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Abstract:
This paper deals with the detection of Lithium-ion battery end of life based on its voltage and
ambient temperature measured every 1 hour. A methodology for classifying the battery status
(normal or degradation mode) is presented. The battery’s entropy and enthalpy have also been
estimated. The classification has been performed using three algorithms: Interquartile, Isolation
Forest, and One-Class SVM. The metrics used to compare these methods are F1-score and
Average F-measure. The findings showed that enthalpy has promising results in detecting the
battery end of life.
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1. INTRODUCTION

Industrial systems use communicating devices to collect
and send information about their states. This information
can be used to trigger alerts or plan predictive mainte-
nance. In this context, the efficiency of data transmission
in various applications relies on long-range radio communi-
cations and extended device lifespan. Due to these require-
ments, battery-powered devices are commonly used in the
industry. These devices play a key role in monitoring and
controlling different systems. However, the device battery
discharge can cause faults (Isermann (1997)) that may
lead to system dysfunctions such as actuation loss. It is
therefore essential to detect the battery end of life before
it is fully discharged to avoid any loss of service.

The most commonly used methods in analyzing the state
of charge of lithium batteries are: Discharge test (Chen
and Li (2014)), Amper-hour balance (Keil and Jossen
(2016)), and the open circuit voltage (Piller et al. (2001)).
These first two methods use the current drawn from the
battery to determine the State of Charge (SoC). Mea-
suring this current requires a battery gauge or a specific
measurement circuit. The Open Circuit Voltage (OCV )
can be determined by measuring the voltage across the
battery when no current is flowing through it, providing
an indication of its unloaded state. These measurements
are not always embedded in low cost, low power and low
maintenance systems. Whereas, closed-loop battery volt-
age and ambient temperature are easier to measure. The
battery SoC is often used in literature (Piller et al. (2001);
and Srinivas Singirikonda (2020)) as a feature to detect the
battery end of life. Another effective method to determine

the battery SoC consists in using artificial neural networks
(Wang et al. (2020)). Indeed, these models can learn and
predict the battery behavior based on historical data. The
Kalman filter is also used to estimate the SoC (Wang et al.
(2020)), by measuring the current and/or open circuit
voltage. However, the access to the information required by
these approaches such as the SoC specifications, features,
and capabilities is not always available.

The contribution of this paper is an approach to detect the
end of life of a lithium battery based only on its closed-
loop voltage and the ambient temperature, which is new
up to our knowledge.

This approach is applied to the case of battery powered
devices used in irrigation systems. Their batteries are used
to power the irrigation monitoring and controlling system
(collect irrigation data and activate valves to start or stop
irrigation). These batteries have a limited amount of en-
ergy and the discharge results in the loss of the automatic
irrigation system operations. Hence, early detection of the
end of battery life allows the improvement of the system
overall performance and reliability. Unnecessary replace-
ments or maintenance of the batteries may result in wasted
money and lower accessibility of the service, hence it is
essential to find a trade off between detecting battery end
of life too early and missing it. The aim of the approach
proposed in this paper is to detect the degradation mode
associated with the end of battery life before it is fully
discharged.

The remainder of this paper is organized as follows.
The approach to detect the battery end of life and the
main detection indicators are described in Section 2. In



Section 3, the comparison between different algorithms
and methods is described. Finally, concluding remarks are
presented in Section 4.

2. DETECTION APPROACH OF THE BATTERY
END OF LIFE

The battery model illustrated in Fig. 1 simplifies the
complex dynamics of battery behavior, see Vermeer et al.
(2021). It is assumed that the following equations hold

Tm(t) := Tbatt(t) + T0 + wT (t), (1)

Vm(t) := Vocv(t) + V0 + wv(t), (2)

where Vm and Tm are respectively the measured voltage
and the measured temperature, Vocv is the open-circuit
voltage, Tbatt is the battery temperature, V0 ∈ R is the
voltage across the internal battery resistor R0 and T0 ∈ R
is the temperature offset. It is assumed that wi ∼ N (0, σi),
and that wv and wT are independent. These equations
model the battery temperature and voltage evolution over
time and in the following both values are measured and
recorded every hour.

R0

Vocv(t) Vm(t)

Battery

Tbatt(t)

Device

Tm(t)

Fig. 1. Model of a Lithium-ion battery.

2.1 Entropy and enthalpy estimation

Despite lacking access to the data for estimating SoC
(such as current and OCV ), there exists a relationship
between the entropy, enthalpy and SoC. This relationship,
as given by the theorem of Yazami (Manane and Yazami
(2017)), indicates that enthalpy ∆H and entropy ∆S are
indicators of battery status:

SoC(t) := α+ β∆S(t) + γ∆H(t), (3)

α, β and γ are coefficients that depend on the battery
technology.

The entropy and enthalpy of the battery (Maher and
Yazami (2014); and Manane and Yazami (2017)) are
respectively defined as follows

∆S(t) := F
∂Vocv(t)

∂Tbatt(t)
, (4)

∆H(t) := F

(
Vocv(t)− Tbatt(t)

∂Vocv(t)

∂Tbatt(t)

)
, (5)

where F represents the Faraday constant. To detect the
end of battery life, the approach of this paper uses Vm(t),
as well as an estimation of both the entropy ∆S(t) and
the enthalpy ∆H(t) as inputs of the model. The battery
voltage can be modeled on the sliding window given by
tc ∈ [t−∆t, t], see (Forgez et al. (2010)):

Vocv(tc) = A(t) +B(t)Tbatt(tc) + C(t)tc, (6)

where A, B and C are constants with respect to tc but take
different values on each sliding window considered. ∆t is

the size of the sliding window, its determination is detailed
in Section 3.2. The equations (1), (2), and (6) give:

Vm(tc) =Ā(t) +B(t)Tm(tc) + C(t)tc
−B(t)wT (tc) + wv(tc), (7)

where Ā(t) = A(t)−B(t)T0 + V0. In order to validate the
conformity of the data to the regression equation (7), we
decided to evaluate the correlation between voltage and
temperature, which makes it possible to perform a linear
regression to estimate the equation coefficients. Using (6)
in (4) and (5), one gets ∀tc ∈ [t−∆t, t]

∆S(tc) = F B(t), (8)

∆H(tc) = F (A(t) + C(t)t), (9)

We suggest to monitor the following estimates for tc = t
of ∆S(t) and ∆H(t) :

∆Ŝ(t) := B(t). (10)

∆Ĥ(t) := Ā(t) + C(t)t. (11)

These estimations are related to ∆S(t) and ∆H(t) by
a proportional factor and a linear relation respectively.
Let us consider, these equations in discrete time with
t = kTe, k ∈ N, with Te the step time Defining θk :=[
Ā(kTe) B(kTe) C(kTe)

]T
, one gets that

Yk = Xkθk +Wk, Yk :=


Vm(kTe)

Vm((k − 1)Te))
...

Vm((t− n)Te)

 ,

X(t) :=


1 Tbatt(kTe) kTe

1 Tbatt((k − 1)Te) (k − 1)Te

...
...

...
1 Tbatt((k − n)Te) (k − n)Te

 , (12)

Wk :=


wv(kTe)

wv((k − 1)Te)
...

wv((k − n)Te)

−B(kTe)


wT (kTe)

wT ((k − 1)Te)
...

wT ((k − n)Te)

 ,

in which n in the number of point in the sliding window.
In the data under consideration the step time is Te = 1
hour. An estimation of θk can be made using ordinary least
square estimation

θ̂k =
(
XT

k Xk

)−1
XT

k Yk. (13)

Ordinary least square estimation is known to be sensitive
to outliers, which can negatively impact the accuracy
of the estimation (Huber (2004); and Maronna et al.
(2019)). To address this issue, there are various methods
that can be employed. This study employs the Weighted
Least Squares method, as introduced in Gervini and Yohai
(2002), specifically for time-series modeling. After esti-
mating θ(t), five different indicators are investigated to
detect the battery end of life using a classification: (i)
the voltage, (ii) the entropy estimation, (iii) the enthalpy
estimation, (iv) the Hotelling’s T 2 statistic and (v) the
square prediction error Q statistic. The two last indicators
are based on the principal component analysis (PCA) on

(Vm,∆Ŝ,∆Ĥ), where ∆Ŝ and ∆Ĥ are defined in (10) and
(11). Principal component analysis is used for detecting
faults, as demonstrated by Harrou et al. (2013), Mansouri
et al. (2016), and Hashim et al. (2020).



2.2 Detecting the degradation mode

The detection of the degradation mode consists in finding
the time index when any of the indicators surpasses its
respective threshold. Let’s denote this indicator as x, de-
fined as the time series: x [k] ∈ R for k ∈ N. The objective
is to determine the value of k for which the system tran-
sitions from normal mode behavior to degradation mode,
based on the value of the indicator x. It is important to
note that this value of k cannot be precisely identified
because the degradation has a continuous behavior. The
effects of degradation start mild and become progressively
more severe. In this analysis, the aim is to understand
the normal behavior of a system and monitor whether the
current value of x corresponds to a normal operation or a
degraded state. To identify a model based on normal data
behavior, the use of semi-supervised methods and one-
class model is considered. Three different approaches are
explored to detect anomalies from normal system behavior
and establish a degradation threshold for each indicator,
as detailed in the following sections.

a) Interquartile: The first evaluated method to identify
abnormal data is the boxplot method (Adam et al. (2018)).
This method uses the first and third quartiles, respectively
Q1 and Q3 and interquartile range IQR = Q3 − Q1 to
identify outliers. The IQR method defines a data point as
an anomaly if it falls below Tlow = Q1− 1.5IQR , or above
Thigh = Q3 + 1.5IQR . The anomaly detection rule is as
follows:

Anomaly =

{
True, if x < Tlow or x > Thigh

False, otherwise.
(14)

b) One Class SVM classification: One class support
vector machine (OCSVM) is one of the kernel-based meth-
ods that is part of the support vector machines (SVMs)
(Schölkopf et al. (2001)). OCSVM model is trained only
on data annotated by an expert as representing the system
not in a degraded mode. The One-Class SVM seeks to
identify a hyperplane that optimally isolates the normal
data from the origin (Lang et al. (2020)). The hyperplane
should aim to effectively separate regular data points from
potential anomalies by maximizing the space between the
hyperplane and the regular points. This can be written as
a constrained optimization problem

min
w

(
1

2
wTw − ν

(
N∑
i=1

ξi

))
, (15)

wTxi ≥ 1− ξi, i = 1, 2, . . . , N,

ξi ≥ 0, i = 1, 2, . . . , N.

The decision function is defined as

D(x) = wTx− ρ. (16)

where w is the weight vector of the hyperplane, xi is
the feature vector of the i-th data point, ν is a control
parameter for the number of anomalies, and ρ is the
decision threshold for classifying the data. If D(x) > 0,
x is considered normal. Otherwise, it is considered as an
anomaly.

c) Isolation Forest: The iForest or Isolation Forest is
an anomaly detection algorithm. It operates by isolating
anomalies from the rest of the dataset (Liu et al. (2008))

FP

TN TP
Threshold

t

Vm(t)

FN

Fig. 2. Algorithm evaluation.

through the construction of multiple decision trees, each
created by randomly selecting a feature and a split value.

Anomalies, being rare and distinct, are particularly iso-
lated using fewer splits than regular observations. The
procedure to create the iTree (Mao et al. (2018)) is as
follows: First, a random feature q and a random split point
p are selected. Second, the data is split into two subsets,

Xl = {xi ∈ X : xi(q) ≤ p}, Xr = {xi ∈ X : xi(q) > p}.
These two steps are repeated recursively until a stopping
criterion is met.

The anomaly score of the sample j is calculated as:

s(f(j), n) = 2
−E(f(j))

c(n) , (17)

where E(f(j)) is the expected path length of j in a
single isolation tree f(j) and c(n) is a normalization factor
derived from the average expected path length over all
trees in the forest.

Anomalies are identified by comparing the anomaly score
to s(f(j), n) a predefined threshold. Data points with
scores lower than the threshold are considered as anoma-
lies. First, when E(f(j)) → 0, s → 1, the probability
of j being an anomaly is high. Then if E(f(j)) → c(n),
s → 0.5, whether j is an anomaly is uncertain. Finally,
when E(f(j)) → n − 1, s → 0, the probability of j being
normal is high.

2.3 Evaluation Metric

F1− score represents the harmonic mean of precision and
recall as in (Sokolova et al. (2006)). This metric is par-
ticularly useful when both false positive and false negative
are important. In general, the Fβmeasure represents a more
generalized form of the F1− score:

Fβmeasure =
(1 + β2)TP

(1 + β2)TP + β2FN + FP
. (18)

Fig. 2 displays three distinct phases: the normal mode, the
degradation mode, and the transient phase in between. An
expert has labeled the battery charge phases as follows:
d = 0 for the normal mode and d = 1 for the degradation
mode. The model output is denoted as r: if the model
classifies the battery as charged, r = 0, while r = 1
indicates it is in its end of life. Refer to Table 1 for the
corresponding confusion matrix.

Table 1. Confusion matrix

r = 0 r = 1

d = 0 True Negative (TN) False Positive (FP )
d = 1 False Negative (FN) True Positive (TP )

Since the Fβmeasure only considers three of the four
elements of the confusion matrix and is sensitive to class
imbalances, the Average F-measure (AGF) metric was
developed to address these limitations in (Maratea et al.
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Fig. 3. Training and Validation procedure

(2014)). This metric uses all elements of the confusion
matrix and gives a higher weight to samples that are
correctly classified in the minority class. This metric is
defined as follows:

AGF =
√
F2InvF0.5, (19)

where F2 is the F-measure with β = 2 and InvF0.5

is calculated by constructing a new confusion matrix in
which the class label of each sample is switched (i.e.
positive samples become negative and vice versa) and
β = 0.5.

2.4 Diagram system

In order to address the objective of capturing system
degradation and synthesizing a threshold, the following
approach is proposed.

Training process: The first step is to find and calculate the
features (Vm, ∆Ŝ(t), ∆Ĥ(t), Hotelling’s T 2, Q statistic)
designed to capture and represent the battery degradation.
Then, the models mentioned in Subsection 2.2 are trained
to recognize normal mode using a dataset consisting of
125 time series of charged batteries. This training phase
allows the models to learn the patterns and characteristics
of charged battery behavior. Then, thresholds for each
indicator are set to classify normal mode from degradation
mode. Please refer to Fig. 4 for the training dataset.

Fig. 4. Voltages of the training dataset: 125 time series.

Validation process: Once the thresholds are set, they are
applied to 34 time series to classify the battery statuses.
The most suitable algorithm and indicator for detecting
degraded mode are selected based on F1−score and AGF
metrics. Please refer to Fig. 5 for an illustration of the
testing dataset and to Fig. 3 for the training and validation

Fig. 5. Voltages of the testing dataset: 34 time series.

process. By following this approach, an indicator that cap-
tures battery end of life is identified providing actionable
information for maintenance or replacement decisions.

3. APPLICATION

3.1 End of life detection using voltage

Fig. 5 shows the hourly voltage measurements taken for
a sample of discharged batteries, which have an average
lifespan of about 15 months. The method outlined in Sec-
tion 2 is used to detect the battery end of life. The analysis
of the data reveals the presence of a distinct voltage spike
during the winter period. This voltage anomaly makes the
determination of an appropriate threshold for anomaly
detection a challenging task. Setting a high threshold
would trigger false alarms, introducing unnecessary inves-
tigations. Whereas, employing a low threshold might delay
the detection of genuine anomalies, potentially impacting
the system reliability and performance. Therefore, finding
a balance between the threshold values becomes crucial to
find a compromise between minimizing false alarms and
ensuring timely detection of actual anomalies.

n1

n2

t

Vm(t)

Fig. 6. Illustration of the voting process.

Let’s consider a numerical time series, denoted as X =
(x[0], x[1], x[2], ..., x[kend]), where kend is the total number
of data points and a threshold τ . Using a voting opera-
tion as described in Tajti (2020), an alarm is triggered
whenever a certain number n of consecutive points in the
sequence fall strictly below the threshold τ . This operation
can be formulated as follows:

For each x[ki], where i ∈ (n, n + 1, ..., end): we ver-
ify if all the previous n points are less than τ , i.e.
x[ki−n+1], x[ki−n+2], ..., x[ki] < τ .

If this condition is true, an alarm is triggered at index
i. In other words, we are looking for the smallest index
i that satisfies the above condition. A smaller n can lead
to more frequent alarms and may also increase the rate of
false alarms, while a larger n can reduce the rate of false
alarms and also delays the detection of events. Choosing a
suitable n can also enhance the robustness of this method



towards outliers. Since outliers would need to persist over
n consecutive points to trigger an alarm, transient spikes
in the data, which could be due to noise or temporary
fluctuations, are less likely to result in false alarms. See
Fig. 6 for an illustration of the voting process.

3.2 Correlation between voltage and temperature

In order to assess the conformity of our data with the
regression equation (7), we examined the correlation be-
tween battery voltage and temperature across all 125 de-
vices. The correlation coefficients, ranging from 0.60 to
0.96 for every device, indicate a strong correlation between
these two variables as outlined in Asuero et al. (2006). To
determine the optimal sliding window ∆t, the correlation
is calculated at various time intervals, ranging from 1
to 30 days. For each device, the time interval with the
highest correlation is determined. The sliding window ∆t
is then the average of these time intervals with the highest
correlation. Using the aforementioned selection technique,
the sliding window width ∆t obtained was 14 days and
this value is used in the rest of this paper.

3.3 End of life detection using entropy

Fig. 7 illustrates the variation of the entropy ∆Ŝ(t) for a
single device. This entropy is determined by using (10).
It is observed that a significant increase in the entropy
tends to be associated with battery degradation. Then,
the degradation mode is detected using the threshold
determined by the method outlined in Section 2.

Fig. 7. Illustration of the estimated entropy.

3.4 End of life detection using enthalpy

Fig. 9 illustrates the variation of the estimated enthalpy
over time, by using (11). The enthalpy curve is smoother
than the voltage one presented in Fig. 8 and there is no
bump related to the drop in temperature during the winter
period. The degradation mode is detected using threshold
by the method outlined in Section 2.

Fig. 8. Illustration of the battery voltage.

Fig. 9. Illustration of the estimated enthalpy.

3.5 End of life detection using PCA model

Principal Component Analysis (PCA) can be employed
as an advanced technique to explore the relationships be-
tween voltage, entropy, and enthalpy, as well as to reduce
the dimensionality of the dataset (Harrou et al. (2013);
Mansouri et al. (2016); and Hashim et al. (2020)). The
application of PCA in our context enables the extraction
of meaningful patterns and the identification of potential
correlations between these variables. To ensure the reli-
ability and validity of the PCA model, the T2 and Q
coefficients can be used for assessing model quality and
detecting outliers as described bellow.

a) Hotelling’s T2 method: The Hotelling’s T2 statistic
is a multivariate measure that calculates the distance of
an observation from the center of the model. A high T2
value may signify that a data point is substantially distant
from the model center, possibly suggesting an outlier or
deviation from expected behavior.

T 2 = (X− µ)TC−1(X− µ), (20)

where X is a PCA space data point, µ is the mean and C
is the covariance matrix of the PCA scores.

b) Squared Prediction Error Q method: The Q coeffi-
cient, also known as the Q statistic, quantifies the residual
variance not captured by the PCA model. A large Q value
may indicate that the data point does not fit the model
adequately, potentially due to the presence of unmodeled
variations or noise.

Q = ∥X−Xreconstructed∥2, (21)

where X is an observed data point, and Xreconstructed is
the reconstructed data point from the PCA model.

4. RESULTS AND DISCUSSIONS

The IQR, OCSVM, and iForest algorithms are compared
to determine the threshold of each indicator, in order to
classify weither batteries are in normal or degradation
mode. The results are grouped into the four categories
mentioned earlier in Section 2: FN, TN, TP and FP. F1
Score and AGF are computed for each signal and Table 2
represents their weighted averages since the signals do not
have the same lengths.

According to Table 2, the enthalpy indicator defined in
Maher and Yazami (2014), and in Manane and Yazami
(2017), when paired with the iForest algorithm, consis-
tently outperformed the others. Indeed, using F1 Score and
AGF as the performance metrics, enthalpy achieved the
highest average weighted scores, indicating its potential as
a key indicator for effective detection of the battery end of



Table 2. Results

Voltage Entropy Enthalpy T2 Q

F1-score AGF F1-score AGF F1-score AGF F1-score AGF F1-score AGF

IQR 81% 85% 72% 87% 90% 94% 63% 69% 74% 76%

OC-SVM 80% 88 % 74 % 86% 91% 93% 70% 75% 74% 78%

iForest 82% 88% 73 % 87 % 93% 97% 68% 78% 72% 76%

life. It is worth mentioning that the F1 Scores and AGFs
of enthalpy displayed the smallest dispersion among all
indicators, hinting at a lower variability and suggesting it
as a more consistent measure to detect the battery end
of life. In conclusion, this study suggests that enthalpy, in
conjunction with the iForest algorithm, delivers the best
performance to detect the battery end of life.

5. CONCLUSION

This paper presents a comparative analysis of various
algorithms for classifying whether the Lithium-ion primary
cells batteries are in normal or in degradation mode based
only on voltage and temperature. The proposed approach
consists in feeding the model with the estimated entropy
and enthalpy. The results show that combining enthalpy
and the iForest algorithm yields promising results in the
detection of battery end of life. After detecting the degra-
dation mode, the prediction of battery Remaining Useful
Life (RUL) is an interesting area for further research.
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