
HAL Id: hal-04543561
https://hal.science/hal-04543561

Submitted on 12 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical Study of Low Rank Approximation Methods
for Mechanics Data and Its Analysis

Lucas Lestandi

To cite this version:
Lucas Lestandi. Numerical Study of Low Rank Approximation Methods for Mechanics Data and
Its Analysis. Journal of Scientific Computing, 2021, 87 (1), pp.14. �10.1007/s10915-021-01421-2�.
�hal-04543561�

https://hal.science/hal-04543561
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Numerical Study of Low Rank Approximation Methods for Mechanics Data and
its Analysis.

Lucas Lestandi

Received: date / Accepted: date

Abstract This paper proposes a comparison of the numerical aspect and efficiency of several low rank approxi-
mation techniques for multidimensional data, namely CPD, HOSVD, TT-SVD, RPOD, QTT-SVD and HT. This
approach is different from the numerous papers that compare the theoretical aspects of these methods or propose
efficient implementation of a single technique. Here, after a brief presentation of the studied methods, they are
tested in practical conditions in order to draw hindsight at which one should be preferred. Synthetic data provides
sufficient evidence for dismissing CPD, T-HOSVD and RPOD. Then, three examples from mechanics provide data
for realistic application of TT-SVD and ST-HOSVD. The obtained low rank approximation provides different levels
of compression and accuracy depending on how separable the data is. In all cases, the data layout has significant
influence on the analysis of modes and computing time while remaining similarly efficient at compressing informa-
tion. Both methods provide satisfactory compression, from 0.1% to 20% of the original size within a few percent
error in L2 norm. ST-HOSVD provides an orthonormal basis while TT-SVD doesn’t. QTT is performing well only
when one dimension is very large. A final experiment is applied to an order 7 tensor with (4×8×8×64×64×64×64)
entries (32GB) from complex multi-physics experiment. In that case, only HT provides actual compression (50%)
due to the low separability of this data. However, it is better suited for higher order d. Finally, these numerical
tests have been performed with pydecomp , an open source python library developed by the author.

Keywords Low rank approximation · tensor decomposition · HOSVD · ST-HOSVD · Tensor Train · QTT · HT ·
Hierarchical · Canonical Decomposition · RPOD · POD · SVD.

Mathematics Subject Classification (2010) 35Q35 · 15A69 · 15A21 · 78M34

1 Introduction and problem setting

In the past 50 years scientific computing has gained tremendous traction and is now ubiquitous to many fields of
research and engineering especially in mechanics. It has been accompanied by the explosion of CPU power and
the introduction of supercomputers and their massively parallel architectures since the 1990s. Still, the advent of
exascale computing has only pushed forward the boundaries of computable problems slightly while raising a series
of technical issues. Indeed, supercomputers are expensive infrastructures that require extensive amounts of energy.
They produce data so large that storing and transferring data itself has become an issue. A famous simulation of
the observable universe [1] performed in 2012, exemplifies the dizzying proportions taken by numerical simulation.
Approximately 5000 computing nodes used 300 TB of memory producing 50 PB of raw data in 10 million hours
of computing time of which “only” 500 TB of useful data was finally kept. This kind of data is hard to manipulate
and storage is usually performed on magnetic bands making it fairly slow to access. Also, any intent at handling
such data, even in small slices, is vain on a personal computer, thus impairing the efficiency of analysis.

The above mentioned figures are typical examples of the famous curse of dimensionality which remains the
main obstacle to scientific computing development. Current programs are able to manipulate, with proven and
often satisfying levels of accuracy, many direct space-time (3+1D) simulations. It is, however, not the case when
one wants to perform parametric studies or optimization and control tasks such as shape optimization or active
flow control. For these problems, the curse of dimensionality plays a major role and both the computing time
and storage cost become out of reach. Extreme cases of the curse of dimensionality are offered by computational
chemistry. A toy model may take the following form, let a small n = 2, be the number of discrete point per
dimension, with d = 50 dimensions, then the storage cost nd = 250 for a single state amounts to 9PB if all
entries are stored. A tensor is a well suited object for such data representation, it is the discrete representation of

Lucas Lestandi
Nanyang Technological University, School of Physical and Mathematical Science-MAS, Singapore
Engineering Mechanics, IHPC, A*STAR, Singapore
E-mail: Lucas Lestandi@ihpc.a-star.edu.sg

2 Lucas Lestandi

multidimensional fields, i.e. an order d tensor of size n1 × · · · × nd is filled by sampling a field on a tensor product
space Ω = [0, 1]d at discrete grid points. The necessity of storing low rank approximate tensors instead of keeping
all the entries becomes essential for large d as shown above.

Another difficult problem is real-time simulation because high precision simulations require CPU times orders
of magnitude larger than real time. These issues can be tackled in many ways. A prominent approach, since the
turn of the century, lies in reduced order modeling (ROM) and the various techniques employed such as proper
generalized decomposition (PGD) [2], POD-Garlekin ROM [3] or Petrov-Galerkin ROM [4,5]. The various methods
presented in this paper aim primarily at enabling analysis and cheap storage of extensive datasets but can very
well constitute the first layer of multidimensional solvers [6] or enable real-time [7] simulation or digital twin
approaches.

Most of the methods studied in this paper rely on bidimensional separation methods such as singular value
decomposition (SVD) and proper orthogonal decomposition (POD) that are essentially equivalent (see [8, Chapter
1]). They have been rediscovered many times in various fields e.g. as principal component analysis (PCA) in
statistics [9,10], Karhunen-Loève expansion (KLE) in probability theory [11] or POD in fluid dynamics [12,13].
These methods provide a decomposition that can be truncated optimally [14] and reflect the physics of the problem
studied. In fluid mechanics, POD bases have spurned the first wave of ROM. Indeed, this decomposition provides,
among the many possible bases [15], an orthogonal basis of the functional space in which the solution lives.
Consequently, many attempted at building Galerkin projection ROM on these reduced bases from the 1980s onward
[13,16,17,18,19] but have registered modest success due to instability. Modern approaches are more successful [4,
3].

One extension of these work lies in the decomposition of multidimensional problems. Hitchcock is usually
considered to have introduced tensor decomposition [20] in 1927. But, it is Tucker [21] that popularized the
subject in the 1960s with the eponymous format, followed by Carroll and Chang [22] and Harshmann [23] in 1970
who introduced the canonical/parafac format and decomposition (CPD). The detailed review by Kolda and Bader
[24] in 2009 is the basis of many of the modern developments in the field but it is devoid of numerical study.
CPD has received dwindling interest due to poor numerical performance except in the context of ROM in which
the PGD [2] has been extensively studied. For data analysis, the PGD can be interpreted a continuous form of
CPD (see [8, Chapter 1] and [25]). Tucker format was at the center of attention since DeLathauwer paper in
2000 [26] which proposed an efficient approximation strategy, the Higher Order SVD (HOSVD) followed by HOOI
[27]. More recently, he coauthored [28] which introduces ST-HOSVD that improves significantly the computing
time. The early 2010s have seen the introduction of formats that overcome the exponential growth of the core
tensor in Tucker format. Oseledets and co-authors proposed the tensor train (TT) format [29,30], also known as
matrix product state (MPS), together with its decomposition algorithm. The storage cost of this format is linear
in d allowing tensorization of data, i.e. the method is so efficient at handling large d that a new strategy consists
in increasing artificially the number of dimensions as in QTT [31]. To do so, one may need to rely on partial
evaluations of the interest data as performed by TT-DMRG-cross [32,33]. This approach is also known as blackbox
algorithms [34] in the context of hierarchical tensors (HT) developed by Grasedyck, Kessner and Tobler [35,6].
HT actually incorporates all previously mentioned formats and approximations into a general d-linear format.
These recent developments have been reviewed in [36] while an extensive mathematical analysis of tensors and
their approximation is given in Hackbush’s book [25]. Cichocki [37] gives a detailed presentation of many of these
methods and their implementation variants in a visual and colorful way.

Finally, these formats have been extended to the continuous framework as they are often used to separate data
representing functions. A functional TT was proposed by Oseledets [38] and continued by Bigoni and Gorodetsky
[39,40,41] while many approaches now consider n-way array tensors and multivariate function as a single object
[25,42,43]. Additionally, a Recursive-POD (RPOD) was proposed in [44]. Finally, in [45], the authors propose a
practical presentation of these methods for actual decomposition.

The present paper proposes to apply the methods detailed in [45], complemented with HT and QTT to actual
data and devise a context dependent hierarchy of methods for compression. The goal is to complement method
specific numerical studies and high performance parallel implementations such as [46]. Also, this study tackles
phenomena analysis, in the same spirit as POD has been used for decades to analyze modal behaviors in mechanics.
This paper supports, with examples, that the same is possible for multidimensional decomposition.

In this paper, we focus on the practical aspect of using decomposition methods in the context of multidimen-
sional data compression and analysis. For this reason, we do not enter the theory behind each of these methods,
this work has already been performed in [45]. But, a short reminder of the methods is given in the next sections.

The paper is organized as follows. The next subsection presents the problem formulation. Section 2 briefly
reviews bivariate decomposition methods. Higher dimension formats and methods are presented in section 3.
Finally, section 4 focuses on numerical experimentation on various examples from the mechanics background.
These results are analyzed and compared in this last section in order to provide relevant insight to the reader for
practical use of these methods.

Numerical Study of Low Rank Approximation Methods for Mechanics Data and its Analysis. 3

1.1 Problem formulation

The goal of this paper is to present and compare low rank approximation techniques on actual numerical data with a

dual objective of compression rate and accuracy for further use and analysis. Of course, other computational costs are
considered such as memory, CPU time and the possibility to parallelize. The general formulation of this problem
is presented here.

It is assumed that the following field is known, at least in a discrete representation e.g. as a result of a finite
elements method,

f : Ω ⊂ Rd → E ⊂ R
x 7−→ f(x)

where Ω =
∏d

i=1[ai, bi].

We are seeking f̃ the “best” separated approximation of f . A separated representation of a function consists
in a combination (sum and product) of univariate functions. In this paper, for practical reasons, these functions
are normalized and orthogonal (when possible) to the others so that it constitutes a basis. The definition of the
“best” separated approximation of f depends strongly on the chosen norm to measure approximation error which
defined as

E(f, f̃ ,N) =
||f − f̃ ||N
||f ||N

(1)

where N is commonly L2(Ω) for functions or l2 for discrete representations of fields (tensors) but any appropriate
norm such as L∞ can be used.

The other constrain on this optimization problem is the (reduced) space V to which f̃ belongs. We can then
define the general optimization problem for multidimensional problem optimization.

Approximation problem Find f̃ ∈ V, such that

f̃ = argmin
v∈V

E(f, v,NV) (2)

where NV is the chosen norm on V. Some additional constraints may be needed to ensure existence and unicity of
the solution as detailed in later sections.

One should note that this process is highly compatible with discrete representation. In this context, the mul-
tivariate function is replaced by an order d tensor F ∈ Rn1×···×nd . If a few modes containing the most relevant
information is conserved, then a reduced approximation is obtained.

Each numerical implementation of the formats, is provided with meaningful comparison of complexity and
compression rate for a given approximation error. The compression rate (CR) is defined by this formula

CR =
Mem cost(f̃)

Mem cost(f)
. (3)

It enables, with a single indicator, to compare methods with different output formats. It can be interpreted as a
“practical” CR, that compares the output memory cost versus the initial full tensor memory requirement.

2 Bivariate separation

A separated sum approximation for bivariate function reads as follows

f(x, t) ≈ f̃r(x, t) =
r∑

k=1

ak(t)ϕk(x) (4)

where we can impose a number of conditions on {ak} and {ϕk}. Such approximation can be obtained through
POD or PGD. A similar formulation can be written for algebraic spaces i.e. vectors and matrices in the 2D case.
For any A ∈ Rm×n,

A ≈ Ar =
r∑

i=1

σiui ⊗ vi (5)

where ⊗ is the tensor product of ui ∈ Rm and vi ∈ Rn and σi ∈ R∗
+. This decomposition can be obtained via SVD

and is equivalent to the PCA.

4 Lucas Lestandi

2.1 Singular Value Decomposition (SVD)

This method can be viewed as a generalization of the eigenvalues decomposition (EVD) for rectangular matrices
[47].

Theorem 1 For any matrix A ∈ Rm×n, there are orthonormal matrices U ∈ Rm×m and V ∈ Rn×n so that

A = UΣV ⊺ (6)

where Σ is a diagonal matrix of size n×m with diagonal elements σii ≥ 0.

Hereafter, it is assumed that the singular values are ordered decreasingly i.e. if i < j then σii ≥ σjj .
The Eckart-Young theorem [14] ensures that the r-truncated SVD is the best rank-r approximation in the form

of eq. 5 of a matrix in l2 norm.
This is why SVD is the main tool for low rank approximation even when applied to higher dimensional problems.

Computing SVD is not as trivial as it seems. This question was extensively surveyed throughout the development
of computer science. Standard algorithms range from QR or EVD and their improvements when it comes to dense
matrices while Lanczos and other iterative methods may be more suitable for sparse matrices. Refer to [48] for
complete discussion. Modern needs, e.g. machine learning, page rank algorithms or ROMs, have spurred a new
wave of research to tackle problem of very large size. [49] provides an extensive discussion on computing SVD for
these very large systems and describes PRIMME library. As for most of the state-of-the-art methods and programs,
they address explicitly sparse matrices with MPI and high accuracy. However, this paper is focused on output
data from physics simulation, hence meaning the data itself may be (much) larger than the memory available.
Such problem can be addressed by so called out-of-core SVDs [50] and more generally linear algebra. This topic
has been very active in recent years as shown in [51] bibliographic references. [51] describes a very efficient library
to perform SVD without ever loading fully the matrix of interest. Similar approaches are becoming very common
in the scientific computing community as well, as shown by recent paper [52] focusing on fine time step data from
fluid flows. Including these approaches is beyond the scope of this article and is left for future development.

EVD solver to compute full matrix SVD In this work, the link between SVD and EVD is exploited and the actual
implementation uses dsyevd from Lapack as it ensures high quality of the modes (mainly orthogonality) while
significantly lowering the size of the singular value problem, see [45] section on bivariate decomposition for more
details. As shown in Tab. 1, for any A ∈ Rm×n with standard SVD decomposition A = UΣV ⊺ it is possible to
solve an EVD problem of size min(m,n) to obtain the SVD at a lower computational cost, in particular for “tall”
or “wide” matrices. However, the main drawback is that the eigen values are computed to machine precision
(ϵ = 10−16) which limits the approximation error to 10−8. It should be noted that EVD solver is very convenient
for keeping a constant architecture for POD and SVD approaches. For completeness, pydecomp can also solve SVD
by primme svds for specific investigation e.g. for higher precision, but numerical tests have shown it is much slower
than EVD for large tall skinny matrices. For instance, it is 10 times slower for a matrix of 105 × 500.

m ≥ n A⊺A = V Σ⊺ΣV ⊺ = V Σ2V ⊺ is a n× n eigen value problem and U = AV Σ−1

n ≥ m AA⊺ = UΣΣ⊺U⊺ = UΣ2U⊺ is a m×m eigen value problem and V = Σ−1U⊺A

Table 1: Solving an equivalent EVD to SVD can lead to substantial complexity gains for n ≫ m or m ≫ n.

2.2 Proper Orthogonal Decomposition (POD)

It was discovered many times in different fields, however it is often attributed to Kosambi [53] who introduced it
in 1943. It is a linear procedure that computes a basis of orthogonal proper modes. They are obtained by solving
Fredholm’s equation for data. Additionally, the POD offers an optimal linear subspace approximation which can
be interpreted as optimal in terms of energy approximation in term of L2 norm.

POD Problem formulation (scalar case) Find the best approximation, in the sense of a given inner product (·, ·) and
average operator ⟨·, ·⟩, of f : D = Ωx ×Ωt −→ R as a finite sum in the form

f̃r(x, t) =
r∑

k=1

ak(t)ϕk(x) (7)

where (ϕk)k are orthogonal for the chosen inner product. ak is given by ak(t) = (f(·, t), ϕk(·)) then ak only depends
on ϕk.

Numerical Study of Low Rank Approximation Methods for Mechanics Data and its Analysis. 5

The discrete POD problem is often found in the literature as follows. Let {f1, ..., fnt} the snapshots of f i.e.
the representation of f at discrete time {tj}nt

j=1. The snapshot space is F = span{f1, f2, ..., fnt}.
POD generates an orthonormal basis of dimension r ≤ nt, which minimizes the error from approximating the

snapshots space F . The POD basis verifies the optimum of the following:

min
{ϕ}r

k=1

nt∑
j=1

∥fj − f̃r,j∥2, s.t. (ϕk, ϕj) = δkj (8)

where f̃r,j =
∑r

k=1 (fj , ϕk) ϕk and δkj is the Kronecker symbol. One may observe that
∑r

k=1 · is the first order
approximation of the time mean operator ⟨·⟩. Although it is the most common formulation of discrete POD in
mechanics literature, it can be misleading regarding the construction and properties of the POD.

Optimality of the POD basis The POD basis generated by the POD algorithms is the optimal linear subspace
approximation with respect to the chosen scalar product (usually L2) i.e. the truncated approximation of f has
the lowest error for a fixed rank r.

Subsequently, we admit that this problem can be solved numerically by an EVD method (see [45] and [8, Sec
1.2] for details and discussion on POD discrete implementation). POD can be seen as a continuous version of the
SVD for bivariate functions f(x, t). For this reason, in the next section, we only present one version of the methods
while the continuous and discrete approach can be switched freely.

3 Multi-dimensional decomposition formats and methods

We are interested in the approximation of d dimensional data whether it is a tensor F ∈ Rn1×···×nd or a function of
d variables f(x1, ..., xd). Several decomposition formats and their methods are compared in this article: Canonical
(CPD), Tucker, Hierarchical (HT), Tensor Train (TT), Quantics-TT (QTT) decompositions and recursive POD. They
have been presented in details in many articles and books [45,8,25,37] which is why they are briefly exposed in this
section and only the most natural framework. The focus is set on tensors for which all the data is already available
and is supposed to originate from mechanics or fluid dynamics. This implies that the approximation must account
for all the data available since it is expensive to obtain and excludes of this study sub-sampling techniques such
as cross approximation or greedy sampling.

First, a few definitions are introduced in order to describe accurately tensor decompositions and the associated
algorithms. Let F ∈ Rn1×···×nd be an order d tensor with the multi-index N = n1 × · · · × nd.

Products on tensors. The tensor product ⊗ is the generalization of outer product to tensors.

⊗ : RN ×RM → RN×M

(X,Y) 7→ X⊗ Y

Entry-wise T = X⊗ Y reads Tij = xiyj . It will mostly be used for vector to vector product to generate higher
dimension objects. The Kronecker product (of matrices) is noted with the same sign ⊗ when no confusion is
possible. The Hadamar (entrywise) product is noted ∗ while the Kathri-Rao product is noted ⊙. Detailed
definitions and discussion can be found in [45,24].

Matricization. is the process of ordering the elements of a tensor into a matrix. The mode-µ matricization of a
tensor X ∈ RN is denoted by X(µ) and arranges the mode-µ fibers to be the columns of the resulting matrix.
The map from tensor entries to matrix entries is uniquely defined and corresponds to reshape operation when
implementing. Such matricization can be extended ([35, Definition 3.3]) to any binary split of the dimensions
into two complementary sets of indices (t, t′) for which is useful for HT decomposition. It is then similarly
noted X(t).

µ-mode product. The µ-mode (matrix) product, for 1 ≤ µ ≤ d of tensor X ∈ Rn1×···×nd with matrix A ∈ Rm×nµ is
denoted by X×d A and is of size n1 × · · · × nµ−1 ×m× nµ+1 × · · ·nd. Element-wise, we have

(X×µ A)i1···iµ−1jiµ+1···id =

nµ∑
iµ=1

xi1i2···idajiµ

It is equivalent to say that each mode-µ fiber is multiplied by the matrix A, i.e.
Y = X ×µ A ⇔ Y(µ) = AX(µ). This operation can be extended to multilinear multiplication (see [28]) for
processing multiple µ-mode products in a single operation.

[(I, ...I,M , I, ..., I) ·X]
(n) = MX(n)

Then in general, the unfolding of a multilinear multiplication is given by

[(M1, · · · ,Md) ·X]
(n) = MnX

(n)(M1 ⊗ · · · ⊗Mn−1 ⊗Mn+1 ⊗ · · · ⊗Md)
⊺

In the following subsections, a brief presentation of each format and most suitable decomposition is provided.
Again, more details can be found in [45,8]. The reader is referred to [25] for theoretical developments and [54] for
htucker toolbox and multiple references.

6 Lucas Lestandi

Mode-1 fibre x:jk

Mode-2 fibre xi:k Mode-3 fibre xij:

mode-1 Matricisation

X X(1)

Fig. 1: Mode one matricization of third order tensor with X ∈ RI×J×K .

3.1 Canonical decomposition

The canonical or PARAFAC decomposition (CPD) consists in sum of rank-1 tensors. A rank-1 tensor of order d

can be written by a single tensor product of d vectors. The algebraic CPD reads

F ≈ Fr =
r∑

k=1

d⊗
i=1

x̃k
i (9)

where r is the rank of the approximation and {{x̃k
i }

r
k=1}

d
i=1 are r sets of vectors associated with each dimension,

∀, i ≤ d, k ≤ ni, x̃
k
i ∈ Rn

i . A schematic view of such a decomposition is given in Fig. 2.

≈ + … +

c
1

c
R

b
1

b
R

a
1

a
R

F

Fig. 2: CP decomposition of third order tensor F ∈ RI×J×K .

The continuous formulation of the canonical decomposition reads

f(x1, ..., xd) ≈ fr(x1, ..., xd) =
r∑

k=1

d∏
i=1

Xk
i (xi) (10)

where {{Xk
i }

r
k=1}

d
i=1 can be viewed as basis functions in the functional space of f .

In practice, this decomposition is obtained through a successively enriching algorithm such as PGD-like algo-
rithms (see [2,55,56]) or alternating least squares (ALS) [24]. The storage cost is linear in d (O(drn)), but the
convergence of these methods is not certain. The idea of the algorithm is to compute progressively the basis in all
dimensions by enriching it of a new vector at each iteration so as to ensure closedness of the optimization problem.
This process does not produce an optimal basis but it improves after each iteration although the improvement
might become negligible for poorly separable functions. The tensor version of the algorithm is given in Algorithm
1.

3.2 Tucker decomposition

Tucker decomposition uses a similar format as to Canonical but takes advantage of all the combinations of modes
of different dimensions storing the associated weight in a core tensor W whose entries are wk with k = k1, ..., kd.

Numerical Study of Low Rank Approximation Methods for Mechanics Data and its Analysis. 7

Algorithm 1: Alternating Least Square (ALS)

input : F ∈ RI1×···×Id

output: X = w
⊗d

i=1 xi

Initialize ∀1 ≤ i ≤ d, xi ;
while Error ≥ ε do

for i = 1, d do
1 V = X1

⊺X1 ∗ · · · ∗Xi−1
⊺Xi−1 ∗Xi+1

⊺Xi+1 ∗ · · · ∗Xd
⊺Xd ; /* V ∈ RR×R */

2 Xi = F · (Xd ⊙ · · · ⊙Xi+1 ⊙Xi−1 ⊙ · · · ⊙X1)V † ; /* † denotes the Monroe-Penrose pseudo-inverse */
3 wi = ∥Xi∥2;
4 Xi =

Xi
wi

return X = Jw;X1, · · · ,XdK

A 3D visual is given in Fig. 3. The tucker format approximation reads

F ≈ Fk =

r1∑
k1=1

· · ·
rd∑

kd=1

wk

d⊗
i=1

x̂ki
i (11)

where the rank r = (r1, ..., rd) of the core tensor is the Tucker rank of the decomposition. Each basis {x̂k
i }

ri
k=1 is

orthogonal and contains ri vectors of size ni. For each dimension i, the overall basis can be concatenated into a
matrix X̂i of size ri × ni. The functional Tucker decomposition reads

f(x1, ..., xd) ≈ fk(x1, ..., xd) =

r1∑
k1=1

· · ·
rd∑

kd=1

wk

d∏
i=1

Xk
i (xi) (12)

Any tensor can be represented exactly in Tucker format, however, we are interested in approximated with minimal

B

C

≈F A

B

C

A

W

Fig. 3: Truncated Tucker Decomposition of a third order tensor F ≈ (A,B,C) ·W with ri ≤ ni for i = 1, 2, 3.

(l2 or L2) error and minimal rank i.e. size of W, thus minimum storage cost. Many algorithms are available
to compute Tucker decomposition (HOOI, T-HOSVD, ST-HOSVD,...). In this paper we focus on ST-HOSVD
(sequentially truncated) proposed by [28] that has superseded the commonly used T-HOSVD [26] (truncated).
Indeed, it provides a similar accuracy (as shown in the numerics section) to T-HOSVD while significantly reducing
the number of operations.

The storage cost of Tucker format is quasi-linear in d for small r (O(rd+drn)) but this cost grows exponentially
with d which limits the use for d ≥ 5. The convergence is certain with a quasi-optimal error estimate.

The idea of the ST-HOSVD is to perform successively SVDs on each dimension against all the others after
flattening the tensor and truncate the decomposition to a prescribed level. Doing so loses the inherent independence
of dimensions of T-HOSVD and thus the possibility to directly parallelize. The core tensor containing the associated
weight corresponds to multiplying the singular values or by projecting of F onto the basis. This process is detailed
in algorithm 2.

8 Lucas Lestandi

Algorithm 2: ST-HOSVD

input : F ∈ Rn1×···×nd , truncation rank r, processing order p = (p1, ..., pd)

output: X̂ = (X̂1, ..., X̂d) · Ŵ

Ŵ = F ;
for i = p1, ..., pd do

/* Compute SVD of Ŵ(i) then truncate to ri */

1 (U ,Σ,V ⊺) = SVD(Ŵ(i)) ;

2 (Utr,Σtr,V
⊺
tr) = truncate(U ,Σ,V ⊺, ri);

3 X̂i = Utr ;

4 Ŵ(i) = ΣtrV
⊺
tr ;

return X = JŴ; X̂1, ..., X̂dK

3.3 Hierarchical Tensor

The main flaw of the tucker format lies in the exponential growth of its core tensor. A very elegant way to address
this issue is to introduce the Hierarchical Tensor (HT) format often referred to as H-Tucker.

Ample theoretical analysis and definitions are given in Grasedyck, Ballani and Hackbush work [35,57,58,59,
25] and the reader is strongly encouraged to refer to these for a better presentation of this method.

It is based on the idea of recursively splitting the core tensor under a tree structure. The process results in
a binary tree TD containing a subset of dimensions t ⊂ D := {1, ..., d} at each node as shown figure 4. One can
navigate the tree from the root (uppermost node) at level l = 0 to the maximum depth (l = L) which contains
only leaves. A leaf is a node that represents only one dimension i.e. t = {i} with i ∈ D. The leaves are equivalent
to Tucker format basis matrices (Xi).

Fig. 4: Binary dimension partition tree of D = {1, ..., 5} showing t at each node.

The Hierarchical rank (rt)t∈TD
of a tensor X ∈ RI is defined by

∀t ∈ TD, rt = rank(X(t)) (13)

In other words, it corresponds to the rank of each t-matricization throughout the tree.

HT format relies on the following decomposition that holds for each node t = t1, t2 with rank rt, rt1 , rt2 . For
all i ∈ {1, ..., rt},

(Ut)i =

rt1∑
j=1

rt2∑
l=1

(Bt)i,j,l(Ut1)j ⊗ (Ut2)l, (14)

where Ut is the standard HT notation for subspace of F for the subset of dimensions t. Bt is a third order transfer
tensor of shape (rt, rt1 , rt2) and the leaves Ui are of dimension ri × ni. Fig. 5 shows the nested structure and
dimension of an order 4 HT tensor.

Here, we focus on the practical application of H-Tucker, but many other approaches are described in the above
references. In this specific case, Ui = Xi obtained from Tucker decomposition (HOSVD). Then the leaf-to-root
truncation (see [54]) is applied to the core tensor in order to compute the transfer tensors at each level up to the
root. This procedure, shown in Algorithm 3, involves several truncated SVDs that can further reduce the size of
the HT approximation.

Numerical Study of Low Rank Approximation Methods for Mechanics Data and its Analysis. 9

B1234 (1 × r12 × r34)

B12 (r12× r1× r2)

 U1 (r1 × n1) U2 (r2 × n2)

B34 (r34 × r3× r4)

 U3 (r3 × n3) U4 (r4 × n4)

Fig. 5: Tree representation of the HT format of X ∈ Rn1×n2×n3×n4 . The size of the matrices and tensors are inside
blue braces.

Algorithm 3: Hierarchical Tucker Decomposition

input : F ∈ Rn1×···×nd , ε
output: HT root node: X̂ = {(Bt)t∈nodes, (Ut)t∈leaves}

Compute HOSVD truncated to ε: (CL;U1, ...,Ud) = F ;
/* Apply leaf to root procedure on core tensor */

for level l from L to 0 do

1 Let Cl = Cl+1 the level core tensor. for Each cluster node t at level l do

2 Compute SVD truncated to rt corresponding to ε;

3 (Str,Σtr,V
⊺
tr) = tSVD(Cl

(t)) ;

4 Bt =reshape(Str, (rt, rt1, rt2) ;

5 Update transfer tensor Cl = Str
⊺ ◦t Cl ;

Consequently, one needs to store only the leaves matrices Ui and tranfer tensors Bt which amounts to storing
O(kdn + (d − 1)k3) entries with standard rank r and size n across the tree. From an accuracy standpoint, HT
decomposition performance is bounded by the initial T-HOSVD accuracy and may be lower if the transfer tensors
are truncated too aggressively (i.e. with larger ε when aiming for hyper-reduction of the core tensor). The T-
HOSVD, also constitutes the most expensive step as core tensor size diminishes when going up the tree.

All things considered, HT format and the associated decomposition are well suited to high dimensional tensor
reduction since it enables both hyper-reduction (no tensor core) and physical modes decomposition. It is often
overlooked by practitioners (see the vast number of packages covering Tucker, CPD and TT) as it is quite complex
and is challenged for large d by the now ubiquitous Tensor Train decomposition that can be seen as a special case
of HT imbalanced partitioning.

3.4 Tensor train (TT)

TT is a relatively recent method popularized by Oseledets team around 2010 [29,30] that allows easy implemen-
tation and is very efficient for d ≥ 5. This format was first presented as a product of matrices that describe each
entry of the studied tensor which is why it is also known as matrix product state (MPS) in the literature. It can
be viewed as a specific case of hierarchical formats (see below) and boasts a d-linear storage cost O(dnr2) which
makes it a good candidate for large dimension decomposition.

The functional TT decompostion reads

f(x1, ..., xd) ≈
∑

k1,...,kd−1

G1(x1, k1)G2(k1, x2, k2) · · ·Gd(kd−1, xd) (15)

where Gi(ki−1, xi, ki) are the entries of a matrix of functions (for all i ≤ d) and of size ri−1 × ri (by convention
r0 = rd = 1). (r1, ..., rd) is the tensor-train rank of the decomposition. For any x = (x1, ..., xd), one can evaluate
the value of Gi matrices and then compute the approximation of f(x) at this specific point by evaluating matrix
product G1(x1)G2(x2) · · ·Gd(xd). Equivalently, the same can be applied to tensor F ∈ Rn1×···×···nd , in which case
each {xj}dj=1 are replaced by and integer index {ij}dj=1 and the decomposition reads ∀ 1 ≤ i1 ≤ n1, ..., 1 ≤ id ≤ nd,

F(i1, ..., id) ≈ G1(i1)G2(i2) · · ·Gd(id). (16)

Fig. 6 shows a visual of the decomposition of a 4th order tensor.

10 Lucas Lestandi

(1×n1×r1) (r1×n2×r2) (r2×n3×r3) (r3×n4×1)

Fig. 6: Visual representation of the TT decomposition of an order 4 tensor of dimension n1 ×n2 ×n3 ×n4 and TT
rank (r1, r2, r3).

Among the many algorithms (TT-cross, TT-DMRG-cross,...) developed by Oseledets team to compute TT,
TT-SVD has been chosen for this article. It is easy to implement and efficient for reasonable number of dimensions
and full tensor data (d ≤ 6) which is the setup of this numerical study.

The idea of this algorithm is to use a series of SVDs (or PODs) to separate the remaining tensor into a transfer

tensor and a tensor of 1 order smaller until the last dimension is reached. The corresponding TT-SVD algorithm is
given in algorithm 4. The main drawback of TT decomposition is the partial orthogonality of the transfer tensors
(Gi) thus making it hard to use for ROM.

Algorithm 4: TT-SVD

input : F ∈ Rn1×···×nd , truncation rank r or prescribed error ε

output: X(i1, ..., id) =
∑r

α0,...,αd=1 G1(α0, i1, α1) · · ·G1(αd−1, id, αd)

1 Compute the truncation parameter δ = ε√
d−1

||F||F ;

2 Temporary tensor: C = A, r0 = 1 ;
for i = 1, ..., d do

/* reshape(C, ri−1ni,
numel(C)
ri−1ni

) */

3 C = C(i∗);
/* truncated SVD at given rank ri */

4 UΣV ⊺ = tSVD(C, rk, δ) ;
5 Gi = reshape(U , [ri−1, ni, ri]) ;
6 C = ΣV ⊺ ;

7 Gd = C;
return X = JG1,G2, ...GdK

3.5 Quantics TT

We have seen that TT is very efficient at handling large number of dimensions since it stores only order 3 tensors.
Thus, it appears that the smaller ni the more efficient the format becomes regardless how large d is. For this
reason, the Quantics-TT (QTT) format was introduced in [32] and later [60] studied in a more general form. The
author shows that this compression method complexity is in O(d log(n)) for an order d tensor of size nd.

The idea is to reshape the tensor into a very large order D = d logq(n) where q is the base (or quanta) by
splitting each dimension of X into a L q-size bits. For the best efficiency, q is usually a small integer like 2 or 3. This
operation requires that n = qL which limits direct applications to datasets that can be expressed a power of q. In
practice though, each ni that doesn’t fulfill this condition can be extended with zero valued elements until the new
dimension n′

i = qL. As there is no variance in the added data, it is usually captured easily during decomposition
as shown in experiments.

All the algorithms discussed in the previous section apply to QTT including TT-SVD that is used in this paper.
Sub-sampling approaches, like TT-DMRG, are particularly well suited to estimate very large tensors.

The main limitation of this approach is that by increasing tremendously the number of dimensions, the internal
rank may grow to very large values (typically in the thousands) which leads to extremely tall and skinny matrices.
These may be sensitive to bad conditioning and round-off error. Experimentally, it may be desirable to use an
accuracy oriented SVD. In this work, an iterative solver is used when a problem is detected on the standard SVD
method.

From a physical analysis point of view, most of the dimensional structure of the data is lost with QTT
compression as discussed above. Direct interpretation of compression modes is not possible as well as building
ROM. However, some approaches take advantage of QTT by mixing it with other methods such as HOSVD (see
[60]).

Numerical Study of Low Rank Approximation Methods for Mechanics Data and its Analysis. 11

Algorithm 5: QTT-SVD

input : F ∈ Rn1×···×nd , truncation rank r or prescribed error ε

output: X(i1, ..., id) =
∑r

α0,...,αD=1 G1(α0, i1, α1) · · ·G1(αd−1, iD, αd)

if any ni ̸= qLi then

1 Extend dimension i with zeroes to n′
i = ciel(logq(ni)) ;

2 Fq =reshape2quantic(F, q) ;
3 Apply TTSVD, X=TTSVD(Fq) ;

return X = JG1,G2, ...GDK

3.6 Recursive decomposition

The Recursive-POD (RPOD) is not properly a format but merely a convenient generalization of POD to higher
dimensions. Note that as for the other methods, POD and SVD remain interchangeable. The idea is to perform
PODs recursively on the first variable of the function or its partial decomposition until all the parameters have
been separated. This creates a tree structure (shown in Fig. 7) that does not allow the bases {Xk

i }
ri
k=1 to be

orthogonal but enables efficient truncation. Because of the tree irregularity for a prescribed accuracy, it is not
possible to give meaningful a priori storage cost. The general expression of RPOD reads

f(x1, ..., xd) ≈
R1∑

k1=1

· · ·
Rd−1(k1,...,kd−2)∑

kd−1=1

Xk1
1 (x1)...X

(k1,...,rd−1)
d (xd) (17)

POD(f(x1;x2,x3))

u1[1], φ1[1]

σ1[1]

u1[2], φ1[2]

σ1[2]

u1[3], φ1[3]

σ1[3]

POD(φ1[1](x2,x3))

u2[11], u3[11]

σ1[11]

u2[12], u3[12]

σ1[12]

u2[13], u3[13]

σ1[13]

POD(φ1[2](x2,x3))

u2[21], u3[21]

σ1[21]

u2[22], u3[22]

σ1[22]

POD(φ1[3](x2,x3))

u2[31], u3[31]

σ1[31]

Fig. 7: Example of a Recursive POD graph of f(x1, x2, x3)

To better understand the method, the trivariate function f(x1, x2, x3) RPOD, shown in Fig. 7, is presented in
more details.

1. Separate x1 from (x2, x3) with standard truncated POD at appropriate rank r1:

f(x1, (x2, x3)) ≈
R1∑

k1=1

Xk1
1 (x1)Φ

k1(x2, x3)

2. Repeat the POD on each Φk1(x2, x3) i.e. for all 1 ≤ k1 ≤ r1:

Φk1(x2, x3) ≈
R2(k1)∑
k2=1

Xk1,k2

2 (x2)X
(k1,k2)
3 (x3)

3. Then the full sum can be easily reconstructed:

f(x1, (x2, x3)) ≈
R1∑

k1=1

R2(k1)∑
k2=1

Xk1,k2

2 (x2)X
k1
1 (x1)X

(k1,k2)
3 (x3)

12 Lucas Lestandi

This algorithm can easily be extended to larger dimensions. Then notation can be quite clumsy (see eq. 17) and
it has motivated the tree structure and implicit recursion programming in the actual implementation. Also, notice
how the last two variables share the same decomposition and rank. Algorithm 6 produces RPOD tree decomposition
as shown in Fig. 7.

Algorithm 6: RPOD

input : f ∈ L2(D), computing domain D, target error ε
output: rpod tree=[[R,S,X]]

1 R = [] ; /* List containing the exact RPOD rank */
S = [] ; /* List containing the local singular values */
X = [] ; /* List containing the local eigen functions */

2 ϕ(x,w) = f(x1, (x2, ..., xd)) ;
3 [R,σR,UR(x),VR(w)] = trunc POD(ϕ, ε) ;
4 R.append(R) ;

S.append(σR) ;
X .append(UR), ;
if dim(w) > 2 then

for m ≤ R do
5 ϕ(x, s) = Vr(w) ;
6 (Rloc,Sloc,Xloc).append(RPOD(ϕ,D/Ω1, ε)) ;

7 (R,S,X).append(Rloc,Sloc,Xloc) ;

else
8 X .append(VR) ; /* Last dimension, then keep VR as RPOD modes */

return fR = [[R,S,X]]

RPOD is not a continuous TT. The above algorithm and Fig. 7 show that the RPOD is intrinsically different from
a continous TT [40] or TT-POD (see [8, Section 3.3]). Although it follows a similar recursive strategy, the structure
of the branches varies widely. A simple way to visualize this, is that RPOD generates very wide trees since each
mode leads to a new branch at the lower level leading to an exponential growth of the number of branches. On
the contrary, TT-(SVD) achieves compactness by “aggregating” the lower level information when computing C
at line 6 of algorithm 4. Numerically, it means each branch of RPOD is independent from its neighbors while
TT computes all modes of Gi from a single SVD. These operations are not equivalent. Also, RPOD (or RSVD)
is a Hierarchical decomposition but fairly distinct from HT. Despite its tree structure, the subspace approach is
violated in the proposed description and rewriting as a TT-like structure would require adding many 0 entries to
preserve shape across the tree since each POD is performed independently.

Conclusion on format

All these decomposition methods can be embedded in a general hierarchical format both numerically and theoreti-
cally ([25]) but their efficiency vary widely due to specific structures. In practice, computing time and memory use
is a central issue that is explored in the next section. The main characteristics of the above formats are presented
in Tab. 2 including common algorithms, storage cost and evaluation cost. The author does not attempt at giving
an evaluation of the operation count since it is highly dependent on the outcome of intermediate evaluation as
well as runtime parameters. Instead, a CPU time will be provided for realistic test cases. In the next section, a
comprehensive numerical study is provided.

Table 2: Synoptic table of tensor formats for order d tensor F ∈ Rn×···×n with rank r or r = (r, ..., r).

Format Algorithm Storage Evaluation

Full Native array format O(nd) 0
Canonical ALS, PGD O(drn) O(dr)
Tucker ST-HOSVD, HOSVD O(kd + dkn) O((d+ 1)kd)

Hierarchical H-Tucker, root to leaf O(kdn+ dk3) O((d− 1)k3)
Tensor Train TT-SVD, TT-POD,TT-DMRG-cross O(dk2n) O((d− 1)k3)
Quantics TT QTT-SVD, QTT-DMRG-cross O(d log(n)) O((D − 1)k3)

Recursive format RPOD RSVD Similar to TT Similar to TT

Numerical Study of Low Rank Approximation Methods for Mechanics Data and its Analysis. 13

4 Experimental results

First, we recall the criteria for measuring the error and compression. The approximation or decomposition error
of T is defined by

EN =
||Texact − Tdecomp||N

||Texact||N
, (18)

with N the norm defined by the user. Here, L2 norm is used by default and, on some cases, L∞ is selected. The
compression rate (in %) which is the storage cost of an approximation in a given format for a specific rank divided
by the storage cost of the full format. It reads

CR =
Mem cost(Tdecomp)

Mem cost(Texact)
(×100 for %). (19)

Throughout this paper numerical experiments, CR is evaluated by arithmetic estimation. This choice excludes
object oriented overheads such as list or dictionaries which are not studied here and can be ignored when compared
to large size arrays they contain. Other considerations such as CPU time or online memory use are discussed but
not studied in a comprehensive manner. Indeed, the data is supposed to come from large simulation which means
proportional computing capabilities are available to the practitioner. All CPU times reported in this article have
been obtained on a recent workstation equipped with an Intel Xeon Gold 6230 chip with 40 cores, 256G RAM.
CPU times are measure with ipython magics %time which provides walltime and CPU time (multithread) while
memory use is given by %memit. This hardware solution is extremely suitable for pydecomp (see below) as it relies
on shared memory parallel algorithms shipped with numpy.

4.1 pydecomp software

In order to evaluate and compare these techniques, an open source (under CECILL license) software was developed.
It is freely available at https://git.notus-cfd.org/llestandi/python_decomposition_library. This library relies
heavily on numpy and lapack for computing efficiency of projections and SVD/POD. On top of that, a few classes
are built, including the above formats, and the low rank approximation of tensors in these formats is automated.
A few benchmark functions are available, they can serve both as tutorial (the functions are documented in the
code itself) and as actual comparison tool. Fig. 8 provides a graph describing the structure of the library. Ample
discussion on the structure and genesis of the software is provided in [8].

pydecomp

Data

Fluent
notus

MATLAB
...

2D :

SVD, POD & PGD

Multi-D:

ST-HOSVD, RPOD, TT-SVD, HT-SVD, QTT,...

Tensor Formats:

Full, canonical, Tucker, TT, HT

Tensor algebra
toolbox

Analysis tools & benchmarks

External libraries

Lapack, numpy, scipy, adios, vtk,...

Approximation
/

Reduced basis

Fig. 8: pydecomp software architecture graph

For a standard order d tensor F ∈ Rn×···×n pydecomp complies with the general approximation characteristics of
each format presented in table 2. For each of these formats, the storage cost is evaluated algebraically in pydecomp

once the decomposition has been computed.

https://git.notus-cfd.org/llestandi/python_decomposition_library

14 Lucas Lestandi

0 1 2 3 4 5 6
Compresion rate (%)

10 7

10 6

10 5

10 4

10 3

10 2

10 1
Re

la
tiv

e
Er

ro
r (

L 2
)

PGD
RPOD
THO_SVD
STHO_SVD
HT
TT_SVD
QTT_SVD

(a) f1

0 2 4 6 8 10 12 14
Compresion rate (%)

10 7

10 6

10 5

10 4

10 3

10 2

10 1

R
el

at
iv

e
E

rr
or

 (L
2)

PGD
RPOD
THO_SVD
STHO_SVD
HT
TT_SVD
QTT_SVD

(b) f2

Fig. 9: Decomposition of 2 C∞ test functions with d = 3 on a 32 × 32 × 32 grid with 7 decomposition methods,
using L2 integration and norm.

Software design. The initial intent of this code is to provide a tool to evaluate low rank approximation in the
context of fluid dynamics and mechanics simulation. The compression of data is an important feature but the long
term goal is to provide bases for ROM and surrogate modeling as well as help analyze data in a similar fashion
as POD does (see [61,62]). In the long run, when tackling several TB of data, the whole workflow will need to
be adapted, e.g. by limiting communication and using local approximations. Fully parallel (MPI) and/or out of
core data management is a computer science challenge in itself (see [46,51]). For these reasons the architecture
of pydecomp has not been developed to handle very large data but can be seen as an easy tool to try several
tensor decomposition methods on medium scale data. Finally, the user is referred to the many specialized (mostly
open-source) tools for format specific approximation such as htucker[54] for HT format in matlab, TensorToolbox
(Kolda & Bader,[63], C++/matlab) for Tucker, CP and others, another TensorToolbox by Bigoni [39] python or
ttpy for TT format by Oseledets (many languages). Many other programs and problem specific solutions can be
found on open repositories.

4.2 Synthetic data

In this subsection we briefly recall numerical results reported in [45] for synthetic data, by which we mean data
directly computed from a function’s expression. The data is generated on uniform grids of n1 × · · · × nd that
discretizes Ω = [0, 1]d. The following real test functions are used

f1(x) =
1

1 +
∑

i xi

f2(x) = sin(||x||2)

In order to evaluate the separability of these test functions with the studied methods, a relatively coarse grid of
32× 32× 32 is used. This first experiment is performed with a functional approach for RPOD and PGD while the
other methods rely on SVD since prior tests show very little influence when choosing POD or SVD. The results
are presented for both functions in Fig. 9 in which one can compare the compression capacity of each method for
these simple functions. The steeper the slope, the higher compression power is observed.

On these figures, one can see a group of very efficient methods (TT-SVD and *-HOSVD) i.e. the error reduces in
a quasi-exponential fashion. On the other end of the spectrum PGD (the functional CP decomposition algorithm)
is the least efficient in both cases. This can be attributed to the non-optimality of this method that is too important
to be compensated by the storage d-linear efficiency. Additionally, this approach requires CPU times that are orders

of magnitude bigger than the other methods and grow exponentially with the size of the problem. For this reason,
we dismiss canonical decomposition (in both tensor and function form) from the following study as it is simply
not able to compute a decomposition in a “reasonable” time.

On these simple examples, it is unclear whether RPOD is a good candidate or not, the decay of the error is
not exactly exponential although the error is orders of magnitude smaller than PGD. Still, further analysis, as
shown in [45], confirms that for all tested configurations, in terms of CR, recursive methods consistently perform
below Tucker and tensor train methods in spite of a much higher CPU time (more than 5 times more, see [45,
Relative CPU time paragraph]). In addition to that, the complex tree data structure and the non-orthogonality of
the collection of vectors leads to dismissing RPOD for further study of the numerical efficiency in this article.

Numerical Study of Low Rank Approximation Methods for Mechanics Data and its Analysis. 15

0.0 0.1 0.2 0.3 0.4 0.5
Compresion rate (%)

10 7

10 6

10 5

10 4

10 3

10 2

10 1

R
el

at
iv

e
E

rr
or

HT
ST_HOSVD
TT_SVD
QTT_SVD

Fig. 10: Decomposition of f3 on a 32d cube by various methods.

One might be tempted to draw a similar conclusion for QTT, but this example is by design unfavorable to
such approach. Indeed, round-off error may become important due to the multiplication of SVDs compared with
other methods while the total size of the problem remains quite small.

Two decomposition methods (ST-HOSVD and T-HOSVD) have been tested for the Tucker format. As expected,
(see [28]), the results obtained are almost identical, in particular in terms of compression rate. Consequently, the
only criterion left as to which one to use is computing time. As shown in [8], sequentially truncated decomposition
is, on average, 4 times faster than truncated decomposition. Thus, in the following sections, the study focus on
ST-HOSVD only for Tucker decomposition.

Meanwhile, HT decomposition accuracy is bounded by T-HOSVD by construction, but on this highly separable
examples it can be seen that the core reduction follows an irregular pattern and may even increase CR for a given
relative error as the core tensors remain small in these 3D cases.

Another, more challenging, synthetic data set is introduced for the 325 tensor case which is equivalent to
256MB. This test is more adequate to compare CPU times. We introduce a 5d function f3 designed to be less
separable.

f3(x1, x2, x3, x4, x5) = x21{sin[5x2π + 3 log(x31 + x22 + x34 + x3 + π2)]− 1}2

+(x1 + x3 − 1)(2x2 − x3)(4x5 − x4) cos[30(x1 + x3 + x4 + x5)]

log(6 + x21x
2
2 + x33)− 4x21x2x

3
5(−x3 + 1)3/2

The lower separability of this case is not clearly apparent in Fig. 10. However, a different behavior is observed
with ST-HOSVD achieving a much higher CR due to the large core tensor. The other three methods performs
very similarly in terms of CR although a short-lived plateau is observed due to the slow convergence of the Tucker
modes. On these simple examples all norms tested performed very similarly with little to no difference. Table 3
provides an overall view of the methods computational performances. It can be seen that the ranks to achieve this
accuracy are high compared to the data size (but it would not increase for finer grids). A striking feature is the
pyramidal shape of the QTT rank, increasing monotically till a maximum of 42 and then decreasing monotically
(not shown). CPU times show large differences, TT and ST-HOSVD being by far the fastest while HT CPU
time is essentially driven by T-HOSVD in the current implementation. As for the first example, it is not very
appropriate for QTT use since n is small for a small d. The best comparative performance is achieved when one
of the dimensions is very large.

QTT TT ST-HOSVD T-HOSVD HT

CPU (s) 6.11 0.85 0.51 5.18 5.5
Memory (MB) 1237 882 807 1020 1220
rank [2,4,8,16,18,30,42,42,33...] [18,20,9,7] [18,13,19,10,7] [18,13,19,10,7] (0,1):19, (2,3,4):19, (3,4):9, [18,13,19,10,7]

Compressed size 128K 157K 2.2M 2.2M 96K

Table 3: Metrics of decomposition methods for f3 on a 32 × 32 × 32 × 32 × 32 cube with a tolerance of 10−7 for
each of these methods. Compressed data uses between 100 and 1000 times less space than the original tensor.
Computed on Intel Xeon Gold 6230 chip with 40 cores, 256G RAM.

The goal of the following sections is to provide insight for efficient data reduction and qualitative analysis

of their use. The first three experiments are restricted to relatively small dataset i.e. in the order of 1GB so that
decomposition as well as postprocessing is reproducible on a laptop. For the sake of simplicity, we focus on the

16 Lucas Lestandi

0 5 10 15 20 25
Compresion rate (%)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

R
e
la

ti
v
e
 E

rr
o
r

LDC data decomposition error

SHO_SVD vectorized

TT_SVD vectorized

SHO_SVD reshaped

TT_SVD reshaped

(a) Cutoff tolerance of ε = 10−8

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Compresion rate (%)

10-3

10-2

10-1

100

R
e
la

ti
v
e
 E

rr
o
r

LDC data decomposition error

TT_SVD reshaped

SHO_SVD reshaped

SHO_SVD vectorized

TT_SVD vectorized

(b) Cutoff tolerance of ε = 10−4

Fig. 11: Lid Driven Cavity Simulation within the stable limit cycle time range, see [64,61], input tensor is of shape
6× 201× 66049. t = 1900 to 1940 with a stepping of 0.2, space is a 257× 257 grid that can be vectorized (solid
lines) i.e. taken as a long vector of size 66049. Space, treated as 2 dimensions, is referred as reshaped (dashed
lines). Reynolds is a parameter dimension with Re ∈ [10000, 10100] and a stepping of 20.

pair ST-HOSVD/TT-SVD which is representative of general behavior of tensor reduction methods. Two dataset
are scalar data of only one variable, that is to say f : Rd −→ R as it is the simpler case, one from numerical and
one from actual experiment. The third example addresses the multiple variables of the vectorial case i.e. some of
the many ways to approximate the discretization of f : Rd −→ Rp.

Finally, a much larger (32GB) example embedding very complex physics is proposed and provides better insight
for actual use case with data handling as a main focus. Due to the difference in scale, the four methods (HT, QTT,
TTSVD and ST-HOSVD) are compared.

4.3 A scalar simulation: 2D lid driven cavity at high Reynolds number

A direct numerical simulation (DNS) of the 2D singular lid driven cavity problem in streamfunction-vorticity
formulation with high accuracy (NCCD 6th order scheme, see [64] for implementation details of T.K. Sengupta
code and analysis of the flow). High Reynolds numbers are studied, here we focus on range Re ∈ [10000, 10100]
with a spacing of 20. Time steps are very small, dt = 10−3 thus snapshots sampling is coarser: δt = 0.2 in order to
capture longer time series and especially limit cycles. To capture the flow behavior from initial quiescent state to
the limit cycle, simulation must run from t = 0 to a few thousands which represent too many snapshots, indeed,
each snapshots requires 0.5MB of memory thus leading to 5GB minimum per simulation). Consequently, for this
analysis, a narrow range of the limit cycle is sampled from t = 1900.2 to 1940, leading to 200 snapshots per Re.
Finally, a relatively coarse space grid of 257× 257 is chosen for easier handling as we have shown that the number
of modes is only weakly affected by grid density. In conclusion, after interfacing pydecomp with LDC code, an order
3 tensor T of shape 66049 × 201 × 6 is obtained. In this case, space is given as a single dimension and is referred
to as vectorized. As it is not clear whether it is preferable to decompose using this layout, the “fully” separated
decomposition is also studied. In this case, space is seen as two separate dimensions leading to an order 4 tensor
of shape 257× 257× 201× 6 which is called reshaped. Both approaches are compared in Fig. 11. Note that the data
is not preprocessed, i.e. no centering of trajectories is performed before applying the decomposition algorithms.

This data is highly separable, all four configurations reach machine precision with relatively low compression
rates 10% to 25%. Indeed, both decomposition methods and both data layouts display exponential decay of the
error as function of the compression rate. This is particularly visible when the error E > 10−5 in the top graph
Fig. 11a. For lower truncation one can see an abrupt change of slope which can be attributed to reaching “noisy”
data. Indeed, this phenomenon is observed on most actual datasets.

Next, one can observe that all four methods display comparable accuracy for moderate accuracy (E ⪆ 10−3),
which means that the choice must be driven by the goal of the decomposition. For optimal storage, one is advised
to prefer TT-SVD for both layout although vectorized layout allows the user to reduce the truncation error by
almost a decade. Finally, the latter offers, by far, the best CR=10% for maximum accuracy as compared to the
roughly 20% of concurrent methods. Regarding ST-HOSVD, the observation regarding layout is the opposite of
TT-SVD as compression efficiency is (slightly) reduced with reshaping.

Remark 1 (Handling of the space dimension) As shown for this example, the compression rate is weakly influenced
by the space layout. This confirms the intuition that the amount of information contained in space does not depend

Numerical Study of Low Rank Approximation Methods for Mechanics Data and its Analysis. 17

0.0 0.2 0.4 0.6 0.8 1.0

X

0.0

0.2

0.4

0.6

0.8

1.0

Y
C

576

-691

ωc

-17.491
-7.336
-4.505
-3.521
-3.134
-2.986
-2.945
-2.942
-2.920
-2.818
-2.533
-1.818
0.133
6.571

V
or

ti
ci

ty
le

ve
l

(a) Original data

0.0 0.2 0.4 0.6 0.8 1.0

X

0.0

0.2

0.4

0.6

0.8

1.0

Y
C

576

-691

ωc

-17.576
-7.420
-4.590
-3.605
-3.219
-3.071
-3.030
-3.026
-3.005
-2.902
-2.618
-1.902
0.048
6.486

V
or

ti
ci

ty
le

ve
l

(b) Reconstructed from ST-HOSVD, 1% error.

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

0.2

0.4

0.6

0.8

1.0

Y

 Vorticity difference contour (min=-3.17,max=2.70)

2.162

1.441

0.721

0.000

0.721

1.441

2.162

(c) Difference i.e. 12a- 12b

Fig. 12: Vorticity field of the lid driven cavity at Re=10000, t=1900s decomposition is reconstructed compared
with 1% relative error in Frobenius norm i.e. rank=(10,10,3) and compared to original dataset. Isolines are plotted
as well as colormap, they are exponentially spaced from the center of the square value, solid is superior to ω(C)
while dashed lines are inferior. This is to make comparison with centered data.

Table 4: LDC decomposition ranks with the same prescribed cutoff value ϵ = 10−4 (last point in Fig. 11b).

Data layout Vectorized Reshaped
ST-HOSVD [15,18,6] [59,63,18,6]

TT-SVD [15,6] [59,15,6,]

on its layout. However, we can see that it is not entirely true since differences appear early on, one can merely
affirm that the qualitative separability of the field does not depend on the layout. In specific cases such as quasi
2D problems (not shown here, e.g. thin plate simulation), the third dimension must be separated as it represents
a huge gain to treat it separately. Indeed, it can be seen as an identity function.

The rank, however, is drastically influenced by this choice as one can see in table 4. The same cutoff value of
ε = 10−4 has been used with each method and the truncation error is virtually the same. It is important to notice
that in spite of the sequential nature of these methods the ranks of time and Re are unmoved by the layout choice.
Yet, spatial decomposition rank is drastically changed, being multiplied 4 times for each one in ST-HOSVD. It
is interesting to notice that only the first rank in TT-SVD is big, the second one remains the same as for the
vectorized layout. It can be interpreted that the space spanned by space dimensions 1 and 2 (embedded at the
second stage of the algorithm) remains the same no matter the layout thus leading the same value of 15.

Now, we shift our attention to Fig. 11b. In this case, we are interested in the ability of these methods to
compress the data with moderate accuracy. The superiority of the reshaped representation of space is blatant as
it proposes a much finer range of compression since many approximation levels are to be found for CR ≤ 0.1 while

18 Lucas Lestandi

10000 10020 10040 10060 10080 10100
Re

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8 mode 1

mode 2

mode 3

mode 4

mode 5 mode 6

(a) First 6 Reynolds modes for Re ∈ [10000, 10100]

1 2 3 4 5

t +1.899×103

−0.10

−0.05

0.00

0.05

0.10

mode 1
mode 2

mode 3 mode 4 mode 5

(b) First 5 modes closeup on t ∈ [1900, 1905]

Fig. 13: Time and Reynolds modes of lid driven cavity during limit cycle (t ∈ [1900, 1905]) in for Re ∈ [10000, 10100].

the storage requirement is halved compared to vectorized. This phenomenon in enforced by relatively low spatial
ranks as compared with nx and ny (see Table 4). In terms of compression power, this largely overcomes the highly
intertwined nature of both space axes i.e. the rich flow behavior lies in complex 2D structure that in spite of not
being represented well in the reshaped layout is overcome by rank truncation.

Fig. 12 shows that even with moderate accuracy of 1% error the reconstructed data is largely usable for
qualitative analysis. This is very interesting for long term storage as the required space for this dataset is reduced
to 0.2% of the original 634MB i.e. 1.2MB. Fig. 12a shows the original vorticity field of Re = 10000 at t = 1900
while Fig. 12b proposes the same field from reconstructed ST-HOSVD in the vectorized layout and Fig. 12c is the
difference between these two fields. One can see that the structures are well captured as well as the minimum and
maximum value. The central region vorticity level is off by a few percent. However, the lower amplitude structures
are captured with less accuracy. Finally, the difference map shows that locally, the relative error remains small.
As one would expect, most of the error is contained in large gradient regions near the boundaries of the domain.

Very limited physical hindsight can be drawn by observing “reshaped” space modes along X and Y which is
why they are not shown here. The central region is mostly flat with varying mean values while the extremities of
the domain show large spikes and modes Y present small scale oscillations in addition to larger structures near
y = 1. The “vectorized” modes (not shown) are similar to the one given in space time decompositions in [61] and
can be used for physical hindsight.

Finally, in order to acquire a better grasp of the decomposition obtained, Fig. 13 shows the first modes associated
with Re and time. In both cases, the first mode plays a special role of virtually applying a constant offset, it can
be referred as a mean mode. Indeed, this kind of mode is observed whenever the data has not been centered
beforehand, the decomposition “naturally” separate the mean field from the fluctuations. A simple averaging of
the data suppresses it and it is often advocated to do so in the literature as it should improve the decomposition.
Next, Fig. 13b displays well organized modes, these pairs of modes (2-3, 4-5) are separated by a phase shift of

Numerical Study of Low Rank Approximation Methods for Mechanics Data and its Analysis. 19

π/4 and the frequency of pair 2 is double the frequency of pair 1. This pattern is studied in greater details in
[61], yet it is interesting to note that the same pattern is observed for multivariate decomposition involving Re

as a parameter as well as usual bivariate POD. It is then possible to infer that the time behavior is the same for
each Re in the chosen range. At the other end of the regularity spectrum, one finds Re associated modes in Fig.
13a. These modes appear to be a mean to exclude each other from combinations, no clear pattern emerges. This
observation indicates low feasibility for Re based interpolated ROM.

4.4 Experimental data: droplets evaporation

(a) t= 1/29 (b) t= 23/29 (c) t= 24/29 (d) t= 29/29

Fig. 14: Visualization of 4 snapshots of the density field at the 21st tabulated wavelength. Data kindly provided
by C. Pradère (I2M Bordeaux).

In this second example, a scalar field obtained by a lab experiment is studied. The goal here is to emphasize that
very little prior knowledge of the data is necessary to perform decomposition contrary to analysis. This dataset
was kindly provided by C. Pradère, from I2M-TREFLE laboratory. It is a study of droplets evaporation during
29 timesteps with recording at 51 different wavelengths to evaluate the density field. The camera resolution is
320× 356, no further detail on the technology used is required. Finally, a matlab “.mat” binary file off 800MB is
given. pydecomp provides a simple interface for inputting such files that yields a 29× 51× 320× 356 tensor.

Phenomenon Fig. 14 provides insight on the phenomenon studied, the circular drop at initial time evaporates and
shrinks gradually up to frame 23. Cracks appear at t=24 (different wavelength may not show these cracks) and
the droplet is completely shattered at t=29. One may infer that the droplet has solidified but this information
(not given by C. Pradère) is not necessary for data decomposition.

The data is obtained experimentally and it is likely that many physical phenomena are happening simultane-
ously during the experiment. Then, one has to assess the separability of the array. In the absence of any information
about the parameter spaces at stake, the Frobenius norm based decomposition is used. Fig. 15 shows that with
both ST-HOSVD and TT-SVD, very little compression is achieved. Indeed, Fig. 15a shows that more than 60%
compression rate is needed to reach a relative error of 1%. Yet, one can see that the error drops (actually down to
machine error) with a compression rate slightly below 100% which means that the density field is represented “ex-
actly” with a slight datasize reduction. Fig. 15b shows that attempts at vectorizing data provide no improvement in
the error decay rates. This zoomed in view, informs us that a reduction to a few percent of error is attained within
a few modes. Thus, some of the behavior is separable. But the complexity of this phenomenon lies in nonlinear
physics, such as transport or phase change, that are known to cause poor error decay of the SVD/POD.

Finally, Fig. 16 provides a synoptic view of the ST-HOSVD decompositions with a prescribed error of 10−2 in
both vectorized and reshaped layout. This means an actual error of 6% for the vectorized layout with a compression
rate of 1.5%. The separated space global error is 9% for a compression rate of 0.3%. This partial choice of low
accuracy high compression is aimed at showing that this kind of representation is sufficient for qualitative analysis.
First, despite high global error level, the sequence of droplet evaporation is well captured by both methods, the
crack appears at the expected frame in each decomposition. The main difference between the two layout lies in
the sharpness of the spatial representation, indeed the vectorized approach produces a sharp edged representation
while the separated space dimension lead to a “blurry” phenomenon. This is confirmed by the bottom frames, in
which one clearly sees that the error is located at high density gradient regions. In conclusion, vectorized layout
produces less efficient decomposition but allows for a sharp and easy to interpret reconstructed field while the
separated space dimensions yields a blurry image, yet with lower global error.

20 Lucas Lestandi

0 20 40 60 80
Compresion rate (%)

10-2

10-1

R
e
la

ti
v
e
 E

rr
o
r

Lab exprement data: evaporating droplets

TT_SVD

SHO_SVD

(a) Space as 2 dimensions,
tensor shape: 29× 51× 320× 356.

0 10 20 30 40
Compresion rate (%)

10-2

10-1

R
e
la

ti
v
e
 E

rr
o
r

Lab exprement data: evaporating droplets

SHO_SVD

TT_SVD vectorized

SHO_SVD vectorized

TT_SVD

(b) Space is vectorized,
tensor shape: 29× 51× 81920.

Fig. 15: Decomposition of experimental data kindly provided by C. Pradère (I2M Bordeaux). The density is given
as a function of time, wavelength and space

4.5 A vectorial simulation: breaking wave

Here, we study a 2D simulation of a breaking wave which provides 5 output variables: density, pressure, vorticity,
velocity along each dimension. It is not intended to be a state-of-the-art breaking wave physics simulation, the
goal here is to provide a complex physics two phases flow computed with a validated HPC code: notus-cfd.

The Navier Stokes equation with two fluids is solved thanks to a level set methods with a velocity-pressure
scheme. The spatial domain Ω = [0, 0.6] × [0, 0.6] is discretized on a 256 × 256 Cartesian grid, while the time is
solved with small times steps which are sampled in 201 equispaced snapshots. The third parameter is the ratio
wave height over wave length, the latter being fixed for the whole set of simulation to 10cm, 3 heights are given: 9,
10 and 11 cm. In each case, the boundary conditions are periodic and the velocity field is initiated with an adapted
velocity. Finally, the density field is equal to 1000 in the liquid phase and 1 in the gas phase. For stability reasons,
the transition is smoothed on a few cells. Simulation with wave height of 9 cm is provided in Fig. 17 where one
can see four typical snapshots of the breaking wave.

Data layout The previous examples have shown that in spite of providing sharper spatial description, a vectorized
space is not the most efficient configuration in terms of storage cost. Additionally, the physics of the studied problem
clearly has two separate domains, air and water which remain in the same region with respect to coordinate Y.
Only a small portion of the Y range is affected by phase change. For these reasons, a space separated layout is
used. Furthermore, this dataset provides 5 different output fields which are correlated since they solve the same
Navier-Stokes equation system. But, they possess very different mathematical properties, for instance, density
field is representing as sharply as possible an inherently discontinuous field whereas the pressure field is naturally
smooth and continuous despite following the same interface. The velocity field is represented by two scalar values
but has been solved at the same time. Finally, the vorticity field is post-processed from velocity but the field itself
is much sharper due to the rotational operator, thus making decomposition less efficient. In conclusion, two data
layouts are studied, both with separated X and Y axes.

a. Output data for each variable are processed sequentially. Five order 4 tensor of shape 3× 201× 256× 256 are
decomposed.

b. Output data for each variable is assembled into a new dimension that intends to account for embedded corre-
lation among variables. One order 5 tensor of shape 5× 3× 201× 256× 256 is decomposed.

Scalar product As for any decomposition problem, choosing the base scalar product and associated norm is thought
carefully. In this case, two parameters, output vector in case b. and wave height, impose the use of l2 scalar product.
Thus, SVD based decomposition is preferred with TT-SVD and ST-HOSVD.

Low rank approximation analysis Fig. 18 provides the error versus compression rate graphs for layouts a. and b.,
we focus first on the top frames. Separability of the dataset with layout b. sits in the separable range. Indeed,
a sharp decay of the error is observed for large scale evolution i.e. for error levels down to E = O(10−2). Then,
a clear inflection is observer around 0.5% compression rate for both methods. Yet, it still appears that the error
decay follow an exponential trail. Note that ST-HOSVD yields the best approximation at low compression levels
(see Fig. 18d) and represents to machine error the data with a compression rate of 60% as seen in Fig. 18c. No
such convergence is observed for TT-SVD.

Numerical Study of Low Rank Approximation Methods for Mechanics Data and its Analysis. 21

t=1 t=23 t=24 t=29
f e

x
a

ct
f S

T
-r

es
h
a

p
e

f S
T

-v
ec

t
f e

x
a

ct
-
f S

T
-r

es
h
a

p
e

f e
x

a
ct
-
f S

T
-v

ec
t

Fig. 16: Synoptic view of reconstructed ST-HOSVD decompositions of the density field, tolerance, ε = 10−2, wave-
length 21. Each line represent a different dataset, from top to bottom: fexact, fST,reshape, fST,vectorized, difference
(fexact − fST,reshape) and difference (fexact − fST,vectorized).

Regarding separate decompositions of variables through ST-HOSVD –lower frames of Fig. 18– it is observed
in Fig. 18c that every single variable is represented to machine error within 50% of the original data size (per
variable). It is uncommon for complex simulation data to present an “exact” tucker rank. Still, here, for each
variable, machine error is reached for a tucker rank of r = (3, 201,≈ 130, 256). Next, for small truncation error
levels, all variable decrease at the same slope, only the extent of the initial drop varies. Fig. 18d provides a bigger
truncation criterion in order to better grasp the moderate accuracy decomposition. Large differences between
variables are observed, with pressure field being extremely separable while the vorticity field occupies the other
end of the spectrum. Table 5 emphasizes the great variation of ranks among variable for an identical tolerance.

In conclusion, if one is interested specifically in an “easily” separable field, then the best choice is to treat
variables separately. On the other hand, when interested in several variables, it is a better option to compress all
the data together.

22 Lucas Lestandi

Fig. 17: Breaking wave simulation (by F. Desmons) computed with notus CFD code developed at I2M Bordeaux,
wave height of 9cm and length of 10cm. The wave is going rightward from the initial state (left frame), crosses the
periodic boundary (top right), breaks at t ≈ 4500 follows to an unphysical chaotic state. Pink lines represent the
water/air interface, arrows size are proportional to the velocity amplitude and the colormap accounts for kinetic
energy.

0 20 40 60 80 100
Compresion rate (%)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

R
e
la

ti
v
e
 E

rr
o
r

Wave simulation decomposition

TT_SVD

SHO_SVD

(a) ϵ = 10−8

0 2 4 6 8 10 12 14
Compresion rate (%)

10-2

10-1

R
e
la

ti
v
e
 E

rr
o
r

Wave simulation decomposition

SHO_SVD

TT_SVD

(b) ϵ = 10−3

0 10 20 30 40 50
Compresion rate (%)

10-4

10-3

10-2

10-1

100

R
e
la

ti
v
e
 E

rr
o
r

Wave simulation ST-HOSVD decomposition

pressure

vorticity

velocity_u

density

velocity_v

(c) ϵ = 10−8

0 5 10 15 20 25 30 35 40
Compresion rate (%)

10-3

10-2

10-1

100

R
e
la

ti
v
e
 E

rr
o
r

Wave simulation ST-HOSVD decomposition

pressure

vorticity

velocity_v

velocity_u

density

(d) ϵ = 10−3

Fig. 18: Compression of breaking wave simulation data from notus. Parameters: 5 output variables, 3 wave heights,
nt = 201, nx = 256, nx = 256. Top frames are decomposition with output variable taken as an additional dimension
with n = 5 (case b.), bottom frames is the same dataset but each variable is seen as a separate scalar decomposition
problem (case a.).

Numerical Study of Low Rank Approximation Methods for Mechanics Data and its Analysis. 23

Field Rank
density [3,174,58,147]
pressure [3,52,14,44]
velocity u [3,184,79,256]
velocity v [3,179,101,158]
vorticity [3,195,114,246]

Table 5: Breaking wave approximation ST-HOSVD ranks with prescribed cutoff value ε = 10−3 (last point in Fig.
18d).

9.0 9.5 10.0 10.5 11.0
Wave height

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0 mode 1 mode 2 mode 3

(a) Height axis modes

0 2000 4000 6000 8000 10000
time

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20 mode 1

mode 2

mode 3 mode 4 mode 5

(b) Time axis modes

0.0 0.1 0.2 0.3 0.4 0.5 0.6
X

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25 mode 1

mode 2

mode 3 mode 4 mode 5

(c) X axis modes

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Y

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4 mode 1

mode 2

mode 3 mode 4 mode 5

(d) Y axis modes

Fig. 19: The first vorticity modes for separated variables layout.

Remark on graphs discrepancies One may notice that these graphs are not identical, this is because the truncation
value ε is applied to the ST-HOSVD itself i.e. to each SVD. This leads to some mode combination to disappear
from the larger ε although the actual projection norm is of the same order as ε. For instance, pretend that ε = 10−3

yields a rank (3,7,27,35), there is no warranty that modes (3,8,27,32) from the full rank decomposition is associated
with a weight ω3,8,27,32 < ε.

Breaking wave vorticity modes The physics at stake in this example is different from the previous ones, then we
look at the first five modes of each dimension (see Fig. 19) for the vorticity field. The top left frame, Fig. 19a,
shows the modes associated with the initial height of the wave. No clear pattern is distinguishable and the sharp
variation mostly indicates that they would be better considered as discrimination function rather than modes in
the usual sense. Consequently, there is very little prospect for interpolated ROM on this parameter when the user

24 Lucas Lestandi

Fig. 20: Levelset 50 of the reconstructed density field at 4 time steps (same as Fig. 17) with the difference field
between the original and reconstructed data.

Numerical Study of Low Rank Approximation Methods for Mechanics Data and its Analysis. 25

Field Size Physical domain
Laser scan speed 4 [0.7:1.1:0.1] (m/s)

Laser Power 8 [255:325:10] (W)
Fields 8 3 phases, T, grain num. & orientation

time (snapshots) 64 every 1000 steps
nx 64 5µm
ny 64 5µm
nz 64 subsampled from 128 5µm

Table 6: Summary of input tensor from powder bed fusion simulation batch. Total binary input size is 4× 8× 8×
64× 64× 64× 64 ≈ 32GB.

has only 3 instances available. Times modes (Fig. 19b) can be interpreted as being activated by the breaking of the
wave (time range is approximately [3300,4500]) and further agitation. As expected, space modes along dimensions
X and Y produce remarkably contrasted patterns. On one hand, X modes describe global agitation with distinct
patterns at impact (x = 0.2) and splash region (x = 0.3). On the other hand, Y modes show an intense activity
near the interface and close to 0 value elsewhere. The same pattern is observed for other variables (not shown)
but vorticity provides the most readable graphs.

Reconstructed fields Finally, a quick overview of the reconstruction is given by means of the density field and
levelset reconstruction. Indeed, this is a very sensitive variable and it is required to correctly capture the interface
for any interpretation of the stored results. Fig. 20 shows the same snapshots as Fig. 17 where the black solid
line is the original isoline 50 of the density field and the green dotted line is its reconstructed counterpart from
ST-HOSVD(ε = 10−3). The background color maps the difference between both density fields. In spite of marked
error field, the reconstructed levelset fits perfectly with the original one, no bubble is omitted and the shapes
are well captured. Still, some parts of the density field are negative (intense blue color in the air corresponds to
ρ < −20). This is obviously non-physical and this issue should be addressed in order to prevent misinterpretation
for cases in which the analysis is more complicated.

It should be noted that with this precision of ε = 10−3, it is almost impossible to distinguish the reconstructed
field from the original mode. Some slight oscillations may be spotted but are easily discarded by the observer as
their amplitude is a few percent of the maximum field value.

4.6 Decomposition of a large simulation dataset: powder bed fusion additive manufacturing

In this last numerical experiment, we study the performance of the four most promising methods (HT, QTT,
ST-HOSVD and TTSVD) on a larger data set. The data is generated thanks to the digital twin for the Additive
Manufacturing Platform developed at A*STAR Institute of High Performace Computing, Singapore (see [65]).
This tool provides end to end simulation of metals 3d printing. It generates high amounts of data, in particular the
powder bed fusion (PBF) module that computes the micro-scale phenomena of a laser melting a metal powder.
This process happens extremely fast at very small scales. Typical lengthscales are tens of microns and time scales
range from 10ns to 1ms for the whole simulation. Consequently, the simulation requires millions of time steps in
order to complete several layers of printing. A regular Cartesian grid is used to discretize space which incurs large
number of degrees of freedom (O(106)). The simulation outputs many variables of interest including temperature,
phase fields for solid, liquid and gas, the fluid dynamics fields and the grain microstructure information (index and
3d orientation). Altogether it can be seen as 11 scalar fields that are more or less correlated with a few millions of
degrees of freedom for each snapshot. A few snapshots of the simulation outputs are presented in Fig. 21 where
one can see the powder (colored by grain orientation) melts creating a meltpool (green surface) on the laser path
and then solidifying until it forms a solid bloc. The complete process involves adding a new layer of powder and
scan with the laser until the block reaches a sufficient size for analysis.

Obviously, such a complex process can be modified by a lot of parameters, ranging from material properties to
temperature and laser properties. Since laser properties is the most influential parameter on the grain structure
(and ultimately the mechanical properties of the printed object), the laser power (LP) and the laser scan speed
(LS) are varied in this experiment respectively with 8 and 4 samples equally spaced. Altogether the studied dataset
is summarized in Tab. 6. All numerical examples performed in this last section are done on standardized data,
which means that for every simulation each field is standardized (centered and normalized) i.e. ũ = u−mean(u)

stddev(u) .

This is often cited as a way to improve decomposition and has proved efficient at improving the decompositions
for this dataset.

Before tackling a large dataset, it is important to have a good idea of how well the potential methods perform.
Consequently, three tests, similar to situations studied in the previous sections are shown for a single set of
parameters LP=255W and LS=0.7m/s.

– Case 1 tests the easiest configuration where only the temperature field is studied, leading to an order 4 tensor
of size 64× 64× 64× 64.

– Case 2 tests the influence of separating the fields as well, i.e. and order 5 tensor of size 8× 64× 64× 64× 64.

26 Lucas Lestandi

Fig. 21: First layer of the powder bed selective laser melting (SLM) simulation using A*star Additive manufacturing
simulation on a 64 × 64 × 128 domain. The solid part is colored using the grain orientation magnitude and the
green surface is the boundary of the fluid phase. The other variables are not shown. On these snapshots, 3 different
scans are seen, the first one till t=16000 and one two different scans for t=32000 and t=64000.

0 5 10 15 20 25 30 35 40
Compresion rate (%)

10 8

10 6

10 4

10 2

R
el

at
iv

e
E

rr
or

TT
ST_HOSVD
QTT_SVD
HT

(a) Case 1, 64× 64× 64× 64

0 20 40 60 80
Compresion rate (%)

10 8

10 6

10 4

10 2

R
el

at
iv

e
E

rr
or

QTT_SVD
TT
ST_HOSVD
HT

(b) Case 2, 8× 64× 64× 64× 64

0 20 40 60 80
Compresion rate (%)

10 8

10 6

10 4

10 2

R
el

at
iv

e
E

rr
or

TT
QTT_SVD
ST_HOSVD
HT

(c) Case 3, 8× 64× 262144

Fig. 22: Preliminary compression rate and associated L2 error test showing 3 different data layout imply very
different CR for the same underlying data.

– Case 3 shows that representing space as a single variable is favorable for good spatial capture of the phenomenon,
in particular with Tucker format.

Fig. 22 shows the decomposition error and CR for the three cases. Due to the larger size of the core in case 1
and 2, ST-HOSVD performs poorly until it reaches a threshold where all the variance is captured. Typically, that
means that the core tensor i.e. the rank, is only slightly smaller than the initial dataset. In this case it’s the time
rank or the first space dimension that is slightly smaller than 64. This explains why the error drops sharply to
machine error. The situation is even more pronounced when it comes to L∞ norm as shown in Fig. 23. Specifically,
one can see in Fig. 23a that the error remains above 0.1, barely affected by the number of modes kept until the rank
threshold is met. A Similar pattern is observed for all methods in cases 2 as shown in Fig. 23b for QTT despite a
more regular decrease of the error. Last, Fig. 23c shows that for ST-HOSVD, in case 3, the L∞ error can be as
much as two orders of magnitude larger than L2. This can be particularly troublesome when trying to reconstruct
grain structure or melted regions in this kind of simulation. The large amplitude oscillations are similar to the
level set issue described in the previous section for Fig. 20. Visualization of these 3D fields is delicate, especially
for the moderate resolutions studied here which usually means no visual difference between the fields if the L2

error is below 1%. For this reason, no reconstruction is shown in this section.

Numerical Study of Low Rank Approximation Methods for Mechanics Data and its Analysis. 27

0 10 20 30 40 50 60 70
Compresion rate (%)

10 12

10 10

10 8

10 6

10 4

10 2

100
R

el
at

iv
e

E
rr

or
Norm error comparison

L1
L2
Linf

(a) Case 2, ST-HOSVD

0 20 40 60 80
Compresion rate (%)

10 6

10 5

10 4

10 3

10 2

10 1

R
el

at
iv

e
E

rr
or

Norm error comparison
L1
L2
Linf

(b) Case 2, QTT-SVD

0 10 20 30 40 50 60 70
Compresion rate (%)

10 7

10 5

10 3

10 1

R
el

at
iv

e
E

rr
or

Norm error comparison

L1
L2
Linf

(c) Case 3, ST-HOSVD

Fig. 23: Comparing error measured with norms L1, L2 and L∞ at the same truncation rank for poorly separable
cases. Large values of norm L∞ show that local approximation error may be very large even if the average error
is low.

0 2 4 6 8
Compresion rate (%)

10 2

10 1

100

R
el

at
iv

e
E

rr
or

Norm error comparison
L1
L2
Linf

(a) Error vs CR for different norms

0 150 300

10 2

101

104

level 1 nodes [0 1]

[2 3 4]

0 400 800
10 1

101

104

level 2 nodes

[3 4]

0 20 40 60 80 100 120
rank

10 7

10 5

10 3

10 1

S
in

g
u

la
r

V
a
lu

e
s

Leaves

[0]

[1,t]

[2,x]

[3,y]

[4,z]

(b) Nodewise Singular values

Fig. 24: HT compression analysis for case 2. Tree shape is identical to Fig. 4 but indices are numbered from 0.

Remarks on QTT. As expected QTT compares rather poorly in case 1 since the shape of the dimensions of the
tensor are relatively small and even. However, it offers the best performance for both case 2 and 3 for low CR.
It is only superseded by the “drop” to machine error of the other methods. As expected, it is not influenced by
the initial shape of the tensor since the data is folded to quanta q = 2. Interestingly, QTT decomposition achieves
low L∞ error together with a possibility for controlling finely the reduction error. This makes the method very
suited for complex data compression. It should be noted that for cases that require resizing data, QTT overall
performance is similar albeit slightly poorer.

Focus on HT decomposition. This more demanding dataset offers all the behaviors encountered during the extended
testing of this method. First, the overall accuracy of HT is bounded by the initial Tucker decomposition, hence
prerequisite for HT success is satisfying accuracy of the HOSVD. It is fulfilled for these examples but requires
mostly full rank, with at best, one dimension actually showing compression. Then HT compresses the core tensor,
and may, as in case 1, achieve high compression compared with Tucker. In Fig. 22a, one can observe the almost
vertical drop of the error for virtually constant CR. It means that most of the hierarchical tensor size is made
of the leaves modes while the core is compressed efficiently. The flatter decay part (E = 10−2 to E = 10−4) is
attributed to the poor separability of the data as observed for ST-HOSVD. Case 3 shows that for small size core,
HT doesn’t noticeably improve compression compared with ST-HOSVD. Finally, case 2 exposes a common flow
of HT as shown in Fig. 24. Due to poor conditioning, it is difficult to obtain good singular values. Their decay is
usually slow (see Fig. 24b) as shown in and both iterative and direct solvers may return negative singular values
(small norm). This, despite requesting machine error tolerance, prevents the HT decomposition from properly
approximating the data. Hence, one should expect this kind of difficulty when working on high complexity data
as we do on this final experiment.

These preliminary tests confirm that the data provided here is separable but challenging. Thus, it is expected
that an increased dimensionality and consequently of the size of the tensor may reduce the separability, in particular
for methods sensitive to bad conditioning such as QTT.

Results. Table 7 provides a synoptic view of the four decomposition methods applied to the large 32GB tensor. One
can see that again, the main limiting factor is memory, with all methods requiring a peak memory above 100GB
(QTT), all the way up to 212GB for HT which is the most memory intensive approach. This whopping factor of

28 Lucas Lestandi

Method Walltime(speedup) Peak Mem. rank L2 error CR CR2 CR∞

QTT 3h15min (0.56) 100G [{2n}12n=1, 8169, 15695, 28945, 29591, {2n}1n=15] 1.24e-07 148% 34% 93%
{012}:256, {3456}:256

HT 22min15s(0.38) 212G {12}:63, {23}:2166, {34}:4096 4.86e-08 53% ≈20% 34%
leaves:[4, 8, 8, 64, 62, 64, 64]

TT-SVD 12min27s (0.64) 140G [4, 32, 256, 15698, 4096, 64] 4.72e-8 102% 34% 80%
ST-HOSVD 4min11s (0.35) 162G [4, 8, 8, 64, 61, 64, 64] 2.10e-8 95% 95% 95%

Table 7: Decomposition methods metrics for large data, Total binary input size is 4×8×8×64×64×64×64 ≈ 32GB.
Tolerance for singular values is ε = 10−8, corresponding to machine error for the intermediate EVD. Computed on
a Intel Xeon Gold 6230 chip with 40 cores, 256G RAM. CR2 and CR∞ are the CR corresponding to a 1% error
in L2 and L∞ norms respectively.

0 20 40 60 80 100 120 140
Compresion rate (%)

10 7

10 6

10 5

10 4

10 3

10 2

10 1

L2
re

la
tiv

e
er

ro
r

ST_HOSVD
TT
HT
QTT_SVD

(a) L2

0 20 40 60 80 100 120 140
Compresion rate (%)

10 5

10 4

10 3

10 2

10 1

100

L
 e

rr
or

ST_HOSVD
TT
HT
QTT_SVD

(b) L∞

Fig. 25: Comparing error in two norms versus CR for 4 decomposition methods of large tensor data (4 × 8 × 8 ×
64× 64× 64× 64). This standardized data is described in Tab. 6.

6 compared with the input data can be improved by better implementation in python (and its clumsy memory
control). Nonetheless, the algorithm most expensive step is a matrix-matrix product that requires memory twice
the size of the input data if performed in-core. One also has to store a very large tucker tensor at the first step.
These considerations are addressed in specific packages. CPU walltime varies wildly as well from a few minutes
for HOSVD, TT and HT to a few hours for QTT. This is easily explainable as, in QTT, rank has many extremely
large values since almost no singular vector is cutoff for small tolerances (lower than ε = 10−6). This leads to a
series of large SVD problems with the smallest dimension in O(214).

The speedup, defined as CPUtime
Walltime×nproc

is relatively high for an interpreted language, hovering around 0.5. This

is attributed to the high efficiency of the lapack embedding by numpy. Most of the variation between methods is
due to the single thread operations such as reshaping or copies. Efficient reshaping of large order tensor remains
an open problem with ongoing works such a xtensor.

Fig. 25 shows the L2 and L∞ errors for all of these methods. Although the behavior of the two error measures
follows a similar pattern, L∞ should be of great concern for the user as it remains extremely close to 1 for all
the methods until the sharp decline onset. As expected, CR is very high, reaching 100% for QTT L∞ error of
10−2. This error value constitutes a good target for many storage applications, hence Table 7 compiles the CR
associated with L2 and L∞ errors of 1%. Thus, one can conclude that ST-HOSVD alone does not constitute a
good compression option for large number of dimension in mechanics simulation, providing no compression but
can extract modes for further processing by HT. HT is the only method providing good compression even for L∞

target whereas TT and QTT offer similar behavior. It should not come as a surprise, since in this example, no
dimension is larger than 64, reducing the interest of QTT. Last, the reader is reminded that, these results are
computed with a minimum tolerance of 10−8 on singular values computing which corresponds to machine error
on intermediate operations. This explains why all methods are able to recover 10−8 error which corresponds to
virtually no truncation. Still, HT, thanks to its particular structure, manages to halve the storage intensity of the
studied data.

5 Discussion and Conclusion

This paper presents as briefly as possible the main techniques for multidimensional data decomposition and
approximation. Then, they are applied to various problem engineering mechanics and fluid dynamics. Analysis for
both numerical and physical experiments is provided. In short, this paper is an attempt at answering the following
question.

https://xtensor.readthedocs.io/en/latest/related.html

Numerical Study of Low Rank Approximation Methods for Mechanics Data and its Analysis. 29

“Which one of the numerous decomposition methods should be used for low rank approximation of mechanics data?”

To do so, a decomposition library, pydecomp, has been developed. It takes advantage of python numerous
libraries for scientific computing, visualization, and data I/O handling. Benchmark cases are proposed in the
library to test and compare each of the available methods: PGD, RPOD, T-HOSVD, ST-HOSVD, TT-SVD, QTT
and HT in both discrete and continuous formulation (SVD and POD can be exchanged freely as they are essentially
equivalent).

In section 4.2, these benchmarks have been put to use. The conclusion is that PGD cannot be used as a
multidimensional decomposition method for it is extremely slow and compression power is insufficient. Yet, it
should not be dismissed completely as it makes a relatively efficient 2D iterative methods. Indeed, it allows the
user to compute only the required modes contrary to standard SVD/POD algorithm. The T-HOSVD has been
dismissed as its results are indistinguishable from ST-HOSVD while being several times slower for large datasets.
RPOD has also been classified as not suitable for three reasons. First, its decomposition performance is far poorer
than TT-SVD and ST-HOSVD. Second, the computing time is much higher than its contenders (about 5 time
more). HT and QTT are methods best suited for larger data for which their involved algorithms are intended. Third,
the recursive nature of the methods does not translate naturally in the same way as other scientific computing
algorithms and leads to shallow and wide trees that are slow to scan. Discussion (supported by [45,8]) on scalar
product selection has led to the conclusion that default should be “blind” Eulerian scalar product, especially for
Cartesian grids. However, some cases could benefit from L2 scalar product such as Gaussian quadrature points,
or contexts in which the physics is well-known and requires a special scalar product such as integrating a vector
field using H1 norm.

In sections 4.3 to 4.5, a close attention was given to the two most efficient methods for tackling actual data.
Two scalar fields were used, one from an experiment, the other from a DNS simulation. The experimental data,
taken from a droplet drying with 4 parameters (time, wavelength, 2D space) was found weakly separable with
both methods. This is attributed to the nonlinear nature of the studied physics. Yet the reconstructed field for
a tolerance of ε = 10−2 seems sufficient for qualitative interpretation. The high error levels seem to lie in the
cracks representation as shown in the brief analysis of the modes. The DNS data (LDC) was chosen to present
regularities that were accurately captured. In each of these methods two data layouts for space decomposition
were studied, one separates X and Y dimension while the other vectorize so that space is viewed as a single
dimension. For both datasets, the separate dimension produces lower compression rate for a fixed error level but
the inherent bidimensionality of the structure is captured with less accuracy (to the human eye) despite lower
error. Indeed, mode combination leads to oscillations that reduce when the rank is increased. The last example
was a breaking wave simulation computed using notus CFD. It proved the versatility of pydecomp implementation
in handling data from several sources with different characteristics. It was shown that different variables from
a single simulation present remarkably diverse separability levels. As expected, the smoother the field, the more
separable it is. Another layout question was raised for this example, wondering whether these output variables
should be treated as a distinct problem or as a single variable. Once again, there is no definitive answer and the
user must adapt the layout to their need. The global decomposition allows easy handling, but the compression rate
is dominated by the least separable variable. Thus, for this case, a distinct processing of each variable is preferable.
Moreover, it was observed that for this (complex) dataset tensor has a finite Tucker rank at machine error.

Finally, in section 4.6 a much larger case is studied as a proof of concept for handling of parametric studies of
multiphysics simulation code (microstructure, fluid dynamics, grain solidification, heat, etc.). This relatively mod-
est experiment can be seen as a proxy for massive decomposition on supercomputers as pipelined post-processing.
Unsurprisingly the strong non-linearity and heterogeneity of this kind of data makes low error decomposition diffi-
cult to obtain but HT seems to provide good approach for post processing. Indeed, it halves the storage requirement

(close to machine error) while providing useful insight in modes or slices for further analysis or surrogate modeling.

As a rule of thumb, HT is the go-to candidate for any data decomposition related with physics since it provides
the Tucker decomposition modes while tackling the ballooning core. This enables at least some storage saving and
in-depth physical analysis, e.g. modes or slices can be manipulated from a simple laptop once the processing is
complete. Still, its structure is more complex and makes it more difficult to optimize both accuracy (conditioning)
and CPU-wise. Parallel processing of dimensions is possible and may be an interesting approach for d ≤ 10. TT
(or QTT for long dimensions) is a very reliable approach and can be used on any problem but does not provide
orthogonal basis. Parallelization can be achieved at SVD/matrix level only since the algorithm is purely sequential.

In conclusion the low ranks approximation methods presented in this article constitute a tool that should not be
overlooked in modern day scientific computing as it allows both cheaper storage (potentially orders of magnitudes)
and enables modal analysis.

Future work

Among the many extensions of the present work, three promising items deserve further work.

Hierarchical format (HT) is a very promising method for data mining. It can be improved in many ways,
both from an algorithm point of view (current implementation is quite naive) and the computer science one. This

30 Lucas Lestandi

includes a possible switch in programming language to improve index slicing or MPI approaches. As a format HT,
embeds all the other formats described here which makes it a very good candidate for low level improvement. Also,
it allows very efficient maxvol/blackbox algorithms for handling large datasets (see [34,32]) which is the necessary
next step for handling very large data (and SVDs). Another improvement strategy will be to enable out-of-core
computing and single pass algorithms. Then, HT would be very efficient method for handling cases in which d ≫ 1.

This kind of sampling can be related to the way deep learning (DL) algorithms are trained. In fact, there are
many ways to link DL and tensor reduction, both methods can be seen as a way to produce approximation of
high dimensional spaces through some training phase (optimization process). The main divide between these two
approaches is that tensor reduction as presented here is always a linear process while DL is built for non-linear
problems. In many cases DL relies on tensors and tensor calculus which makes it a perfect candidate to take
advantage of the reduction techniques. For instance, Daulbaev et al. [66] recently proposed a Deep Neural network
training method that uses maxvol algorithm (from TT). Many others have proposed mixed formulation using
both tensors and DL. Consequently, a tensorflow API within pydecomp will provide a new range of application of
pydecomp, similar to Novikov et al. work [67].

The last axis of extension of this work is to apply these techniques to PDE in more ways. This includes studying
the effect of scalar product to improve convergence and select specific properties such as H1 norm for transport
problems [68] but in the context of multidimensional problems. This is also intended at building multiparameter
ROM (as proposed by the authors in [62]) and improving its stability.

Declaration

Funding

Financial support was provided by grant MOE2018-T2-1-05 in the context of the author’s research fellowship at
NTU in the team of Pr. Wang Li-Lian.

Financial support was provided by the Science and Engineering Research Council, A*STAR, Singapore (Grant
no. A19E1a0097) in the context of the author’s new position as a Scientist at A*STAR, IHPC, Engineering
Mechanics Department, Singapore.

Data availability

The data that support the findings of this study are not available due to change of affiliation of the author. The
data used in the last section is obtained through a software that has not been made public at the moment of
writing this article and consequently cannot be shared. Synthetic data used in sec. 4.2 can be directly reproduced
using the ipython notebook provided with pydecomp library. For other information, please contact the author.

Code availability

The main code used for this data is publicly available under CECILL license. https://git.notus-cfd.org/

llestandi/python_decomposition_library

Conflict of Interest

The author has no relevant financial or non-financial interests to disclose.

Acknowledgments

The author gratefully acknowledge using IHPC’s simulation platform for additive manufacturing to generate some
data used in this paper. For further information on the simulation platform, readers can contact the author.

The author would like to thank Pr. Mejdi Azäıez for the support he provided in the writing of this paper and
frequent discussions on the subject displayed here, in particular in the valorization of the numerical results. Many
thanks to Diego Britez as well, who coded many of the functions in pydecomp as part of his masters’ internship at
I2M. The author would like to thank former colleagues at I2M Bordeaux and in particular notus CFD dev team for
providing data as well as Pr. T.K. Sengupta (IIT Kanpur) for providing high precision LDC simulation code and
the many discussions we had.

https://git.notus-cfd.org/llestandi/python_decomposition_library
https://git.notus-cfd.org/llestandi/python_decomposition_library

Numerical Study of Low Rank Approximation Methods for Mechanics Data and its Analysis. 31

References

1. J. M. Alimi, V. Bouillot, Y. Rasera, V. Reverdy, P. Corasaniti, I. Balmès, S. Requena, X. Delaruelle, and J.-N. Richet, “First-ever
full observable universe simulation,” in Int. Conf. for HPC, Networking, Storage and Analysis, SC, 2012.

2. F. Chinesta, R. Keunings, and A. Leygue, The Proper Generalized Decomposition for Advanced Numerical Simulations.
Springer, 2013.

3. G. Stabile and G. Rozza, “Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible
Navier-Stokes equations,” Computers and Fluids, vol. 173, pp. 273–284, 2018.

4. K. Carlberg, C. Farhat, J. Cortial, and D. Amsallem, “The GNAT method for nonlinear model reduction: Effective imple-
mentation and application to computational fluid dynamics and turbulent flows,” Journal of Computational Physics, vol. 242,
pp. 623–647, 2013.

5. K. Lee and K. Carlberg, “Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders,”
2018.

6. D. Kressner and C. Tobler, “Low-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems,” SIAM Journal
on Matrix Analysis and Applications, vol. 32, no. 4, pp. 1288–1316, 2011.

7. C. Quesada, D. González, I. Alfaro, E. Cueto, and F. Chinesta, “Computational vademecums for real-time simulation of surgical
cutting in haptic environments,” International Journal for Numerical Methods in Engineering, 2016.

8. L. Lestandi, Low rank approximation techniques and reduced order modeling applied to some fluid dynamics problems. Phd.
thesis, Université de Bordeaux, 2018.

9. K. Pearson, “LIII. On lines and planes of closest fit to systems of points in space,” The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, vol. 2, no. 11, pp. 559–572, 1901.

10. H. Hotelling, “Analysis of a complex of statistical variables into principal components.,” Journal of Educational Psychology,
vol. 24, no. 6, pp. 417–441, 1933.

11. M. Loève, Probability Theory, vol. 9. 1977.
12. J. L. Lumley, “Coherent Structures in Turbulence,” in Transition and Turbulence (R. E. MEYER, ed.), pp. 215–242, Academic

Press, 1981.
13. L. Sirovich, “Turbulence and the dynamics of coherent structures. I - Coherent structures. II - Symmetries and transformations.

III - Dynamics and scaling,” Quarterly of Applied Mathematics, vol. 45, no. July, p. 561, 1987.
14. C. Eckart and G. Young, “The approximation of one matrix by another of lower rank,” Psychometrika, vol. 1, no. 3, pp. 211–218,

1936.
15. K. Ito and S. Ravindran, “A Reduced-Order Method for Simulation and Control of Fluid Flows,” Journal of Computational

Physics, 1998.
16. a. E. Deane, I. G. Kevrekidis, G. E. Karniadakis, and S. a. Orszag, “Low-dimensional models for complex geometry flows:

Application to grooved channels and circular cylinders,” Physics of Fluids A: Fluid Dynamics, vol. 3, no. 10, p. 2337, 1991.
17. W. Cazemier, R. W. C. P. Verstappen, a. E. P. Veldman, and I. Introduction, “Proper orthogonal decomposition and low-

dimensional models for driven cavity flows,” Physics of Fluids, vol. 10, no. 7, pp. 1685–1699, 1998.
18. M. Fahl, Trust-region Methods for Flow Control based on Reduced Order Modelling. PhD thesis, 2001.
19. M. Bergmann, Optimisation aérodynamique par réduction de modèle POD et contrôle optimal. Application au sillage laminaire

d’un cylindre circulaire. PhD thesis, Institut National Polytechnique de Lorraine / LEMTA, 2004.
20. F. Hitchcock, “Multiple invariants and generalized rank of a p-way matrix or tensor,” J. Math. Phys, vol. 7, pp. 39–79, 1927.
21. L. R. Tucker, “Some mathematical notes on three-mode factor analysis,” Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.
22. J. D. Carroll and J. J. Chang, “Analysis of individual differences in multidimensional scaling via an n-way generalization of

”Eckart-Young” decomposition,” Psychometrika, vol. 35, no. 3, pp. 283–319, 1970.
23. R. a. Harshman, “Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multimodal factor

analysis,” UCLA Working Papers in Phonetics, vol. 16, no. 10, pp. 1– 84, 1970.
24. T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM Review, vol. 51, no. 3, pp. 455–500, 2009.
25. W. M.-P.-I. f. M. i. t. S. Hackbush, Tensor spaces and numerical Tensor calculus. No. 1, Leipzig, Germany: Springer Heidelberg

Dordrecht London New York, 2014.
26. L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear singular value decomposition,” SIAM Journal on Matrix

Analysis and Applications, vol. 21, no. 4, pp. 1253–1278, 2000.
27. L. de Lathauwer, B. de Moor, and J. Vandewalle, “On the best rank-1 and rank-(R1,R2,...,RN) approximation of higher order

tensors,” SIAM Journal on Matrix Analysis and Applications, vol. 21, no. 4, pp. 1324–1342, 2000.
28. N. Vannieuwenhoven, R. Vandebril, and K. Meerbergen, “A New Truncation Strategy for the Higher-Order Singular Value

Decomposition,” SIAM Journal on Scientific Computing, vol. 34, no. 2, pp. A1027—-A1052, 2012.
29. I. Oseledets and E. E. Tyrtyshnikov, “Tensor tree decomposition does not need a tree,” Preprint, 2009.
30. I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scientific Computing, vol. 33, no. 5, pp. 2295–2317, 2011.
31. B. N. Khoromskij, “O(logN)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling,” Constructive

Approximation, vol. 34, pp. 257–280, oct 2011.
32. I. V. Oseledets, “Approximation of 2dx2d Matrices Using Tensor Decomposition,” SIAM Journal on Matrix Analysis and

Applications, vol. 31, no. 4, pp. 2130–2145, 2010.
33. I. V. Oseledets, S. Dolgov, and D. Savostyanov, “ttpy,” 2018.
34. J. Ballani, L. Grasedyck, and M. Kluge, “Black Box Approximation of Tensors in Hierarchical Tucker Format,” Linear algebra

and its applications, vol. 438, no. 2, pp. 639–657, 2010.
35. L. Grasedyck, “Hierarchical Singular Value Decomposition of Tensors,” SIAM Journal on Matrix Analysis and Applications,

vol. 31, no. 4, pp. 2029–2054, 2010.
36. L. Grasedyck, D. Kressner, and C. Tobler, “A literature survey of low-rank tensor approximation techniques,” GAMM Mit-

teilungen, vol. 36, no. 1, pp. 53–78, 2013.
37. A. Cichocki, “Tensor Networks for Big Data Analytics and Large-Scale Optimization Problems,” arXiv preprint

arXiv:1407.3124, pp. 1–36, 2014.
38. I. V. Oseledets, “Constructive Representation of Functions in Low-Rank Tensor Formats,” Constructive Approximation,

no. 37.1, pp. 1–18, 2013.
39. D. Bigoni, A. P. Engsig-karup, and Y. M. Marzouk, “Spectral tensor-train decomposition,” SIAM Journal on Scientific Com-

puting, vol. 38, pp. 1–32, 2016.
40. A. Gorodetsky, Continuous low-rank tensor decompositions, with applications to stochastic optimal control and data assimila-

tion. PhD thesis, MIT, 2016.
41. A. Gorodetsky, S. Karaman, and Y. Marzouk, “A continuous analogue of the tensor-train decomposition,” Computer Methods

in Applied Mechanics and Engineering, 2019.
42. A. Nouy, “Low-rank tensor methods for model order reduction,” pp. 1–73, 2015.
43. A. Falco, W. Hackbusch, and A. Nouy, “Geometric Structures in Tensor Representations (Final Release),” pp. 1–50, 2015.

32 Lucas Lestandi

44. M. Azäıez, F. B. Belgacem, and T. C. Rebollo, “Recursive POD expansion for reaction-diffusion equation,” Advanced Modeling
and Simulation in Engineering Sciences, no. December, 2016.

45. M. Azäıez, L. Lestandi, and T. C. Rebollo, “Low Rank Approximation of Multidimensional Data In: Pirozzoli S., Sengupta T.
(eds) High-Performance Computing of Big Data for Turbulence and Combustion.,” vol. 592, Springer International Publishing,
cism inter ed., 2019.

46. W. Austin, G. Ballard, and T. G. Kolda, “Parallel Tensor Compression for Large-Scale Scientific Data,” in Proceedings - 2016
IEEE 30th International Parallel and Distributed Processing Symposium, IPDPS 2016, 2016.

47. B. Philippe and Y. Saad, “Calcul des valeurs propres,” in Techniques de l’ingénieur. Sciences fondamentales, (AF1224), 2014.
48. Y. Saad, “Numerical methods for large eigenvalue problems,” Algorithms and architectures for advanced scientific computing,

p. 346 p., 1992.
49. L. Wu, E. Romero, and A. Stathopoulos, “PRIMME SVDS: A High-Performance Preconditioned SVD Solver for Accurate

Large-Scale Computations,” SIAM Journal on Scientific Computing, vol. 39, no. 5, pp. S248–S271, 2017.
50. E. Rabani and S. Toledo, “Out-of-core SVD and QR decompositions,” Proceedings of the 10th SIAM Conference on Parallel

Processing for Scientific Computing, Portsmouth, VA, CD-ROM, SIAM, Philadelphia, no. 572, pp. 1–9, 2001.
51. V. Demchik, M. Bačák, and S. Bordag, “Out-of-core singular value decomposition,” pp. 1–11, 2019.
52. A. M. Dunton, L. Jofre, G. Iaccarino, and A. Doostan, “Pass-efficient methods for compression of high-dimensional turbulent

flow data,” Journal of Computational Physics, vol. 423, may 2020.
53. D. D. Kosambi, “Statistics in function spaces,” Journal of the Indian Mathematical Society, 1943.
54. D. Kressner and C. Tobler, “htucker – A Matlab toolbox for tensors in hierarchical Tucker format,” pp. 1–28, 2013.
55. F. Chinesta and P. Ladavèze, Separated Representations and PGD-Based Model Reduction, vol. 554. 2014.
56. P.-E. Allier, L. Chamoin, and P. Ladevèze, “Proper Generalized Decomposition computational methods on a benchmark

problem: introducing a new strategy based on Constitutive Relation Error minimization,” Advanced Modeling and Simulation
in Engineering Sciences, vol. 2, no. 1, p. 17, 2015.

57. L. Grasedyck, W. Hackbusch, and B. Nr, “An Introduction to Hierachical (H) Rank and TT – Rank of Tensors with
Examples,” Comput. Methods Appl. Math, vol. 11, no. 3, pp. 291–304, 2011.

58. J. Ballani, Fast evaluation of near-field boundary integrals using tensor approximations. Phd, University of Leipzig, 2012.
59. J. Ballani and L. Grasedyck, “Hierarchical tensor approximation of output quantities of parameter-dependent PDEs,” vol. 3,

pp. 1–19, 2014.
60. B. N. Khoromskij, “O(d logN)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling,” Constructive

Approximation, vol. 34, no. August, pp. 257–280, 2011.
61. L. Lestandi, S. Bhaumik, T. K. Sengupta, G. R. Krishna Chand Avatar, and M. Azäıez, “POD Applied to Numerical Study of

Unsteady Flow Inside Lid-driven Cavity,” Journal of Mathematical Study, vol. 51, no. 2, pp. 150–176, 2018.
62. T. K. Sengupta, L. Lestandi, S. I. Haider, A. Gullapalli, and M. Azäıez, “Reduced order model of flows by time-scaling

interpolation of DNS data,” Advanced Modeling and Simulation in Engineering Sciences, vol. 5, p. 26, oct 2018.
63. B. W. Bader, T. G. Kolda, and Others, “MATLAB Tensor Toolbox Version 3.0-dev.” Available online, 2017.
64. L. Lestandi, S. Bhaumik, G. R. K. C. Avatar, M. Azaiez, and T. K. Sengupta, “Multiple Hopf bifurcations and flow dynamics

inside a 2D singular lid driven cavity,” Computers and Fluids, vol. 166, pp. 86–103, 2018.
65. L.-X. Lu, S. Narayanaswami, and Y. W. Zhang, “Phase field simulation of powder bed-based additive manufacturing,” Acta

Materialia, vol. 144, pp. 801–809, 2018.
66. T. Daulbaev, J. Gusak, E. Ponomarev, A. Cichocki, and I. Oseledets, “Reduced-Order Modeling of Deep Neural Networks,”

oct 2019.
67. A. Novikov, P. Izmailov, V. Khrulkov, M. Figurnov, and I. Oseledets, “Tensor Train decomposition on TensorFlow (T3F),” jan

2018.
68. A. Iollo, S. Lanteri, and J.-A. Désidéri, “Stability Properties of POD – Galerkin Approximations for the Compressible Navier

– Stokes Equations,” Theoret. Comput. Fluid Dynamics, vol. 13, pp. 377–396, 2000.

	Introduction and problem setting
	Problem formulation

	Bivariate separation
	Singular Value Decomposition (SVD)
	Proper Orthogonal Decomposition (POD)

	Multi-dimensional decomposition formats and methods
	Canonical decomposition
	Tucker decomposition
	Hierarchical Tensor
	Tensor train (TT)
	Quantics TT
	Recursive decomposition

	Experimental results
	pydecomp software
	Synthetic data
	A scalar simulation : 2D lid driven cavity at high Reynolds number
	Experimental data : droplets evaporation
	A vectorial simulation : breaking wave
	Decomposition of a large simulation dataset : powder bed fusion additive manufacturing

	Discussion and Conclusion

