




Optimal microgrid sizing: impact of + anticipative + operation? (i.e. perfect foresight)

Pierre Haessig¹, Jean Fructhieu Nikiema¹, Nabil Sadou¹, Elsy El Sayegh² ¹ CentraleSupélec, IETR | ² EDF R&D Saclay

Open Energy Modelling initiative (openmod) – Grenoble workshop 2024 March 25th–28th, 2024

From same data, two different designs and real-life load satisfactions

1) Design methods min *Cost* such that *load shedding* = 0.0 %

	ule-based oper. + Blackbox optim		Gener 1577		Battery 4767 kWh	Solar PV 1970 kW _p	Wind 1250 kW	
	All-in-one	_	→ 1154	kW	5131 kWh	$2037 \ kW_p$	1240 kW	
L	inear Progra	am	Data: PVGIS + Ouessant island load (peak 1707 kW)					
 a) Real-life performance eval. 								
2) F		periorr	nance eval		Load she	edding LCO	DE	
Non anti (RB) ope					→ 0.00 %	172	2.3 €/kWh	
			eration		→ 0.23 %	17:	1.3 €/kWh	
\rightarrow anticipative All-in-one model yields subpar performance! 4								

Microgrids.jl

- Julia based
- Simulation model with rule-based operation

Tools:

• Blackbox optimization

open source MIT license

https://pierreh.eu/Microgrids-X/ https://github.com/Microgrids-X/Microgrids.jl Microgrids.JuMP

Microgrids.X

- Julia/JuMP based
- Algebraic (linear) model
 - with usage-dependent lifetime effect on annualized cost for battery and generator

to be released

See also posters!