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Abstract

We propose a parametric sampling strategy for the reduction of large-scale PDE systems with multidimensional

input parametric spaces by leveraging models of different fidelity. The design of this methodology allows a user

to adaptively sample points ad hoc from a discrete training set with no prior requirement of error estimators.

It is achieved by exploiting low-fidelity models throughout the parametric space to sample points using an

efficient sampling strategy, and at the sampled parametric points, high-fidelity models are evaluated to recover

the reduced basis functions. The low-fidelity models are then adapted with the reduced order models ( ROMs)

built by projection onto the subspace spanned by the recovered basis functions. The process continues until

the low-fidelity model can represent the high-fidelity model adequately for all the parameters in the parametric

space. Since the proposed methodology leverages the use of low-fidelity models to assimilate the solution

database, it significantly reduces the computational cost in the offline stage. The highlight of this article is

to present the construction of the initial low-fidelity model, and a sampling strategy based on the discrete

empirical interpolation method (DEIM). We test this approach on a 2D steady-state heat conduction problem

for two different input parameters and make a qualitative comparison with the classical greedy reduced basis

method (RBM), and further test on a 9-dimensional parametric non-coercive elliptic problem and analyze the

computational performance based on different tuning of greedy selection of points.

Keywords Multi-fidelity modeling, low-fidelity models, high-fidelity models, reduced basis method, greedy sampling,

DEIM

1 Introduction

1.1 Motivation and background

The convergence and efficiency of a reduced order model for approximation of the solutions of a large-scale PDE

system depend heavily on the choice of the elements that constitute the "reduced basis" [1]. Therefore, the input

parameter selection for which the snapshots are generated must be appropriate. It must be sufficiently rich to adequately

cover key areas of the parametric space. For sampling the parametric space, discretization techniques like uniform

sampling and random sampling are frequently utilized. Both sampling methods, however, have their limitations. For

instance, a multidimensional parametric system would necessitate a thorough grid search in uniform sampling, while
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random sampling would miss some crucial parts of the function in the parametric space. On the other hand, another

sampling technique, known as Latin Hypercube Sampling (LHS) [2, 3] provides a compromise between uniformity and

size of the sample, which makes it more efficient than uniform sampling and gives often better accuracy than random

sampling. Some statistically-based sampling methods like Monte Carlo methods are also among other popularly used

techniques [4]. Even with efficient sampling techniques, the complexity can grow exponentially with the increase in the

dimensionality of the parametric space, which is the case for many engineering applications. Therefore, the Reduced

Basis Modeling (RBM) based on greedy sampling emerged as a promising tool for reducing the computational cost of

Full Order Model (FOM) by generating high-fidelity snapshots at only a select few optimal parametric points.

The basic idea in RBM is to adaptively choose sample points by finding the location at which the estimated error of the

reduced model is maximum in the offline phase, thanks to rigorous error estimators. The greedy RBM was a subject

of research for a very long time, first applied to find reduced models for the parameterized steady incompressible

Navier– Stokes equations [5] and then further developed for a variety of parameterized parabolic PDEs [6, 7, 8] and also

applied to several optimal control and inverse problems [9, 10]. During the past two decades, RBM had a significant

contribution to the development of rigorous error bounds for Stokes flow problems, with a special focus on the inf sup

stability conditions that can be referred to in the articles [11, 12, 13].

Even though, the RBM methods are not completely void of bottlenecks; it requires sharp, and rigorous error estimators

that are problem specific for ensuring the reliability of the method. Additionally, the error is estimated over a discrete

training set, which must be a good surrogate of the continuous parametric space. Inefficient greedy sampling could yet

occur from this, particularly for high dimensional parametric PDEs. To mitigate this issue, the authors in the article [14]

have performed the greedy algorithm on random training sets of small sizes in every iterative cycle instead of estimating

the error over the entire training set. The authors have successfully demonstrated a 16-parametric dimension system for

a diffusion equation problem. Wilcox et al. in their research work [15], solved a sequence of optimization problems

on a parametric space which is not a discrete set but rather continuous, to find optimal points adaptively in a greedy

manner using both error estimator or residual error indicator. The authors demonstrated the proposed methodology on a

thermal problem for the design of a fin based on two input parameters Biot number and conduction coefficients for 11,

and 21 parametric dimensions respectively. The papers [16, 17, 18] also provide references to quite a few literary works

on goal-oriented sampling methods. Numerous other studies have examined the use of subspace angles to assess the

model’s sensitivity to parameter changes [19, 20, 21] or sensitivity analysis to sample adaptively from the parametric

space [22].

1.2 Overview of the idea: Iterative multi-fidelity model order reduction

In this work, we suggest a sampling strategy that uses a multi-fidelity modeling approach as an alternative to the

conventional greedy sampling technique that is driven by error estimators. Multi-fidelity modeling employs models of

varied accuracy to estimate the same output quantity at a considerably faster convergence rate than using a single model

with a higher approximation quality. For instance, in optimization problems, an optimizer is constructed to supply

the input design variables at each iteration, and the model then assesses the value of the related objective function,

its corresponding gradients, and the value of the constraint. Typically, high-fidelity models are retained in the loop

to establish accuracy and convergence guarantees on the low-fidelity models, which are used to determine the best

design parameters while taking advantage of computing speedups. Low-fidelity model estimates are cheaper model
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approximations that can be a coarse-discretized model, a ROM, or even a simplified physics model that can approximate

the same output as the high-fidelity model but with lower accuracy. Multi-fidelity methods have been successfully

applied in optimization problems based on co-kriging models [23], uncertainty analysis [24], Monte Carlo simulations

[25, 26] to name a few. Such methods have also been extended to the machine learning and Physics-Informed Neural

Network (PINN) domain, which can be referred to in [27, 28]. The authors in [27] have presented the connection of

fidelity of different accuracy with neural networks by manipulating the width and depth of the network architecture. A

comprehensive review of the past works and recent advances in the area of multi-fidelity modeling can be found in the

survey [29].

Recently, in the work of Kast et al. [30], a multi-fidelity setup is exploited in the context of reduced-order modeling

by solving a nonlinear structural dynamic problem based on three input parametric dimensions. First, an appropriate

sampling set is exploited in the parametric space by leveraging a collection of low-fidelity models, followed by multi-

fidelity Gaussian process regression (GPR) for approximation of the reduced coefficients in the online stage, therefore

allowing an efficient decoupling of offline-online strategy. Another work based on a multi-fidelity adaptation strategy

can be found in the work [31] where the authors combined data-driven models with projection-based ROM and adapted

the ROM for any change in the input parameter by low-rank updates to the reduced operators without rebuilding the FE

operators from scratch. This work is focused on addressing the complexities of cases when the underlying properties of

the PDE system are not static, but undergo dynamic changes due to the change in the latent variables.

In this work, we conjunct the multi-fidelity method with physics-based reduced order modeling for deriving low-cost

ROMs efficiently without the need for problem-specific error estimators. Our approach is based on the "learn and adapt"

framework. In the first step, a low-fidelity model learns to sample points from a large input parametric space, and in

the second step, the low-fidelity model improves by adapting to the current ROM approximation and the procedure

continues until the low-fidelity model is a good representation of a FOM. By keeping high-fidelity solutions in the loop,

not only accuracy and convergence is achieved, the prior requirement of error estimators or upper bounds is no longer

served. The details are explained in section 3. The goal of this work is to explore the parametric space efficiently and

generate appropriate snapshots for a high dimensional parametric system irrespective of the problem definition, the

underlying discretization techniques used for solving the problem such as the finite element method (FEM), or finite

volume method (FVM), or for cases when posteriori error estimators are unavailable or difficult to obtain.

In fact, we evaluate the max norm error between the high-fidelity solution and reduced order solution at the computed

parametric points until it establishes the acceptable accuracy, hence our sampling process is adhoc based on heuristics.

The greedy selection of points can also be tuned as per the user’s requirements for the efficient performance of the

algorithm, which will be reflected in the numerical examples. We first introduce the algorithm on a 2D heat conduction

problem with 2 input parameters and make a qualitative comparison with the existing greedy RBM. Further, we apply

the proposed methodology to an advection-diffusion reaction problem in a parametric space of 9 dimensions.

This work focuses on two main aspects: the first is the construction of an initial low-fidelity model explained in section

3.1, and the second is the sampling strategy using the DEIM technique explained in 3.2. The idea of using DEIM in

iterative multi-fidelity modeling is not related to the approximation of the nonlinear term, but only to the notion of

greedy selection of "optimal" parametric points.
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The article is organized as follows: Section 2 presents a general framework of an elliptic partial differential problem,

followed by classical reduced basis construction. Section 3 describes the construction of the reduced basis using

the proposed iterative multi-fidelity approach. Section 4, demonstrates the methodology through different numerical

examples followed by results and discussion.

2 General problem setting

This section presents a general problem setting for the purpose of establishing the notations for future reference. The

proposed sampling methodology is unrelated to any particular PDE definition, but in order to compare it to the examples

presented in the numerical analysis section 4 and 5, we adhere to a general elliptic parameterized PDE. Let Ω be some

bounded domain and V be an associated functional space to characterize the solution as a function of space. Denoting

with µ as the input parameter, which belongs to the parametric space D, the problem is to find solution u(µ) in some

finite-dimensional discrete space VN ⊂ V where N = dim(VN ) such that

a (u, v;µ) = f (v;µ) ∀v ∈ VN (1)

In this work, finite elements are used to obtain the discrete solution to 1, however, the proposed method is also applicable

to other numerical discretization solvers. After spatial discretization, the FE solution of the field variable ‘u’, can be

approximated as:

u ≈ uh(x;µ) =

N∑
i=1

Ni(x)(uh(µ))i (2)

where, Ni are the shape functions of choice and (uh(µ))i represent the scalar values of the field uh at discretization

points x ∈ RN . In practice, these values are stored as a collection of high-fidelity solutions that we call "snapshots" of

distinct parameter values µ ∈ Ξtrain ⊂ D, of cardinality |Ξtrain| = N . This set of snapshots {ukh}Nk=1 is generated in

the offline stage by solving the PDE equation (1) using a high-fidelity solver for varying choice of input parameters. It

can vary from material parameters to geometrical, and shape parameters, to boundary conditions of the unknown field

variable, and so on.

2.1 Reduced basis construction

The basic idea in the reduced order modeling approach is that the discrete solution space associated with the underlying

PDE lies in a low dimensional subspace and is in general represented by a low dimensional smooth manifold [32]. The

manifold comprises all solutions of the parametric problem belonging to the parametric space i.e.

Mh = span
{
uh(µ) ∈ VN : µ ∈ D

}
⊂ V (3)

We aim to exploit a low dimensional structure of this manifold, VR ⊂ VN whereR = dim(VR) << N by appropriately

choosing a set of orthogonal basis functions {φ1,φ2, . . . ,φR} that spans the subspace of the manifoldMh, and can

well represent the manifold with small error. The associated reduced subspace is then given by,

4
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VR = span{φ1,φ2, . . . ,φR} ⊂ VN

The reduced solution uR ∈ VR can then be approximated by the linear combination of these basis functions given by:

uR(x;µ) =

R∑
i=1

φi(x)bi(µ) (4)

whose coefficients are calculated thanks to a projection onto the reduced basis (RB) space. Therefore, the reduced

problem can be sought as: for any µ ∈ D, find uR(µ) ∈ VR such that:

a
(
uR, vh;µ

)
= f(vh;µ) ∀vh ∈ VR (5)

There are several strategies in the literature for constructing reduced basis functions, including the proper orthogonal

decomposition (POD) [33, 34] and the classical greedy reduced basis method. The objective of the greedy algorithm in

the context of RBM is to adaptively enrich the reduced subspace with orthogonal basis functions [35]. By doing so, the

evaluation of high-fidelity snapshots for all the training parameters (as done in the classical POD) can be avoided in the

offline step, therefore reducing enormously the offline cost while improving the efficiency of MOR. It is based on the

idea to select the parameter representing a local optimum in relation to an opportune error indicator iteratively,

µn+1 = arg max
µ∈Ξtrain

∆R(µ) (6)

which means in the (n + 1)th step, basically the sample point whose error metric ∆R(µ) indicates to be worst

approximated among all the parameters µ ∈ Ξtrain ⊂ D by the solution of the current reduced model VRn+1 is

selected as the next sample point. At the sampled point, the high-fidelity snapshot is generated using the finite element

approximation, followed by enrichment of the reduced basis subspace by Gram-Schmidt orthogonalization of the

generated snapshots. This is repeated until the error estimator reaches a prescribed tolerance. To evaluate ∆R(µ) we

need two essential ingredients: the dual norm of the residual and a sharp lower bound for the coercivity constant which

can be obtained by theta methods for simple PDEs ([36]) or successive constraint method (SCM) for general PDEs

[37, 38, 39].

It is essential for a good posterior error estimator to be sharp, and rigorous for ensuring the reliability of the RBM and

also has to be computationally inexpensive for efficient greedy sampling. However, for complex PDEs construction of

sharp and rigorous error bounds may not be easily achievable which can lead to unreliable reduced basis approximation,

and also for PDE systems with high dimensional parametric space, finding an error estimate over the entire parametric

set may become computationally expensive. As a result, a novel technique is suggested in this work, where we use POD

for the basis construction but a different strategy utilizing multi-fidelity modeling is employed to effectively choose the

snapshots, as explained in the next section.
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3 Iterative multi-fidelity modeling (IMF) for building PODG-ROM

Traditionally, if {ukHF(µ)}Nk=1 ∈ RN represents the high-fidelity snapshots of the PDE problem 1 at distinct parameter

values µ ∈ Ξtrain ⊂ D, of cardinality |Ξtrain| = N , that can be suitably well approximated in a low-dimensional

manifold, then the solution can be represented in a separated form as,

uHF(x;µ) ≈
r∑
i=1

φiHF(x)ψiLF(µ) (7)

Here, {φiHF}ri=1 ∈ RN represents the high-fidelity basis functions which spans the low dimensional subspace, i.e.

VR = span{φ1
HF, . . . ,φ

r
HF} ⊂ VN , R = dim(VR) and ψLF(µ) : D −→ R are parametric functions that span the

parametric space. It is true that high-fidelity models can capture the intricacies of complex PDE systems, but they

are also equally expensive to train and the offline cost to recover the basis functions is quite high. If the parametric

functions ψiLF(µ) were previously known, we could easily extract a set of points µP ⊂ Ξtrain where P ∈ (1, N) using

any efficient sampling technique. The optimal basis functions might then be recovered by generating high-fidelity

snapshots at the computed set of points.

However, ψiLF(µ) are not known a priori, but we can reasonably assure that if a low-fidelity model is instead used for

approximation, then by similar expression as given in eq.7 we have,

uLF(x;µ) ≈
r∑
i=1

φiLF(x)ψiLF(µ)) (8)

where ψiLF(µ) have similar features as the ψiHF(µ). Therefore, we can use those to recover the high-fidelity snapshots

at computed points uHF(µ
P ). The process can be made iterative, as the newly computed µP can effectively result in

the reconstruction of the high-fidelity basis functions. This subsequently leads to the enrichment of the reduced basis

subspace, which causes an improvement in the low-fidelity model approximation.

Therefore, step 1 of the proposed method is to obtain a poor or inexpensive approximation to the FOM using a low-

fidelity (lo-fi) model, f initLF : Ω×D → R that maps all the parameters belonging to a given training set µ ∈ Ξtrain ⊂ D
to produce the same output with lower accuracy. The flow is shown in figure 1 and details on the construction of the

initial low-fidelity model are explained in section 3.1.

In step 2, we compute parametric functions {ψiLF}ri=1 ∈ RN from the low-fidelity model approximation by primarily

using POD, and then in step 3, we recover "optimal sampling points" using interpolation strategy over these parametric

functions to sample optimal points in a greedy procedure, µP ⊂ Ξtrain with P ∈ (1, N). The details are discussed in

section 3.2.

Next, in step 4, using a high-fidelity (hi-fi) model we generate snapshots on the select sample points µP to recover the

high-fidelity basis functions φiHF ∈ VR and therefore, enrich the reduced basis subspace, VR = span({φiHF}r
′′

i=1) ∈ RN

where r′′ ≤ #(µP ), the construction is properly explained in the section 3.3. A high-fidelity model is mathematically

6
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Training set,
Validation set,
Lo-Fi model
Hi-Fi model

Step 1
Solve the initial lo-fi
model on training set

STOP Step 2
Estimate parametric modes

Step 3
Select new point(s) in the

parametric space using
DEIM on parametric modes

Step 4
Solve hi-fi model on se-
lected points and enrich

the model’s basis functions

Step 5
Solve a physics based reduced

problem on the training set

Step 6
Check training

and validation error
on select points

< tol

Update lo-fi
with ROM

> tol

Figure 1: Flow of the iterative multi-fidelity modeling approach.

defined as fHF : Ω×D → R that maps all the selected points µP ⊂ Ξtrain to estimate the output with the accuracy

that is needed for the task.

In step 5, we then solve a POD-G ROM for all µ ∈ Ξtrain. The functions ψiLF obtained during the first approximation

are likely to not generate exactly the same space as the ψiHF i.e span(ψiLF) 6= span(ψiHF). Therefore, recovery of the

high-fidelity basis functions φiHF may not be accurate, and reliable to represent the large-scale PDE system, hence the

procedure has to undergo certain iterations.

Finally, in step 6, we evaluate the error between the high-fidelity model and reduced basis model approximation at the

computed discrete points using the error metrics that are discussed in 3.5. If it is below a certain prescribed tolerance

level, we terminate the algorithm, else we adapt the low-fidelity model with the current ROM approximation (refer

section 3.4) and repeat the procedure until the ROM constructed represents the FOM adequately. To measure the overall

performance of the algorithm, we also check for validation error by computing the error on another set of parameters

belonging to a given validation set Ξval ⊂ D.

The sample points that are obtained provide a locally optimal choice at each stage of the iterative cycle, however as

iteration continues and new points are added in each iteration the algorithm converges towards the global solution with

certain accuracy in very reduced complexity.

The proposed method in this work is tested on an elliptic PDE problem. It can be extended to hyperbolic or parabolic

PDEs as well. However, the reduced basis subspace needs to be built appropriately to take into account the time

integration.

7
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3.1 Construction of the initial low-fidelity model

We propose two types of sketch models for the construction of an initial low-fidelity model, depending on the availability

of either of the two conditions:

1. No database of high-fidelity solutions is present a priori,

2. A database of high-fidelity solutions is available

Coarse sketch model: When no database of solutions is present a priori, the initial low-fidelity model is built using a

derefined version of a high-fidelity model, which is nothing but a coarse finite element model. We refer to it as a "coarse

sketch model" for future discussions. Snapshots generated using this coarse sketch appear to be a wide matrix, denoted

by S LF = [u1
LF,u

2
LF, . . . ,u

N
LF] ∈ Rm×N , where uLF = uh(µ) at discretization points xLF ∈ Rm, such that m << N .

POD-G ROM: Now, let us assume the case when we already have some solutions of the large-scale PDE system

available to us, be it experimental or numerical data. This is materialized in our work by solving a high-fidelity model

for any random training parameters, X = [u1
HF(µ

k),u2
HF(µ

k), . . . ,uKHF(µ
k)] ∈ RN×K with N >> K, and k ∈ (1, N)

and term it here as a random sketch model. Then the initial low-fidelity model is a ROM approximation, which is

constructed by Galerkin projection of the PDE system onto the reduced basis functions computed from this sketch

model.

Remark: Although the selection parameters for a random sketch model are entirely user-dependent, it is advised to

start by building the reduced bases with just a few snapshots. For the primary purpose of lowering the offline cost of

MOR, the low-fidelity model approximation from such a random sketch must remain a less expensive approximation

to the FOM at the initial stage of the method. Then, as the iteration advances, the quality of the low-fidelity model

improves and converges to the FOM accurately.

3.2 Parametric point selection

As previously mentioned, sampling points are extracted from the parametric modes of the low-fidelity model approxi-

mation. This is based on the heuristic assumptions that the low-fidelity model, although a poor approximation to the

high-fidelity model, may nonetheless accurately reflect the essential features of the high-fidelity model’s parametric

dependence. A brief description of how the parametric points are sampled from a given training set, µP ⊂ Ξtrain using

DEIM is explained in the algorithm 1. DEIM finds the sample points in a greedy way from an input basis which is

given here by the parametric functions computed by performing SVD on the low-fidelity model approximation,

SLF = ΦLFΣLFΨ
T
LF (9)

where, ΦLF = [φ1
LF ,φ

2
LF , . . . ,φ

r
LF ] ∈ Rm×r with m << N , and r ≤ N are poorly approximated POD modes while

ΨLF = [ψ1
LF,ψ

2
LF, . . . ,ψ

r
LF] ∈ RN×r denotes the parametric modes that span the parametric subspace. The rectangular

diagonal matrix ΣLF ∈ Rr×r contains the corresponding non-negative singular values, σ1 ≥ . . . ≥ σr ≥ 0 accounting

to the information content of the low-fidelity model solution data. The process of sampling starts by selecting the

index with the largest magnitude, corresponding to the first entry of the input basis {ψiLF}ri=1. The remaining points are

selected by finding the location at which the residual of the current approximation is maximum (refer to the algorithm

8
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1). The points that are computed are unique due to the linear independence of the input basis, which guarantees that the

indices are hierarchical and non-repetitive in nature.

Algorithm 1 DEIM sampling adopted from [40]
1: INPUT: Parametric functions ΨLF ∈ RN×r
2: OUTPUT: Sampled parametric points µP =

[
µ(1), . . . ,µ(r)

]T ⊂ Ξtrain
3: µ(1) = max

{∣∣ψLF(·,1)

∣∣}
4: µP = [µ(1)]
5: for l = 2 : r do
6: Solve c = [ΨLF(1:l−1,1:l−1)]

−1ψLF(1:l−1,l)

7: r = ψLF(·,l) −ΨLFc

8: µ(l) = max{|r|}
9: µP = [µP , µ(l)]T

10: end for

This sampling procedure is resumed after every iteration of the proposed algorithm and is not restarted from the

beginning. As a result, instead of oversampling the same points from the training set, we are able to sample distinct

points from it. The parametric functions obtained in ith iteration of the multi-fidelity algorithm are orthogonalized

with respect to the parametric functions obtained in (i− 1)th iteration through Gram-Schmidt orthonormalization in

order to prevent repetition and picking up points closer to previously calculated points. This step is crucial for finding

the best and most distinctive points throughout each iteration cycle, enabling us to explore the parametric space more

thoroughly.

Remark: A general remark to take into account that while picking parametric points, it is always a better choice to

select from the first ‘r’ truncated parametric functions due to its content of the highest energy or information of the

system arranged in descending order.

It is noteworthy that the proposed methodology doesn’t necessarily perform like a classical greedy sampling procedure

due to the nature of the selection of points from the parametric functions. Hence, depending on the available computing

resources, the level of "greediness" can be fine-tuned. In other words, since DEIM will generate the same number of

points as the rank of parametric functions, the user can decide to select all the sample points at once, or also has the

option to select one parametric point per iteration. This is one of the advantages of this approach where the selection of

points per iteration is completely user-dependent, which can be assimilated for parallel computations. A general remark

has to be made, incorporating such a step can also lead to the selection of excess sample points than required which

deviates from the main objective of selecting a few optimal points and hence needs to be taken care of.

3.3 Recovery of the reduced basis functions

The high-fidelity basis function in the first iteration of the proposed method is recovered by performing SVD on the

select snapshots, SHF = {uHF(µ
P )} for all µP ⊂ Ξtrain.

svd(SHF) = ΦHFΣHFΨ
T
HF (10)

where, ΦHF = [φ1
HF,φ

2
HF, . . . ,φ

r′′

HF ] ∈ RN×r′′ with r′′ ≤ #(µP ) contains the high-fidelity reduced bases that

span the low-dimensional subspace VR and ΨHF = [ψ1
HF,ψ

2
HF, . . . ,ψ

r′′

HF ] ∈ RN×r′′ denotes the parametric modes.

9



An iterative multi-fidelity approach for model order reduction of multi-dimensional input parametric PDE systemsA PREPRINT

Similarly, the rectangular diagonal matrix ΣHF ∈ Rr′′×r′′ contains the corresponding non-negative singular values

σ1 ≥ . . . ≥ σr′′ ≥ 0 accounting to the information content of the high-fidelity model solution data. At (i + 1)th

iteration of the algorithm, the reduced subspace VR is updated through the Gram-Schmidt procedure (refer algorithm

2).

Algorithm 2 Gram-Schmidt orthonormalization at the (i+ 1)th iteration of the proposed method
1: for l = 1 : dim(SHF) do
2: φlHF = SlHF − VRi 〈VRi ,SlHF〉
3: if ||φ

l
HF||

||Sl
HF||

> εg then

4: VRi+1 = VRi
⊕ φl

HF
||φl

HF||
5: end if
6: Update, VRi = VRi+1
7: end for

3.4 Updating low-fidelity model

In this part, we demonstrate how the current POD-G ROM approximation can be used to update the low-fidelity model

for each iteration of the algorithm until convergence, i.e. we approximate the solution uLF : Ω×D → R with a function

uR ∈ VR defined by,

uR(x;µ) =

r′′∑
i=1

φiHF(b(µ))i = ΦHFb(µ) (11)

where, the POD expansion coefficients b(µ) = (b1, b2, . . . , br′′)
T can be calculated by Galerkin projection of the PDE

system onto the basis functions φiHF. The initial low-fidelity snapshots data is now updated with the current reduced

solution, such that SLF = [uR1 , u
R
2 , . . . , u

R
N ] ∈ RN×r′′ .

Remark: To improve the efficiency of the method, one can also approximate the low-fidelity data with the coefficients of

the POD expansion instead of the reduced solution itself and replace SLF withB whereB = [b1, b2, . . . , bN ] ∈ Rr′′×N .

Here bi = (b1, b2, . . . , br′′)
T represents the POD coefficients from eq. 11. This process can reduce the cost of exploration

of the parametric space using low-fidelity approximation from O(N ) to O(r′′).

By performing SVD onB we have,

B = ϕςψ̂T (12)

Rewriting eq. 11 we have,

ũR(x;µ) ≈ uR(x;µ) = ΦHFϕ︸ ︷︷ ︸
Φ̃HF

ςψ̂T (13)

The original high-fidelity basis functions can now be replaced by the approximate left singular vectors by the expression

shown in eq. 13. This scaling factor is committed to improving the accuracy of the basis functions that could be lost if

reduced coefficients are used in place of reduced-order solutions for the parametric exploration.

10
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The next section is dedicated to a discussion on error metrics which are used to test the reliability of the approach.

3.5 Error metric

If uHF(x;µP ) and uR(x;µP ) represents the FOM and ROM solution respectively at the computed parametric points

µP from the training set Ξtrain ⊂ D, then the max norm of the relative error is estimated at the sample points such that

εtrain = max
µP

√√√√∑Ni=1 ||uHF(xi;µP )− uR(xi;µP )||22∑N
i=1 ||uHF(xi;µP )||22

(14)

In order to better understand the quality of the reduced model, the algorithm is validated on another set of parameters,

Ξval ⊂ D for the problem defined. By validating on a different set of points, if the error estimation between the FOM

and ROM solutions is reduced as the cycle increases, it can be inferred that ROM well approximates the large-scale

system for any µ ∈ D. If the max norm error for both the training and validation set is below a certain tolerance limit,

the sketch model constructed can be considered to be reliable.

εval = max
µ

√√√√∑Ni=1 ||uHF(xi;µ)− uR(xi;µ)||22∑N
i=1 ||uHF(xi;µ)||22

∀µ ∈ Ξval (15)

The error between all the snapshots and the ROM solutions obtained by the iterative multi-fidelity approach is evaluated

and can be viewed as a benchmark for the ROM error, provided sufficient snapshots are generated:

εROM =

√√√√ N∑
i=1

||uHF(x;µ(i))− uR(x;µ(i))||22
||uHF(x;µ(i))||22

µ ∈ Ξtrain (16)

We also analyze the POD basis projection error, which is given by the error between the snapshots and their projection

onto the recovered basis functions:

εPOD =

√√√√ N∑
i=1

||uHF(x;µ(i))−ΠuHF(x;µ(i))||22
||uHF(x;µ(i))||22

µ ∈ Ξtrain (17)

4 2D heat conduction problem

In order to assess the proposed methodology, we first begin by analyzing a simple steady-state heat conduction problem

in a 2D domain, Ω = (0, 1)× (0, 1) as shown in figure 2. This problem is reproduced from ([36]) where it is solved

using classical greedy RBM. The boundary of the domain is split into three parts, the base, the top, and the sides,

and Ω0 is a square block placed in the center of the domain. Let κ be the thermal conductivity with κ|Ω0
= µ[1] and

κ|Ω1 = 1 where Ω1 = Ω\Ω0.

Two input parameters are considered for this problem µ = [µ[1], µ[2]], where µ[1] is the conductivity in Ω0 the region,

and the second parameter µ[2] is the constant heat flux over the bottom boundary. The strong formulation for this

parameterized problem is governed by Poisson’s equation. For some parameter value µ ∈ D, find u(µ) such that

11
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Figure 2: Geometry of heat conduction problem

∇ · κµ∇u(µ) = 0 in Ω,

u(µ) = 0 on Γtop

κµ∇u(µ) · n = 0 on Γside

κµ∇u(µ) · n = µ[2] on Γbase

(18)

Here, u(µ) is the scalar temperature field variable, and κµ is given such that κµ = ϕ1 + µ[1]ϕ0, where ϕ is the

characteristic function with subscript donating the corresponding domain. Defining VN =
{
v ∈ H1

0 (Ω)|v|Γtop = 0
}

,

the weak parametrized formulation then reads: for some parameter µ ∈ D, find u(µ) ∈ VN such that,

a(u(µ), v;µ) = f(v;µ) ∀v ∈ VN ,

a(w, v;µ) =

∫
Ω

κµ∇w · ∇v and f(v;µ) = µ[2]

∫
Γbase

v,
(19)

for all v, w ∈ VN . The selected range for the parametric study: µ = [µ[1], µ[2]] ∈ D = [0.1, 10]× [−1, 1]. A total of,

2050 sample points are generated in which the training set Ξtrain compromises of 2000 points and the validation set

Ξval consists of 50 points. For µ[1], the points are generated using uniform discretization whereas for the second input

parameter µ[2], the points are generated using log space. The graphical representation of the temperature field for two

different sets of parameters is shown in figure 3.

4.1 Results and discussion

We now perform the proposed algorithm based on two different initialization of the low-fidelity model. The first

analysis is based on the assumption that we already have some random dataset of solutions of a FOM. Then the initial

low-fidelity model is a ROM which is constructed from this random sketch model. In this example, we initialize the

random sketch with 2 linearly independent snapshots from the training set. Since this is a low-rank linear problem, we

chose to select one sample point per iteration. With a target tolerance set to ε = 10−6, 6 iteration cycles are required

to achieve the desired accuracy, as shown in figure 4a. Also, we show the convergence plot for parameters belonging
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(a) µ[1] = 0.1, µ[2] = −1 (b) µ[1] = 0.4, µ[2] = 0.5

Figure 3: Two different representative solutions for the parameterized conductivity problem.

to the validation set, which decays smoothly until the target accuracy is achieved. This implies, that the quality of

ROM constructed with the proposed iterative multi-fidelity approach represents well the large-scale PDE system for any

parameter belonging to the parametric space D.

(a) Initial random sketch (b) Initial coarse sketch

Figure 4: Error εtrain and εval between FOM and ROM solution using random sketch model (a), coarse sketch model (b).

The second analysis is for the cases when no database of solutions is available a priori, we construct the initial

low-fidelity model from a coarse sketch model as shown in figure 5a. Figure 5b represents a fine grid model used for

generating the high-fidelity solution. We observe that the same number of iterations are required as in the previous case

to achieve accuracy of O(10−6) for parameters belonging to both the training and validation set, shown in figure 4b.

This specific example has only a parametric dimension of 2 and also this problem is not mesh-dependent, so both the

sketch models consisted of sampling the same number of points. However, we will observe that the selection of points

is not consistent in a complex problem as the advection-diffusion problem in 9 dimensions discussed in section 5. Also,

more or fewer sampling points may be required depending on the initialization of the low-fidelity model to retain the

same target accuracy.
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(a) Coarse grid (# Nodes =62 ) (b) Fine grid (# Nodes =895)

Figure 5: (a) a Coarse discretized mesh for initial low-fidelity model, and (b) a fine discretized mesh for high-fidelity model
approximations.

The parametric points sampled using both the sketch models are represented in figure 6a. We can notice that irrespective

of the sketch model chosen to construct the low-fidelity model, the proposed method in this example extracted almost

exact points in both cases. We also plot a density map in figure 6b showing the probability of a point to be picked at a

certain location, which is obtained here by finding a Gaussian distribution over an ensemble of numerical experiments.

In other words, each experiment is initialized by different random snapshots without any repetition. The figure reflects a

very interesting behavior, showing that six of the seven sampled locations are fairly the same in each trial except for one

point that has more variance than the other six, which was noticed when the third point was chosen. This is attributed to

the selection mechanism, since the third point is picked randomly after the first two points are drawn from the training

set during the initialization of the random sketch model. Then accordingly the algorithm optimizes the location of

the third point thus yielding consistent results. Since this approach is based on heuristics, obtaining exact sampling

points in different cases is not of the utmost priority, as it is more on achieving unique points that can statistically well

represent the entire parametric subspace.

(a) (b)

Figure 6: Sampled parametric points using two sketch models (a), Gaussian distribution of sampling points over 10 trials (b).
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(a) (b)

Figure 7: Error εPOD of the POD projection, posteriori error bound by greedy RBM and error εROM of the solution of the reduced
order model obtained by the proposed method (a), and sampled parametric points using the proposed method, classical POD and
greedy RBM (b).

We also plot the `2 norm POD projection error (εPOD) and ROM error (εROM) against the rank of the low-fidelity model

using both the sketch models in figure 7a, as per the definitions in section 3.5. We can observe both the POD and

ROM error decay exponentially with an increase in the rank of the system. Also, the POD error curve is observed

to be lower than the ROM error as expected, which is represented by the decay of singular values. Now we make a

comparison by solving the same problem using the greedy RBM algorithm, the lower bound is computed using the

multi-min-theta approach explained in detail in [36]. The convergence plot for the relative `2-norm ROM error (εROM)

for all the parameters in the training set and the error bound is shown in figure 7a. It is observed that the ROM error has

a smooth exponential decay and is lower than the max norm error as expected.

For the target accuracy set to O(10−6), the rank of the system achieved is 7, implying that 7 parametric points were

sampled to recover the basis functions similar to the findings of our proposed method. Thus, it is evident that the

qualitative performance of the proposed method is comparable with the greedy RBM. We also show an illustration

of sampled points obtained by greedy RBM in figure 7b. We notice that the parametric points picked in the proposed

method are not entirely comparable to greedy RBM, however, the sampled points in both cases follow a logarithmic

trend which may be related to the way we discretized our training set, where we chose to discretize µ[2] using a log space

and a uniform discretization for µ[1]. If we apply DEIM on the parametric functions obtained by POD on high-fidelity

snapshots for all µ ∈ Ξtrain and plot the sampled points in the same figure 7b, we observe that the selection of points

is comparable with the proposed method and lie on the same logarithmic trend.

5 9D advection-diffusion problem

In this section, we study an advection-diffusion problem with a source term for a 9 parametric dimension. As it can be

seen in figure 8, the domain is divided into 9 subdomains where each region has a different diffusivity coefficient which

serves as the input parameter.
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Figure 8: (left) Geometrical set up of advection-diffusion problem in a 9 block system and (right) advective flow field

5.1 Problem setting

The strong form of the parameterized advection-diffusion reaction equation is governed by the elliptic PDE. For some

parameter value, µ ∈ D find u(µ) such that:

b · ∇u(µ)−K(µi)∆u(µ) + σ = 0 ∀Ωi i = 1, . . . , 9

u(µ) = 0 at Γinlet

∇u(µ) · n̂ = 0 at Γwalls

σ = 1 at Ω5

(20)

where, u(µ) is the unknown field variable for a spatial domain Ω = [0, 1]× [0, 1]. The diffusion coefficient is given

by K(µ) = µ for the input parameter µ ∈ D = [0.01, 10]9 and σ is the constant reaction term. b is a given-advected

flow field which is obtained by solving a potential flow problem in the same bounded domain such that∇.b = 0. We

consider a low permeability zone in Ω5, and relatively higher permeability over the rest of the domains, and with a

constant velocity at the inlet, we obtain the streamlines as shown in figure 8.

The weak parameterized formulation using SUPG then reads as: for some parameter µ ∈ D, find u(x;µ) ∈ VN where

VN =
{
v ∈ (H1

0 (Ω))2|v|Γinlet = 0
}

,

〈v +
βh

2
∇v, b · ∇u〉+ 〈∇v,K(µ)∇u〉 − 〈βh

2
∇v,K(µ)∆u〉+ 〈v +

βh

2
∇v, σ〉 = 0 ∀v ∈ VN (21)

The parameter β is a dimensionless constant that depends on the so-called Peclet number given by Pe = ||b||h
2K(µ) , where

h is a typical element size in the direction of the velocity and ||b|| is the characteristic flow velocity. Note that the third

term in the equation 21 is zero in the case of linear elements used for domain discretization [41].

The reduced weak form of eq. 21 is obtained by projection onto the properly selected low-dimensional subspace

spanned by a reduced basis function {φk}rk=1 such that,
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〈φk +
βh

2
∇φk, b · ∇uPOD〉+ 〈∇φk,K(µ)∇uPOD〉+ 〈φk +

βh

2
∇φk, σ〉 = 0 ∀k = 1, . . . , r (22)

where,

uPOD(x;µ) =

r∑
j=1

φj(x)zj(µ)

z = {z1, . . . , zr}T represents the coefficients of the POD expansion.

Note that only the diffusion term in the equation 22 is affine with respect to the input parameter K(µ) and can be

efficiently reduced during the offline stage,

〈∇φk,K(µ)∇uPOD〉 = K(µ)

r∑
j=1

〈∇φk,∇φj〉zj , (23)

in which the (r × r) operator 〈∇φk,K(µ)∇uPOD〉 can be computed once and for all in the offline stage. During

the online stage, if new parameter K(µ) is prescribed, the evaluation of the diffusion operator of eq. 22 can be

done in reduced complexity (i.e. it does not depend on the original dimension N ) since it only requires O(r × r)
operations. This step is crucial for retaining the computational efficiency of the ROM, however, the same idea cannot be

straightforwardly applied to the convective and source term of the equation 22 as the projection operator dependency on

the input parameter i.e. diffusion coefficient is non-affine. However, the non-affineness is not addressed in this study;

instead, the application of the suggested approach to a high-dimensional PDE system is the main focus.

5.2 Results and discussion

The input parameter µ is discretized using the LHS technique with 2500 sample points, from which the training set

Ξtrain ⊂ D consist of 2000 points and the remaining 500 samples are used for the validation set Ξval ⊂ D to certify the

quality of reduced basis approximation. Figure 9 represents the solution field with different combinations of diffusion

coefficients for each of the 9 blocks.

Similar to the previous numerical example, we perform the algorithm based on two different initialization of the

low-fidelity model. First, the discussion is presented for the low-fidelity model approximated using a random sketch

model. Three studies are conducted to evaluate the computational performance: the first two examined the impact of

the random sketch on the qualitative performance of the suggested method, while the third examined the quantitative

performance of the algorithm by adjusting the greedy parameter for sampling. This algorithm is conducted over 10

trials for the first two cases, the convergence plot is shown in figure 10. In the first case study, the initial rank of the

random sketch for constructing a ROM is chosen to be 100, and during every iteration cycle, 10 points are added

incrementally to update the low-fidelity model. With a target tolerance set to ε = 10−6, we can observe that 13

iteration cycles are required to achieve the desired accuracy in each of the 10 trials, refer to figure 10a. A total count of

100 + (10 ∗ 12) = 220 parametric points are sampled out of 2000 points from the training set. It is to be noted that the

rank of the low-fidelity model is also enhanced by 10 which implies that all the points sampled are unique which is

expected and as a consequence, the recovered basis functions by construction are linearly independent. In the second

case study, the random sketch is initialized with 10 linearly independent snapshots from the training set instead of 100
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Figure 9: Three different representative solutions for the advection-diffusion problem shown (below) by varying nine different
combinations of diffusion coefficient K(µ) in all the three domains (top).

and in each iteration, 10 points are sequentially added to recover the basis functions. It is observed from figure 10b,

that in 22 iterations the target accuracy is achieved with a total sampling of 220 points out of 2000 points from the

training parametric set, similar to the first case. Thus, it is evident that irrespective of the size of the random sketch

chosen for the initial construction of the low-fidelity model, the algorithm performed well in both scenarios and the final

enrichment of the low-fidelity model converged towards the FOM model accurately within the prescribed tolerance.

The computational time required to achieve the target accuracy is of the same order O(103) in seconds in both cases,

while having comparable computational performance.

In the third case, the study is conducted by sampling 2 parametric points per iteration instead of 10 points. Figure

10c reflects 54 iteration cycles required to achieve the same target accuracy, with a total sampling of (100+54*2=208)

points, unlike in the previous two cases where 220 points were selected from the parametric space. The CPU time

required in this case is O(104) seconds, which is one order higher than the previous cases. This implies adding a few

points per iteration can minimize the risk of sampling excess points while maintaining the same order of accuracy, but

at the cost of higher CPU time. Due to the discrete nature of error evaluation, the relative training error is observed to

be noisy, but with the validation error plot, we can see a smooth decay of the curve as the error is evaluated over the

entire validation set rather than at select discrete points.

For the second analysis, the initial low-fidelity model is built using a very coarse sketch model, as shown in figure

11a. For recovering the high-fidelity solution, a fine discretized model is used in figure 11b. The points are added

sequentially by incrementing with 10 every iteration. The target accuracy is achieved in 23 iterations (total count of

sampled points is 230) as shown in figure 12a, which is more by 10 points compared to the random sketch model.

As is already discussed, such types of PDE problems face numerical stability issues in case of high Peclet number

(advection-dominated cases) and can be resolved by applying artificial diffusion in the upwind direction. It is also

important to note that the amount of artificial diffusion added to the system depends on the mesh size. So coarser the
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(a) initial rank 100, incremented by 10 points every iteration (b) initial rank 10, incremented by 10 points every iteration

(c) initial rank 100, incremented by 2 points every iteration

Figure 10: (a,b) Mean of error εtrain and εval between FOM and ROM solution obtained using different random sketch models
over 10 trials and its std. deviation. (c) Error εtrain and εval between FOM and ROM solution for one trial.

mesh size, the more diffusion is required, which may affect the solution significantly. Hence, to accurately capture the

physical properties of the PDE system, it is very important to consider that the initial grid takes into account all the

physical aspects of the problem such that there is no loss of information. This could be the plausible explanation for a

higher number of points needed when a coarse sketch model is used as compared to the ROM for the initial construction

of the low-fidelity model. Nevertheless, our main objective to guarantee convergence is achieved irrespective of the

initial size of the coarse mesh used and can be confirmed further from the decay of the validation error curve seen in

figure 12b. The CPU time taken is of the O(103) seconds, same as the first and second case.

Figure 12b shows the plot for `2 norm POD projection error and ROM error for all the parameters belonging to the

training set using both sketch models. Both the POD and ROM errors have an exponential decay as the rank of the

system increases, with the POD error serving as a lower bound to the ROM error. This proves the reliability of the

proposed method on the quality of ROM constructed such that irrespective of the initial design of the low-fidelity model,

the ROM error displays similar decay properties as the POD error.
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(a) Coarse grid (# Nodes=575) (b) Fine grid (# Nodes=3492)

Figure 11: (a) Coarse discretized mesh for initial low-fidelity model, and (b) fine discretized mesh for high-fidelity model
approximations.

(a) (b)

Figure 12: Error εtrain and εval between FOM and ROM solution using coarse sketch model (a). Error εPOD of the POD projection,
and error εROM of the solution of the reduced order model obtained by the proposed method (b).

6 Conclusions

In this work, we presented the feasibility of a multi-fidelity approach in reduced basis approximation for a multi-

dimensional parametric PDE system in an iterative procedure. The parametric sampling is adhoc and extracted from

low-fidelity model approximations based on heuristic assumptions. Such approximations of low-accuracy low-fidelity

models over high-fidelity models enhance the computational performance in the offline stage significantly. Not to

mention, this approach proved to be adequate when a posteriori error estimator is unavailable, which is an essential

ingredient for efficient greedy sampling. The greedy selection is user dependent, i.e. one can select a single point or

multiple points for each iteration. However, attention is to be given as excess parametric points might be sampled than

required to achieve the same target accuracy but at a higher CPU cost. So a compromise can be made on the trade-off

between computational efficiency and accuracy.
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Overall, the construction of reduced basis subspace required less high-fidelity snapshot generation in the proposed

method. This methodology is successfully demonstrated on a 2D steady-state advection-diffusion problem for 9 input

parametric dimensions. A qualitative comparison is also presented for a simple steady-state heat conduction problem

between the proposed method and greedy RBM, in which both cases had comparable computational performance.

We also presented two different ways of initializing a low-fidelity model and irrespective of the initial quality of the

low-fidelity model approximation, the method is shown to be reliable and stable by converging towards the FOM

approximation within the prescribed tolerance.

In our current work, we have only performed linear reduction, but we can further embed hyper reduction in our current

framework "on the fly" i.e. during the multi-fidelity iterations for treating non-affine problems. This step can alleviate

the cost of low-fidelity model approximations significantly. For some of the current research work one can refer to the

articles [42, 43] on adaptive hyper reduction techniques which allows enrichment of the reduced integration domain

during the online stage as the simulation progresses.

Additionally, during the multi-fidelity iterations, we may also evaluate the low-fidelity model solely on a portion of the

randomly chosen parametric points as opposed to the complete training set. This procedure could drastically improve the

computational performance of the methodology, specially for nonlinear PDEs. However, there are certain implications

to it such as there will be missing information in the parametric subspace and as suggested in the methodology, to

sample points using the DEIM strategy, one needs to orthogonalize the current parametric functions in relation to the

previous ones. As a possible solution to this problem, Gappy-POD may be used to reconstruct the missing data in the

updated parametric functions and can be implemented into this technique for future research work.
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