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ABSTRACT

In order to enable the industrialization of additive manufacturing, it is necessary to

develop process simulation models that can rapidly predict part quality. Although

multi-physics simulations have shown success at predicting residual stress, distor-

tion, microstructure and mechanical properties of additively manufactured parts,

they are generally too computationally expensive to be directly used in applica-

tions such as optimization, controls, or operational digital twinning. In this study,

a critical evaluation is made for how data-driven surrogate models can be used to

model the residual stress of parts fabricated by Laser Powder-Bed Fusion. Resid-

ual stress data is generated by using an inherent-strain based process simulation

for two families of part geometries. Three different models using varying levels of

sophistication are compared: a multilayer perceptron (MLP), a convolutional neural

network (CNN) based on the U-Net architecture, and a interpolation-based method

based on mapping geometries onto a reference. All three methods were found to

be sufficient for part design, providing mechanical for a CPU time below 0.2s, rep-

resenting a runtime speed-up of at least 3900x. Neural network based models are

significantly more expensive to train compared to using interpolation. However, the

generality of models based on the U-Net architecture is attractive for applications

in optimization.
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1. Introduction

Additive manufacturing (AM) processes such as Laser Powder-Bed Fusion (LPBF) are

potentially transformative technologies due to their ability to create complex parts that

are difficult to form through other, more conventional means. However, AM processes

tend to be very complex, often exposing the material to conditions very different

from conventional processing. The digital simulation of AM processes is therefore an

essential tool to control the LPBF process and enable its full potential.

The LPBF process is inherently multiscale and multiphysics, where microscopic-

scale phenomena such as the laser-powder interaction can lead to significant changes

in the residual stresses and distortion at the part-scale (Markl and Carolin 2016). Con-

sequently, although a variety of research groups (Promoppatum, Onler, and Yao 2017;

Joshi et al. 2021; Mikula et al. 2021) and companies (e.g. Simufact, ANSYS Additive,

Siemens NX) have developed process simulations to study the LPBF process, these

tools are generally not computationally efficient enough to be used for optimization

or process control. Simulation of a single complex build can take hours depending on

the level of fidelity of the computational tool.

A typical approach to overcome this difficulty is to develop surrogate models that

are computationally less expensive to evaluate, but still are able to capture the correct

predictions of the full-order model (FOM). Data-driven surrogate models such as neu-

ral networks or response surfaces allow most of the computational effort to be done

off-line. Such machine learning (ML) methods have been applied to AM processes as

discussed in (Qi et al. 2019; Meng et al. 2020). Surrogate models have been applied

to a variety of problems in AM, including estimating mechanical properties (Ansell

et al. 2020; Baturynska 2019; Popova et al. 2017), surface roughness (Wu, Wei, and

Terpenny 2019), melt pool structure (Kizhakkinan et al. 2023), microstructure (Gan

et al. 2019) and thermal history (Li and Polydorides 2022).

Surrogate modeling has enabled the integration of simulation, data and AM to

deal with several aspects impacting printability. For example, strategies have been

developed to optimize build costs utilizing Long-Short Term Memory (Ulu et al. 2019),

Generative Adversarial Networks, and Convolutional Neural Network architectures
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(Nie, Jiang, and Kara 2019; Nie et al. 2020). Gaussian Process based modeling has

been used to predict porosity distributions due to printing (Tapia, Elwany, and Sang

2016) as well as predicting robust process parameters for printing (Tapia et al. 2018).

In this paper, strategies for developing surrogate models for AM for the purposes of

component design are critically evaluated. In particular, focus is placed on accelerating

the calculation of process-induced residual stresses and distortions at the part-scale

(Mercelis and pierre Kruth 2006). This problem has been studied with dimension re-

duction (Vohra et al. 2020) and applied to geometry compensation using techniques

such as Artificial Neural Networks (ANN) (Chowdhury 2016) and reduced order mod-

eling (Quaranta et al. 2019). This study focuses on this area since the full-order model

is well established: the inherent strain approximation (Ueda et al. 1975) is generally

accepted as valid for calculating residual stresses and distortions at the part-scale

during the LPBF process.

Component design offers particular challenges to surrogate modelling, as it is nec-

essary to be able to rapidly assess a large number of geometries. To develop such

surrogate models, it is useful to be able to describe a geometric parameterization

(Staten et al. 2011) that can efficiently describe a variety of potential component

shapes. Several schemes have been developed to describe intricate shapes using a few

parameters. Free form deformation (FFD) uses a small number of volumetric control

points on the surface to define the remainder of the component geometry (Manzoni,

Quarteroni, and Rozza 2012; Demo et al. 2018). Interpolation methods such as inverse

distance weighting (Sen, De Nayer, and Breuer 2017; Ballarin et al. 2019) and radial

basis functions (RBF) (Botsch and Kobbelt 2005; de Boer, van der Schoot, and Bijl

2007; Ammar et al. 2013; Sieger, Menzel, and Botsch 2014; Biancolini et al. 2020)

have similarly been used to morph between different mesh geometries. Another ap-

proach consists of finding a low order representation of complex shapes that describe

the geometry using a small number of spatial modes (Chinesta et al. 2017) obtained

by applying any low order approximation on the position of the surface.

Families of simple geometries (such as those studied in this paper) can be described

using a feature-based approach (Rosen and Grosse 1992) using explicit analytical de-

scription of simple shapes (cylinders, spheres, cubes, etc.) combined with geometric
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operations (addition, subtraction, rotation) which can be rendered in parametric CAD

software such as FreeCAD (Team 2020). This method limits the complexity of the

component, but facilitates analysis. For example, one can very easily determine if an

arbitrary point is inside or outside the surface.

The remainder of this paper is organized as follows. The next section formally

describes the problem. Three different data-driven surrogate modeling methods for

part-scale mechanical simulation are presented: a standard neural network based on

a multilayer perceptron (MLP); a convolutional neural network (CNN); and a map-

decompose-interpolate (MDI) approach that exploits geometry parameterization. In

section 5 these methods are applied to data produced with a voxel based inherent

strain simulation. Finally, each strategy is critically evaluated and the relative merits

of each method are discussed.

2. Statement of the problem

The goal of this work is to develop a data-driven method that allows the computation-

ally efficient evaluation of the mechanical properties in a martensitic steel component

fabricated using laser powder bed fusion (LPBF). To this end, the residual stress

developed upon printing two groups of simple geometries with no support structure

was determined. The first group consists of a thin plate containing an elliptical hole

with various shapes and sizes. The second group consists of trapezoidal prisms with

different heights and base sizes, representing bulky structures.

The geometry of each build is parametrically generated using FreeCAD, then ex-

ported as an STL file. This geometry is then voxelized using a mesh and voxel

size standardized for each geometry group. The plate geometries use a voxel size of

0.5mm×6mm×0.5mm and are embedded in a 100×1×200 mesh. The wedge geome-

tries use a voxel size of 0.5mm× 5mm× 0.5mm and are embedded in a 40× 10× 60

mesh. The residual stress and strain are calculated using a modified inherent strain

method (Mikula et al. 2021). The part scale simulation step is referred to in this paper

as the Full Order Model (FOM), and is discussed in more details in (Dong et al. 2022).

Simulations are performed using the materials properties as presented in table 1. A
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Mechanical Property Value
Young’s Modulus E (GPa) 160
Ultimate tensile strength (MPa) 1050
Poisson ratio ν 0.23
Hardening coefficient h 69.4
Inherent strain εinh -0.008

Table 1.: Materials properties for process simulation used in all numerical experiments
of this paper.

single simulation run of the FOM takes 1h or less on a high performance workstation

with two Intel® Xeon® Gold 6230 CPUs with 32 cores @ 2.10GHz.

The key outputs that will be modeled in this study are the residual stress (measured

through the scalar von Mises stress), and the distortion (measured through the scalar

displacement and the displacement vector). The FOM outputs the values of these fields

at the nodes of the voxelized mesh. These outputs are taken as representative parame-

ters for LPBF process simulations: since these surrogate models are data-driven, they

are suitable for any relevant simulation outputs such as local strength or microstruc-

ture, as long as the FOM is appropriately extended.

The surrogate modeling problem can be formally be stated as follows. Considering a

group of geometries, they may describe using a vector of parameters µ = (µ1, ..., µp) ∈

P where P is the set of possible parameters. The process model predicts the quantity

of interest, u(x;µ), using the geometry as an input. u(x;µ) can be either a scalar

or vector valued function and is defined at all points x ∈ Ω(µ) the parametrized

geometry.

In this study, purely data driven surrogate model û are developed to offers fast and

accurate approximation of u,

û(x;µ) ≈ u(x;µ), ∀(x;µ) ∈ Ω(µ)× P. (1)

While only geometric parameters are used, the surrogate could be extended to include

other variables such as process parameters as long as sufficient data is sampled. The

challenge of developing a surrogate model is that the relationship between geometry

and u is complex and difficult to evaluate. However, this surrogate may be utilized in
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applications such as design or optimization of structures

The performance of the different surrogate models will be compared using the rel-

ative error,

E(û, u) =
||u− û||
||u||

(2)

Different definitions of the norm are used to characterize different aspects of the error.

The L2 norm is a measure of the Euclidean length of the vector u− û, and so measures

the overall accuracy of the model. The L∞ norm finds the largest element of u − û,

and so measures the maximum error of the model.

3. Deep neural networks-based surrogate models

In order to leverage the strength of deep neural networks at regression tasks, u(x;µ) in

Eq. (1) is approximated by û(x;µ;w), where w is a set of neural network parameters

to be optimized. The intermediate states of the build process are excluded from the

training data and only the final spatial data is used for training and testing. While

many neural network architectures could be utilized, the scope of this work is lim-

ited to two well-known architectures. The first architecture considered in this work,

the multilayer perceptron (MLP), is a feedforward network made up of input, hidden

and output nodes in which each layer is fully connected. MLP is a universal func-

tion approximator (Hornik, Stinchcombe, and White 1989), thus should be suitable

for the non-linear interpolation problem studied here. The second architecture con-

sidered is the convolutional neural network (CNN), which has shown great success in

visual recognition tasks (Lecun, Bengio, and Hinton 2015) such as object classification

(Krizhevsky, Sutskever, and Hinton 2017), object segmentation(Shelhamer, Long, and

Darrell 2017) and medical image analysis (Yamashita et al. 2018). This method utilizes

a sparsely connected network which accounts for local connectivity, and is considered

well suited for data including spatial relationships. Unlike MLPs, CNNs can be di-

rectly applied to voxelized geometries generated by FOM (Dong et al. 2022), without

the need to introduce a parameterization factor.
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3.1. Multilayer perceptron (MLP) surrogate model

In this work, the MLP is utilized by directly taking the geometry parameter µ and

spatial coordinate x as inputs, and returning the prediction ûMLP (x;µ;w). The MLP

is trained using backpropagation (Goodfellow, Bengio, and Courville 2016), where the

gradient of neural network weights w is computed with respect to a loss function L

and updated based on the errors of the previous epoch. For a given dataset consisting

of n samples (input–output pairs), the loss function is defined using mean squared

error (MSE),

L = LMSE =
1

n

n∑
i=1

(ui − ûMLP (xi;µi;w))2 . (3)

The MLP architecture and training settings used in this study are described as fol-

lows: The network comprises of 4 hidden layers with 50 neurons plus Swish activation,

before connecting to a non-negative scalar output u ∈ R+, e.g., von Mises stress and

displacement magnitude, through a ReLU activation in the output layer. For a vector

output u ∈ Rm, e.g., displacement vector, the network branches out to m sets of 3

hidden layers with a linear activation in the last hidden layer that predicts each of vec-

tor components. Their network weights are initialized by the Xavier method (Glorot

and Bengio 2010). These models were created using the Keras API as packaged with

TensorFlow 2.5 (Abadi et al. 2016). The ADAM optimizer (Kingma and Ba 2015) is

used for optimizing the network weights with respect to MSE loss. Table 2 provides an

overview of the MLP architecture used for each specific sub-problem. The architecture

was tuned for the specific data of each regression problem. Although the shape of the

input data varies depending on the specific component geometry, tuning the archi-

tecture of the hidden layers was not needed. However, predicting scalar and vector

outputs requires different network architectures as shown in Fig. 1. For example, to

model the displacement vector, a set of common ”trunk” layers is used, followed by

branches specific to each component of the vector.
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(a) Scalar output MLP, 4 layers, denoted
(θ,M, x, y, z)− 50− 50− 50− 50− û

µ

x

ux

uy

uz

n=50

(b) Vector output MLP, 3 trunk layers fol-
lowed by 3 branches of 3 layers, denoted

(θ,M, x, y, z)−50−50−50−

 50− 50− 50− (ûx),
50− 50− 50− (ûy),
50− 50− 50− (ûz)

Figure 1.: Architecture of MLP depending on output. All hidden layers have 50 neu-
rons.

3.2. Convolutional Neural Network (CNN) surrogate model

The voxelized input geometry is represented as binary matrices where 0 represents

empty space and 1 represents a solid voxel. For training a CNN model, the voxelized

geometries are padded with 0s such that the size of the matrices in the training set

are all the same size, e.g., 256x128 for the 2D plate geometries and 24x64x32 for 3D

wedge geometries.

In the present study, a CNN architecture known as U-Net (Ronneberger, Fischer,

and Brox 2015; Özgün Çiçek et al. 2016; Iglovikov and Shvets 2018) is implemented,

which is suited for the field prediction task because it assigns output value(s) to each

input pixel / voxel for 2D / 3D inputs (Yao et al. 2018; Le, Chiu, and Ooi 2021; Chen,

Viquerat, and Hachem 2019). Fig. 2 shows the detailed architecture implemented

for 3D data. Briefly, the U-Net is comprised of separate contraction and expansion

networks making up of successive layers of convolution, batch normalization, nonlinear

activation, and pooling / up-sampling operations. The contraction network is designed

to gradually map the input into increasing number of advanced feature maps and

also to reduce the feature map sizes. The expansion network is symmetric but acts

in the opposite direction of the contraction half, where the pooling operations are

replaced by the up-sampling operations, to gradually map from the advanced features
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Table 2.: MLP architectures have been fine tuned for the specific problems at hand.

von Mises stress displacement magnitude displacement vector

MLP architecture
–no. neurons–

(θ,M, x, y, z)−
50− 50− 50− 50− û

(θ,M, x, y, z)−
50− 50− 50− 50− û

(θ,M, x, y, z)−
50− 50− 50

−

 50− 50− 50− (ûx),
50− 50− 50− (ûy),
50− 50− 50− (ûz)

Activation Swish, ReLU Swish, ReLU Swish, linear
Loss type MSE MSE MSE

Max. training epoch 500 500 1000
(a) Plate with hole data

von Mises stress displacement magnitude displacement vector

MLP architecture
–no. neurons–

(Lx, Lx, H, x, y, z)−
50− 50− 50− 50

−û

(Lx, Lx, H, x, y, z)−
50− 50− 50− 50

−û

(Lx, Lx, H, x, y, z)−
50− 50− 50−

−

 50− 50− 50− (ûx),
50− 50− 50− (ûy),
50− 50− 50− (ûz)

Activation Swish, ReLU Swish, ReLU Swish, linear
Loss type MSE MSE MSE

Max. training epoch 500 500 1000
(b) Wedge data

extracted by the contraction network to the final output. An important feature of the

U-Net is the skip connections from layers of equal resolution in the contraction half

to its expansion counterpart, which allows the network to more easily propagate the

localization information to later layers, and also back propagate the loss gradients to

earlier layers.

The performance of the U-Net model is more sensitive to the network architecture

and training hyper-parameters compared to MLP. The U-net design is based on the

authors previous work (Dong et al. 2022) and have been fine-tuned for each specific

prediction tasks resulting in different network architectures where the training hyper-

parameters are reported in table 3. All these models are initialized by the Xavier

method (Glorot and Bengio 2010) , and trained by the ADAM (Kingma and Ba 2015)

optimizer with respect to MAE (LMAE) or MSE (LMSE) loss for at least 1k epochs.

L = LMAE =
1

n

n∑
i=1

|ui − ûMLP (xi;µi;w)| . (4)
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Figure 2.: Scalar output Unet-CNN architecture predicting displacement magnitude
for 3D wedge geometries.

Table 3.: U-Net architecture and training settings for each dataset studied.

von Mises stress displacement magnitude displacement vector

CNN
architecture
–no. filter–

(X256×128)−
16− 16− 32− 32− 64−

64− 128− 128− 64−
64− 32− 32− 16− 16

−(Û256×128)

(X256×128)−
16− 16− 32− 32− 64−

64− 128− 128− 64−
64− 32− 32− 16− 16

−(Û256×128)

(X256×128)−
16− 16− 32− 32−

64− 64− 128− 128−
64− 64− 32− 32− [

16− 16− Ûx,256×128,

16− 16− Ûy,256×128,

16− 16− Ûz,256×128

Activation ReLU ReLU ReLU, linear
Loss type MAE MAE MSE

Max. training epoch 1000 1000 2000
(a) Plate with hole data

von Mises stress displacement magnitude displacement vector

CNN
architecture
–no. filter–

(X24×64×32)−
16− 16− 32− 32− 64−

64− 128− 128− 64−
64− 32− 32− 16− 16

−(Û24×64×32)

(X24×64×32)−
16− 16− 32− 32− 64−

64− 128− 128− 64−
64− 32− 32− 16− 16

−(Û24×64×32)

(X24×64×32)−
16− 16− 32− 32−

64− 64− 128− 128−
64− 64− 32− 32− [

16− 16− Ûx,24×64×32,

16− 16− Ûy,24×64×32,

16− 16− Ûz,24×64×32

Activation ReLU ReLU ReLU, linear
Loss type MAE MAE MSE

Max. training epoch 1000 1000 2000
(b) Wedge data
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4. Map-Interpolate (MI) surrogate model

In this section, a surrogate model explicitly incorporating geometry parameterization

is presented. It is named Map-Interpolate (MI). In this strategy, during an offline pre-

computing phase described in Algorithm 1, the input data is mapped onto a reference

geometry where one can use any off-the-shelf method to interpolate in the paramet-

ric space. Next, the online phase consists in interpolating at the target parameters

followed by an inverse mapping of the fields to the target geometry, described in Al-

gorithm 2.

Algorithm 1: MI Offline phase

input : Precomputed samples : {u(x;µi)}Nsamplesi=1
1 Map samples to reference: eq. (6) ∀i ≤ Nsamples, ∀x ∈ Ω(µ),

ū (x̄,µi) = u(M(x̄;µi);µi) = u(x;µi)

2 Store snapshots {ū1, · · · , ūNsamples} with ∀i ≤ Nsamples, Ui ∈ Rnref the discrete
representation of ūi

3 Precompute any purely offline step of the interpolation method (e.g. HOSVD)

Algorithm 2: MI Online phase

input : Precomputed snapshots and algorithm 1:line 3 result

1 Interpolate the snapshots at target µ̂ = (µ̂1, ..., µ̂Nµ) and obtain

∀x ∈ Ωref , ū(x, µ̂)

2 Map back to physical space,

∀x ∈ Ω(µ̂), uMI(x; µ̂) = û(M−1(x̄; µ̂), µ̂)

output: Approximation at target parameter µ̂ : ∀x ∈ Ω(µ), ûMDI(x; µ̂)
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4.1. Mapping

The training data is mapped onto a topologically equivalent reference domain Ωref =

Ω(µref ) using a parametrized map M : Ωref × P −→ Ω(µ) defined such that

Ω(µ) =M(Ωref ,µ) (5)

Let ū : Ωref −→ Rd such that ∀x̄ ∈ Ωref where M(x̄;µ) = x, ū verifies

ū (x̄, µ) = u(M(x̄;µ);µ) = u(x;µ) (6)

In other words, for any field variable u(·;µ), ū(·, µ) is the same field mapped onto Ωref ,

the reference space. Figure 4 illustrates the definition of geometry mapping.

The radial basis function (RBF) mapping method is used to map the volume of the

geometry using control points placed on the surface (de Boer, van der Schoot, and

Bijl 2007). The multiquadratic biharmonic spline RBF kernel is used as it showed

good accuracy and stability for all choices of radius and step size. The control points are

placed regularly on the coupon surfaces according to the constructive solid geometry

used to generate the CAD files. The mesh is mapped to the reference geometry using

pygem(Tezzele et al. 2021), after which the data is interpolated at the nodes of the

reference mesh.

4.2. Interpolation methods

After the mapping, all the snapshots share the same geometry (discrete and continu-

ous). Consequently, any off-the-shelf interpolation method can be used. In this work,

the nearest neighbour interpolation (NNI) is used as baseline. Linear interpolation is

tested as well since it scales well even for large parametric spaces. Finally, a model

based on high order singular value decomposition (HOSVD) is proposed to reduce the

model size when the parametric space dimension is large i.e. #P > 2.
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Figure 3.: Graphical representation of the Map Interpolate method where the Isoge-
ometry model is the snapshots ū for standard interpolation method or the HOSVD
decomposition when the parametric space dimension is large.
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Figure 4.: Illustration of a map M between reference geometry Ω and parametrized
geometries Ω(µ).
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4.2.1. Nearest Neigbour Interpolation (NNI)

Note that even for this basic model, the mapping stage was necessary to ”project”

the nearest neighbour µ̂nn of µ̂ onto the actual geometry Ω(µ̂). Within the reference

geometry, the model reads:

∀x̄ ∈ Ωref , ûNNI(x̄, µ̂) = ū(x̄,µNN ) (7)

4.2.2. Linear interpolation

As for NNI, one can use a standard multivariate piece-wise linear interpolation within

the reference geometry. For compatibility with the next method (subsection 4.2.3),

the study is restricted to rectilinear parametric grids. Then, one can use a sequence of

1D linear interpolation e.g. ND-linera interpolation ((Weiser and Zarantonello 1988)).

Finally,

∀x̄ ∈ Ωref , ûlin(x̄, µ̂) = Nlinear Interpolation ({ūi(x̄, )µi}i, x̄, µ̂) (8)

4.2.3. HOSVD+Interpolation (MDI)

Inspired by the surrogate modeling method of Proper Orthogonal Decomposition with

Interpolation (PODI) (Bui-Thanh, Damodaran, and Willcox 2004) a data decomposi-

tion is performed on the mapped training data. In this method, a set of data samples,

often referred as snapshots, are decomposed into modes to build a low order approx-

imation of the underlying manifold of the data. This allows the application of 1D

interpolation techniques (e.g. piece-wise polynomial, Lagrange or splines) to simplify

parametric interpolation over the solution space. This non-intrusive surrogate mod-

elling strategy is similar to recent work (Hesthaven and Ubbiali 2018; Ghnatios et al.

2021; Demo, Tezzele, and Rozza 2019) where the model does not need the PDE once

the training data has been acquired, even when dealing with multiple parameters at

once (Duong et al. 2020).

As all the samples have been mapped onto Ωref , the snapshots have exactly the same

mesh and thus the data can be well described by constraining the data sampling on the
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tensor product grid. This means that this model is a tensor Ũ of sizeNx×Nµ1
×· · ·×Nµp

representing ũ at grid points. The entries of the tensor are defined as follows:

∀ i0 ≤ Nx, ..., ip ≤ Nµp , Ūi0i1...ip = u(x̄i0 , µi11 , ..., µ
ip
p )

Note that computational limitations coming from the size of tensor may be alleviated

using more advanced sparse representation and decomposition techniques (Ballani,

Grasedyck, and Kluge 2010; Dahmen et al. 2015; dung Nguyen, Abed-meraim, and

trung Nguyen 2016). The trajectories are centered by removing the point-wise average,

〈Ū〉 =

∑
i1,...,ip

Ū:i1...ip

Nsamples
(9)

Finally, tensor U is defined as:

∀i0 ≤ Nx, Ui0 = Ūi0 − 〈Ū〉 (10)

Any tensor decomposition method can be used in the algorithm. In this case, the

Tucker tensor decomposition was applied to U , specifically the Sequentially Truncated

Higher Order Singular Value Decomposition (ST-HOSVD) (Vannieuwenhoven, Van-

debril, and Meerbergen 2012), since it provides easy representation and is efficient for

reasonably low dimension (d < 5)(Lestandi 2021). The decomposition U then reads,

U ≈ Ũ =

r0∑
k0=1

· · ·
rp∑

kp=1

wk0...kpX
k0 ⊗ ϕk11 ⊗ · · · ⊗ ϕ

kp
p (11)

Where Xk0 is the k0-th spatial mode (singular vector), ϕiq is the i-th mode of

parameter 1 ≤ q ≤ p, wk0...kp is the weight associated with the specific combination

of modes (k0, ..., kp). Finally, r = (r0, ..., rp) is the truncation rank. This separated

form also enables efficient storage of the training data if N =
∏
i ri << Nsamples

with a controlled approximation error. This is particularly useful when the number of

parameters is large, then, the exponential growth of sample data is not reflected in
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the surrogate model which can retain a low rank. Hence, the comparison between NN

surrogates and MI is focused on this HOSVD + interpolation approach that is called

Map-Decompose-Interpolate (MDI).

Interpolation and Reconstruction This is the first online step of the surrogate

model. In order to evaluate the model at target parameter µ̂ ∈ P , is evaluated

ũ((x̄, µ̂) = ũ((x̄, µ̂1, ..., µ̂p)) (12)

=

r0∑
k0=1

· · ·
rp∑

kp=1

wk0...kpX
k0(x̄)ϕk11 (µ̂1) · · ·ϕkpp µ̂p) (13)

for x̄ ∈ Ωref . The modes ϕiq(µ̂q) evaluated at the target parameter can be interpolated

using any 1D interpolation technique.

Finally, the mean field is added back,

uHOSV D+I(x̄), µ̂) = ũMI((x̄, µ̂) + 〈ū〉

where 〈ū〉 is the mean field on snapshots i.e. the function associated with 〈Ū〉 from eq.

9.

The following methods were tested: piece-wise polynomials, splines and Lagrange

interpolation and found they all performed well with similar efficiency. For the results

reported the paper, piece-wise linear interpolation was used.

5. Results

In this section, the MLP, CNN, and MI surrogate models are applied to familes of

part geometries consisting of 1) a plate with a hole of varying shape and 2) a set of

wedge-like geometries. The performance of each model is evaluated for the prediction

of 1) the von Mises residual stresses (scalar), 2) the displacement magnitude (scalar),

and 3) the displacement vector (3 component vector). In all figures in this paper, the

units for residual stress are taken to be Pa and the units for displacement are m.
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5.1. 2D Plate geometry

Figure 5.: A rectangular plate geometry with an ellipsoidal hole parameterized by the
major axis of the ellipse M and the tilt angle from the horizontal axis θ.

Data description

The plate geometry considered consists of a rectangular plate with an ellipsoidal hole in

its center, as illustrated in Fig. 5. As the thickness (ly = 6mm) is very small compared

to the other dimensions lx = 100 and lz = 50 mm, only 1 voxel is used in this dimension

and are able to treat the problem as 2D using MLP and CNN. However, MI treats the

plate geometries as a 3D model and so treats this problem as quasi-2D.

The hole is parameterized using M ∈ [10, 20] mm, the major axis length, and

θ ∈ [0, π[, the tilt angle of the major axis relative to axis x. The minor axis is fixed to

be 10mm, so that M = 10mm corresponds to a circular hole of radius 10mm. The data

is systematically sampled over the parameter space µ = (M, θ) ∈ [10 : 20 : 1]× [0 : π :

π/12] for a total number of 144 snapshots as shown in 6.

The training and validation strategy is different for the three methods because of

their different requirements.

• As MLP is a point-wise model, 50% of the point data of the snapshots is a large

enough dataset for training. Hence, for each snapshot, half of the point data is

randomly sampled for training, while the remaining half is used for validation of

the model.

• CNN uses the entire snapshot data for training. No extra validation set is used in

this study and the hyperparameter tuning was performed based on training loss.
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Consequently, the validation set in table 4 and 5 refers the training snapshots.

• MI also uses the entire snapshot data for training. Validation is unnecessary, as

this model is deterministic. Consequently, the validation set in Table 4 and 5

refers the training snapshots.

Figure 6.: Overview of the training set for plate with hole problem with parameters
(M, θ) ∈ [10 : 20 : 1]× [0 : π : π/12]

Surrogate modeling

Fig. 7 presents a comparison of all three methods for M = 15.6 and θ = 2.3736 . The

FOM fields on the top line followed by the difference (udiff = u − û) plot for each

model in the associated field. All three surrogate modeling methods perform similarly

well in terms of prediction accuracy for the von Mises stresses. However, displacement

proves more challenging and U-Net CNN architecture performs notably better. In all

cases, it is difficult to distinguish differences between the predictions and the exact

solution (FOM). Tab. 4, reports the training (validaiton) and test set average error.

They confirm the visual impression from Fig. 7 unique sample.

MLP surrogate model. The MLP is trained by retaining 50% of the point data

for one field e.g. von Mises stresses. Training is performed over 500 epochs with a

learning rate of 5e-3 and reduced upon plateauing (Bengio 2012) until a minimum

value of 1e-6 is reached. Training required minutes of computational time (see Table
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(a) von Mises stresses surrogate models

(b) Displacement magnitude surrogate models

(c) Displacement vector surrogate models

Figure 7.: Comparison of results for surrogate models of plate geometries. In each
subfigure, the top line presents the models outputs alongside the corresponding ”truth”
with the same colorscale. The bottom line depicts the difference between the predicted
values and the truth solution. The L2 relative error of each prediction is indicated below
each frame.
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8). As shown in Table 4, this model performs well for all fields in L2 relative error

while L∞ error is much larger because a few (surface) points have locally large error.

This is a problem found with all models and can be attributed to the voxel structured

mesh, which can exhibit non-physical steps on smooth surfaces. Similarly, the error on

stresses (≈ 0.7%) is one order of magnitude smaller than that of displacement (≈ 8%)

both vector and magnitude. This will be observed for all surrogates since these two

fields have very different smoothness properties. Fig. 7 shows the stress field is well

captured by this method, except for a region showing (mild) discrepancy is above the

hole. Here, the surrogate stress field is smoother than the one from the FOM, resulting

in both positive and negative error in this area.

Table 4.: Comparison of the MLP, CNN and MDI surrogate models error on three
fields for both training/validation and test set on plate geometry.

MLP CNN MDI
Variable Set EL2

(%) EL∞ (%) EL2
(%) EL∞ (%) EL2

(%) EL∞ (%)

Stress
Val. 0.71 25.3 0.49 28.3 0.91 22.7
Test 0.68 11.68 0.5 9.81 1.36 23.3

Disp. scalar
Val. 8.30 44.9 3.21 49.9 8.98 40.2
Test 7.98 47.8 3.62 23.3 11.5 55.7

Disp. vector
Val. 9.03 121 4.50 50.7 11.39 42.0
Test 7.85 52.1 3.53 23.2 14.1 56.4

U-Net CNN. The U-Net CNN also provides a low error approximation with EL∞ =

O(10−1) and EL2
≈ 0.5% for residual stresses as shown in Table 4. Likewise, the

performance error for displacement fields is higher by an order of magnitude. The more

accurate results from U-Net CNN are very encouraging although this method requires

more effort during training, particularly in hyper-parameter optimization (see Table

3 for complete description of the architecture). Another peculiarity of this method is

the lack of smoothness of the output fields, which is particularly visible on the error

distribution for displacement field. Indeed, the displacement is very concentrated in

the upper portion of the hole, leading to large local error. Additionally, one can notice

that the U-net is the only model which reasonably captures the “linelike” feature that

is seen through the part at the top of the hole level.
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MI surrogate model This section is focused on the more involved MDI

(HOSVD+interpolation) version of MI as it is the most accurate and adaptable. In

addition, it uses full rank decomposition in eq. 11 which preserves all the information

of the training set with machine precision. Tab. 4 shows that MDI prediction accuracy

follows the same pattern as MLP and Unet-CNN. Yet, one can see that its test set er-

ror is the largest of the surveilled models. In particular, one can see that displacement

prediction error is above 10% which may be considered too high for use in production.

To further illustrate this method, Fig. 8 is provided. This figure shows the two

states of prediction that are used for this method. Indeed, panel (a) shows the actual

output of MDI which is a stretched mesh as one can see at the hole edges. In this

case, the prediction closely matches the ground truth and prediction error is very

small. However, to have a fair comparison with the other methods presented here, the

surrogate model output is projected onto the same mesh as the FOM solution panel

(c). This introduces extra error which is of the same magnitude as the total error

for the model reported in this paper. The poor performance of this model is further

studied in section 6.1.

Finally, one can observe in Fig. 7 that the error distribution of MDI is very different

from MLP and Unet-CNN while retaining the same difficulty to capture displacement

above the hole. Stresses error is concentrated near the edges of the geometry as clearly

visible in subfigure (a).

5.2. 3D wedge geometry

Compared to the pseudo-2D plate geometry studied in the previous section, the data

structures of 3D geometries have higher complexity. Consequently, a family of bulky

parts is introduced. They are used to test for potential differences in the accuracy and

computational efficiency of the three methods.

Geometry description. The 3D geometry analyzed in this study is relatively simple

and can be described as a wedge or a trapezoidal prism as shown in Fig. 9. The base

of the prism is printed directly on the baseplate, where its length along y axis is fixed

at Ly = 50mm. The base width lx ∈ [4, 20, 4], height H ∈ [10, 30, 4] and top surface
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Figure 8.: Comparing MDI surrogate model output (a) with a test set sample computed
with FOM (b) at µ = (15.6, 2.3736) for the von Mises stresses field. Panel (c) shows
the projection of (a) onto FOM mesh (b) to compare results. Panel (a), (b) and (c)
share the same vonMises stress colorbar. Panel (d) shows the difference map.

Figure 9.: Schematic view of the wedge parametrized geometry. Caution: Ly is not to
scale.

width Lx ∈ [4, 20, 4] are the 3 geometric parameters varied in this model. The range

chosen for each parameter allows the study of a wide range of bulky geometries. A

representative subset of the sampled geometries is shown in Fig. 10.

The parametric sampling is taken to be uniform since it enables easy implementation

of MDI and does not affect the other methods. The total number of samples is 5×5×6 =

150. The voxels are set with a uniform size on the whole set of samples with physical

dimensions of (0.5mm × 5mm × 0.5mm) which was selected to describe efficiently the

shape variations along x and z axis while limiting the total number of voxels using
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Figure 10.: Subset of the wedge geometry samples that are precomputed with the
FOM.

coarse mesh along y axis. Mechanical properties are uniform for the whole part and

can be found again in Table 1 with base plate stiffness that corresponds to half the

printed material Young’s modulus.

Surrogate modeling

MDI. After parametrizing the position of the control points on the surfaces and edges

of the geometry, it was possible to apply the model seamlessly for all fields of interest

as mapping has been directly implemented in 3D while decomposition (HOSVD) and

interpolations methods are not affected by spatial dimension which they process as a

single variable x. Fig. 11 presents a comparison of MDI prediction (a) and the ground

truth (b) for von Mises stresses. There, one can see that the surrogate model captures

well the von Mises stress. To enable comparison with the ground truth as computed

by FOM, MDI prediction is projected onto FOM mesh as shown in panel (c), thus

introducing additional error as for the 2D case. The non-physical stepping observed on

MDI output (a) is masked from the projected prediction while still generating sizeable
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error as the local error plot highlights in panel (d). This banded error is difficult

to address for such voxel meshes which create increased error on the exterior of the

domain on the FOM and translates into extra error in MDI. Additionally, some of

the oscillations that are observed here are also visible in the interior of the domain on

panel (d).

In Fig. 12, one can see that MDI produces the least accurate prediction for all fields

surveyed, where errors are concentrated near the oblique surfaces of the wedge. In

Table 5, one can notice that the displacement error fields are significantly larger than

in the 2D example. This is likely because of the range of sloped surfaces exhibited by

the wedge samples. Because of the voxel geometry, sloped surfaces are approximated

by steps. Unlike the plate samples, where the sloped surfaces were centered around

the hole feature, the wedge samples exhibit extended sloped features. This poses a

challenge for MDI, where the smooth, ideal geometry must be mapped onto the voxel

mesh. In contrast, MLP and CNN are inherently discrete, which means they better

handle the stepped surface.

MLP proves very efficient at handling this set of 3D geometries. Training is efficient,

as discussed in Sec. 6, while preserving a very high prediction accuracy. It performs

better than MDI across all fields while remaining close to U-Net CNN as shown in Fig.

12. One can see that the error map is very different from MDI with error being less

acute on the edges. Overall, results presented in Table 5 show that on both validation

and test sets the relative error is very similar to U-Net CNN, while clearly being lower

than MDI.

U-Net CNN difference map in Fig. 12 shows yet another error topology with higher

accuracy near the edges of the part and very small error in the interior. Overall,

for an homogeneous train/test set such as the one studied here, one can confidently

say that U-net CNN produces reliable predictions so long as the voxelized grid is

provided. This suggest that one can use this method for more complex geometries

involving varying thicknesses and, more importantly, implicit parametrization since

this network architecture only requires voxels. Finally, one can see in Table 5 that U-
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Figure 11.: Comparing raw MDI surrogate model (a) with a test wedge sample (14,5,20)
computed with FOM (b) for the von Mises stress (scalar) field. Panel (c) shows the
projection MDI output onto the FOM grid. Panel (a), (b) and (c) share the same von
Mises stress colorbar. Finally, panel (d) shows the point-wise difference between (c)
and (d) which corresponds to a 6.6% L2 error.

net CNN produces the lowest error on stress field at EL2 = 3.25% and more strikingly

on the diplacement field at 3.68%. This can be attributed to the ability, by design, of

the architecture to capture different scales of the volumetric data. Hence, the singular

values at the bottom plate cause little to no interference with the rest of the domain.

6. Discussion

In the previous section, the three surrogate models have exhibited good predictive

power with relative error within a few percent for the von Mises stresses. However, the

displacement field has proved to be more difficult to predict, in particular for MDI. In

section, a deeper analysis of the surrogate models capabilities is presented.
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(a) von Mises stresses surrogate models

(b) Displacement magnitude surrogate models

(c) Displacement vector surrogate models

Figure 12.: Wedge test geometry (14,5,20) surrogate model comparison with point-
wise difference between the surrogate models studied with FOM (truth) result shown
for reference on the first column
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Table 5.: EL2
and EL∞ error (%) comparison for the MLP, CNN and MDI models on

three fields for both training/validation and test set on wedge problem.

MLP CNN MDI
Variable Set EL2

(%) EL∞(%) EL2
(%) EL∞(%) EL2

(%) EL∞(%)

Stress
Val. 1.83 18.7 1.25 50.0 3.94 24.7
Test 3.41 14.1 3.25 14.38 5.63 25.2

Disp. magnitude
Val. 1.43 7.43 2.15 20.0 13.63 19.56
Test 5.60 20.47 3.06 5.54 16.02 22.39

Disp. vector
Val. 1.18 11.3 1.97 22.2 19.40 21.5
Test 7.65 22.4 3.68 9.06 22.75 23.68

6.1. Error analysis of MI models

In general, isolating individual error sources is an efficient approach to reduce the

overall error of the surrogate model. In this section, a detailed analysis of error in the

MI methods is performed on the plate geometry only (although the extension to the

wedge geometry is straightforward), as it can be decomposed into clearly-identified

steps of the algorithm and then analyzed mathematically.

6.1.1. Comparing submodels for MI

Table 6 shows the relative L2 error of three variants of MI presented in section 4 .

MI models produce acceptable accuracy levels von Mises stress. As expected, nearest

neighbors has the lowest accuracy, but only by a small margin. The displacement

is only studied for scalar case as it is representative of the vector field. This one

shows much larger error around 11% with large variation around the mean value, for

instance displacement scalar error ranges from 7% to 16% for all models. The maximum

error is observed for sample µ = (16.4, 2.34) for all methods which indicates that this

particular geometry is difficult to handle irrespective of the interpolation scheme. This

is attributed to the mapping procedure since sampling is fine and no major correlation

has been observed between test error and distance to nearest training sample. It can be

variable MDI piecewise linear nearest neigbors
von Mises stress 1.10 1.12 1.20

Displacement scalar 11.41 10.29 11.59

Table 6.: Comparison of the relative L2 error (%) for different interpolation methods
in Map-Interpolate surrogate models. MDI method is computed with ε = 10−2.

concluded that from an accuracy standpoint, the decomposition step does not improve
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the accuracy of the model significantly. However, decomposition is expected to become

more useful when the number of dimensions of the data grows, as truncation may help

filter high frequencies which makes the model smaller and so enables interpolation

through standard libraries, similarly to PODI (Bui-Thanh, Damodaran, and Willcox

2004). For this reason, a detailed error analysis of MDI is proposed.

6.1.2. MDI error analysis

The total error, denoted as Etot, is initially decomposed into three distinct components:

the error arising from the mapping step, denoted as EMap, the error due to low rank

approximation, denoted as ERB, and the interpolation error, denoted as Einterp.

Etot = EMap + ERB + Einterp (14)

The relative influence of each component is compared by evaluating the error gen-

erated at the respective step, excluding compensation. Therefore, Table 7 presents the

results depicting eMap, eRB, and einterp. These values represent the best estimates of

the mapping error, low rank approximation error, and interpolation error achievable

by instrumenting the code. The analysis was conducted on all test samples, and two

representative samples, namely µt1 = (15.6, 2.37) and µt2 = (13.4, 1.71), are extracted

and displayed in Table 7 for illustrative purposes.

Following section 4, a few notations are introduced. For µ, a test geometry (pa-

rameter), assume u(·;µ) is known and its discrete representation U truthµ by FOM on a

dedicated grid. The projection on the reference grid is Ūµ and Uµ = Ūµ − 〈Ū〉 where

〈Ū〉 is the mean field of the training data.

The values given in this detailed analysis of MDI are reported for the displacement

(scalar) field since the error is larger. This makes the interpretation of the relative

weight of the various contributions easier.

Mapping error. Mapping to and from the reference space is very important in terms

of model quality since errors from this step are carried onto the model afterwards.

Additionally, mapping is performed twice on the data, 1) on the training samples to
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build the model, 2) on the model in the reference space to the physical space. In order

to get a finer understanding of the mapping error EMap, it can be split into three

contributions corresponding to the algorithm

EMap ∝ eMap = eproj + emesh + eSTL (15)

where eproj is the error associated with projecting data from one mesh to another with

a Gaussian kernel; emesh is the error due to the mesh deformation quality; and eSTL

is the error associated with voxelizing the free-form STL geometry

• Projection: The projection error eproj can be evaluated by applying projection

of data back and forth between the test sample FOM mesh and the reference

reference mesh. Specifically,

eproj =
||U truthµ − Uproj×2

µ ||L2

||U truthµ ||L2
(16)

where Uproj×2
µ projects back onto U truthµ mesh. Doing so, its evaluation yields

eproj(µt1) = 6.82%. This indicates that the projection step accounts for a sig-

nificant share (close to half) of the error observed on the MDI method despite

the absence of modelling. The values reported here have been obtained after

systematic optimization of the Gaussian kernel based interpolation parameters

available through VTK API.

• Mesh:

The mesh error emesh increases with the deformation of the mesh due to the use

of the RBF algorithm, which can produce unphysical meshes with points outside

the physical domain. To minimize this error, the mesh deformation is made stable

by employing substepping of the deformation, and using the multi quadratic

biharmonic spline kernel. As this surrogate model is data-driven, no equation is

solved on the RBF mesh and emesh is not significant in this study as long as

a physically coherent deformation is obtained. This has been demonstrated by
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systematic study of the radial basis set.

• STL: The voxelization of the geometry introduces a number of points outside the

solid region generating extra interpolation/extrapolation error. To counteract

this effect, the implementation projects these points onto the STL surface of

the solid domain before the projection step. While it allows for cleaner and

physically coherent mesh projection, no difference was observed in L2 error when

skipping this STL projection step. This is attributed to the dominance of the

mesh projection in the mapping error.

From this analysis, the authors conclude that the mapping error is dominated by

the data projection i.e. emap ≈ eproj .

In order to analyze ERB and Einterp, in situ evaluation is performed by varying

the tolerance of the HOSVD. However, since these error sources are coupled, it is not

possible to account for these error sources independently. Instead, the evaluation is

restricted to each step individually i.e. measuring eRB, EHOSV D and exinterp separately.

Low rank approximation error. The approximation error of the HOSVD,

EHOSV D, is displayed in Table 7. It is given by the L2 norm of the reconstruction

error, EHOSV D = ||U − Ũ ||/||U || as defined in eq. (11). It can be seen that although

varying the truncation parameter ε strongly affects EHOSV D, Etot is orders of mag-

nitude smaller. This is due to the prominent weight of the mean field in the overall

model. Additionally, the denominator of EHOSV D is different from the one used to

compute Etot. Consequently, a better way to evaluate the weight of the low rank ap-

proximation is selected. Here, the focus is on the ability of the HOSVD reduced basis

(RB) to represent the truth data Uµ and use the same normalization factor as for Etot.

Hence, the following RB error is used,

ERB ∝ eRB =
||Uµ − URBµ ||2
||Ūµ||2

(17)

where URBµ = XXTUµ is the projection of Uµ onto the spatial HOSVD basis X.

In Table 7, one can see that this estimate of the error fits well with the evolution of

the total error. For both geometries, one can see that eRB is driving the error when ε
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is large while it plateaus at eRB ≈ [3%, 2.5%] for ε ≤ 10−4, thus limiting the overall

accuracy of the MDI model. This is in stark contrast with the direct measure of the

HOSVD error, which can be reduced to machine error when full rank is reached. Note

that here, because of data augmentation, the actual number of non-collinear snapshots

is 121, meaning full rank is reached for ε = 10−6 as shown in the Tucker rank column

with (121,11,13) corresponding to (space, M ,θ ) modes. The last column of Table 7

reports the model size relative to the training data set. For instance, it shows that for

µt1 a MDI model obtained with ε = 10−2 requires 9% of the storage/memory of the

full data set while being able to predict the displacement scalar field with Elintot = 7.8%

(1.08% for von Mises stresses) . This is close to the best accuracy for this test sample,

despite suboptimal RB representation. This is attributed to interpolation error as

discussed next.

Interpolation error. Exinterp is estimated by measuring its standalone effect exinterp.

Indeed, it enables comparison of the interpolation ũ(x̄, µ) of eq. (13) (discrete Ũµ) with

the projection of the exact solution on the RB obtained above URB which is the best

representation of Uµ possible,

Exinterp ∝ exinterp =
||Ũµ − URBµ ||2
||Ūµ||2

(18)

First, one can see in Table 7 that choosing between quadratic or linear interpolation

has little effect on the MDI total error, accounting for roughly 0.1%. Looking at exinterp

specifically, the same pattern is observed. Interestingly, the interpolation error is small

for very low rank approximation and grows until it becomes the largest component of

the error. This can be explained by the increasing oscillations in the M and θ modes,

indicating an inability to generalize, consistent with observations in (Lestandi 2021).

In conclusion, the breakdown of the error shows that, provided adequate tuning of

the MDI steps, each component has a comparable share of the global error at around

few percent and always remain smaller than the mapping error. The total error Extot

exhibits compensation between steps, resulting in overall lower error than the sum of

its individual components. This analysis suggests it is difficult to substantially improve

31



the accuracy of MDI, in particular because mapping error which represents a hard limit

to the MDI surrogate model accuracy. Despite these limitations, the explicability of

the error can help refine the method for future work. In this study, it justifies using

a higher value of the HOSVD truncation ε criterion e.g. 10−3, to minimize the size of

the model while maintaining good accuracy.

Table 7.: MDI error break-up analysis on plate with hole example with two represen-
tative geometries from the test set for displacement (scalar) field. Various HOSVD
tolerances ε are used to evaluate the error of the MDI model EXtot with two interpola-
tion methods X ∈ {”linear”, ”quadratic”}. An estimate of the components of the error
eRB, Emap and eXinterp is provided as well as specific HOSVD error EHOSV D, Tucker
rank and the model relative size compared to the sample data set (called compression
rate in (Lestandi 2021)).

(a) µ = (15.5, 2.37)

ε Elin
tot Equad

tot eRB emap eint
interp equadinterp EHOSV D Tucker rank Relative size

1.0e-01 9.68% 9.85% 6.67% 7.30% 3.38% 3.53% 38.39% (4, 1, 3, 5) 2.80%

1.0e-02 7.80% 7.77% 5.67% 7.30% 3.73% 3.80% 24.44% (13, 1, 6, 9) 9.11%
1.0e-03 7.76% 7.82% 4.42% 7.30% 5.08% 5.29% 8.89% (41, 1, 11, 13) 28.78%
1.0e-04 7.67% 7.78% 3.15% 7.30% 5.88% 6.15% 2.54% (93, 1, 11, 13) 65.28%

1.0e-06 7.67% 7.79% 2.93% 7.30% 6.00% 6.28% 0.00% (123, 1, 11, 13) 86.34%

(b) µ = (13.4, 1.71)

ε Elin
tot Equad

tot eRB emap eint
interp equadinterp EHOSV D Tucker rank Relative size

1.0e-01 7.78% 8.07% 5.27% 6.11% 1.32% 1.67% 38.39% (4, 1, 3, 5) 2.80%

1.0e-02 7.05% 7.34% 4.54% 6.11% 1.51% 1.90% 24.44% (13, 1, 6, 9) 9.11%
1.0e-03 6.50% 6.64% 3.30% 6.11% 2.75% 3.01% 8.89% (41, 1, 11, 13) 28.78%

1.0e-04 6.46% 6.66% 2.72% 6.11% 3.31% 3.63% 2.54% (93, 1, 11, 13) 65.28%

1.0e-06 6.45% 6.64% 2.55% 6.11% 3.43% 3.75% 0.00% (123, 1, 11, 13) 86.34%

Table 8.: Comparison of the MLP, CNN and MDI surrogate models CPU (wall) times
for training and evaluation of the von Mises stress field. FOM typical CPU walltimes
were 1330s for plate with hole and 270s for wedge geometries. MDI projections steps
were implemented in two versions, pure CPU and combined with GPU for 3D cases.

Plate with hole (2D), µ = (16.0, 0.96) Wedge (3D)
MLP Unet-CNN MDI (CPU only) MLP Unet-CNN MDI (CPU+GPU)

Training time (Offline) 600s 480s 44s 1200s 1200s 47s
Evaluation time 25ms 33ms 133ms 24ms 38ms 68ms

Speedup (w.r.t. FOM) 53,200 40,300 10,000 11,250 7,110 3,970
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6.2. Computation time

The three methods reported in this paper have comparable accuracy for both quasi-2D

plate geometries and 3D wedge geometries. However, some differences were observed

in the training and evaluation time for these surrogates, as shown in Table 8. The

training time for all models is relatively short compared to the time required to run

the FOM. Likewise, all the run times show speed-up of at least 1000×, reflecting the

suitability of these methods as surrogate models.

Although it is difficult to directly compare the computation time for different meth-

ods due to differences in implementation, analysis of the training times gives indica-

tions for the relative suitability of the various surrogate models. In spite of the neural

network models being implemented using the very efficient TensorFlow library, the

CNN and MLP models required relatively long training times. In contrast, while the

MDI model utilized relatively unoptimized code (including interpreted python scripts),

the deterministic training strategy still was faster than either MLP or CNN. The

efficient training process illustrates one potential advantage for interpolation-based

algorithms.

6.3. Sparse sampling

In this subsection, the effect of sparsely sampled parametric space is investigated. In-

deed, in many cases, when the number of parameters increases, it becomes prohibitively

expensive to generate densely sampled training space. To emulate this behaviour, a

sparse sampling grid is used with only 4, 9 and 30 samples evenly spaced in the same

parametric domain for plate with hole and compare Unet-CNN, MLP and MDI surro-

gate models. The results are presented in Tab. 9. As one would expect, for all models

the error decreases as the number of samples increases, n = 30 still exhibits a larger

error than the full training set for MLP and Unet-CNN. MDI is proportionately the

least affected by the reduction of the training set. This can be attributed, in part, to

the larger final error of MDI but also to its nature, since the level of details captured

by this method does not require very fine sampling. At the other end of the spectrum,

MLP is the most affected by sparse sampling as it is simply difficult to train this
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kind of network with very few data points. Finally, the Unet-CNN performance is very

good with as little as 4 samples, which is remarkable since this kind of network usually

requires very large training set in the context of image processing.

Table 9.: Plate geometry test set average EL2
error (%) of the MLP, CNN and MDI

surrogate models trained with sparse sampling strategy i.e. with n training samples.

n Variable MLP CNN MDI

4
von Mises stress 5.95 2.27 2.70

Disp. scalar 42 16 25

9
von Mises stress 3.28 1.68 1.79

Disp. scalar 23 14 20

30
von Mises stress 1.42 0.93 1.35

Disp. scalar 13.8 6.10 11.5

6.4. Assessment of surrogate modeling methods

As shown in Sec. 5, Unet-CNN method is clearly better in terms of accuracy, even for

sparse training set. However, there are still differences in their training. For example,

although the U-Net can be applied to data with no explicit parameterization (Dong

et al. 2022), it can only be utilized on the specific voxel mesh it has been trained on. In

addition, it is the most computationally expensive to train (in general). On the other

hand, MLP does not require a mesh, but instead requires an explicit parameterization

of the family of geometries. It may be trained much more efficiently than the U-Net

surrogate, as it does not require the whole dataset (in space) to be trained and the

number of epochs can be reduced.

Similarly to MLP, MDI does not require a mesh but requires the definition of con-

trol points to map the geometry onto a reference. It consequently requires the most

detailed parameterization of the surrogate models in the present study. It has also

proven to be the least accurate method for dense training set. However, since the low-

order decomposed modes calculated in the MDI method are deterministic and have

a physical interpretation (Lestandi 2018), this method can potentially lead to addi-

tional understanding of the surrogate model as demonstrated by our error analysis. In

addition, it is straightforward to apply the model to different fields, scalar or vector

without any additional tuning.
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Finally, the storage of the model for the two problems studied is very similar with

a small weight of ≈ 10Mb which is roughly the size of a few FOM output samples.

Each of the three surrogate strategies considered in this study are suitable for op-

timization - however, in general, the computational cost of training decreases with

increasing complexity of the shape parameterization.

7. Conclusion

In this paper, three surrogate modeling methods for part-scale mechanical simula-

tion of LBPF printed parts have been presented. They enable extremely fast run-time

compared to the full order model. These surrogate models allow fast analysis of dif-

ferent part shapes by parameterizing them with various geometric features. Two of

these methods are based on different neural network architectures, specificially the

multilayer perceptron (MLP) and the convolutional neural network (CNN). The third

method uses non-linear mapping to enable linear interpolation on the tangent space,

which was described as Map-Interpolate (MI). More specifically, a variant involving

tensor decomposition (MDI) has been used in this study. MLP, CNN and MDI are

fully data-driven methods and can be applied to any problem requiring parametrized

geometry interpolation regardless of the complexity of the underlying physics.

It was shown that all three methods provide good accuracy for part-scale LPBF

with error < 3% for the von Mises stress and < 12% for displacement, and so these

methods are all suitable incorporation into shape optimization processes. Surprisingly,

even the relatively simple MLP architecture was able to model the simulation data

well. In spite of CNN’s generality, it suffers from a significantly longer training time for

CNN. Lastly, conventional interpolation schemes such as MDI are trained efficiently

compared to the neural network based methods while struggling with highly singular

data.

Finally, the authors found that a key issue in developing surrogate models for part-

scale additive manufacturing models arise from the choice of domain discretization

in the LPBF simulation workflow. Specifically, while the simulation is performed on

a voxel mesh, the geometry parameterization in this work utilizes smooth functions.
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Although this difference can introduce significant error to the regression scheme, it

can be accounted for by using mesh projection to map from one mesh to another or

by using a voxel-based feature parameterization.
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2013. “Parametric solutions involving geometry: A step towards efficient shape op-

timization.” Computer Methods in Applied Mechanics and Engineering 268: 178–193.

https://doi.org/10.1016/j.cma.2013.09.003.

Ansell, Troy Y., Joshua P. Ricks, Chanman Park, Chris S. Tipper, and Claudia C. Luhrs. 2020.

“Mechanical properties of 3D-printed maraging steel induced by environmental exposure.”

Metals 10: 1–11. https://doi.org/10.3390/met10020218.

Ballani, Jonas, Lars Grasedyck, and Melanie Kluge. 2010. “Black Box Approximation of Ten-

sors in Hierarchical Tucker Format.” Linear algebra and its applications 438: 639–657.

https://doi.org/10.1007/s10955-007-9289-x.

Ballarin, Francesco, Alessandro D’Amario, Simona Perotto, and Gianluigi Rozza. 2019.

“A POD-selective inverse distance weighting method for fast parametrized shape mor-

phing.” International Journal for Numerical Methods in Engineering 117: 860–884.

https://doi.org/10.1002/nme.5982.

Baturynska, Ivanna. 2019. “Application of machine learning techniques to predict the me-

chanical properties of polyamide 2200 (PA12) in additive manufacturing.” Applied Sciences

(Switzerland) 9. https://doi.org/10.3390/app9061060.

Bengio, Yoshua. 2012. “Practical recommendations for gradient-based training of deep

architectures.” Lecture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics) 7700 LECTURE NO.

https://doi.org/10.1007/978-3-642-35289-8 26.

Biancolini, Marco Evangelos, Andrea Chiappa, Ubaldo Cella, Emiliano Costa, Corrado Groth,

and Stefano Porziani. 2020. Radial Basis Functions Mesh Morphing. Vol. 1. Springer Inter-

national Publishing. http://dx.doi.org/10.1007/978-3-030-50433-5 23.

Botsch, Mario, and Leif Kobbelt. 2005. “Real-time shape editing using radial basis functions.”

Computer Graphics Forum 24: 611–621. https://doi.org/10.1111/j.1467-8659.2005.00886.x.

Bui-Thanh, T., M. Damodaran, and K. Willcox. 2004. “Aerodynamic data reconstruc-

tion and inverse design using proper orthogonal decomposition.” AIAA Journal 42.

37



https://doi.org/10.2514/1.2159.

Chen, Junfeng, Jonathan Viquerat, and Elie Hachem. 2019. “U-net architectures for fast pre-

diction of incompressible laminar flows.” http://arxiv.org/abs/1910.13532.

Chinesta, Francisco, Adrien Leygue, Felipe Bordeu, Elias Cueto, David Gonzalez, Amine Am-

mar, and Antonio Huerta. 2017. “PGD-Based Computational Vademecum for Efficient De-

sign , Optimization and Control.” Archives of Computa- tional Methods in Engineering 20:

31–59. https://doi.org/10.1007/s11831-013-9080- x.

Chowdhury, Sushmit. 2016. “Artificial Neural Network Based Geometric Compensation for

Thermal Deformation in Additive Manufacturing Processes.” .

Dahmen, Wolfgang, Ronald DeVore, Lars Grasedyck, and Endre Süli. 2015. “Tensor-Sparsity

of Solutions to High-Dimensional Elliptic Partial Differential Equations.” Foundations of

Computational Mathematics https://doi.org/10.1007/s10208-015-9265-9.

de Boer, A., M. S. van der Schoot, and H. Bijl. 2007. “Mesh deformation based

on radial basis function interpolation.” Computers and Structures 85: 784–795.

https://doi.org/10.1016/j.compstruc.2007.01.013.

Demo, Nicola, Marco Tezzele, Andrea Mola, and Gianluigi Rozza. 2018. “An efficient shape

parametrisation by free-form deformation enhanced by active subspace for hull hydrody-

namic ship design problems in open source environment.” Proceedings of the International

Offshore and Polar Engineering Conference 2018-June: 565–572.

Demo, Nicola, Marco Tezzele, and Gianluigi Rozza. 2019. “A non-intrusive approach for the

reconstruction of POD modal coefficients through active subspaces.” .

Dong, Guoying, Jian Cheng Wong, Lucas Lestandi, Jakub Mikula, Guglielmo Vastola,

Mark Hyunpong Jhon, My Ha Dao, Umesh Kizhakkinan, Clive Stanley Ford, and

David William Rosen. 2022. “A part-scale, feature-based surrogate model for residual

stresses in the laser powder bed fusion process.” Journal of Materials Processing Technology

304. https://doi.org/10.1016/j.jmatprotec.2022.117541.

dung Nguyen, Viet, Karim Abed-meraim, and Linh trung Nguyen. 2016. “Fast Tensor Decom-

positions for Big Data Processing.” 215–221.

Duong, Pham Luu Trung, Shaista Hussain, Mark Hyunpong Jhon, and Nagarajan Ragha-

van. 2020. “Data Driven Prognosis of Fracture Dynamics Using Tensor Train and Gaussian

Process Regression.” IEEE Access 8. https://doi.org/10.1109/ACCESS.2020.3042830.

Gan, Zhengtao, Hengyang Li, Sarah J. Wolff, Jennifer L. Bennett, Gregory Hyatt, Gregory J.

Wagner, Jian Cao, and Wing Kam Liu. 2019. “Data-Driven Microstructure and Micro-

38



hardness Design in Additive Manufacturing Using a Self-Organizing Map.” Engineering 5:

730–735. https://doi.org/10.1016/j.eng.2019.03.014.

Ghnatios, Chady, Elias Cueto, Antonio Falco, Jean Louis Duval, and Francisco Chinesta. 2021.

“Spurious-free interpolations for non-intrusive PGD-based parametric solutions: Application

to composites forming processes.” International Journal of Material Forming 14: 83–95.

https://doi.org/10.1007/s12289-020-01561-0.

Glorot, Xavier, and Yoshua Bengio. 2010. “Understanding the difficulty of training deep feed-

forward neural networks.” Vol. 9.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning.

Hesthaven, Jan S, and Stefano Ubbiali. 2018. “Non-intrusive reduced order model-

ing of nonlinear problems using neural networks.” J. Comput. Phys. 363: 55–78.

https://doi.org/10.1016/j.jcp.2018.02.037.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. 1989. “Multilayer feedforward

networks are universal approximators.” Neural Networks https://doi.org/10.1016/0893-

6080(89)90020-8.

Iglovikov, Vladimir, and Alexey Shvets. 2018. “TernausNet: U-Net with VGG11 Encoder Pre-

Trained on ImageNet for Image Segmentation.” https://arxiv.org/abs/1801.05746v.

Joshi, Kartikey, Siu Sin Quek, Yingzhi Zeng, and David T. Wu. 2021. “An efficient implemen-

tation for the solution of auxiliary composition fields in multicomponent phase field models.”

Computational Materials Science 197. https://doi.org/10.1016/j.commatsci.2021.110608.

Kingma, Diederik P., and Jimmy Lei Ba. 2015. “Adam: A method for stochastic optimization.”

.

Kizhakkinan, Umesh, Pham Luu Trung Duong, Robert Laskowski, Guglielmo Vastola,

David W. Rosen, and Nagarajan Raghavan. 2023. “Development of a surrogate model for

high-fidelity laser powder-bed fusion using tensor train and gaussian process regression.”

Journal of Intelligent Manufacturing 34 (1): 369–385. https://doi.org/10.1007/s10845-022-

02038-4, https://doi.org/10.1007/s10845-022-02038-4.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2017. “ImageNet classifi-

cation with deep convolutional neural networks.” Communications of the ACM 60.

https://doi.org/10.1145/3065386.

Le, Tuyen Quang, Pao Hsiung Chiu, and Chinchun Ooi. 2021. “U-Net-Based Surrogate Model

for Evaluation of Microfluidic Channels.” International Journal of Computational Methods

https://doi.org/10.1142/S0219876221410188.

39



Lecun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. “Deep learning.” .

Lestandi, Lucas. 2018. “Low rank approximation techniques and reduced order modeling ap-

plied to some fluid dynamics problems.” https://tel.archives-ouvertes.fr/tel-01947210/.

Lestandi, Lucas. 2021. “Numerical Study of Low Rank Approximation Methods

for Mechanics Data and Its Analysis.” Journal of Scientific Computing 87: 14.

https://doi.org/10.1007/s10915-021-01421-2, http://link.springer.com/10.1007/s10915-021-

01421-2.

Li, Xiaohan, and Nick Polydorides. 2022. “Time-efficient surrogate mod-

els of thermal modeling in laser powder bed fusion.” Additive Manufactur-

ing 59: 103122. https://doi.org/https://doi.org/10.1016/j.addma.2022.103122,

https://www.sciencedirect.com/science/article/pii/S2214860422005115.

Manzoni, Andrea, Alfio Quarteroni, and Gianluigi Rozza. 2012. “Shape optimization for vis-

cous flows by reduced basis methods and free-form deformation.” International Journal for

Numerical Methods in Fluids https://doi.org/10.1002/fld.2712.

Markl, Matthias, and K Carolin. 2016. “Multiscale Modeling of Powder Bed –

Based Additive Manufacturing.” Annu. Rev. Mater. Res. 2016. 46: 93:123.

https://doi.org/10.1146/annurev-matsci-070115-032158.

Meng, Lingbin, Brandon McWilliams, William Jarosinski, Hye Yeong Park, Yeon Gil Jung, Je-

hyun Lee, and Jing Zhang. 2020. “Machine Learning in Additive Manufacturing: A Review.”

Jom 72: 2363–2377. https://doi.org/10.1007/s11837-020-04155-y.

Mercelis, Peter, and Jean pierre Kruth. 2006. “Residual stresses in selective laser sintering and

selective laser melting.” 5: 254–265. https://doi.org/10.1108/13552540610707013.

Mikula, Jakub, Robert Laskowski, Ling Dai, Wenjun Ding, Ming Wei, Kewu Bai, Kun

Wang, et al. 2021. “Advanced “Digital Twin” platform for powder-bed fusion ad-

ditive manufacturin.” Hitachi Metals Technical Review 37: 10. https://www.hitachi-

metals.co.jp/rad/pdf/2021/vol37 r01.pdf.

Nie, Zhenguo, Haoliang Jiang, and Levent Burak Kara. 2019. “Stress field prediction in can-

tilevered structures using convolutional neural networks.” Proceedings of the ASME Design

Engineering Technical Conference 1. https://doi.org/10.1115/1.4044097.

Nie, Zhenguo, Sangjin Jung, Levent Burak Kara, and Kate S. Whitefoot. 2020. “Optimization

of Part Consolidation for Minimum Production Costs and Time Using Additive Manufac-

turing.” Journal of Mechanical Design 142. https://doi.org/10.1115/1.4045106.

Popova, Evdokia, Theron M. Rodgers, Xinyi Gong, Ahmet Cecen, Jonathan D. Madison, and

40



Surya R. Kalidindi. 2017. “Process-Structure Linkages Using a Data Science Approach:

Application to Simulated Additive Manufacturing Data.” Integrating Materials and Manu-

facturing Innovation 6: 54–68. https://doi.org/10.1007/s40192-017-0088-1.

Promoppatum, Patcharapit, Recep Onler, and Shi Chune Yao. 2017. “Numerical

and experimental investigations of micro and macro characteristics of direct metal

laser sintered Ti-6Al-4V products.” Journal of Materials Processing Technology 240.

https://doi.org/10.1016/j.jmatprotec.2016.10.005.

Qi, Xinbo, Guofeng Chen, Yong Li, Xuan Cheng, and Changpeng Li. 2019. “Applying Neural-

Network-Based Machine Learning to Additive Manufacturing: Current Applications, Chal-

lenges, and Future Perspectives.” 8.

Quaranta, Giacomo, Eberhard Haug, Jean Louis Duval, Elias Cueto, and Francisco Chinesta.

2019. “Parametric numerical solutions of additive manufacturing processes.” AIP Confer-

ence Proceedings 2113. https://doi.org/10.1063/1.5112640.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. 2015. “U-net: Convolutional networks

for biomedical image segmentation.” Vol. 9351.

Rosen, D. W., and I. R. Grosse. 1992. “A feature based shape optimization technique for

the configuration and parametric design of flat plates.” Engineering with Computers 8.

https://doi.org/10.1007/BF01200104.

Sen, Shuvam, Guillaume De Nayer, and Michael Breuer. 2017. “A fast and robust hy-

brid method for block-structured mesh deformation with emphasis on FSI-LES appli-

cations.” International Journal for Numerical Methods in Engineering 111: 273–300.

https://doi.org/10.1002/nme.5465.

Shelhamer, Evan, Jonathan Long, and Trevor Darrell. 2017. “Fully Convolutional Networks for

Semantic Segmentation.” IEEE Transactions on Pattern Analysis and Machine Intelligence

39. https://doi.org/10.1109/TPAMI.2016.2572683.

Sieger, Daniel, Stefan Menzel, and Mario Botsch. 2014. “RBF morphing techniques

for simulation-based design optimization.” Engineering with Computers 30: 161–174.

https://doi.org/10.1007/s00366-013-0330-1.

Staten, Matthew L, Steven J Owen, Suzanne M Shontz, G Andrew, and Todd S Coffey. 2011.

“A Comparison of Mesh Morphing Methods for 3 D Shape Optimization.” Proceedings of

the 20th International Meshing Roundtable 293–311.

Tapia, G., A. H. Elwany, and H. Sang. 2016. “Prediction of porosity in metal-based addi-

tive manufacturing using spatial Gaussian process models.” Additive Manufacturing 12.

41



https://doi.org/10.1016/j.addma.2016.05.009.

Tapia, Gustavo, Saad Khairallah, Manyalibo Matthews, Wayne E. King, and Alaa Elwany.

2018. “Gaussian process-based surrogate modeling framework for process planning in laser

powder-bed fusion additive manufacturing of 316L stainless steel.” International Journal of

Advanced Manufacturing Technology 94: 3591–3603. https://doi.org/10.1007/s00170-017-

1045-z.

Team, FreeCAD. 2020. “FreeCAD: Your own 3D parametric modeler.” .

Tezzele, Marco, Nicola Demo, Andrea Mola, and Gianluigi Rozza. 2021. “PyGeM: Python

Geometrical Morphing.” Software Impacts 7. https://doi.org/10.1016/j.simpa.2020.100047.

Ueda, Yukio, Keiji Fukuda, Keiji Nakacho, and Setsuo Endo. 1975. “A New Measur-

ing Method of Residual Stresses with the Aid of Finite Element Method and Relia-

bility of Estimated Values.” Journal of the Society of Naval Architects of Japan 1975.

https://doi.org/10.2534/jjasnaoe1968.1975.138 499.

Ulu, Erva, Runze Huang, Levent Burak Kara, and Kate S. Whitefoot. 2019. “Concurrent Struc-

ture and Process Optimization for Minimum Cost Metal Additive Manufacturing.” Journal

of Mechanical Design, Transactions of the ASME 141. https://doi.org/10.1115/1.4042112.

Vannieuwenhoven, Nick, Raf Vandebril, and Karl Meerbergen. 2012. “A New Truncation Strat-

egy for the Higher-Order Singular Value Decomposition.” SIAM Journal on Scientific Com-

puting 34: A1027–A1052. https://doi.org/10.1137/110836067.

Vohra, Manav, Paromita Nath, Sankaran Mahadevan, and Yung-Tsun Tina Lee.

2020. “Fast surrogate modeling using dimensionality reduction in model inputs

and field output: Application to additive manufacturing.” Reliability Engineering &

System Safety 201: 106986. https://doi.org/https://doi.org/10.1016/j.ress.2020.106986,

https://www.sciencedirect.com/science/article/pii/S0951832020304877.

Weiser, Alan, and Sergio E. Zarantonello. 1988. “A Note on Piecewise Linear and Multilinear

Table Interpolation in Many Dimensions.” Mathematics of Computation 50 (181): 189–196.

Accessed 2023-06-09. http://www.jstor.org/stable/2007922.

Wu, Dazhong, Yupeng Wei, and Janis Terpenny. 2019. “Predictive modelling of surface rough-

ness in fused deposition modelling using data fusion.” International Journal of Production

Research 57: 3992–4006. https://doi.org/10.1080/00207543.2018.1505058.

Yamashita, Rikiya, Mizuho Nishio, Richard Kinh Gian Do, and Kaori Togashi. 2018. “Convo-

lutional neural networks: an overview and application in radiology.” .

Yao, Wei, Zhigang Zeng, Cheng Lian, and Huiming Tang. 2018. “Pixel-wise re-

42



gression using U-Net and its application on pansharpening.” Neurocomputing 312.

https://doi.org/10.1016/j.neucom.2018.05.103.
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