirical conclusions

In sum, the numerical results can be summarized as follows:

• The three state estimations (particle filtration methods) have
similar behaviors.

• The prognosis efficiency is more related to noise parameter and
sensor degradation parameters. Unsurprisingly, when the sensor
degradation is slow or small according to the system degradation,
its variations are limited and the noise is negligible the state
estimation and therefore the prognosis is very efficient.

• Even if some models seems more sensitive to the noise for prog-
nosis, almost all the prediction intervals include the real failure
time.

• In this paper number of particles and simulations are significant
that is why the predictions give relatively good results.

• Prognosis results with unknown parameters show acceptable
results in comparison with the case when the parameters are
known. In other words, the estimation based on a well calibrated
priors is efficient.

• The prior elicitation can have a major impact of the prognosis
results.

• When the estimation is not efficient (the true RUL is not in the
90% confidence interval) mostly the failure time estimation is
earlier than the real failure time which is very conservative and
risk averted.

6. Conclusions

See the tables and figures.
Fig. 10. Impact of the uncertainty around 𝜇𝑋 on RUL’s Histograms, for the first case.
Fig. 11. Impact of the uncertainty around 𝜎𝑋 on RUL’s Histograms, for the first case.



Table 20
Descriptive statistics for 𝜎𝑋 .
Case 𝜎𝑋 10% quantile 50% quantile 90% quantile mean

Case 1 1 0.9914179 1.077884 1.180946 1.078622
Case 2 1 0.8623239 0.9332116 1.065157 0.9583114
Case 3 1 0.2180336 0.9690471 1.458269 0.8847489
Table 21
Impact of the estimates uncertainty on prognosis results (failure time estimation).
𝜇𝑋 = 1, 𝜎𝑋 = 1, 𝜇𝑌 = 0.1, 𝜎𝑌 = 0.1

Prognosis parameters failure time 10% quantile 50% quantile 90% quantile mean
prognosis with true Parameters 736 679 712 747 712.9271
prognosis with 10% quantile 736 875 940 993 940.3638
prognosis with Median 736 769 810 853 810.5594
prognosis with 90% quantile 736 656 687 720 687.8317
prognosis with Mean 736 747 785 825 785.7889

𝜇𝑋 = 5, 𝜎𝑋 = 1, 𝜇𝑌 = 0.5 𝜎𝑌 = 0.1

True Parameters 59 54 56 58 56.2946
10% 59 59 61 64 61.5169
Median 59 53 55 57 55.2744
90% 59 52 54 55 53.6421
Mean 59 55 57 59 57.3851

𝜇𝑋 = 5, 𝜎𝑋 = 1, 𝜇𝑌 = 5 𝜎𝑌 = 1

True Parameters 62 59 61 63 61.3302
10% 62 375 409 444 409.2575
Median 62 53 55 56 54.7006
90% 62 33 34 35 34.2289
Mean 62 57 59 61 59.299
Table 22
Impact of the estimates uncertainty on prognosis results (failure time estimation).
Prognosis failure time 10% quantile 50% quantile 90% quantile mean

𝜇𝑋 = 1, 𝜎𝑋 = 1, 𝜇𝑌 = 0.1, 𝜎𝑌 = 0.1

prognosis with true Parameters 736 679 712 747 712.9271
prognosis with 10% quantile 736 679 712 747 712.6709
prognosis with Median 736 676 712 750 712.7627
prognosis with 90% quantile 736 672 712 753 712.5708
prognosis with Mean 736 676 712 750 712.5924

𝜇𝑋 = 5, 𝜎𝑋 = 1, 𝜇𝑌 = 0.5 , 𝜎𝑌 = 0.1

prognosis with True Parameters 59 54 56 58 56.2946
prognosis with 10% 59 55 56 58 56.2691
prognosis with Median 59 55 56 58 56.2745
prognosis with 90% 54 56 58 56.2563
prognosis with Mean 59 54 56 58 56.2917

𝜇𝑋 = 5, 𝜎𝑋 = 1, 𝜇𝑌 = 5, 𝜎𝑌 = 1

prognosis with True Parameters 62 59 61 63 61.3302
prognosis with 10% 62 59 61 63 61.3372
prognosis with Median 62 59 61 64 61.4084
prognosis with 90% 62 59 61 64 61.4084
prognosis with Mean 62 60 61 63 61.3238
Table 23
Different parameters and their estimation bias.
Case Parameters MSE RMSE

Case 1 𝜇𝑋 = 1, 𝜎𝑋 = 1, 𝜇𝑌 = 0.1 and 𝜎𝑌 = 0.1 35.73929 5.978235
Case 2 𝜇𝑋 = 5, 𝜎𝑋 = 1, 𝜇𝑌 = 0.5 and 𝜎𝑌 = 0.1 72.30748 8.503381
Case 3 𝜇𝑋 = 5, 𝜎𝑋 = 3, 𝜇𝑌 = 0.5 and 𝜎𝑌 = 0.3 352.4073 18.77251
Table 24
Descriptive statistics for 𝜇𝑋 .
Case 𝜇𝑋 10% quantile 50% quantile 90% quantile mean

Case 1 1 0.4250019 1.094191 1.783664 1.104165
Case 2 5 4.369105 5.305121 5.925364 5.285071
Case 3 5 4.345103 4.862624 5.26638 4.876163
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Table 25
Descriptive statistics for 𝜎𝑋 .
Case 𝜎𝑋 10% quantile 50% quantile 90% quantile mean

Case 1 1 0.352806 0.832604 0.9597264 0.7447275
Case 2 1 0.4902292 0.9708101 1.043863 0.8574143
Case 3 1 2.34572 2.9931 3.470325 2.787552
Table 26
Impact of the 𝜇𝑋 uncertainty on prognosis results (failure time estimation).
Prognosis failure time 10% quantile 50% quantile 90% quantile mean

𝜇𝑋 = 1, 𝜎𝑋 = 1, 𝜇𝑌 = 0.1, 𝜎𝑌 = 0.1

prognosis with true Parameters 692 664 697 733 697.8123
prognosis with 10% quantile 692 1522 1639 1763 1641.747
prognosis with Median 692 608 637 668 637.8131
prognosis with 90% quantile 692 377 391 406 391.0232
prognosis with Mean 692 602 631 663 631.7821

𝜇𝑋 = 5, 𝜎𝑋 = 1, 𝜇𝑌 = 0.5 𝜎𝑌 = 0.1

prognosis with True Parameters 54 54 58 60 58.2214
prognosis with 10% quantile 66 71 73 76 73.2336
prognosis with Median 66 59 60 62 60.4478
prognosis with 90% quantile 66 53 54 56 54.1285
prognosis with Mean 66 51 61 62 60.6424

𝜇𝑋 = 5, 𝜎𝑋 = 1, 𝜇𝑌 = 5 𝜎𝑌 = 1

prognosis with True Parameters 71 58 64 71 60.3756
prognosis with 10% quantile 53 53 59 66 59.3969
prognosis with Median 53 48 53 59 53.0531
prognosis with 90% quantile 53 44 49 54 49.0761
prognosis with Mean 53 48 53 59 53.1118
Table 27
Impact of 𝜎𝑋 uncertainty on prognosis results (failure time estimation).
Prognosis failure time 10% quantile 50% quantile 90% quantile mean

𝜇𝑋 = 1, 𝜎𝑋 = 1, 𝜇𝑌 = 0.1, 𝜎𝑌 = 0.1

prognosis with true Parameters 692 664 697 733 697.8123
prognosis with 10% quantile 692 685 697 709 697.2942
prognosis with Median 692 670 697 726 697.6191
prognosis with 90% quantile 692 666 698 730 697.7786
prognosis with Mean 692 673 697 723 697.4345

𝜇𝑋 = 5, 𝜎𝑋 = 1, 𝜇𝑌 = 0.5 𝜎𝑌 = 0.1

prognosis with True Parameters 54 54 58 60 58.2214
prognosis with 10% quantile 66 63 64 65 64.0485
prognosis with Median 66 62 64 66 64.0963
prognosis with 90% quantile 66 62 64 66 64.102
prognosis with Mean 66 62 64 66 64.0426

𝜇𝑋 = 5, 𝜎𝑋 = 1, 𝜇𝑌 = 5 𝜎𝑌 = 1

prognosis with True Parameters 71 58 64 71 60.3756
prognosis with 10% quantile 53 47 52 56 51.6661
prognosis with Median 53 46 52 57 51.7567
prognosis with 90% quantile 53 46 51 58 51.7023
prognosis with Mean 53 47 52 57 51.6438
Table 28
Different parameters and their estimation bias.
Case Parameters MSE RMSE

Case 1 𝜇𝑋 = 1, 𝜎𝑋 = 1, 𝜇𝑌 = 0.1 and 𝜎𝑌 = 0.1 1.200493 1.09567
Case 2 𝜇𝑋 = 5, 𝜎𝑋 = 1, 𝜇𝑌 = 0.5 and 𝜎𝑌 = 0.1 7.961347 2.821586
Case 3 𝜇𝑋 = 5, 𝜎𝑋 = 3, 𝜇𝑌 = 0.5 and 𝜎𝑌 = 0.3 21.59796 4.647361
Table 29
Descriptive statistics for 𝜇𝑋 .
Case 𝜇𝑋 10% quantile 50% quantile 90% quantile mean

Case 1 1 0.7262281 0.8917344 1.018496 0.872597
Case 2 5 4.634436 4.888351 5.063083 4.868262
Case 3 5 4.366648 4.907286 5.195143 4.817564
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Table 30
Descriptive statistics for 𝜎𝑋 .
Case 𝜎𝑋 10% quantile 50% quantile 90% quantile mean

Case 1 1 0.940619 1.064352 1.159528 1.053191
Case 2 1 0.9410168 0.9966623 1.087922 1.000278
Case 3 1 2.97348 3.228283 3.44022 3.211805
Table 31
Impact of 𝜇𝑋 on prognosis results (failure time estimation).
Prognosis failure time 10% quantile 50% quantile 90% quantile mean

𝜇𝑋 = 1, 𝜎𝑋 = 1, 𝜇𝑌 = 0.1, 𝜎𝑌 = 0.1

prognosis with true parameters 682 669 702 736 702.0841
prognosis with 10% quantile 682 670 702 734 701.8035
prognosis with median 682 666 701 738 701.8481
prognosis with 90% quantile 682 662 702 743 702.3454
prognosis with Mean 682 669 702 737 702.515

𝜇𝑋 = 5, 𝜎𝑋 = 1, 𝜇𝑌 = 0.5 𝜎𝑌 = 0.1

prognosis with true parameters 57 57 59 61 58.7866
prognosis with 10% quantile 57 57 59 61 58.7778
prognosis with median 57 57 59 61 58.8111
prognosis with 90% quantile 57 57 59 61 58.8343
prognosis with mean 57 57 59 61 58.823

𝜇𝑋 = 5, 𝜎𝑋 = 1, 𝜇𝑌 = 5 𝜎𝑌 = 1

prognosis with true Parameters 60 55 60 66 60.3756
prognosis with 10% quantile 60 55 60 66 60.3446
prognosis with median 60 54 60 67 60.4023
prognosis with 90% quantile 60 54 60 67 60.4511
prognosis with mean 60 54 60 67 60.2409
Table 32
Impact of the 𝜎𝑋 uncertainty on prognosis results (failure time estimation).
Prognosis failure time 10% quantile 50% quantile 90% quantile mean

𝜇𝑋 = 1, 𝜎𝑋 = 1, 𝜇𝑌 = 0.1, 𝜎𝑌 = 0.1

prognosis with true parameters 682 669 702 736 702.0841
prognosis with 10% quantile 682 670 702 734 701.8035
prognosis with median 682 666 701 738 701.8481
prognosis with 90% quantile 682 662 702 743 702.3454
prognosis with Mean 682 669 702 737 702.515

𝜇𝑋 = 5, 𝜎𝑋 = 1, 𝜇𝑌 = 0.5 𝜎𝑌 = 0.1

prognosis with true parameters 57 57 59 61 58.7866
prognosis with 10% quantile 57 57 59 61 58.7778
prognosis with median 57 57 59 61 58.8111
prognosis with 90% quantile 57 57 59 61 58.83433
prognosis with mean 57 57 59 61 58.823

𝜇𝑋 = 5, 𝜎𝑋 = 1, 𝜇𝑌 = 5 𝜎𝑌 = 1

prognosis with true Parameters 60 55 60 66 60.3756
prognosis with 10% quantile 60 55 60 66 60.3446
prognosis with median 60 54 60 67 60.4023
prognosis with 90% quantile 60 54 60 67 60.4511
prognosis with mean 60 54 60 67 60.2409
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