

Hands-on Techno Economic Assessment: HTS cable system

Andrea Musso, Loïc Quéval

► To cite this version:

Andrea Musso, Loïc Quéval. Hands-on Techno Economic Assessment: HTS cable system. École thématique. 3rd Training School of the Hi-SCALE COST Action 19108, Belgrade, Serbia. 2024. hal-04543739

HAL Id: hal-04543739 https://hal.science/hal-04543739v1

Submitted on 12 Apr 2024 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Hands-on Techno Economic Assessment: HTS cable system

<u>Andrea Musso³, Loïc Quéval^{1,2}</u>

¹ University of Paris-Saclay, CentraleSupélec, CNRS, Group of electrical engineering - Paris, 91192, Gif-sur-Yvette, France

² Sorbonne University, CNRS, Group of electrical engineering - Paris, 75252, Paris, France
 ³ Ricerca Sistema Energetico – RSE S.p.A., 20134 Milan, Italy

Content

- I. Case study
- II. TEA of conventional cable system
- III. TEA of HTS cable system
 - 1. Phase 1
 - 2. Phase 2
 - 3. Phase 3
 - 4. Phase 4
- IV. To go further

I. Case study

Proposal: connect Al Dhafra photovoltaic plant with Abu Dhabi (e.g. its international airport).

Completed in 2023, *Al Dhafra* is the largest single-site solar PV power plant in the world (and the 3° in the world overall). More than 4 million PV modules involved

Proposal: connect Al Dhafra photovoltaic plant with Abu Dhabi (e.g. its international airport).

Al Dhafra Solar Project:

- 2 GW produced.
- The plant is located about 30 km south of Abu Dhabi.
- The project includes 33/400 kV substations to connect the plant with 400 kV "conventional" overhead cables.
- Could part of these conventional connections be replaced with a 33 kV HTS underground cable not requiring transformers and overhead cables into the highly urbanized area of Abu Dhabi?

Proposal: connect Al Dhafra photovoltaic plant with Abu Dhabi (e.g. its international airport).

Al Dhafra Solar Project:

- 2 GW produced.
- The plant is located about 30 km south of Abu Dhabi.
- The project includes 33/400 kV substations to connect the plant with 400 kV "conventional" overhead cables.
- Could part of these conventional connections be replaced with a 33 kV HTS underground cable not requiring transformers and overhead cables into the highly urbanized area of Abu Dhabi?

Let's suppose we are going to substitute conventional cables for 1.5 GW, using HTS cables (2 HTS cables of 750 MW each).

Technical model – Main features					
Property	Symbol	Value			
Total power	P _{tot}	1.5 GW			
Voltage rms	V _{rms}	33 kV			
Load factor	cosφ	0.95			
Line length	L _{line}	32 km			

II. TEA of conventional cable system

Hands-on !

III. TEA of HTS cable system

Content

- Overview of HTS cable architectures
- The selected architecture
- HTS cable system components
- Hands-on TEA for HTS cables
 - The approach
 - Computing cable design
 - Computing losses
 - Computing constraints
 - Computing the economic parameters
 - Interpreting the results

Overview of HTS cable architectures Warm Dielectric (WD) vs Cold Dielectric (CD)

■ Most superconducting cable prototypes proposed in the last years — core / Former were designed using the CD configuration.

Source: Nexans

Overview of HTS cable architectures Single core vs 3-in-1 cores vs Concentric

□ If the 3 phases of the concentric configuration are balanced, the magnetic field outside the phases can be greatly reduced without the need of a superconducting shield [3, 23]. The amount of superconductor needed is thus reduced.

The concentric configuration is more compact and thus suited to be contained in the tunnels made for conventional lines, thus facilitating their retrofitting.

pnases cryogenic envelope

Source: Nexans

andrea.musso@rse-web.it

Hi-SCALE 3rd Training School

Overview of HTS cable architectures

MgB₂ wires are notoriously more subject to high AC losses, and thus their use is almost always limited to DC applications (DC cables).

Overview of HTS cable architectures

In the last 20 years, over 20 prototypes have been developed and installed around the world, with: 30 m < lengths < 1.5 km
10 MW < powers < 1 GW
10 kV < voltages < 275 kV

andrea.musso@rse-web.it

- **CD** configuration
- Coaxial configuration
- HTS AC cable
- Double-sided cooling option

Superconducting Cables

Prof. Dr.-Ing. Mathias Noe, Karlsruhe Institute of Technology Institute for Technical Physics EUCAS Short Course Power Applications, September 17th 2017, Geneva

KIT - Die Forschungsuniversität in der Helmholtz Gemeinschaft

[4]

RSE Ricerca Sistema Energetico

Architecture selected

General Setup - Former

General Setup – HTS Conductor

General Setup – Dielectric Insulation

Polypropylene Laminated Paper (PPLP)

General Setup – Three coaxial phases

General Setup – Copper Neutral Conductor

General Setup – Cryostat

General Setup – Outer Protection, extruded PE

Tape selected for this study: SuNAM SCN04150 tape

HTS tapes

- Very high current carrying capacity with minimal losses.
- ❑ Very high cost compared to traditional conductors.
- Electrical properties strongly dependent on temperature/magnetic field.
- Mechanical properties makes their handling complex (not considered in today's study).

Cryogenic insulation (CD)

DC cables

• Kraft paper \rightarrow Dielectric strength = 25 ~ 50 kV/mm and $\varepsilon_r = 2 \sim 5$

□ AC cables

• PolyPropylene Laminated Paper \rightarrow Dielectric strength = 40 ~ 50 kV/mm and ε_r = 2.2

- □ LN2 under 5 ~ 10 bar → Dielectric strength 40 ~ 80 kV/mm (pressure dependant) and ε_r =1.4. Avoid bubbles: in GN2 the dielectric strength is only 2 ~ 3 kV/mm.
- Other dielectric materials have been considered in different publications: Kapton, XLPE, Cryoflex (by ULTERA), Tyvek/PE, Teflon.

	Condition: LN_2 (T = 77 K)	PPLP	Tyvek/PE
	ε _r	1.90	1.73
[3]	tanδ	0.00058	0.00013

HTS system components - conductor Cryogenic insulation (CD)

- PolyPropylene Laminated Paper (PPLP) has been widely used for HV power cables due to its excellent electrical and mechanical performances.
- □ Its use for power cable insulation can be traced back to 1970's, initially for HVAC cables but extended to HVDC cables and superconducting.

□ Reliable hybrid insulation systems based on pressurized liquid nitrogen and polypropylene laminate paper (PPLP).

HTS system components - conductor Cryostat

The cryostats contains the cable and (above all) the coolant, reducing the heat exchange with the outside.

It includes (inner to outer): Inner cryogenic tube \rightarrow Vacuum space \rightarrow MLI \rightarrow Outer cryostat \rightarrow Jacket

Single envelope vs double envelope (2 different fluids/temperatures) cryostat

 Corrugated inner tube
 Low-loss spacer
 Vacuum space
 Multilayer superinsulation
 Corrugated outer tube
 PE jacket (optional)

Simple envelope

Flexible (easier to transport/laying) vs rigid (lower thermal losses) cryostat

Laying of the AC HTS cable into its flexible cryostat for the Ampacity project.

7

HTS system components - conductor Cryostat

The cryostats contains the cable and (above all) the coolant, reducing the heat exchange with the outside.

It includes (inner to outer): Inner cryogenic tube \rightarrow Vacuum space \rightarrow MLI \rightarrow Outer cryostat \rightarrow Jacket

Single envelope vs double envelope (2 different fluids/temperatures) cryostat

 Corrugated inner tube
 Low-loss spacer
 Vacuum space
 Multilayer superinsulation
 Corrugated outer tube
 PE jacket (optional)

Simple envelope

Double envelope with thermal shield for MgB₂

Flexible (easier to transport/laying) vs rigid (lower thermal losses) cryostat

HTS coaxial cable installation for the AEP Bixby project. The white cable on the drum is the superconductor and dielectric portion being fed into the black cryostat and outer jacket.

[7]

andrea.musso@rse-web.it

Corrugation of tubes (Flexibility)

Thermal insulation process

Ultra-sonic cleaning

Spacer

Outer tube shaping and welding process

Super insolation laying

Cryostat

HTS system components – cooling system

Purpose of the cooling system:

- □ Ensure that the temperature of the HTS tapes is kept within the design limits by fluid cooling;
- □ Restore the temperature and pressure conditions of the coolants to their initial levels after their rise/drop occurring in each cable section (avoid phase transition!);

□ Handle the coolants circulation at a given mass flow rate.

For LN2, the transition to gas phase would greatly affect its heat exchange efficiency and its dielectric properties. The ensure that no boiling phenomena occur in the whole cable length, the LN2 usually enters the cable in subcooled conditions (T & P).

Mexans Mexans Introduction to superconducting power cable Systems CERNERS Name France

HTS system components – cooling system

An HTS cable cooling system is a combination of two separate loops:

One closed-loop consisting of LN2 circulated inside the cable cryostat and terminations to cool the cable system.
 One loop is part of the refrigerator itself (open or closed)

Turbo-Brayton machines: from 5kW to 30 kW at 70K and up to 5 kW at 20K

Gifford Mc-Mahon machines: up to 500W at 70K and 60W at 20K

Comparison among different cryogenic refrigeration technologies

	Reverse-Brayton	Turbo-Brayton	Stirling cryogenerator
echnology `	Existing and proven technology	To be developed	Proven but old technology
ower consumption per cold watts	1 $W_{\rm cold}/23.2 W_{\rm electric}$	1 W _{cold} /11.6 W _{electric}	1 W _{cold} /18.3 W _{electric}
arnot efficiency	~ 15%	>30%	~ 19%
apital cost	High	High	Medium
vailability	High	Very high	High
Chilled water	Not required	Required	Required
edundancy	Component level	System level	Component level
laintenance	Medium (annual)	Low (several years)	High (6000 h)
ootprint	Medium	Small	Large

andrea.musso@rse-web.it

HTS system components – terminations

HTS cable terminations are the links between the conventional power grid at T_{amb} and a superconducting cable at cryogenic temperature.

andrea.musso@rse-web.it

HTS system components – terminations

III. TEA of HTS cable system Phase 1 – Goal and scope definition

III. TEA of HTS cable system Phase 2 – Inventory analysis

The cable system is addressed as an **economic model** and a **technical model**.

Different levels of detail can be applied.

VERY broad **Economic model** LCC (€ or €/km) Little (optional) extra step: total CAPEX and OPEX (or OPEX_{vear}) CAPEX (€) OPEX (€) From manufacturer or literature, once the characteristics of the line are set (*e.q.* length, size, cable type).

 $LCC = CAPEX + \sum_{t=1}^{years} \frac{OPEX_{year}}{(1+r)^t}$

Technical model

Basic data for the cable representation in an equivalent circuit of the grid (*e.g.* voltage level and power selected, AC or DC?, equivalent resistance...)

The cable system is addressed as an **economic model** and a **technical model**.

Different levels of detail can be applied.

A little more specific

Economic model

Distinguish different CAPEX and OPEX terms

The terms are in € or €/km, from manufacturer or literature.

Technical model

- Evaluate substituting one components with another (*e.g.* conductor, cooling station...) based on their technical properties and costs.
- Some terms may be available from the literature as parameterized functions depending on the line's features (*e.g.,* cooling costs based on cable power, land costs contingent upon the installation site...).

The cable system is addressed as an **economic model** and a **technical model**.

Different levels of detail can be applied.

Thoroughly detailed

Economic model

The single CAPEX and OPEX terms are expanded (not necessarily all of them)

Some cost terms are "simply" parameterized to the main cable features, others are based on the cable design (in combination with the technical model).

Technical model

For each term to expand, it is required to know:

- Properties of the materials/components involved;
- Relationships between the properties and the line features to compute the necessary quantities (simplifying assumptions are generally applied);
- Eventual operating constraints establishing the limits for each material/component quantity.

e.q. HTS tapes)

- HTS tape properties $\rightarrow I_c(T, |B|, \vartheta)$, geometry...
- Quantity \rightarrow cable length, cable current...

• Constraints $\rightarrow \begin{cases} [I_{tape}/I_c]_{min}^{max} \\ \text{Geometrical (cable layers dimensions, twist angle...)} \end{cases}$ Economic (reduce AC losses to reduce OPEX ...)

andrea.musso@rse-web.it

The cable system is addressed as an **economic model** and a **technical model**.

Different levels of detail can be applied.

When should we stop going further in detailing (term by term)?

- When specific data, such as costs and properties of sub-components, are no longer accessible.
- When we recognize that a greater detail would not produce a significant change in the results.
- When we assess that the effort or calculation time are no longer comparable with our aims. For instance: are we grid managers seeking to evaluate multiple cable technologies for broad applications? Or are we manufacturers aiming to optimize costs for a particular case study involving a specific cable architecture?

TEA on HTS cables \rightarrow The workflow

andrea.musso@rse-web.it

TEA on HTS cables \rightarrow The workflow **in our Excel file**

andrea.musso@rse-web.it

TEA on HTS cables \rightarrow Input data

What we need to know to start the study:

- Line main features
 - Voltage level and power to be transferred
 - Line length
 - Cable architecture (DC or AC? Coaxial? Cold dielectric?)
- > A clear idea of the terms composing CAPEX and OPEX
 - Materials/sub-components properties (technical and economic)
- What are the constraints

TEA on HTS cables \rightarrow Where to find information

Industrial Consultant

Specialists

TEA on HTS cables \rightarrow Line main features (case study)

Technical model – Main features									
Property	Symbol	Value							
Total power	P _{tot}	1.5 GW							
Cable power	Р	750 MW							
N° of HTS cables running in parallel	n_{cables}	2							
Voltage rms	V _{rms}	33 kV							
Load factor	cosφ	0.95							
rms value of the total AC current in each phase	I _{rms}	$I_{rms} = \frac{P}{\sqrt{3} \ V_{rms} \cos\varphi} = 13.81 \ kA$							
Line length	L _{line}	32 km							

andrea.musso@rse-web.it

TEA on HTS cables \rightarrow Line main features (case study)

The case study is set in the **Inventory analysis – HTS** sheet of our Excel file.

Transmission link between solar plant and substation									
Phase 2: Inventory analysis									
HTS system MAIN FEATURES									
Technical parameter	Symbol	HTS system	Units	Comment					
ine length	L_line	3.20E+04	m						
ower delivered by each cable	Р	7.50E+08	W	Maximum Power for 1 cable = 750 MW					
/oltage level rms of each cable	Vrms	3.30E+04	V	Phase-to-phase voltage					
.oad factor	cosφ	0.95							
Mean ambient temperature in the installation site	Та	303.15	K	30° C					
Frequency	f	50	Hz						
	-								
	Н	TS tapes							
Fechnical parameter	Symbol	HTS system	Units	Comment					
Tape width	w_HTS	4.00E-03	m						
Mean HTS temperature in the cable, for all phases (tentative)	T_HTS	70.1	K						
Critical current of the tape at 77 K and s.f.	lc_HTS_77K	293.7	А						
Safety value of I_tape/Ic_HTS not to be passed	safety_HTS	0.8		80%					
N° of HTS layers in phase 1	nl_1	2							
N° of HTS layers in phase 2	nl_2	1							
N° of HTS layers in phase 3	nl_3	1							
Inner radius of HTS layer 1 - phase 1	RHTS_1_1	3.39E-02	m						
nner radius of HTS layer 2 - phase 1	RHTS_2_1	3.41E-02	m						
nner radius of HTS layer 1 - phase 2	RHTS_1_2	4.86E-02	m						
Inner radius of HTS layer 1 - phase 3	RHTS_1_3	6.24E-02	m						
Twist angle of HTS layer 1 - phase 1	α1_1	11	0						
Twist angle of HTS layer 2 - phase 1	α2_1	15	0						
Twist angle of HTS layer 1 - phase 2	α1_2	-13	0						
Twist angle of HTS layer 1 - phase 3	α1_3	-14	0						
I-Goal and scope definition 2-Inventory analysis-Benchma	ark 2-Inventory	/ analysis-HTS	3.0-HTS	Cable design 3-Calculation of indicators-HTS 4-Int					

III. TEA of HTS cable system Phase 3 – Calculation of indicators

Set some cable design parameters

TEA on HTS cables \rightarrow Set some cable design parameters

TEA on HTS cables \rightarrow Set some cable design parameters

The parameters set are colored in red in the **Inventory analysis - HTS** sheet of our Excel file.

Fransmission link between solar plant and substation										
Phase 2: Inventory analysis										
			ATUDEC							
	HIS system		ATURES							
Fechnical parameter	Symbol	HTS system	Units	Comment						
ine length	L_line	3.20E+04	m							
Power delivered by each cable	Р	7.50E+08	W	Maximum Power for 1 cable = 750 MW						
/oltage level rms of each cable	Vrms	3.30E+04	V	Phase-to-phase voltage						
.oad factor	cosφ	0.95								
Vean ambient temperature in the installation site	Та	303.15	К	30° C						
Frequency	f	50	Hz							
there have been block block also also also also also also a										
HTS tapes										
Fechnical parameter	Symbol	HTS system	Units	Comment						
Fape width	w_HTS	4.00E-03	m							
Mean HTS temperature in the cable, for all phases (tentative)	T_HTS	70.1	K							
Critical current of the tape at 77 K and s.f.	lc_HTS_77K	293.7	А							
Safety value of I_tape/Ic_HTS not to be passed	safety_HTS	0.8		80%						
N° of HTS layers in phase 1	nl_1	2								
N° of HTS layers in phase 2	nl_2	1								
N° of HTS layers in phase 3	nl_3	1								
nner radius of HTS layer 1 - phase 1	RHTS_1_1	3.39E-02	m							
nner radius of HTS layer 2 - phase 1	RHTS_2_1	3.41E-02	m							
nner radius of HTS layer 1 - phase 2	RHTS_1_2	4.86E-02	m							
nner radius of HTS layer 1 - phase 3	RHTS_1_3	6-24E-02	m							
wist angle of HTS layer 1 - phase 1	α1_1	11	•							
wist angle of HTS layer 2 - phase 1	α2_1	15	•							
wist angle of HTS layer 1 - phase 2	α1_2		0							
wist angle of HTS layer 1 - phase 3	a1 3	-14	٥							
Coal and scope definition 2 Inventory analysis Penshma	rk 2 Inventor	analysis UTS	20 1175	Cable design 1 2 Calculation of indications UTC 1 A last						

The full cable design is provided

TEA on HTS cables \rightarrow Cable design for the case study

If you are lucky enough, you can find the whole design of your device at the operating conditions you selected from manufacturer' or literature' data.

TEA on HTS cables \rightarrow Cable design for the case study

Technical model – Main Features							
Property	Symbol	Value					
Cable power	Р	1 GW					
Voltage rms	V _{rms}	25 kV					
Load factor	cosφ	0.95					
Line length	L _{line}	32 km					

Technical model – Set design parameters								
Property	Symbol	Value						
Former radius	R former	30 mm						
LN2 mass flow rate	m_{LN2}^{\cdot}	2.15 kg/s						
Twist angle for each layer of each phase	$lpha_{1,1}$, $lpha_{2,1}$ $lpha_{1,2}$ $lpha_{1,3}$	11°, 15° -13° -14°						
N° of HTS layers for each phase	$egin{array}{c} n_{l_1} \ n_{l_2} \ n_{l_3} \end{array}$	2 1 1						
Thickness of the annular gap	t _{annulus}	27.8 mm						
N° of intermediate cooling stations	n _{stat}	5						

1	t_f	t_{lev}	t_{HTS}	t_k	t_{HTS}	t_{ins_1}	t _{HTS}	t _{ins2}	t _{HTS}	t _{ins3}	t_n	t_c	t _{an}	t _{cry}
R_{former} $R_{HTS_{i,j}}$ $R_{int_{insm}}$													 (R
$R_{ext_{insm}}$	 	 												
$R_{ext_{netrus}}$ $R_{ext_{annul}}$	l di l us								1					
R _{intcryo} R _{extcryo}														

Technical model – Remaining design parameters								
Property	Symbol	Value						
Radius of the HTS layers of phase 1 (inner)	$R_{HTS_{1,1}}, R_{HTS_{2,1}}$	33.9 mm , 34.1 mm						
Radius of the HTS layers of phase 1 (inner)	$R_{HTS_{1,2}}$	48.6 mm						
Radius of the HTS layers of phase 1 (inner)	$R_{HTS_{1,3}}$	62.4 mm						
N° of HTS tapes in the layers of phase 1	$Tapes_{1,1}, Tapes_{2,1}$	52,52						
N° of HTS tapes in the layers of phase 2	$Tapes_{1,2}$	74						
N° of HTS tapes in the layers of phase 3	$Tapes_{1,3}$	95						
Inner radius of the 3 insulating layers	$R_{int_{ins_1}}, R_{int_{ins_2}}, R_{int_{ins_3}}$	34.3 mm , 48.8 mm, 62.5 mm						
Outer radius of the 3 insulating layers	$R_{ext_{ins_1}}, R_{ext_{ins_2}}, R_{ext_{ins_3}}$	48.6 mm, 62.4 mm , 75.8 mm						
Inner radius of the copper neutral layer	$R_{int_{neutral}}$	75.8 mm						
Outer radius of the copper neutral layer	$R_{ext_{neutral}}$	77.8 mm						
Inner radius of the annular gap for LN2	R _{intannulus}	78.6 mm						
Outer radius of the annular gap for LN2	R _{extannulus}	106.0 mm						
Inner radius of the cryostat	R _{intcryo}	106.0 mm						
Outer radius of the cryostat	R _{extcryo}	137.8 mm						

andrea.musso@rse-web.it

Hi-SCALE 3rd Training School

TEA on HTS cables \rightarrow Losses and cooling stations for the case study

Technical model – Main Features								
Property	Symbol	Value						
Cable power	Р	1 GW						
Voltage rms	V _{rms}	25 kV						
Load factor	cosφ	0.95						
Line length	L _{line}	32 km						

Technical model – Set design parameters								
Property	Symbol	Value						
Former radius	R former	30 mm						
LN2 mass flow rate	m_{LN2}^{\cdot}	2.15 kg/s						
Twist angle for each layer of each phase	$lpha_{1,1}$, $lpha_{2,1}$ $lpha_{1,2}$ $lpha_{1,3}$	11°, 15° -13° -14°						
N° of HTS layers for each phase	$egin{array}{c} n_{l_1} \ n_{l_2} \ n_{l_3} \end{array}$	2 1 1						
Thickness of the annular gap	t _{annulus}	27.8 mm						
N° of intermediate cooling stations	n _{stat}	5						

Technical model – Losses and fluid dynamics parameters								
Property	Symbol	Value						
Total AC losses by HTS tapes in the cable	Loss _{AC HTS}	423.2 kW						
Total losses by the insulating layers in the cable	Loss _{ins}	98.0 kW						
Total heat inputs from the cryostat in the cable	<i>Loss_{cryo}</i>	71.6 kW						
Total eddy currents losses in the cable	Loss _{eddy}	31.2 kW						
Total losses by cable terminations	Loss _{term}	5.3 kW						
Thermal inputs into the LN2 in the former in a single cable segment	Q_f	38.7						
hermal inputs into the LN2 in the annular gap in a single cable segment	Q_{an}	50.6						
Losses by terminations in a single side of the cable	Q_{cl}	2.6						
Temperature rise in the LN2 in the former in a single cable segment	ΔT_{former}	3.5 K						
emperature rise in the LN2 in the annular gap in a single cable segment	$\Delta T_{annulus}$	4.6 K						
Pressure drop in the LN2 in the former in a single cable segment	ΔP_{former}	3.1 bar						
Pressure drop in the LN2 in the annular gap in a single cable segment	$\Delta P_{annulus}$	4.6 bar						
Mean HTS temperature in a single cable segment	T _{HTS}	70 K						

andrea.musso@rse-web.it

Compute the cable design in cascade

If you want to calculate the cable design yourself (because the data are not available under the conditions you have chosen) you can look at the **HTS Cable design** sheet of our Excel file.

This sheet is for consultation only, do not to modify the equations in the cells, for the moment.

Descriptions of all the equations inserted are provided in the next slides.

	renrmizzion link botuoon zuler plant and zubztation haro 2.5: Compute cable dezian, Inzzez and constrain	atr														
		- MAD			Comet											
	HIS SUS	tem MAIN	FEATURES		Lonst	ants										
	ochnicel paramotor no longth	Symbol .	3.20E+04 m	Cumment	Tacana at a second seco	1.257E-06 H/m										
	nuar delivered by each cable	P	7.50E+08 W		Gravitational	9.81 m/z^2										
	nitago lovol rmr nf oach cablo	Franc	3,30E+04 V		Dielectric constant	8.854E+12 [C^2/(N*m^2]										
	ad factur	cary	0.95													
	e an ambient temperature in the installation site	70	303.15 K													
	mr value of the total current in each phase 1	have 11	13812.21 A	Irms_phase+Pf(Vrms_\3_carb) Irms_1_1-Irms_phase/2												
	ime value of the current in HTS layer 1 - phase 2	how hit	6906.10 A	Irms_1_2-Irms_pharol2												
	ime value of the current in HTS layer 1 - phase 3	trac 1.3	13812.21 A	Irms 1.3-Irms phare												
		1212														
	Lable	e design ir	n cascade		Insulation the	ckness paramete	rs			.osses	_		Constrain	ts calculation	í l	
	ochnical paramotor	Symbol	TS syster Units	Commont	Tochnical paramotor Sym	ants system Units 1	Comment	Technical parameter	Symbol	HTS system	Unitz	Commont	Tachnical paramatar	Symbol	ITS system	Unitr Came
	armer redisor	Klarmer	2.00E-02 m		<u> </u>			Distance between adjacent conline station	Artal	5333		drtat-L line ((nrtat+1)	Telecity of LH2 into the surger asp	- IM2 farmer	1,055	mtr
	hickness of the levelling layer between former and	cler	1.90E-03 m		k2	in 1.2		AC Inreer in HTS toper					Reynuldr number fur LH2 in the furmer	Re 1H2 Intmes	1.82E+06	
	snor radius of HTS layor 1 - phase 1	RH15_1_1	3.39E-02 m	BHTS_11-Bformer+Lf+Llev	1.0	7.50E+05 V		Technical parameter	Symbol	HTS system	Unitr	Commont	Roynuldr number fur LH2 in the annular a	Be INZ esseler	1.96E+06	
Normality and Later With and Later	hickness of HIS tapes hickness of laver between HTS lavers of the same		5.00E-05 m		10	AC 1.4		a' af HTS taper is layer 2 - phare 1	1000 21	52		Taper_2_1-round(2 ***RHTS_2_1*car(s2_1)/u_HTS	Friction factor for LHZ in the ennular ga	1 LH2 enabler	1.01E-02	-+
 	anor rediur of HTS layor 2 - pharo 1	RH15_2_1	3.41E-02 m	RHTS_2_1-RHTS_1_1+HTS+k	k2_	AC 1		n' of HTS topor in layor 1 - phare 2	Topes 12	74		Taper_1_2 - round(2 ** * RHTS_1_2 * cor (=1_2) / u_HTS	Tomporaturo riro			
	unor radiur of inculating layor botuson phase 1 and p	Rist in 1	3.43E-02 m	R_int_inz_1-RHTS_2_1+t_HTS	k3	6 1.2 C 6.74F+04 V		n' nf HTS taper in layer 1 - phare 3	Teper 1.3	95		Toper_1_3 - round[2 == "RHTS_1_3" car (=1_3) / u_HTS	Temperature rire for LH2 in the former	AT LH2 farmer	3.5	
 A constant of the constant of the	Puter radiur of inrulating layer between phase 1 and (Rest int 1	4.86E-02 m	R_oxting_1-R_int_ing_1+t_ing_1	E_A	C 520E+07 Wm		Tuirt angle of HTS layer 2 - phase 1	s2_1	15			Maximum temperature fur LH2 in the fur	any LH2 farm	71.5	ĸ
 1 - Coal and scope definition 2 -Inventory analysis-Benchmark 2 -Inventory analysis-Benc	aner rediur of HTS layer 1 - phare 2	SH15 1 2	4.86E-02 m	RHTS_1_2 - R_ext_ing_1				Tuirt angle of HTS layer 1 - phare 2	1 2	-13			Maximum temperature fur LH2 in the ann	1	72.6	<u>к</u>
 	hickness of involution layer between phase 1 and	Line i	1.36E-02 m	framingulation parameters and line valtage				Critical current of HTS taper at T_HTS (me	HTS T HT	S 420.5	A		Heat temperature for LH2 in the envelop	1 Lesselar	70.3	<u> </u>
 A 1-Coal and scope definition 2-Inventory analysis-Benchmark 2-Inventor	lutor radiur af inrulating layor botuoon pharo 1 and j	R ast int 2	6.24E-02 m	R_oxt_inr_2 R_int_inr_2+t_inr_2				F_ratin of HTS taper in layer 1 - phase 1	F_1_1	0.44			Temperature of HTS taper at left ride of	1 HT5 IAR	69.8	к
A 1-Goal and scope definition 2 - Difference 2 - Inventory analysis-Benchmark 2 - Inventory analysis-HTS 3 - Cacluation of indicators-HTS 4 - Int Comparison <	nnor radiur of HTS layor 1 - pharo 3 nnor radiur of inculating layor outride phare 3	RH15_1_3	6.24E-02 m 6.25E-02 m	RHTS_1_3-R_oxt_ing_2 B int ing 3-BHTS 1 3+t HTS				F_ratin of HTS toper in layer 2 - phase 1 F ratin of HTS toper in layer 1 - phase 2	F_2_1	0.44			Tomporature of HTS tapes at right side of Mean HTS temperature in the cable, for a	A T HTS right	70.3	
• 1-Goal and scope definition 2-Inventory analysis-Benchmark 2-Inventory analysis-HETS 3.0-HTS 3-Cacluation of indicators-HTS 4-Int • • • • • • • • • • • • • • • • • • •	hickness of insulating layer autride phase 3	Cine 3	1.32E-02 m	from insulation parameters and line voltage				F_ratin of HTS toper in layer 1 - phase 3	F_1_3	0.48			Prossuro drup	1 1 <u>0</u> 000		
 1-Goal and scope definition 2-Inventory analysis-Benchmark 2-Inventory analysis-Benchmark	outer rediur of inrulating layer outride phase 3	Seat in 3	7.58E-02 m	R_ext_ing_3-R_int_ing_3+t_ing_3				E af HTS taper in layer 1 - phare 1	<u>EL1</u>	0.006.55			Prozzuro drup fur LH2 in the furmer [Pa]	AP IN2 farmer	3.07E+05	Pa
 A constrained and second definition A constrained and second definition	hickness of conner pentral layer		2.00E-03 m	P_inChoutral-P_inChoutral				and HTS taper in layer 2 - phare 1	£12	0.00655			Pressure drap fur LH2 in the encoder gap	ALL THE SPREED	4.592705	
 1-Goal and scope definition 2-Inventory analysis-Benchmark 2-Inventory analysis-BENCHMARK	Dutor radiur of coppor noutral layor	EAST BARTIN	7.78E-02 m	R_oxt_noutral-R_int_noutral+t_n				{ uf HTS topor in layor 1 - phare 3	£1.3	0.00958						
 1-Goal and scope definition 2-Inventory analysis-Benchmark 2-Inventory	hickness of cure fixture layer between netrual and	<u>.</u> .	8.00E-04 m	P ist secolus P out control to a				Laurer of HTS toper in layer 1 - phare 1	AC HTS	1 3.97E+04	W					
Auszulation Description Descrin Descrin Descrin De	hickness of the annulas was	(_esselar	2.78E-02 m	LCuCaman - CasCanada - Co				Larror of HTS topor in layor 1 - phare 2	AC_HTS_1	2.40E+05	Ŵ					
 1-Goal and scope definition 2-Inventory analysis-Benchmark 2-Inventory analysis-HTS 3.0-HTS Cable design 3-Calculation of indicators-HTS 4-Intr	luter rediur of the ensuler gap	2	1.06E-01 m	R_ext_annulur - R_int_annulur + t_annulur				Lurrer of HTS toper in layer 1 - phare 3	AC_HTS_1	1.05E+05	W					
Autor dia dia unitati Rate unitation Rate unitation <t< td=""><td>hickness of the covertet well</td><td>K_16(_C778</td><td>3,18E-02 m</td><td>h_inc_orys - h_ext_densitier</td><td></td><td></td><td></td><td>Incar no increar in the net Steper of the Unit</td><td>LUT_AC_HIS</td><td>4 23E+05</td><td>w</td><td></td><td></td><td></td><td></td><td></td></t<>	hickness of the covertet well	K_16(_C778	3,18E-02 m	h_inc_orys - h_ext_densitier				Incar no increar in the net Steper of the Unit	LUT_AC_HIS	4 23E+05	w					
 1-Goal and scope definition 2-Inventory analysis-Benchmark 2-Inventory analysis-HTX 3.0-HTX Cable design 3-Calculation of indicators-HTX 4-Int¹ 4 -Int¹ 2-Inventory analysis-Benchmark 2-Inventory analysis-Benchmark 	utor radiur of the cryortat	S est are	1.38E-01 m	R_ext_crys-R_int_crys				Technical parameter	Symbol	HTS system	Unitr	Commont				
 1-Goal and scope definition 2-Inventory analysis-Benchmark 2-Inventory analysis-HTS 2-Inventory analysis-HTS 3.0-HTS Cable design 3-Calculation of indicators-HTS 4-Intt 4-Int								Capacitance of involating layer between ph	Caper 1	3.51E-10	F					
 1-Goal and scope definition 2-Inventory analysis-Benchmark 2-Inventory analysis-HTS 3.0-HTS Cable design 3-Calculation of indicators-HTS 4-Intt	If Ited turs tki turs	tins, tarrs ting, t	HTS Lins, In Ic Lan	crys				Capacitance of involuting layer autride pho	Coper_3	6.41E-10	F					
 1-Goal and scope definition 2-Inventory analysis-Benchmark 2-Inventory analysis-HTS 3.0-HTS Cable design 3-Calculation of indicators-HTS 4-Int¹ (+) : 4 	Rformer			R				Larror of involuting layer between phase 1	a karr_iar_1	2.30E+03	W					
 1-Goal and scope definition 2-Inventory analysis-Benchmark 2-Inventory analysis-HTS 3.0-HTS Cable design 3-Calculation of indicators-HTS 4-Int¹ (*) : 	R _{HTSL}							Lurrer of involuting layer between phase 2 -	Lus_in_3	4.21E+03	Ŵ					
 1-Goal and scope definition 2-Inventory analysis-Benchmark 2-Inventory analysis-HTS 3.0-HTS Cable design 3-Calculation of indicators-HTS 4-Int¹ (+) : 4 	Rintenin							Tutal Increase in the 3 insulating layers	Larr iar	9.80E+03	W					
 1-Goal and scope definition 2-Inventory analysis-Benchmark 2-Inventory analysis-HTS 3.0-HTS Cable design 3-Calculation of indicators-HTS 4-Int¹	Rextingm							Larrer fram cryartet Technical parameter	Symbol	HTS system	Unitr	Commont			++	
 1-Goal and scope definition 2-Inventory analysis-Benchmark 2-Inventory analysis-HTS 3.0-HTS Cable design 3-Calculation of indicators-HTS 4-Int¹ (+) : 	Rintastrud							Total Incres from crynstat in the uhule cabl	In Anna care	7.16E+04	W					
 1-Goal and scope definition 2-Inventory analysis-Benchmark 2-Inventory analysis-HTS 3.0-HTS Cable design 3-Calculation of indicators-HTS 4-Int¹	Restnervit							Lurrer due tu eddy currentr Technical naremeter	Symbol	HISeret	linite	Generat				
 1-Goal and scope definition 2-Inventory analysis-Benchmark 2-Inventory analysis-HTS 3.0-HTS Cable design 3-Calculation of indicators-HTS 4-Int¹ (+) : (Restanute							Tutal Incres due to eddy currents in the uk	- Laws adds	3.13E+04	W					
A 1-Goal and scope definition 2-Inventory analysis-Benchmark 2-Inventory analysis-Benchmark 2-Inventory analysis-HTS 3.0-HTS Cable design 3-Calculation of indicators-HTS 4-Intr 4-A-Intr 4-Intr	P							Lurzez from the terminations								
A 1-Goal and scope definition 2-Inventory analysis-Benchmark 2-Inventory analysis-HTS 3.0-HTS Cable design 3-Calculation of indicators-HTS 4-Intr 4-A-Intr 4-Intr 4-Intr 4-Intr 4-Intr 4-Intr 4-Intr 4-Intr 4-Intr	R							Total Increa from the terminations	Symbol (arr. farm	5.27E+03	W	Commont				
 1-Goal and scope definition 2-Inventory analysis-Benchmark 2-Inventory analysis-HTS 3.0-HTS Cable design 3-Calculation of indicators-HTS 4-Intr 4-Intr 4-Intr 4-Intr 4-Intr 4-Intr 	("estaye							Total Inzzez in the uhule cable								
 1-Goal and scope definition 2-Inventory analysis-Benchmark 2-Inventory analysis-Benchmark 2-Inventory analysis-HTS 3.0-HTS Cable design 3-Calculation of indicators-HTS 4-Intr 4-Intr 								Technical parameter Tutal larger in the unale cable	Symbol	S 41E+05	Unitr	Commont				
 A 1-Goal and scope definition 2-Inventory analysis-Benchmark 2-Inventory analysis-HTS 3.0-HTS Cable design 3-Calculation of indicators-HTS 4-Intr								Larr components to LH2 and single terminatio		2.412102	w					
 A 1-Goal and scope definition 2-Inventory analysis-Benchmark 2-Inventory analysis-HTS 3.0-HTS Cable design 3-Calculation of indicators-HTS 4-Intr 4-Intr Edited to the finite to the finite								Technical parameter	Symbol	HTS system	Unitr	Commont				
 A 1-Goal and scope definition 2-Inventory analysis-Benchmark 2-Inventory analysis-HTS 3.0-HTS Cable design 3-Calculation of indicators-HTS 4-Intr • • 								Heat input in the LH2 flaving in the former		3.9E+04 5.1E+04	W					
 A 1-Goal and scope definition 2-Inventory analysis-Benchmark 2-Inventory analysis-HTS 3.0-HTS Cable design 3-Calculation of indicators-HTS 4-Int¹ (+) : 								Heat produced by the terminations in a sing	1 6 0	2.6E+03	Ŵ					
 A 1-Goal and scope definition 2-Inventory analysis-Benchmark 2-Inventory analysis-HTS 3.0-HTS Cable design 3-Calculation of indicators-HTS 4-Intr Image: A state of the state of th																
▲ I-Goal and scope definition 2-Inventory analysis-Benchmark 2-Inventory analysis-HTS 3.0-HTS Cable design 3-Calculation of indicators-HTS 4-Int ⊕ :																
🔹 🕨 1-Goal and scope definition 🛛 2-Inventory analysis-Benchmark 👌 2-Inventory analysis-HTS 3.0-HTS Cable design 3-Calculation of indicators-HTS 👋 4-Intr 💮 🗄 4																
🔹 🛌 🛛 1-Goal and scope definition 🔰 2-Inventory analysis-Benchmark 👋 2-Inventory analysis-HTS 🔰 3.0-HTS Cable design 🚽 3-Calculation of indicators-HTS 🔰 4-Int 🔶 🗄 💽																
🕢 🕨 🔰 1-Goal and scope definition 🔰 2-Inventory analysis-Benchmark 👋 2-Inventory analysis-HTS 🔰 3.O-HTS Cable design 🔰 3-Calculation of indicators-HTS 🔰 4-Internet 🖓 🚼 💽							_				_					
	1-Goal and score	pe defin	ition 2	2-Inventory analysis-Benchr	nark 2-Inventory	analysis-HTS	3.0-HT	5 Cable design 3-Calc	ulation o	of indica	ators-	HTS 4-Int 🔾	4			
				son and a solution				s care								

$\frac{t_{f}}{t_{lev}} t_{HTS} t_{k1} t_{HTS} \frac{t_{ins_{1}}}{t_{HTS}} \frac{t_{ins_{2}}}{t_{HTS}} t_{HTS} \frac{t_{ins_{3}}}{t_{ins_{3}}} t_{n}$	t_c t_{an}	t _{cryc}
R _{former}	~~	\overrightarrow{R}
$R_{HTS_{i,j}}$		
R _{extins m}		
R _{int_{netrual}}		
R _{extnetrual}		
R _{extannulus}	→	
R _{intcryo}		
R _{ext_{cryo}}		

Technical model					
Property	Symbol	Value			
Former thickness	R _{former}	30 mm			
Thickness of the former	t _f	2 mm	8] [
Thickness of the levelling layer between former and innermost HTS layer	t _{lev}	1.9 mm	[6		
Thickness of HTS tapes	t _{HTS}	0.15 mm			
Thickness of layer between HTS layers of the same phase	t_k	0.05 mm			
Thickness of insulating layers	t_{ins_1} , t_{ins_2} , t_{ins_3}	See next slides			
Thickness of copper neutral layer	t_n	3 mm	[5		
Thickness of core fixture layer between netrual and annular gap	t _c	0.8 mm	6		
Thickness of the annular gap	t _{annulus}	27.8 mm	-		
Cryostat wall thickness	t _{cryo}	31.8 mm	[5		

$$R_{HTS_{1_1}} = R_{former} + t_f + t_{lev}$$

$$R_{HTS_{k_{1}}} = [t_{HTS}(n_{l_{1}}-1)] + [t_{k}(n_{l_{1}}-1)]$$

$$R_{int_{ins_{1}}} = R_{HTS_{1_{1}}} + (t_{HTS} n_{l_{1}}) + [t_{k}(n_{l_{1}}-1)]$$

Group of electrical engineering - Paris

andrea.musso@rse-web.it

$$R_{HTS_2} = R_{ext_{ins_1}}$$

$$R_{int_{ins_2}} = R_{HTS_2} + (t_{HTS} n_{l_2}) + [t_k (n_{l_2} - 1)]$$

Group of electrical engineering - Paris

$$I_{ins_{im_{2}}} = R_{int_{ins_{2}}} \left[exp\left(\frac{k_{1_{AC}}k_{2_{AC}}k_{3_{AC}}V_{AC}}{R_{int_{ins_{2}}}E_{in}}\right) - 1 \right]$$

$$I_{ins_{AC_{2}}} = R_{int_{ins_{2}}} \left[exp\left(\frac{k_{1_{AC}}k_{2_{AC}}k_{3_{AC}}V_{AC}}{R_{int_{ins_{2}}}E_{AC}}\right) - 1 \right]$$

$$R_{HTS_3} = R_{ext_{ins_2}}$$

$$R_{int_{ins_3}} = R_{HTS_3} + (t_{HTS} n_{l_3}) + [t_k (n_{l_3} - 1)]$$

Group of electrical engineering - Paris

$$I = R_{int_{ins}} = R_{int_{ins}} \left[exp\left(\frac{k_{1ac} k_{2ac} k_{3ac} V_{Ac}}{R_{int_{ins}} E_{ac}}\right) - 1 \right]$$

$$I_{ins_{AC_3}} = R_{int_{ins}} \left[exp\left(\frac{k_{1ac} k_{2ac} k_{3ac} V_{Ac}}{R_{int_{ins}} E_{Ac}}\right) - 1 \right]$$

$$I = R_{int_{ins}} \left[exp\left(\frac{k_{1ac} k_{2ac} k_{3ac} V_{Ac}}{R_{int_{ins}} E_{Ac}}\right) - 1 \right]$$

Group of electrical engineering - Paris

$t_{f} t_{lev} t_{HTS} t_{k} t_{HTS} t_{ins_{1}} t_{HTS} t_{ins_{2}} t_{HTS} t_{ins_{3}} t_{n} t_{c}$	t _{an} t _{cryo}
Normer	
R _{HTSi,j}	
R _{intinsm}	
R _{extinsm}	
Rintnetrual	
Rextnetrudi	
R _{extannulus}	
R _{int_{cryo}}	
R _{extcryo}	

$$R_{int_{neutral}} = R_{ext_{ins_3}}$$

$$R_{ext_{neutral}} = R_{int_{neutral}} + t_n$$

	$t_{lev} t_{HTS}$	$t_k t_{HTS}$	$t_{ins_1} t_H$	TS t _{ins}	t _{HTS} t _{ins}	$t_n t_c$	t _{an} t _{cryo}
n former					Î		R
$R_{HTS_{i,j}}$ $R_{int_{insm}}$							
R _{extinsm}							
R _{int_{netrual}}						<mark>→</mark>	
$R_{ext_{annulus}}$							
R _{intcryo}							
R _{extcryo}							

$$R_{int_{annulus}} = R_{ext_{neutral}} + t_c$$

$$R_{int_{annulus}} = R_{int_{annulus}} + t_{annulus}$$

$t_f t_{lev} t_{HTS} t_k t_{HTS}$	$t_{ins_1} t_{HTS}$	t _{ins2} t _{HTS}	$t_{ins_3} t_n t_c$	t _{an} t _{cryo}
Atormer				
R _{HTS_{i,j}}				
R _{intins m}				
R _{ext_{ins m}}				1
R _{int_{netrual}}				
R _{extnetrudi}				
R _{extannulus}				
R _{intcryo}				
R _{extcryo}				
	1			

$$R_{int_{cryo}} = R_{ext_{annulus}}$$

$$R_{ext_{cryo}} = R_{int_{cryo}} + t_{cryo}$$

Compute losses

TEA on HTS cables \rightarrow Compute the cable system losses

This loop can be solved numerically via a constrained minimization operation (losses, cable cost). In this analysis, we set a tentative value of the mean temperature of HTS (T_{HTS}) and the mean temperature of the LN2 in the annular gap ($T_{annulus}$). Then, we could adjust them once we get the results.

Technical model – Tentative temperatures			
T _{HTS}	70.1 K		
T _{annulus}	70.4 K		

andrea.musso@rse-web.it

TEA on HTS cables \rightarrow Losses

Each term will be detailed in the next slides...

andrea.musso@rse-web.it

andrea.musso@rse-web.it

Technical model

Symbol

f

 n_{stat}

 nl_i

 $\alpha_{i,i}$

 $I_{rms_{1,1}}$, $I_{rms_{2,1}}$

 $I_{rms_{1,2}}$ $I_{rms_{1,3}}$

 $I_c(T_{HTS})$

L_{line}

 W_{HTS}

32 km

4 mm

2024

1000

TEA on HTS cables \rightarrow Losses \rightarrow Loss_{AC HTS}

 $Losses = Loss_{AC HTS} + Loss_{ins} + Loss_{eddy} + Loss_{cryo} + Loss_{term}$

$$Loss_{AC HTS} = \sum_{i}^{3} \left[\sum_{j}^{nl_{i}} Tapes_{i,j} \frac{L_{line}}{|cos(\alpha_{i,j})|} \frac{\mu_{0} f}{\pi} I_{c}^{2}(T_{HTS}) \xi_{i,j} \right]$$
[14]

Property

AC current frequency N° of intermediate cooling stations

N° of HTS layers for each layer

Twist angle for each HTS layer/phase

rms value of the AC current in each layer of phase 1

rms value of the AC current in each layer of phase 2

rms value of the AC current in each layer of phase 3 HTS tape critical depending on its mean temperature

Line length

Tape width

$$\xi_{i,j} = (1 - F_{i,j}) \ln(1 - F_{i,j}) + (1 + F_{i,j}) \ln(1 + F_{i,j}) - F_{i,j}^2$$

$$F_{i,j} = \frac{I_{M_{i,j}}}{I_c(T)} = \frac{\sqrt{2} I_{rms_{i,j}}}{Tapes_{i,j} I_c(T_{HTS})}$$

$$Tapes_{i,j} = round\left(\frac{2\pi R_{HTS_{i,j}} |cos(\alpha_{i,j})|}{w_{HTS}}\right)$$

300 800 700 ∑ 500 20 100 0 40	$I_{C_{77K}} = 293.7 A$
Lin $I_c(T_{HTS}) = I_{c_7}$	ear dependance: $_{7K}(-0.0654 T_{HTS} + 6.0503)$
Value	
5	-
2, 1, 1	
11°, 15°, -13°, -14°	Reference material :
6.9 kA , 6.9 kA	SuNAM SCN04 4mm tape
13.81 kA	[15]
13. 81 kA	

andrea.musso@rse-web.it

TEA on HTS cables \rightarrow Losses \rightarrow Loss_{ins}

$$Losses = Loss_{AC HTS} + Loss_{ins} + Loss_{eddy} + Loss_{cryo} + Loss_{term}$$

$$\begin{bmatrix} Loss_{ins} = \sum_{w}^{3} [2 \pi f L_{line} tan \delta_{ins} Capac_{w} V_{rms}^{2}] \\ Capac_{w} = \frac{2 \pi \varepsilon_{ins} \varepsilon_{0}}{\ln\left(\frac{R_{ext_{ins}w}}{R_{int_{ins}w}}\right)} \end{bmatrix}$$

[16, 17, 18]

Reference material : PPLP

Technical model							
Property	Symbol	Value					
AC current frequency	f	50 Hz					
N° of intermediate cooling stations	n _{stat}	5					
Loss tangent of insulation	$tan \delta_{ins}$	6e-4					
Permettivity of insulation	ε_{ins}	2.21					
Voltage level of the cable	V_{rms}	33 kV					
Inner radius for each insulating layer	$R_{int_{ins_1}}, R_{int_{ins_2}}, R_{int_{ins_3}}$	34.3 mm , 48.8 mm, 62.5 mm					
Outer radius for each insulating layer	$R_{ext_{ins_{-}1}}, R_{ext_{ins_{-}2}}, R_{ext_{ins_{-}3}}$	48.6 mm, 62.4 mm , 75.8 mm					
Line length	L _{line}	32 km					

TEA on HTS cables \rightarrow Losses \rightarrow Loss_{cryo}

 $Losses = Loss_{AC HTS} + Loss_{ins} + Loss_{eddy} + Loss_{cryo} + Loss_{term}$

$$Loss_{cryo} = L_{line} \frac{2\pi \lambda \left[T_a - T_{annulus}\right]}{\ln(R_{ext_{cryo}}/R_{int_{cryo}})}$$

Technical model						
Property	Symbol	Value				
N° of intermediate cooling stations	n _{stat}	5				
Effective thermal conductivity of the cryostat	λ	0.4 mW/(m K)				
Ambient temperature (outside the cable)	T_a	300 K				
T _{LN2} in the annulus (mean - tentative)	T _{annulus}	70.4 K				
Inner radius of the cryostat	$R_{int_{cryo}}$	106.0 mm				
Outer radius of the cryostat	$R_{ext_{cryo}}$	137.8 mm				
Cryostat wall thickness	t _{cryo}	3.18 cm				
Line length	L _{line}	32 km				

[19]

TEA on HTS cables \rightarrow Losses \rightarrow Loss_{eddy}, Loss_{term}

 $Losses = Loss_{AC HTS} + Loss_{ins} + Loss_{eddy} + Loss_{cryo} + Loss_{term}$

$$Loss_{eddy} = L_{line}Q_{eddy} I_{max}$$
$$Loss_{term} = n_{term} Q_{term} I_{max}$$

Technical model							
Property	Symbol	Value					
Eddy current loss per unit of length and unit of current	Q_{eddy}	50 mW/(kA*m)					
Amplitude of the AC current in each phase	I _{max}	19.53 kA					
N° of terminations (both ends)	n _{term}	6					
Loss for each termination per unit of current	Q_{term}	45 W/kA					
Line length	L _{line}	32 km					

[7]

Verify constraints

TEA on HTS cables \rightarrow Losses

TEA on HTS cables \rightarrow Constraints $\rightarrow \Delta T_{LN2}$ and ΔP_{LN2}

$$\begin{bmatrix} \Delta T_{former} \leq \Delta T_{LN2}_{max} \implies \Delta T_{former} = d_{stat} \begin{pmatrix} \nu_{LN2}_{former}^2 f_{LN2}_{former} \end{pmatrix} + \frac{Q_f}{2 m_{LN2}^2 cp_{LN2}} \\ \Delta T_{annulus} \leq \Delta T_{LN2}_{max} \implies \Delta T_{annulus} = d_{stat} \begin{pmatrix} \nu_{LN2}_{former} cp_{LN2} \end{pmatrix} + \frac{Q_a}{2 m_{LN2}^2 cp_{LN2}} \\ \frac{Q_{an}}{2 m_{LN2}^2 cp_{LN2}} \end{pmatrix} + \frac{Q_{an}}{2 m_{LN2}^2 cp_{LN2}} \\ \begin{bmatrix} \Delta P_{former} \leq \Delta P_{LN2}_{max} \implies \Delta P_{former} = \begin{pmatrix} d_{stat} \end{pmatrix} \\ \frac{\rho_{LN2} \nu_{LN2}_{former}^2 f_{LN2}_{former}}{4 R_{former}} \end{pmatrix} + (g\rho_{LN2}\Delta h) \\ \Delta P_{annulus} \leq \Delta P_{LN2}_{max} \implies \Delta P_{annulus} = \begin{pmatrix} d_{stat} \end{pmatrix} \\ \frac{\rho_{LN2} \nu_{LN2}_{annulus}^2 f_{LN2}_{annulus}}{4 t_{annulus}} \end{pmatrix} + (g\rho_{LN2}\Delta h) \\ + (g\rho_{LN2}\Delta h) \\ \frac{f_{LN2}_{former}}{e} = \left\{ -1.8 \ln \left[\left(\frac{\varepsilon_{former}}{7.4 R_{former}} \right)^{1.11} + \left(\frac{6.9}{Re_{former}} \right) \right]^{-2} \\ \text{Friction with the ducts walls causes both:} \\ \frac{1}{10} \text{ heating of the fluid } \bigotimes \\ \frac{1}{10} \text{ pressure drop } \bigotimes \\ \nu_{LN2}_{former} = \frac{m_{LN2}}{\rho_{LN2} \pi R_{former}^2} \\ \frac{1}{10} \sum_{LN2} \frac{m_{LN2}}{\pi t_{annulus}}^2 \end{bmatrix}^{-2} \\ \frac{1}{10} \sum_{LN2} \frac{m_{LN2}}{\pi t_{annulus}^2} \end{bmatrix}^{-2}$$

andrea.musso@rse-web.it

TEA on HTS cables \rightarrow Constraints $\rightarrow \Delta T_{LN2}$ and ΔP_{LN2}

- **□** The number of cooling stations must prevent ΔT_{LN2} and ΔP_{LN2} from exceeding the maximum limits set.
- This does not mean that it is always economically convenient to use the minimum number of stations (spacing them as much as possible).
- □ Designing the cable system to have more cooling stations than the minimum can allow working with higher pressure and temperature margins → it **could** be more cost-effective!

andrea.musso@rse-web.it

TEA on HTS cables \rightarrow Constraints $\rightarrow \Delta T_{LN2}$ and ΔP_{LN2}

We can verify whether the hypotheses on T_{HTS} and $T_{annulus}$ were acceptable.

TEA on HTS cables \rightarrow Constraints \rightarrow I_{HTS}/I_{c}

The maximum current flowing in each tape have to stay below a safety margin of the I_c. This has to be valid for all layers in all phases.

$$\frac{\sqrt{2} I_{rms}}{Tapes_{i,j}} / I_c \left(max \left[T_{HTS_{left}}, T_{HTS_{right}} \right] \right)^{\leq safety_{HTS}}$$
$$Tapes_{i,j} = round \left(\frac{2\pi R_{HTS_{i,j}} \left| cos(\alpha_{i,j}) \right|}{w_{HTS}} \right)$$

Technical model						
Property	Symbol	Value				
Twist angle for each layer/phase	$\alpha_{i,j}$	11°, 15°, -13°, -14°				
rms value of the total AC current in each phase	I _{rms}	13.81 kA				
HTS tape critical current depending on its max temperature	$I_c\left(max\left[T_{HTS_{left}}, T_{HTS_{right}}\right]\right)$	424 A				
Safety marging for the I _{HTS} /I _c ratio	safety _{HTS}	80%				
Tape width	W _{HTS}	4 mm				

TEA on HTS cables \rightarrow Constraints

In this section of the sheet **Calculation of indicators – HTS** you can verify if the computed values comply with the constraints that you have selected.

	the later and while the later and while			
VERIFY CONSTRAINTS AND CHECK QUALITY OF TENTATIVE TEMP.S				
Temperature rise in the LN2 flowing in the former	ΔT_LN2_former	3.5	К	
Temperature rise in the LN2 flowing in the annular gap	ΔT_LN2_annulus	4.6	К	
Maximum temperature rise allowed for the LN2 in both ducts	ΔT_LN2_max	10.0	K	
Pressure drop in the LN2 flowing in the annular gap [bar]	ΔP_LN2_annulus	3.1	bar	
Pressure drop in the LN2 flowing in the annular gap [bar]	ΔP_LN2_annulus	4.6	bar	
Maximum pressure drop allowed for the LN2 in both ducts	ΔP_LN2_max	12.0	bar	
Mean LN2 temperature in the annular gap (TENTATIVE)	T_annulus	70.4	К	
Mean LN2 temperature in the annular gap (COMPUTED)	T_annulus	70.3	K	
Mean HTS temperature in the cable (TENTATIVE)	T_HTS	70.1	К	
Mean HTS temperature in the cable (COMPUTED)	T_HTS	70.0	K	
Critical current of HTS tapes at maximum temperature	lc_HTS_T_HTS_max	426.5	А	
Ratio between Imax in HTS tapes and their Ic in layer 1 - phase 1	lmax_1_1/lc_HTS_T_HTS_max	0.440		Imax_
Ratio between Imax in HTS tapes and their Ic in layer 2 - phase 1	lmax_2_1/lc_HTS_T_HTS_max	0.440		Imax_
Ratio between Imax in HTS tapes and their Ic in layer 1 - phase 2	lmax_1_2/lc_HTS_T_HTS_max	0.619		Imax_
Ratio between Imax in HTS tapes and their Ic in layer 1 - phase 3	lmax_1_3/lc_HTS_T_HTS_max	0.482		Imax_
Safety value of I_tape/Ic_HTS not to be passed	safety_HTS	0.80		
Variable	Symbol	HTS system	Units	
-Goal and scope definition 2-Inventory analysis-Benchmark 2-Inventory analysis-HT	S 3.0-HTS Cable design 3-Calcula	tion of indicator	rs-HTS 4-Inte	··· 🛨 :

Compute CAPEX and OPEX

TEA on HTS cables \rightarrow CAPEX and OPEX for conventional power cables

CAPEX

- Conductor
- Terminations and joints
- Installation and civil
- Land
- Dismantling
- Management, regulation, commissioning, studies, consents...

OPEX

- Conductor resistive losses
 energy loss along the line
- Maintenance

rsearch

TEA on HTS cables \rightarrow CAPEX and OPEX for HTS system costs

CAPEX

- Conductor components (HTS, insulation, Cu...)
- Cabling
- Vacuum system
- Cooling stations
- Cryogenic fluid
- Land
- Dismantling
- Terminations
- Cryostat
- Civil eng., Management, Commissioning, Studies...

OPEX

- Heat inputs along the line

 P
 energy to operate the cooling stations
 Cooling stations
- Maintenance

LCC

$$LCC = \sum_{t=1}^{L} \frac{CAPEX_t + OPEX_t}{(1+r)^t}$$

Again, by searching appropriate databases (... and being lucky), the economic data you need may already be available, without doing any calculations.

Technical model – Main Features						
Property	Symbol	Value				
Cable power	Р	1 GW				
Voltage rms	V _{rms}	25 kV				
Load factor	cosφ	0.95				
Line length	L _{line}	32 km				

Q_{cl} Term.

cooling

station left

Lline

Former

LN₂ supply

Cryostat insulation

eutral conductor

Technical model – Main Features						
Property	Symbol	Value				
Cable power	Р	1 GW				
Voltage rms	V _{rms}	25 kV				
Load factor	cosφ	0.95				
Line length	L _{line}	32 km				

Former

LN2 supply

Q_{cl} Term.

cooling

station left

d_{staz}

Cryostat insulation

Neutral conductor

nl

...however, in this lecture we will provide the equations to calculate the costs ourselves, so you can have more control on the outputs at different conditions and a better understanding.

We will do this in the sheet **Calculation of indicators – HTS** of our Excel file.

	201017 1115	0.20								
				Economic andel						
MATERIAL C	Symbol	115 system	Unite	GERRART			-			
HHIERINES	C N75 A	260.4	м	A NTE A., NTEMA NTE MI NTE MI NTE M						
Carrow CAPET	6.6.4	1.0	MI							
Involution CAPEZ	C inc #	4.1	MI	C in the int in 1991 in 1990 in 2990 in 29						
LN2 CAPES	0_1.02_0	0.00012	MI	CINE P-EINE'NO / INE'NO/ INE						
Cryartat CAPEZ	6_ cr78_#	7.0	MI	Carre 6-carre Line						
Terminations CAPEZ	C torm #	0.4	MI	C. torne &						
COOLING STATIONS										
Cualing stations CAPES	C_cast_f	3.5	MI	C_cont_f'-actor '(_cont_fixed+(c_crys_ver 'C_intern '\$q`\$r)]+[c_cont_fixed+(c_crys_ver 'C_left '\$q`\$r)]+[c_cont_fixed+(c_crys_ver 'C_rig	ht "# q "# r)]					
Tearly cualing stations OPEE	O_cont_t	reeright	Mifyear	C_cont_tcon "adapt" (Contat "Faliatorm) + Faliat+ Faliat+) (140) 4						
Tutal cuuling statiums OPES discounted at t-0	O_cost_#	14.1	MI	OPEL cool #-1 OPEL cool 1						
LAND										
Land CAPEZ	C_land_#	2.4	MI	Clond & Line (2 B. lind)						
CABLING										
Cabling CAPEZ	G_cal_f	32.0	MI	C cal P - C cal "Lilian						
TACUUM STSTEM										
Tecuum system CAPES	1-172-F	1.0	10							
	C diam d		MI	C. Nov. A						
OTHER COLLE		0.1								
Other carts CAPES	Cather #	25.6	MI	C other 4-c other 1 line			-			
MAINTENANCE										
Tearly maintenance OPES	C_maint_1	reariable	Milyear	OFEL moint 1- amount 2 line 1 (14) 14						
Total maintenance OPES discounted at t-0	O_maint_f	1.6	MI	OFEL moint & COFEL moint 1						
TOTAL										
Capital expenditure (azzumed at t-0)	CAPES_#	348.2	MI	CAPEX_0-C_HTS_0+C_Cu_0+C_inz_0+C_LN2_0+C_crys_0+C_torm_0+C_cosl_0+C_land_0+C_cosb_0+C_vac_0+C_dirm_0+C_sthor_0						
Tourly uporational expenditure	OPIE_1	reeright	Mifyear	OPEX_t-O_cosl_t+O_moint_t						
Tutal aperational expenditure discussed at t-0	OFIE #	15.7	MI	IOPEN &						
Life cycle curt (1-40y, r-0.05)	100 (7-0.03)	363.9	M	CAPEA_0*OPEA_0						
							MET P	recent Velu		
						Tear	6_ cont_t	C_maint_t	OFTL	Unitr
	CAREY (MAC)			ODEX (MAC)		1	0.8	0.091	0.873	м
1.7	CAPEX (IVIE)			HTS_0 OPEX (NE)	-	2	0.7	0.087	0.831	MI
2.4					-		0.7	0.083	0.792	MI
	25.6				-		0.1	0.075	0.734	MI
7.0 3.5				nr. 0		6	0.6	0.072	0.684	MI
7.0 0.4 32.0			00			7	0.6	0.068	0.651	MI
					-	*	0.6	0.065	0.620	MI
0.00012			-		-	9	0.5	0.062	0.591	N
			□C_			11	0.5	0.055	0.536	MI
4.1						12	0.5	0.053	0.510	MI
10				term_0		13	0.4	0.051	0.486	MI
1.5					_	14	0.4	0.048	0.463	MI
					-	15	0.4	0.046	0.441	MI
		/	■C	and_0		17	0,4	0.042	0.400	MI
	269.4					18	0.3	0.040	0.381	ML
			■C_			19	0.3	0.038	0.363	MI
				14		20	0.3	0.036	0.345	MI
			<u> </u>			21	0.3	0.034	0.329	MI
				dism 0		23	0.3	0.031	0.298	MI
						24	0.3	0.030	0.284	MI
			C	bther_0		25	0.2	0.028	0.271	MI
		L L	_			26	0.2	0.027	0.258	MI
						27	0.2	0.026	0.245	MI
					-	24	0.2	0.024	0.234	MI
								0.01.0	0.223	
						30	0.2	0.022	0.223	MI
						30 31	0.2	0.022	0.212 0.202	MI MI
						30 31 32	0.2 0.2 0.2	0.022 0.021 0.020	0.212 0.212 0.202 0.192	M M
						30 31 32 33	0.2 0.2 0.2 0.2	0.022 0.021 0.020 0.019	0.223 0.212 0.202 0.192 0.183	MI MI MI
						30 31 32 33 34	0.2 0.2 0.2 0.2 0.2 0.2	0.022 0.021 0.020 0.019 0.018	0.223 0.212 0.202 0.192 0.183 0.174	MI MI MI MI
						30 31 32 33 34 35 24	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1	0.022 0.021 0.020 0.019 0.018 0.017 0.017	0.223 0.212 0.202 0.192 0.183 0.174 0.166	MI MI MI MI MI
				ale design 2 Calculation of indicators UTS 4 Internation		30 31 32 33 34 35 74	0.2 0.2 0.2 0.2 0.2 0.2 0.1	0.025 0.022 0.021 0.020 0.019 0.018 0.017 0.017	0.223 0.212 0.202 0.192 0.183 0.174 0.166 0.469	M M M M
2-Inventory analy	sis-HTS 3	3.0-H1	S Cal	ole design 3-Calculation of indicators-HTS 4-Interpretation	ם _	30 31 32 33 34 35 7 *	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1	0.022 0.021 0.020 0.019 0.018 0.017 0.017	0.223 0.212 0.202 0.192 0.183 0.174 0.166 0.460	MI MI MI MI MI

TEA on HTS cables \rightarrow CAPEX

 $CAPEX = CAPEX_{mat} + CAPEX_{cool} + CAPEX_{land} + CAPEX_{cab} + CAPEX_{vac} + CAPEX_{dism} + CAPEX_{other}$

Each term will be detailed in the next slides...

andrea.musso@rse-web.it

TEA on HTS cables \rightarrow CAPEX \rightarrow CAPEX_{mat} \rightarrow CAPEX_{HTS}

 $CAPEX_{mat} = CAPEX_{HTS} + CAPEX_{Cu} + CAPEX_{ins} + CAPEX_{LN2} + CAPEX_{cryo} + CAPEX_{term}$

$$CAPEX_{HTS} = n_{cables} c_{HTS} \sum_{i}^{3} \sum_{j}^{nl_{i}} Tapes_{i,j} \frac{L_{line}}{|cos(\alpha_{i,j})|}$$

$$Tapes_{i,j} = round$$

$$\frac{2\pi R_{HTS_{i,j}} \left| cos(\alpha_{i,j}) \right|}{w_{HTS}} \right)$$

Economic model					
Property	Symbol	Value			
HTS tape cost per unit length	C _{HTS}	30 €/m			

Reference material : SuNAM SCN04 4mm tape

Technical model						
Property	Symbol	Value				
Tape width	W _{HTS}	4 mm				
HTS layers radius in phase 1	$\begin{array}{c} R_{HTS_{1,1}} \\ R_{HTS_{2,1}} \end{array}$	33.9 mm 34.1 mm				
HTS layer radius in phase 2	$R_{HTS_{1,2}}$	48.6 mm				
HTS layer radius in phase 3	$R_{HTS_{1,3}}$	62.4 mm				
Twist angle for each layer/phase	α _{i,j}	11°, 15°, -13°, -14°				
Line length	L _{line}	32 km				

TEA on HTS cables \rightarrow **CAPEX** \rightarrow **CAPEX** \rightarrow **CAPEX**_{mat} \rightarrow **CAPEX**_{Cu} $_{CAPEX_{mat}} = CAPEX_{HTS} + CAPEX_{Cu} + CAPEX_{ins} + CAPEX_{LN2} + CAPEX_{cryo} + CAPEX_{term}$

$$CAPEX_{Cu} = n_{cables} c_{Cu} \rho_{Cu} Volume_{Cu}$$

$$Volume_{Cu} = L_{line} \pi \left(R_{ext_{neutral}}^2 - R_{int_{neutral}}^2 \right)$$

Economic model					
Property	Symbol	Value			
Copper cost per unit of weight	C _{CU}	7 €/kg			

Technical model						
Property	Symbol	Value				
Copper density	$ ho_{Cu}$	8850 kg/m ³				
Inner radius of Cu neutral	R _{intneutral}	75.8 mm				
Outer radius of Cu neutral	R _{extneutral}	77.8 mm				
Line length	L _{line}	32 km				

Geeps =				RSE	rsearch	
TEA on HTS cables \rightarrow CAPEX \rightarrow CAPEX \rightarrow CAPEX \rightarrow CAPEX _{ins} $CAPEX_{mat} = CAPEX_{HTS} + CAPEX_{cu} + CAPEX_{ins} + CAPEX_{LN2} + CAPEX_{cryo} + CAPEX_{term}$ $\int APEX_{ins} = n_{cables} c_{ins} \rho_{ins} Volume_{ins}$ $V_{a} hyme = h_{a} = \sum_{i=1}^{3} (p_{a} - 2 - p_{a} - 2)$						
$Volume_{ins} = L_{line} \pi \sum_{w} (R_{ext_{insw}}^2 - R_{int_{insw}}^2)$						
	oranc _{ins}	$= L_{line} \pi \sum_{w}$	(<i>Rext_{ins w} – Kint_{ins w}</i> Technic	al model		
Econor	nic model	$= L_{line} \pi \sum_{w}$	(Rext _{ins w} – Kint _{ins w} Technic Property	al model Symbol	Value	
Econor Property	nic model Symbol	$= L_{line} \pi \sum_{w}$ <i>Value</i>	(<i>Rext_{ins w}</i> – <i>Rint_{ins w}</i> Technica <i>Property</i> Insulation density	al model Symbol Pins	<i>Value</i> 0.9 ton/m ³	
Econor Property Insulation cost per unit of weight	nic model Symbol C _{ins}	$= L_{line} \pi \sum_{w}$ <i>Value</i> 10 €/kg	<i>Rextins w</i> Technica <i>Property</i> Insulation density Inner radius for each insulating layer	al model Symbol Pins R _{intins 1} R _{intins 2} R _{intins 3}	<i>Value</i> 0.9 ton/m ³ 34.3 mm 48.8 mm 62.5 mm	
Econor Property Insulation cost per unit of weight Reference m	nic model Symbol C _{ins}	$= L_{line} \pi \sum_{w}^{W}$ <i>Value</i> 10 €/kg [20] P	Mextins w Mintins w Technica Property Insulation density Inner radius for each insulating layer Outer radius for each insulating layer	al model Symbol Pins Rintins 1 Rintins 2 Rintins 3 Rextins 1 Rextins 1 Rextins 2 Rextins 3	Value 0.9 ton/m³ 34.3 mm 48.8 mm 62.5 mm 48.6 mm 62.4 mm 75.8 mm	

andrea.musso@rse-web.it

TEA on HTS cables \rightarrow CAPEX \rightarrow CAPEX_{mat} \rightarrow CAPEX_{LN2}

 $CAPEX_{mat} = CAPEX_{HTS} + CAPEX_{Cu} + CAPEX_{ins} + CAPEX_{LN2} + CAPEX_{cryo} + CAPEX_{term}$

$$CAPEX_{LN2} = n_{cables} c_{LN2} \left(\frac{kg}{l}\right)_{LN2} Volume_{LN2}$$

$$Volume_{LN2} = L_{line} \pi \left(R_{ext_{annulus}}^{2} - R_{int_{annulus}}^{2} + R_{former}^{2} \right)$$

			Technica	al model	
Economic model		Property	Symbol	Value	
Property	Symbol	Value	Kg on liter ratio for LN2	$\binom{kg}{l}_{LN2}$	1.235 kg/liter
LN2 cost per liter	C_{LN2}	0.16 €/liter	Inner radius of the annular gap	R _{intannulus}	78.6 mm
			Outer radius of the annular gap	R _{extannulus}	106.0 mm
			Former radius (inner)	R former	30 mm
			Line length	L _{line}	32 km

 $\begin{bmatrix} CAPEX_{cryo} = n_{cables} c_{cryo} L_{line} \\ \\ n_{cables} CAPEX_{term} \end{bmatrix}$

Economic model			Technica	al model	
Property	Symbol	Value	Property	Symbol	Value
Cryostat cost per unit length	C _{cryo}	220 k€/km	Line length	L _{line}	32 km
Terminations cost for a single cable	CAPEX _{term}	400 k€			

TEA on HTS cables \rightarrow CAPEX \rightarrow CAPEX_{cool}

20

 $CAPEX = CAPEX_{mat} + CAPEX_{cool} + CAPEX_{land} + CAPEX_{cab} + CAPEX_{vac} + CAPEX_{dism} + CAPEX_{other}$ \frown

$$\begin{bmatrix} CAPEX_{cool} = n_{cables} \sum_{k}^{n_{stat}+2} \left\{ C_{cool_{fixed}} + \left[\left(c_{cryocooler} \ Q_{c_k} \right) \beta_Q \right] \beta_r \right\} \\ Q_{c_k} = \begin{cases} Q_f + Q_{an} & \text{if } k = \text{intermediate stat.} \\ Q_{an} + Q_{cl} & \text{if } k = \text{left termination stat.} \\ Q_f + Q_{cl} & \text{if } k = \text{right termation stat.} \end{cases}$$

Economic model	Technical model				
Property	Symbol	Value	Property	Symbol	Value
Fixed costs for each cooling station besides the		E00 kf /km	N° of intermediate cooling stations	n _{stat}	5
disposal)	C _{COOlfixed}	500 K€/ KM	Heat to be extracted from LN2 by <i>k</i> th	Q_{c_k}	Cable
Cryocoolers cost per unit of power	C _{cryocooler}	25 €/W	cryocoolers	1	design
Mark-up to consider possible heat peaks	β_Q	1.1	Hydraulic power delivered by the <i>kth</i> pumps to LN2	Q_{p_k}	Cable design
Mark-up for the devices where no parametric cost function has been found (circulation pumps, LN ₂ tank)	β_r	1.1			0

TEA on HTS cables \rightarrow CAPEX \rightarrow CAPEX_{cool} \rightarrow Losses

Note: the losses are conveniently divided based on which fluid will be affected into a cable segment (LN2 in the former or LN2 in the annular gap).

$$Q_{f} = \left(\frac{Loss_{AC HTS} + Loss_{ins} + Loss_{eddy}}{2}\right) \left(\frac{1}{n_{stat} + 1}\right)$$

$$Q_{an} = \left(\frac{Loss_{AC HTS} + Loss_{ins} + Loss_{eddy}}{2} + Loss_{cryo}\right) \left(\frac{1}{n_{stat} + 1}\right)$$

$$Q_{cl} = \frac{Loss_{term}}{2}$$

$$\begin{cases} intermediate station \rightarrow Q_{f} + Q_{an} \\ left termination station \rightarrow Q_{f} + Q_{cl} \\ right termation station \rightarrow Q_{f} + Q_{cl} \end{cases}$$

TEA on HTS cables \rightarrow CAPEX \rightarrow CAPEX liand

 $CAPEX = CAPEX_{mat} + CAPEX_{cool} + CAPEX_{land} + CAPEX_{cab} + CAPEX_{vac} + CAPEX_{dism} + CAPEX_{other}$

$$CAPEX_{land} = n_{cables} c_{land} L_{line} \left(2 R_{B_{limit}} \right)$$

Economic model			Technical mo	del	
Property	Symbol	Value	Property	Symbol	Value
Land cost per unit of surface	C _{land}	20 €/km²	Radial distance from the cable where the magnetic field is still greater than the limit (6 μT)	R _{Blimit}	0.3 m
			Line length	L _{line}	32 km

TEA on HTS cables \rightarrow **CAPEX** \rightarrow *CAPEX* \rightarrow *CAPEX*_{*vac*}, *CAPEX*_{*dism*}, *dism*, *dism*,

$$\begin{bmatrix} CAPEX_{cab} = n_{cables} c_{cab} L_{line} \\ CAPEX_{vac} = n_{cables} c_{vac} L_{line} \\ CAPEX_{dism} = n_{cables} c_{dism} L_{line} \frac{1}{(1+r)^{years}} \\ CAPEX_{other} = n_{cables} c_{other} L_{line} \end{bmatrix}$$

Economic model	Techni	ical mode	l		
Property	Symbol	Value	Property	Symbol	Value
Cabling cost per unit of length	C _{cab}	1 M€/km	Δηριμαί		
Vacuum system cost per unit of length	c _{vac} [21] 52 k€/km	interest ratio	r	5%
Dismantling cost per unit of length	c _{dism} [22	2] 20 k€/km	Total n° of		
Other costs (commissioning, installation, civil eng., regulation, accessories) per unit of length	C _{other}	800 k€/km	years of operations	years	40
engly regulation, accounted, per unit of length			Line length	L _{line}	32 km

andrea.musso@rse-web.it

TEA on HTS cables \rightarrow OPEX (total)

Each term will be detailed in the next slides...

TEA on HTS cables \rightarrow OPEX \rightarrow OPEX

	OPEX =	OPEX _{cool} + OPE	$EX_{maintenanc}$	е		
n $OPEX_{cool} = n_{cables}$	$\sum_{k}^{n_{stat}+2} \left\{ \sum_{t=1}^{year} \right\}$	$\int_{a}^{c} c_{kWh} h_{y} \left[\left(\frac{Q_{o}}{\eta_{ch}} \right) \right]$	$\frac{C_k}{r_y} \frac{(T_a - T_0)}{T_0}$))+-	$\frac{Q_{p_k}}{\eta_p}\bigg] \frac{1}{(1-1)^{k-1}}$	$\frac{1}{1+r)^t} \bigg\}$

			Technical model				
			Property	Symbol	Value		
			N° of intermediate cooling stations	n _{stat}	5		
			Hours of operation in a year	$h_{\mathcal{Y}}$	8760		
			Total n° of years of operations	years	40		
Econ	omic mod		Annual interest ratio	r	5%		
ECOI			Ambient temperature (outside the cable)	T_a	300 K		
Property	Symbol	Value	$T_{\scriptscriptstyle LN2}$ at the beginning of each cable section (both in the former and in the annulus)	T ₀	68 K		
Actual		0.045	Heat to be extracted from LN2 by the cryocoolers of intermediate cooling stations	$Q_f + Q_{an}$	89.3 kW		
Actual energy cost	C _{kWh}	0.015 €/kWh	Heat to be extracted from LN2 by the cryocoolers of left side cooling station	$Q_{an} + Q_{cl}$	53.3 kW		
energy cost		C, KWI	Heat to be extracted from LN2 by the cryocoolers of right side cooling station	$Q_f + Q_{cl}$	41.3 kW		
			Hydraulic power delivered by the pumps of intermediate cooling stations to LN2	$m_{LN2} \frac{\Delta P_f + \Delta P_{an}}{\rho_{LN2}}$	2 kW		
			Hydraulic power delivered by the pumps of left side cooling stations to LN2	$\frac{m_{LN2}^{\cdot}\Delta P_{an}}{\rho_{LN2}}$	1.2 kW		
			Hydraulic power delivered by the pumps of right side cooling stations to LN2	$\frac{m_{LN2}^{\cdot}\Delta P_{f}}{\rho_{LN2}}$	0.8		
			Crycoolers efficiency	η_{cry}	10%		
			Pumps efficiency	η_p	70%		
andrea.musso@rse	web.it		Hi-SCALE 3rd Training School	2024-04-10	104		

Hi-SCALE 3rd Training School

TEA on HTS cables \rightarrow OPEX \rightarrow OPEX \rightarrow Losses & ΔP

$$OPEX_{cool} = \sum_{k}^{n_{star}+2} \left\{ \sum_{t=1}^{years} c_{kWh} h_y \left[\left(\frac{Q_{c_k}}{\eta_{cry}} \frac{T_a - T_{ann}}{T_{ann}} \right) + \frac{Q_{p_k}}{\eta_p} \frac{1}{(1+r)^t} \right\} \right\} \xrightarrow{t_{rem}} \left\{ \begin{array}{c} Q_{f} \\ Q_{c_k} \\ Q_{an} + Q_{cl} \\ Q_{f} + Q_{cl} \\ Q_{f} + Q_{cl} \\ Q_{f} + Q_{cl} \\ Q_{f} + Q_{cl} \\ Q_{hN2} \\ Q_{h$$

Note: these losses and these ΔP are computed in single cable segments between 2 adjacent cooling stations.

andrea.musso@rse-web.it

LN2 density

 $\dot{m_{LN2}}$

 ρ_{LN2}

2.15 kg/s

839 kg/m3

TEA on HTS cables \rightarrow OPEX \rightarrow *OPEX_{maintenance}*

 $OPEX = OPEX_{cool} + OPEX_{maintenance}$

$$OPEX_{maintenance} = n_{cables} \sum_{t=1}^{years} \frac{L_{line} c_{maint}}{(1+r)^t}$$

Economic model			Technical model		
Property	Symbol	Value	Property	Symbol	Value
Maintenance cost per unit of length per year	C _{maint}	3 k€/km/year	Total n° of years of operations	years	40
			Annual interest ratio	r	5%
[8]			Line length	L _{line}	32 km

III. TEA of HTS cable system Phase 4 – Interpretation

TEA on HTS cables \rightarrow Interpretation

Lastly, we can use our TEA model to interpret the results obtained and understand whether certain decisions/changes to our project could make it more or less convenient.

To do this, we will modify some input data of our **Inventory Analysis** sheet and compare the results of proposed parametric studies in the **Interpretation sheet** of our Excel file.

Transmission link between solar plant and substation							
Phase 4: Interpretation							
Sensitivity analysis							
Case	Co	Conventional cable			HTS busbar		
	LCC	CAPEX_0	OPEX_0	LCC	CAPEX_0	OPEX_0	
T = 40 y ; r = 0.05 ; c_en = 0.015 €/kWh ; nhpy = 8h/day ; c_HTS = 30 €/m ; c_land = 20 €/m2 ; lc_HTS_77K = 293.7 A (REFERENCE)							€
T = 40 y ; r = 0.0							€
Τ = 25 γ ; r = 0.05							€
c_en = 0.05 €/kWh							€
nhpy = 24h/day							€
c_HTS = 10 €/m							€
c_land = 120 €/m2 (and maybe also Bfield < 0.5 μT, so you have to increase R_field?)							€
Ic_HTS_77K = 250 A							€
w_HTS = 12 mm (and then multiply by 3 also the critical current and the cost, accordingly)							€
2-Inventory analysis-HTS 3.0-HTS Cable design 3-Calculation of indicators-HTS 4-Interpretation				: 🔳			

IV. To go further...

You will have noticed that by modifying the input design parameters of our Excel file, the constraints imposed may no longer be respected. Furthermore, even if we could change those values freely, it is not immediately clear how these affect costs.

andrea.musso@rse-web.it

Hi-SCALE 3rd Training School

110

Indeed, we cannot perform a fine optimization of the cable design with our Excel.

The "suggested" input parameters that we have used are the outputs coming from another optimization tool, computed for a specific combination of operating parameters.

$\rightarrow z$ Inner cryostat tube			Property	Symbol	Value	
Technical model – Main features			Former radius (inner)	R _{former}	30 mm	
			LN2 mass flow rate	m_{LN2}^{\cdot}	2.15 kg/s	
Property	Symbol	Value		Twist angle for each layer of phase 1	$\alpha_{1,1}, \alpha_{2,1}$	11°, 15°
Cable power	Р	750 MW		Twist angle for each layer of phase 2	$\alpha_{1,2}$	-13°
Voltage rms	V _{rms}	33 kV L-L RMS	Ē	Twist angle for each layer of phase 3	α _{1,3}	-14°
Load factor	cosφ	0.95	I.	N° of HTS layers for phase 1	n_{l_1}	2
rms value of the total AC	I _{rms}	$I_{rms} = \frac{P}{\sqrt{3} \ V_{rms} \cos\varphi} = 13.81 \ kA$		N° of HTS layers for phase 2	n_{l_2}	1
current in each phase				N° of HTS layers for phase 3	n_{l_3}	1
				Thickness of the annular gap	t _{annulus}	27.8 mm
Line length	L.	32 km		N° of intermediate cooling stations	n _{stat}	5

andrea.musso@rse-web.it

¹¹¹ 111

We would like to have a tool that automatically computes the combination of design parameters optimized for a given criteria (*e.g.*, minimum cost while complying with constraints).

The one developed by RSE is presented here, but there are numerous options available, and everyone can create their own

What matters most is to grasp the approach!

			l echnical model		
			Property	Symbol	Value
Technical model – Main features		Former radius (inner)	R former	30 mm	
		LN2 mass flow rate	m_{LN2}^{\cdot}	2.15 kg/s	
Property	Symbol	Value	Twist angle for each layer of phase 1	α _{1,1} , α ₂₁	11°, 15°
Cable power	Р	750 MW	Twist angle for each layer of phase 2	$\alpha_{1,2}$	-13°
Voltage rms	V _{rms}	33 kV L-L RMS	Twist angle for each layer of phase 3	α _{1,3}	-14°
Load factor	cosφ	0.95	N° of HTS layers for phase 1	n_{l_1}	2
rms value of the total AC		$I_{rms} = \frac{P}{\sqrt{3} \ V_{rms} \cos\varphi} = 13.81 \ kA$	N° of HTS layers for phase 2	n _{l2}	1
current in each phase	I _{rms}		N° of HTS layers for phase 3	n_{l_3}	1
			Thickness of the annular gap	t _{annulus}	27.8 mm
Line length	L _{line}	32 km	N° of intermediate cooling stations	n _{stat}	5
					112

andrea.musso@rse-web.it

Hi-SCALE 3rd Training School

______ 112

OSCaR: a tool for techno-economic assessment of superconducting power cables [1, 2]

Optimization tool for Superconducting Cable Research

- □ Scope of the tool: determine the optimized cable design according to the operating parameters selected by the user (*e.g.* active power, voltage level, line length).
- □ A constrained minimization problem for a multivariable function (the cable system cost) is solved using a genetic algorithm in MATLAB.
- □ The first version of the code refers to the so-called *coaxial configuration* of AC HTS cables. The cooling configuration adopted is the so-called *both-sided cooling option*, with 2 counter-flows of liquid nitrogen.
- Multiple constraints are imposed (e.g. currents balancing between phases and layers, maximum current in the tapes, coolant temperature and pressure).

[1] A. Musso et al., IEEE Trans. On Appl. Supercond., vol. 32, no. 9, p. 4803516, 2022.
[2] A. Musso et al., IEEE Trans. On Appl. Supercond., vol. 33, no. 5, p. 5401105, 2023.
[3] M. Noe, EUCAS Short Course, 2017.

OSCaR: a tool for techno-economic assessment of superconducting power cables

- ❑ The capital and operating cost indexes and the heat inputs calculations are parameterized to the cable design features.
- The optimized cable parameters considered are:
 - the n° of layers per phase (n_{l_i}) ;
 - the winding angle in each layer (α_{i,j});
 - the former radius (R_f) ;
 - the annular gap thickness (t_{an});
 - the LN_2 mass flow rate (m_{LN2}) ;
 - the n° of cooling stations (*n*_{stat}).

The same technical and economic models that we set in our Excel file are implemented in the code. What changes is the numerical approach to the problem, making the PC do numerous iterations to reach a certain goal.

[4] W. T. B. de Sousa et al., Supercond. Sci. Technol, vol. 34, 2021.

OSCaR: a tool for techno-economic assessment of superconducting power cables

The cable system cost is the function to be minimized (we want to most economically convenient cable). The "genes"/"design

parameters" have been parametrized to this cost, in the same way we have done in our Excel file.

OSCaR: a tool for techno-economic assessment of superconducting power cables

- The capital and operating cost indexes and the heat inputs calculations are parameterized to the cable design features.
- The optimized cable parameters considered are:
 - the n° of layers per phase (n_{l_i}) ;
 - the winding angle in each layer (α_{i,j});
 - the former radius (R_f) ;
 - the annular gap thickness (*t*_{an});
 - the LN₂ mass flow rate (m_{LN2}^{+}) ;
 - the n° of cooling stations (n_{stat}) .

The algorithm selects only the individuals who comply with the imposed constraints. Furthermore, we can "facilitate" its task by suggesting upper and lower boundaries for each variable (e.g. include the radius of the former between a certain minimum and maximum values) and/or a sensible initial solution.

OSCaR: a tool for techno-economic assessment of superconducting power cables

OSCaR: a tool for techno-economic assessment of superconducting power cables

- The main **constraints** applied regards:
- □ the currents balancing between phases and layers;
- □ the maximum current in the HTS tapes;

The same we applied in our Excel file.

$$\begin{bmatrix} \frac{\sqrt{2} I_{rms}}{Tapes_{i,j}} \\ I_c \left(max \left[T_{HTS_{left}}, T_{HTS_{right}} \right] \right) \leq safety_{HTS} \\ Tapes_{i,j} = round \left(\frac{2\pi R_{HTS_{i,j}} \left| cos(\alpha_{i,j}) \right|}{w_{HTS}} \right) \end{bmatrix}$$

OSCaR: a tool for techno-economic assessment of superconducting power cables

- The main **constraints** applied regards:
- □ the currents balancing between phases and layers;
- □ the maximum current in the HTS tapes;
- □ the coolant temperature and pressure;

We may apply the same equations as in our Excel file.

$$\Delta T_{former} \leq \Delta T_{LN2max} \implies \Delta T_{former} = d_{stat} \left(\frac{v_{LN2_{former}}^2 f_{LN2_{former}}}{4R_{former} cp_{LN2}} \right) + \frac{Q_f}{2 m_{LN2}^2 cp_{LN2}}$$

$$\Delta T_{annulus} \leq \Delta T_{LN2max} \Longrightarrow \Delta T_{annulus} = d_{stat} \left(\frac{\nu_{LN2annulus}^2 f_{LN2annulus}}{4 t_{annulus} c p_{LN2}} \right) + \frac{Q_{an}}{2 m_{LN2} c p_{LN2}}$$

$$\Delta P_{former} \leq \Delta P_{LN2max} \implies \Delta P_{former} = \left(d_{stat} \frac{\rho_{LN2} v_{LN2former}^2 f_{LN2former}}{4 R_{former}} \right) + (g\rho_{LN2} \Delta h)$$

$$\Delta P_{annulus} \leq \Delta P_{LN2max} \Longrightarrow \Delta P_{annulus} = \left(d_{stat} \frac{\rho_{LN2} v_{LN2annulus}^2 f_{LN2annulus}}{4 t_{annulus}} \right) + (g\rho_{LN2} \Delta h)$$

OSCaR: a tool for techno-economic assessment of superconducting power cables

- The main **constraints** applied regards:
- □ the currents balancing between phases and layers;
- □ the maximum current in the HTS tapes;
- □ the coolant temperature and pressure;

$$\begin{bmatrix} \frac{\partial T}{\partial x} \\ \frac{\partial \rho}{\partial x} \end{bmatrix} = \begin{bmatrix} Q_{\delta T \delta \rho}(\rho, T) \end{bmatrix}^{-1} \begin{bmatrix} -\int_{0}^{d_{stat}} \begin{bmatrix} Q_{f/an}(T) \end{bmatrix} a_{c} dx - \frac{\dot{m}_{c} \tau_{c} p_{c}}{a_{c}^{2} \rho} \\ \dot{m}_{c} g \sin \beta + \frac{\dot{m}_{c} \tau_{c} p_{c}}{a_{c}^{2} \rho} \end{bmatrix}$$
$$\begin{bmatrix} Q_{\delta T \delta \rho}(\rho, T) \end{bmatrix}^{-1} = \frac{1}{\Delta Q_{\delta T \delta \rho}(\rho, T)} \begin{bmatrix} G_{\delta \rho}(\rho, T) & -H_{\delta \rho}(\rho, T) \\ -G_{\delta T}(\rho, T) & H_{\delta T}(\rho, T) \end{bmatrix}$$
$$\Delta Q_{\delta T \delta \rho}(\rho, T) = H_{\delta T}(\rho, T) G_{\delta \rho}(\rho, T) - G_{\delta T}(\rho, T) H_{\delta \rho}(\rho, T)$$
$$H_{\delta \rho}(\rho, T) = H_{\delta T}(\rho, T) G_{\delta \rho}(\rho, T) - G_{\delta T}(\rho, T) H_{\delta \rho}(\rho, T)$$

$$H_{\delta T} = \frac{c}{a_c \rho} \left(\frac{\dot{a}_T}{\partial T} - \rho \frac{\dot{a}_T}{\partial T} \right) \quad ; \quad H_{\delta \rho} = \frac{c}{a_c \rho} \left(\frac{\dot{a}_\rho}{\partial \rho} - \rho \frac{\dot{a}_T}{\partial \rho} \right)$$
$$G_{\delta T} = -\frac{\dot{m}_c}{a_c \rho} \frac{\partial P}{\partial T} \quad ; \quad G_{\delta \rho} = \frac{\dot{m}_c}{a_c \rho} \left(\frac{\dot{m}_c^2}{\rho^2} - \frac{\partial P}{\partial \rho} \right)$$

Double these equations for the LN2 in the former and in the annular gap

Or we may consider more complex fluid-dynamics models.

System of non-linear differential equations obtained from the equations of energy and momentum conservation and the continuity equation, considering stationary conditions, and applying a 1-dimensional (the cable length x) approximation.

The system needs to be solved numerically.

It is more accurate as it mathematically models all the thermodynamic and thermo-physic properties of the cryogenic fluid considered.

[6] G. Angeli et al., IEEE Trans. Appl. Supercond., vol. 27, no. 4, 2017, p. 5600406.

OSCaR: a tool for techno-economic assessment of superconducting power cables

- The main **constraints** applied regards:
- □ the currents balancing between phases and layers;
- □ the maximum current in the HTS tapes;
- □ the coolant temperature and pressure;
- □ the **distance between adjacent tapes** in each layer;
- □ the line voltage drop.

To ensure that the loads connected to the cable can operate at a voltage level close to their design value, the voltage drop across L_{line} has to be lower than a certain maximum percentage of the design voltage V_{rms} , imposed by the user and generally dependent on grid regulations.

$$\frac{\omega \left| [M] \cdot \left[\underline{I}_{i,j} \right] \right|}{V_{rms}} \le 4\% \quad \begin{cases} for \ i = 1, 2, 3\\ for \ j = 1, \dots, nl_i - 1 \end{cases}$$

If the tapes are too far apart (gap > 3 w_{HTS}), their applied transverse magnetic fields do not cancel out and this impacts both their critical current and AC losses.

OSCaR: a tool for techno-economic assessment of superconducting power cables

- The main constraints applied regards:
- □ the currents balancing between phases and layers;
- □ the maximum current in the HTS tapes;
- □ the coolant temperature and pressure;
- the distance between adjacent tapes in each layer;
- □ the line voltage drop.

The user can select the operating conditions:

- \Box the active power to be transferred through the line (*P*);
- \Box the voltage level, in the medium voltage range (V_{rms});
- $\Box \text{ the line length } (L_{line});$
- **\Box** the **load factor** (*cos* φ);

Technical model – Main features						
Property	Symbol	Value				
Cable power	Р	?				
Voltage rms	V _{rms}	?				
Load factor	cosφ	?				
Line length	L _{line}	?				

OSCaR: a tool for techno-economic assessment of superconducting power cables

OSCaR: a tool for techno-economic assessment of superconducting power cables

In the end, for each combination of operating parameters selected by the user, the tool returns:

- The cost of the cable system (which has to be minimized), with details of the single cost indexes.
- □ The optimized design parameters corresponding to that cable cost.
- □ All the other cable design parameters calculated in cascade from the optimized parameters.
- A quantification of compliance with the various constraints

This "automated" approach is well suited to perform various parametric analyses.

OSCaR: examples of parametric analyses

CASE STUDY : Line length = 5 km ; V_{rms} = 15 kV ; $cos\phi$ = 0.9

andrea.musso@rse-web.it

Hi-SCALE 3rd Training School

OSCaR: examples of parametric analyses

OSCaR: application to MgB₂ DC cables

New cable architecture \rightarrow adequate update of the cost indexes, constraints and losses terms.

The methodology remains the same.

[5] A. Musso et al., IEEE Trans. On Appl. Supercond., vol. 34, no. 3, p. 6200607, 2024.

andrea.musso@rse-web.it

OSCaR: application to MgB₂ DC cables

CASE STUDY : Line length = 10 km ; V_{rms} = 220 kV

Thank you for the attention!

Further questions: andrea.musso@rse-web.it

References

[1]	G. Chen et al., «Polypropylene Laminated Paper (PPLP) Insulation for HVDC Power Cables," 12th IEEE International Conference on the Properties and Applications of Dielectric Materials, 2018.
[2]	W. Kim et al., "Comparative Study of Cryogenic Dielectric and Mechanical Properties of Insulation Materials for Helium Gas Cooled HTS Power Devices", IEEE Trans. On Appl. Supercond., vol. 17, no.4, p. 7700605, 2017.
[3]	N Hayakawa et al., 2014 J. Phys.: Conf. Ser.,507, 032021.
[4]	"Superconducting Cables", Prof. DrIng. Mathias Noe, Karlsruhe Institute of Technology Institute for Technical Physics, EUCAS Short Course Power Applications, September 17th 2017, Geneva
[5]	W. T. B. de Sousa et al., "An open-source 2D finite difference based transient electro-thermal simulation model for three-phase concentric superconducting power cables," Supercond. Sci. Technol, vol. 34, 2021.
[6]	D. Kottonau et al., "Design Comparisons of Concentric Three-Phase HTS Cables," IEEE Trans. On Appl. Supercond., vol. 29, no. 6, Sept. 2019.
[7]	A. P. Malozemoff et al., "High-temperature superconducting (HTS) AC cables for power grid applications," Superconductors in the Power Grid Materials and Applications, Woodhead Publishing Series in Energy, pp. 133-188, 2015.
[8]	D. Kottonau et al., "Evaluation of the Use of Superconducting 380 kV Cable," KIT Scientific publishing, 2020.
[9]	J. Choi et al. "A Study on Insulation Characteristics of Laminated Poly-propylene Paper for an HTS Cable," IEEE Trans. On Appl. Supercond., vol. 20, no. 3, 2010.
[10]	D. S. Kwag et al. "A Study on the Composite Dielectric Properties for an HTS Cable," IEEE Trans. On Appl. Supercond., vol. 15, no. 2, 2005.
[11]	W. Pi et al., "Insulation Design and Simulation for Three-Phase Concentric High-Temperature Superconducting Cable Under 10-kV Power System", IEEE Trans. On Appl. Supercond., vol. 29, 2019.
[12]	A. Morandi, "HTS dc transmission and distribution: concepts, applications and benefits," Supercond. Sci. Technol., vol. 28, p. 123001, 2015.
[13]	N. Hayakawa, "Insulation technologies for HTS apparatus," ESAS Summer School on HTS Technology for Sustainable Energy and Transport Systems, Bologna- Italy, Jun. 2016.
[14]	W. T. Norris, "Calculation of hysteresis losses in hard superconductors carrying AC isolated conductors and edges of thin sheets," J. Phys. Appl. Phys., vol. 3, no. 4, pp. 489–507, Apr. 1970.
[15]	S. Wimbush and N. Strickland, "Critical current characterisation of SuNAM SAN04200 2G HTS superconducting wire," Figshare Dataset, https://doi.org/10.6084/m9.figshare.5182354.v1, 2017.
[16]	T. Takahashi et al., "Dielectric Properties of 500 m Long HTS Power Cable", IEEE Trans. On Appl. Supercond., vol. 15, 2005.
[17]	H. Suzuki et al., "Electrical insulation characteristics of liquid nitrogen impregnated laminated paper insulated cable", IEEE Transactions on Power Delivery, vol. 7, 1992.
[18]	G. Wypych, "HDPE high density polyethylene, Handbook of Polymers," Elsevier, ISBN 9781895198478, pp. 150-156, 2012.
[19]	L. Trevisani, "Design and simulation of a large scale energy storage and power transmission system for remote renewable energy sources exploitation," Ph.D. Dissertation, University of Bologna, Italy, 2006.
[20]	D. S. Kwag et al. "A Study on the Composite Dielectric Properties for an HTS Cable," IEEE Trans. On Appl. Supercond., vol. 15, no. 2, 2005.
[21]	F. Herzog, "Cooling unit for the AmpaCity project – One year successful operation", Cryogenics, vol. 80, 2016.
[22]	Roy Zuijderduin, "Integration of High-Tc Superconducting Cables in the Dutch Power Grid of the Future," Ph.D. Thesis, Delft University of Technology, The Netherlands, 2016.