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Abstract:

Many epidemiological studies have emphasised the relation between carotenoid dietary intake and their
circulating concentrations and beneficial health effect, such as lower risk of cardiometabolic diseases and
cancer. However, there is dispute as to whether the attributed health benefits are due to native carotenoids
or they are rather induced by their metabolites. Several categories of metabolites have been reported,
most notably due to a) modifications at the cyclohexenyl-ring or the polyene chain, such as epoxides and
geometric isomers, b) excentric cleavage metabolites with also alcohol-, aldehyde- or carboxylic acid-
functional groups or c) centric cleaved metabolites with additional hydroxyl-, aldehyde- or carboxyl-
functionalities, not counting their potential phase-1l1 glucuronidated/sulphated derivatives. Of special
interest are the apo-carotenoids, which originate in the intestine and other tissues from carotenoids
cleavage by beta-carotene oxygenases 1/2 in a symmetrical / non-symmetrical fashion. These are more
water soluble and more electrophilic, and therefore putative candidates for interactions with transcription
factors such as NF-kB and Nrf2, as well as ligands for RAR-RXR nuclear receptor interactions. In this
review, we discuss in vivo detected apo-carotenoids, their reported tissue concentrations, and potential
associated health effects, focussing exclusively on the human situation and based on quantified / semi-

quantified carotenoid-metabolites proven to be present in humans.

Key-words: Apo-carotenoids, apo-lycopenoids, cleavage products, tissue concentrations, liver.
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1. Introduction

Carotenoids are typically colourful, mostly C-40 based pigments, which are generally obtained via plant
food items. Over 1100 different carotenoids have been recognized [1], and additional new carotenoids are
being discovered, including shorter (C-30), and longer (C-50) analogues of bacterial origin [2]. Likewise,
the apo-carotenoids, their breakdown products formed in plants [3] or after human ingestion [4], can be

considered to belong to this group.

The interest in these secondary plant compounds has been thoroughly increased in the last 2-3 decades,
due to the relation of their intake and circulating plasma concentrations with chronic disease risk. A high
carotenoid intake within a plant-food rich diet and concentrations in plasma have been related, among
others, to a reduced risk of type-2 diabetes [5], age-related macular degeneration [6], some types of
cancer such as those of the prostate [7], and even total mortality [8]. The underlying mechanisms for such
associated health-benefits are not quite clear and the topic of controversial discussions, but have included
direct antioxidant effects such as quenching of singlet oxygen and lipid peroxides [9], interactions with
transcription factors related to inflammatory pathways (e.g., NF-kB) and oxidative stress (e.g., Nrf-2)
[10], and also their interaction with the nuclear factors retinoid-X receptors (RXRs) and retinoic acid

receptors (RARS) together with peroxisome proliferator-activated receptors (PPARS) [11-13].

It has also been postulated that the potential health benefits are conveyed not necessarily by the native
carotenoids, following their absorption in the small intestine, but by their metabolites / cleavage products.
Carotenoids as lipophilic constituents are absorbed following their micellization into the enterocytes,
where they may partly undergo cleavage by carotenoid-oxygenases, namely BCO1 and BCO2, resulting

in the formation of symmetrical or non-symmetrical cleavage products [14].

While some of the symmetrical cleavage products have vitamin A activity (following e.g. cleavage of -
carotene or PB-cryptoxanthin) by BCOL, the biological role of the other cleavage products remains

uncertain. These cleavage products or apo-carotenoids have been proposed to be bioactive. For instance,
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in in vitro studies, lycopene derivatives were shown to have higher affinity to Nrf-2 and NF-kB, due to
their higher electrophilicity, and perhaps better aqueous solubility [15-19]. Lycopene has been shown to
act in part similarly to vitamin A metabolites in normalizing a vitamin A-deficient diet in rats/mice [20].
It cannot also be excluded that bacteria in the colon produce more hydrophilic metabolites of carotenoids

that are bioavailable and bioactive [21].

Therefore, there has been increased interest in carotenoid-metabolites and their potential connection to
health benefits. A limitation of their detection in human specimens is the lack of commercial standards, in
addition to their lower concentration and the lower sensitivity of UV-detection, the most common
technique employed in their quantification, due to the shortened delocalized electron system in the

molecule.

In this review, we strive to present the current state of knowledge of metabolites and breakdown product
of carotenoids in humans, their known concentration ranges, and potential health benefits involved, as
well as pointing out gaps and potential ways forward in this research domain. In this review, we
exclusively focussed on the human situation, based on the proven presence of the described carotenoids

and carotenoid-metabolites in humans.

2. Carotenoid metabolites in plasma and tissues

2.1. Rationale for interest on metabolites and overview on metabolites

Carotenoids, with major human food relevance (Figure 1 and Table 1), were mainly investigated for their
metabolism in the human body and it is uncertain whether the native compounds alone or rather their
metabolites are responsible for the attributed health effects. Mainly nuclear hormone receptor-mediated
effects were in the focus of these studies [22, 23]. These ligand-activated receptors include especially
RARs and RXRs, which may become activated, resulting in altered gene expression of a large set of

genes involved in inflammation, differentiation, proliferation and lipid metabolism / homeostasis [24-27].
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The activation of RARs and / or RXRs was shown to be related to physiologically- and nutritionally-
relevant levels of endogenous carotenoid metabolites [28-31]. Thus, native carotenoids may not interact
on their own with gene-regulatory pathways, but rather via their metabolites, the apo-carotenoids, here
conclusively the apo-15-carotenoids / retinoids and potentially others, such as apo-13/14-carotenoids that
might interact with the binding grooves of RARs and RXRs [32-34]. Here, a focus for activating
compounds is put on apo-carotenoids with an acid functionality, while apo-carotenoids with aldehyde or
alcohol functionalities might result in low affinity activators / antagonistic compounds [34].
Consequently, knowing more on their identity, concentration, metabolic pathways and homeostatic
control and further RAR-RXR-mediated signalling appears critical for estimating potential health

benefits of carotenoids [35-39] (Tables 1 and 2).

Individual carotenoids, listed in Table 1 including their endogenous levels in serum / plasma as well as
selected organs, may be either cleaved by BCO1 (centric cleavage) or BCO2 (excentric cleavage) to

produce a variety of apo-carotenoids / retinoids (Figure 1, Table 1,2) [40, 41].

In general, there are three different kinds of carotenoid metabolites, which occur in human plasma /
serum and tissues and have been detected especially after carotenoid supplementation: a) non-cleaved
carotenoids with modifications at the cyclohexenyl ring or the polyene chain, such as epoxycarotenoids,
geometric isomers and metabolites resulting from further rearrangement pathways, b) excentrically-
cleaved metabolites with also alcohol-, aldehyde- or carboxylic acid-functionalities and, c) centrically-
cleaved metabolites with additional alcohol-, aldehyde- or carboxylic acid-functionalities (Figure 1,
Table 1,2). Of note, glucuronidated products are also formed, following phase Il conjugation, prior to

their excretion via the kidney, as reported e.g. for retinoic acids [42-44].

The origin of selected apo-15-carotenoids / retinoid-derivatives, such as retinyl esters, retinol, retinal and

retinoic acids, might occur from various metabolic pathways including a) central cleavage of individual
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carotenoids such as p-carotenes or B-cryptoxanthins (Figure 1) by BCO1-cleavage [45-47] b) by
interaction of these previously-mentioned carotenoids with environmental or endogenous oxidants and
following cleavage [10, 48, 49] or ¢) by BCO1-cleavage of individual apo-carotenoids, which might
originate from food directly or by mitochondrial-based BCO2-cleavage in the human organism [14, 45,

47].

Alternatively, these apo-15-carotenoids / retinoids might originate from food derived apo-15-carotenoids
present at high concentration in animal derived food matrices, such as retinol and retinyl-esters, or from
bio-active retinoids, for instance retinoic acids and retinal, which are present in low amounts in the food
matrix. Unfortunately, it is not possible to quantitatively describe which derivative originated from which
individual pathway, or even at which percentile amount, due to the large variety of individually-

consumed food sources and individual enzymatic pathways present in humans [49-51].

Interestingly, some studies reported that blood and tissue concentrations of active vitamin A retinoids
differ significantly between disease and health state [reviewed in 52]. These results raise the question as
to whether the differences in such levels are caused by the disease or the low intake of carotenoids has
led to the development of these conditions. It appears that at least in inflammation-related diseases,
vitamin A active compounds are often less abundant in plasma, likely as a consequence and not as a
cause of the disease [52], as a potential feedback to counteract inflammation mediated by bioactive

vitamin A derivatives induced by pro-inflammatory RAR- and RXR-mediated signalling [53, 54].

In many countries, shortage of food and especially vitamin A deficiencies are still common [55], and
supplementation with provitamin A carotenoids / vitamin A appears to be a prudent strategy. However, in
our Western society, vitamin A intakes are very often quite high, while carotenoid intake is generally
lower [56, 57]. This has partly been associated with pathophysiological situations [58-63]. Whether
increased all-trans-retinoic acid (ATRA) concentrations in plasma or tissue following carotenoid

supplementation are purely beneficial has thus been discussed controversially [64-67]. The lipid hormone
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ATRA has been described to be associated to cell differentiation, proliferation and apoptosis with
beneficial relevance mainly for cancer prevention [68, 69], and various diseases related to reduced
inflammatory competence [70, 71]. Unfortunately, ATRA has also been associated with toxic effects,

especially embryonic toxicity [72, 73].

Recently, ATRA has been discussed more controversially in the context of diabetes, obesity, allergies
and osteoporosis [74-76]. Especially the adverse effects of retinoids regarding inflammatory processes,
related to many diseases in Western societies, and altering local and systemic lipid metabolism and
homeostasis are regarded as critical [73, 77, 78]. If supplementation in such countries with retinoids /

carotenoids is in general beneficial must therefore be carefully evaluated.

2.2. General properties of metabolites originating from p-carotene and 3-cryptoxanthin

When focusing on (3-carotene, we may obtain a large variety of known and yet unknown, although partly
postulated, metabolites (Figure 1). In this chapter (-carotene isomers such as o— or y-isoforms of
carotene, geometric isomers of these carotenes were included in addition we add also the provitamin A
carotenoid B-cryptoxanthin as a relevant precursor for the later mentioned carotenoid-metabolites under

this sub-chapter (Figure 1, Table 1).

Firstly, several chain-modified carotenoid metabolites have been identified, also in mammals and human
serum, with epoxy-, oxo- and hydroxyl-containing functional groups located at the cyclohexenyl ring or
at the polyene chain, as well as additional isomers [79, 80]. Whether these metabolites originate from
plant-based metabolism or from mammalian endogenous metabolism is not always obvious.
Concentrations of these potential metabolites, which are usually lower than those of its parent direct /
indirect nutritional precursor all-trans-p-carotene, are rarely reported. Problematic is their precise

quantification, i.e. lack of commercially available standards and also lower UV-Vis sensitivity.
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Several similar compounds may also be generated during digestion or during food processing [80]. For
example, upon gastrointestinal exposure to oxidizing agents, such as iron, a large variety of degradation
products in the intestine have been reported, including several B-apo-carotenals [81], epoxides, and
diketones [82]. On the other hand, many reports have stated that carotenoids from plant matrices remain
relatively stable upon in vitro digestion, as demonstrated for -carotene [83], lutein [84] and lycopene
[85]. Whether such degradation products can be absorbed, and whether they are then further metabolized

in vivo, remains unknown [81].

Various apo-carotenoids originating from excentric cleavage of carotenoids were identified in the
mammalian and partly in the human organism after carotenoid-supplementation [86, 87]. Both BCO1 and
BCO2 appear able to cleave B-carotene. While BCO1 appears to favour full-length provitamin A
carotenoids resulting in centric cleavage, BCO2 appears to cleave both provitamin A carotenoids and
xanthophylls excentrically [40, 41, 88] and is induced in Bcmol” mice adipose tissue, leading to a p-apo-
10'-carotenol accumulation [89]. It is possible that some of these metabolites are themselves substrates
for BCO1/2, as indicated for B-apo-8'-carotenal, f-apo-10'-carotenal, B-apo-12'-carotenal and B-apo-14'-
carotenal in chicken and rats [86, 90, 91]. Unfortunately, as already outlined, a clear ordination which
individual carotenoid-metabolite is created by which specific individual metabolic pathway with specific
substrate / product derivatives is not possible due to the large diversity of food sources and individual
human enzymatic pathways [49, 92]. This large variety of food sources with individual carotenoid-
metabolite precursors and endogenous enzymatic pathways is an important feature of the mammalian
organism [49, 92]. It entails the use of various regional and timely-restricted available food sources to
create and degrade ligands for nuclear hormone receptors to enable normal healthy biological functions.
This also includes auto-regulative metabolic and uptake pathways to regulate ligand creation and
degradation, as exemplified and described in particular detail in a review relevant for B-carotene [49],

outlined in Figure 1.
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Different apo-carotenals and apo-carotenoic acids of various chain lengths were found after $-carotene
supplementation [86, 87]. These were then synthesized ex vivo and further studied in molecular biological
experiments, and partly identified after direct supplementation of B-carotene and food items rich in B-
carotene. These described apo-carotenoids are of different chain lengths, ranging from apo-8"-, apo-10"-,
apo-12°- and apo-14"-carotenals, and can further be oxidized to apo-carotenoic acids (Figure 1).
Contrarily, endogenously produced levels have rarely been described, only for selected derivatives [93].
Following the ingestion of a high B-carotene tomato juice (360 mL, 30 mg B-carotene, 35 pg apo-
carotenoids / day), only apo-10"- and 12 -carotenal were claimed to be detected in plasma of some
individuals under the set quantification limit, though unfortunately without any added visualized
analytical confirmation [94]. It could not be distinguished whether these were absorbed or formed de
novo in vivo [81, 94]. In a study by Kopec et al. [81], (**C-10)-B-carotene was administered to healthy
subjects. Though non-symmetrical B-apo-carotenals were found in the gut, none were observed in the

plasma TRL fraction, suggesting a low bioavailability.

Following excentric cleavage, the shorter products such as B-ionone, B-cyclocitral and related derivatives,
have also been described in vitro as well as in animals [41, 95]. Carotenoid metabolites, originating from
two-side carotenoid cleavage, were also described as carotenedials in vitro, including rosafluene and
crocetindial [45], but these have not yet been identified in vivo and thereby were also not further

investigated regarding physiologically-relevant nuclear hormone mediated-signalling.

Finally, and possibly most important for the biological activity of carotenoids, centric-cleavage
metabolites have been described. These metabolites of -carotene, a-carotene, and B-cryptoxanthin are
the apo-15-carotenoic acids, termed retinoic acids [96]. Retinoic acids are well-known endogenous
derivatives, functioning as lipid hormone receptor ligands, responsible for activating two major families
of nuclear hormone receptors, i.e. the RARs and RXRs. These receptors can, following ligand-activation,
modify transcription of receptor specific genes [22, 23]. The major products are retinoic acids, mainly in

the form of ATRA, the endogenous ligand of the RARs (RARa, B, y), as reviewed earlier [31].
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Endogenous levels of ATRA in serum / plasma were in the range of 0.8 — 2.8 ng/ml (2.7 — 9.3 nM) and
up to 6 ng/g (20 nM) in the pancreas and 16 ng/g (53 nM) in the liver (Table 2). Thus, these
concentrations are at least 1-2 magnitudes lower than those of B-carotene in the bloodstream, with
concentrations around 0.1 - 2 uM (Table 1, [97]). While these centric cleavage products are the main
activators of RARs and RXRs [38, 39], the excentric apo-carotenoid apo-13-carotenone is present at
lower endogenous levels of 0.8 — 1.3 ng/ml (3-5 nM) and has been demonstrated to act as “antagonist” or
low affinity partial agonist or competitive antagonist, but the physiological and nutritional relevance is
not yet known [32, 87]. The physiological- and nutritional-relevance of the “antagonism” / partial agonist
activity was never convincingly determined for humans, though in in vitro experiments, with weak and
questionable prediction potential for humans, but is deemed plausible when considering endogenous

concentrations in human serum (3-5 nM, Table 2 and Figure 1).

In addition to ATRA, other geometric isomers were identified endogenously, such as 13-cis-, 9,13-dicis-,
and 9-cis-retinoic acid [98-100], with low concentrations (Table 2). A large focus was placed on 9-cis-
retinoic acid (9CRA), which was postulated as “an” or even “the” endogenous ligand of RXRs (RXRa, B,
v) [29, 30]. However, this is seen as controversial by the authors / additional experts in the field of
retinoid-lipidomics [36, 101, 102] focusing on ultrasensitive retinoid-lipidomics analysis, as its
endogenous presence and function as a physiologically-relevant lipid hormone could not be confirmed.
Alternative endogenous geometric isomers of retinoic acid, including 13-cis-, 9,13-dicis- and 11-cis-
retinoic acid were not described to be of relevant major biological activity mediated via the activation of
RARs-RXRs [29]. For retinal, the endogenous cycle between all-trans-retinal and 11-cis-retinal in the
visual cycle in the eye is well established [103, 104], but it is of no systemic relevance for the whole

human organism.

For ATRA, increased serum levels of 1.2 towards 2.0 ng/ml (4.0 —> 6.7 nM) were found following
supplementation of (-carotene-rich foods [37]. Whether these increased serum levels reflect also tissue

levels and increased RAR-mediated signalling was and could not be identified. The physiological and

10
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nutritional relevance in humans could also not be evaluated. This intervention with food items rich in -
carotene resulted in low and non-significant alterations of interleukin (IL) secretion and immune response
as indicators of RAR-mediated signalling [105, 106]. Whether such p-carotene interventions are
beneficial for humans is questionable. Interestingly, the strongest effects were identified in the carotenoid
wash-out phase prior to intervention, resulting in reduced IL-2, natural killer (NK) cell cytotoxicity and
lymphocyte proliferation, a potential consequence of B-carotene (or general carotenoid) or even vitamin
A deficiency and possibly reduced RAR-RXR-mediated signalling [106]. These reductions were rapidly
recovered after f-carotene- or lycopene-supplementations, likely as a consequence of recovered RAR-
RXR-mediated signalling [106]. In animal studies, B-carotene-supplementation resulted in the recovery
of vitamin A deficiency indicated by visualized RARE-mediated signalling. In addition serum, but not
liver ATRA concentrations were improved, while retinol levels recovered and even increased [20]. It can
be assumed that B-carotene supplementation can reinstate basal retinol and ATRA concentrations and
RAR-mediated signalling. However, no further increase in ATRA concentrations in organs and enhanced
RAR-mediated signalling could be observed as a result of increased storage and transport of retinol due

to a highly regulated homeostasis of retinoid / vitamin A / RAR-mediated signalling pathways.

Nutritionally-relevant B-carotene intake is mainly contributing to the anti-infective properties of vitamin
A, which is commonly identified as its major activity besides ocular functions [12, 107]. It is suggested
that provitamin A carotenoids are relevant for maintaining vitamin A activity, while being of no further

physiologically- and nutritionally-proven relevance.

In contrast, long term high-dose supplementation of pure synthetic all-trans-p-carotene, studied in
tobacco smoke exposed ferrets, may alter RAR-RXR-mediated signalling by a negative feedback
regulation [108], thereby strongly reducing RARB- and ATRA levels in the lung, as the target organ [1009,

110].
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In addition, it is questionable whether higher than basal RAR-mediated signalling is more beneficial or
whether it can be considered as detrimental, while increased RXR-mediated signalling may be considered
mainly beneficial [25]. Based on these limited studies we conclude that 3-carotene can prevent general
vitamin A deficiency [37, 106], reaching a plateau, while higher and pure p-carotene supplementation
seems unrelated to improved health status [49]. That moderate or even high dietary consumption of
natural food items rich in B-carotene and additional bioactive derivatives including other carotenoids

transmits non-beneficial effects seems unlikely.

Recently, dihydro-metabolites of apo-15-carotenoids were described in mice, likely originating from
13,14-dihydroretinol [111] (Figure 1; Table 2). In a larger cohort study, 13,14-dihydroretinol and the
novel identified endogenous all-trans-13,14-dihydroretinoic acid [112, 113] and 9-cis-13,14-
dihydroretinoic acid [33, 36, 102] were analysed in human serum [114] as well as adipose tissue (Ruhl et
al. unpublished). All-trans-13,14-dihydroretinoic acid was described as a medium affinity endogenous
RAR-ligand [38, 115] and recently, 9-cis-13,14-dihydroretinoic acid (9CDHRA) became a focus of
attention, as it appears to be an or even the physiologically- and nutritionally-relevant RXR-ligand in
mammals, serving as a novel endogenous lipid hormone [33, 36, 102]. Further nutritionally-relevant
precursors of 9CDHRA, such as 9-cis-13,14-dihydroretinol, 9-cis-dihydrocarotenoids and even the well-
known 9-cis-B-carotene were recently postulated [116] and confirmed [117] as even being a new

independent vitamin A signalling pathway, termed vitamin A5 (Figure 1) [118].

2.3. Metabolites of lycopene

In addition to B-carotene, lycopene is one of the major carotenoids present in the diet, resulting in high
tissue and blood concentrations (Figure 1 and Table 1, 2). However, the metabolism of lycopene has been
studied to a much lesser extent compared to that of B-carotene and especially when focusing on the

human situation.

12
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Oxidative metabolism of lycopene and of additional acyclic carotenoids such as phytoene and
phytofluene (Table 1) were described [119], while such metabolism was neither conclusively observed
nor the focus in studies employing lutein and other carotenoids with hydroxyl- / oxo-functional groups,
such as zeaxanthin, canthaxanthin, B-cryptoxanthin and astaxanthin, which would have broader relevance
for the human situation. Selected xanthophylls were described to interact and block apo-carotenoid
mediated signalling [120, 121] while no mechanism involving xanthophyll-metabolites was mentioned
and outlined. Both excentric and centric metabolism was described for lycopene [40, 41]. Except for
lycopenoids, there was no further focus on the identification of potential endogenous derivatives or
molecular biological examination to investigate their biological activities [122-124]. Various lycopenals
were identified and predicted in the food matrix and in the human organism after a tomato product

intervention. Human serum levels were reported to be low (Figure 1/ Table 2 [125]).

While many studies display a complex pattern of lycopene metabolism via various pathways [40, 125-
129], and potential lycopene metabolites were found after supplementing high amounts of lycopene in
experimental animal models [124, 130-132], a direct association of human relevance was only recently
indirectly concluded [133]. An indirect evidence of lycopene activity and a further lycopene-metabolite
for RAR-activation was revealed, using a RARE-luciferase expressing mouse model [20, 134]. Based on
RARE-mediated signalling, a partial vitamin A activity following lycopene intervention was found [20].
An identification of the involved functional metabolites was only partly achieved, and apo-15-lycopenoic

acids were claimed to be present endogenously, especially after lycopene-supplementation [124, 135].

Other lycopenoic acids might also be bioactive, as it was shown earlier in a mouse study that the potential
lycopene metabolite apo-10’-lycopenoic acid [131] reduced hepatic fat accumulation [136]. The
physiological and nutritional relevance of apo-10’-lycopenoic acid was only shown in ferrets [131], but
could not be confirmed in vivo in mice and ex vivo in humans [130]. Alternatively, due to extensive
metabolism, a dihydro-apo-10’-lycopenoic acid analogue was identified and based on UV and MS-

characteristics predicted to be 7,8-dihydro-apo-10’-lycopenoic acid. How lycopene is metabolized to

13
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dihydro-apo-10’-lycopenoic acid and whether apo-10’-lycopenoic acid is a potential intermediate are yet
unanswered questions. Likely these dihydro-apo-10-lycopenoids are direct precursors of dihydro-apo-15-

lycopenoids, which might be highly potent RAR- and / or RXR-ligands, as postulated in [124].

2.4. Summary for carotenoid metabolites

Thus, for many metabolites it remains inconclusive whether they derive from human metabolism or are
ingested via animal origin as pre-formed carotenoid metabolites in the forms of retinol and mainly retinyl
esters [12, 137]. In addition, the biological function and the concentration-dependent activity of various
carotenoid metabolites besides ATRA has generally not been studied, mostly due to the lack of available
standard compounds and established sensitive and selective analytical methods. Furthermore, the direct
link between carotenoid intake and RAR-RXR-mediated transcriptional signalling as a multi-step
procedure has not yet been proven. However, each step of this cascade has been clearly demonstrated
with experimental data: a) higher carotenoid supplementation resulting in higher carotenoid levels in
supplemented individuals [105, 138]. b) higher B-carotene levels correlating and resulting in increased
ATRA concentrations [37, 49], ¢) higher ATRA levels causing increased RAR-mediated signalling [134];
and d) higher RAR-mediated signalling resulting in increased individual specific immune responses [52,

77,139, 140] and altered lipid metabolism [141, 142], with partially beneficial or detrimental effects.

Recently, a novel class of bioactive carotenoid-metabolites, namely strigolactones, was described to be
enzymatically synthesized in certain plants, such as carlactones [143-145] and identified as plant-relevant
hormones during germination [143] and branching-inhibition [146]. If these derivatives are also of direct

or indirect relevance for the human organisms remains speculative.

In summary, human supplementation studies with food items rich in [-carotene / lycopene or
supplemented P-carotene / lycopene, focusing on multi-targeted analyses, and identifying B-carotene /
lycopene and retinoid concentrations and further RARE-mediated signalling, have not yet been

performed and should be addressed. Due to the access of multi-omic techniques, serum markers or novel
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transcriptional markers of diseases [147, 148], possibly also co-associated with vitamin A / carotenoid
deficiency or reduced RAR-RXR-mediated dysfunction [25, 149], should be compared to carotenoid

intake and serum / plasma carotenoid / retinoid concentrations to obtain valuable correlations.

3. Discussion and Perspectives

Several carotenoids are implicated in health-related outcomes, from AMD (lutein and zeaxanthin) to
possible effects regarding cardio-metabolic diseases (predominantly, 3-carotene) and diabesity / cancer
(predominantly, lycopene). The dietary intake of carotenoids has also changed over time. While lycopene
intake was uncommon in the pre-industrialized human diet, especially considering the primarily
European-focused world sight, it strongly increased in the Western society, due to a high consumption of

tomatoes and tomato products [150].

Additionally, it became obvious that light irradiation [151] and more practically relevant thermal food
processing [152], as also reviewed by Khoo et al. [153], including cooking >100°C appears to constitute
an important mechanisms for carotenoid isomerisation, yielding different precursor carotenoids for
different functional apo-carotenoids, as well as a non-endogenous human generated apo-carotenoids,
serving as easy accessible substrates for functional apo-carotenoids [154]. This highlights cooking and
food-processing as important cultural achievement for generating bioactive derivatives for enabling a

healthy and well-functioning human organism [155].

However, carotenoids are generally considered as lipid precursors (mainly for bioactive vitamin A /
retinoids) in the diet, while their complex and multi-step metabolic pathways and the relationship to
health beneficial effects are still poorly understood. In this review we summarised all available relevant
information focussing on the human organism with implication of mechanistic results from further in
vitro to in vivo experiments. Unfortunately, these experimental results are difficult to compare with the

human because carotenoids obtain a non-similar nutri-kinetics pattern [156] and different eating
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behaviour in contrast to the pure vegetarian dietary pattern of rodents, which are frequently used as

experimental animal models .

4. Conclusions

As a cornerstone, we suggest that besides benchmark concentrations for carotenoids, also retinoids
should be suggested, including both “normal” and deficiency threshold ranges. These ranges should
correlate with well-defined and established nuclear hormone receptor signalling cascade markers, disease
markers, prognostic early markers of diseases as well as markers of impairments of physiologically-
important functions based on novel “omics” markers such as transcriptomics, lipidomics and proteomics,
which are now frequently published for various target diseases [157]. In the case of diseases and
dysfunctions related to carotenoid and vitamin A deficiency, underlying molecular mechanisms such as
RAR-RXR- / RXR-plus additional nuclear hormone receptor (NHR)-dysfunctional signalling [22, 25,
158] (i.e. signalling not associated with a healthy condition as present in various diseases of the Western

society), should also be considered.

Based on these two ranges, targeted supplementation strategies may be recommended to overcome
deficiencies and towards reaching and maintaining “normal” concentration ranges. A correlation between
dietary intake, serum levels and bioactive carotenoid metabolites and further examination of RXR-RAR /
RXR-NHR in an easy accessible compartment such as peripheral blood mononuclear cells (PBMCs), plus

target genes of relevant diseases are desperately missing in carotenoid / retinoid nutritional research.

The basal benchmark concentration indicating a higher risk for chronic diseases appears to constitute a
total carotenoid plasma / serum concentration <1.000 nM and should further focus on endogenous
retinoids. The second benchmark concentration reflecting “normal” carotenoid intake are average plasma
/ serum concentrations of individual and total carotenoids indicating, and here defined as, a healthy

varied diet. Such levels can then be translated into the intake of relevant food items rich in carotenoids,
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based on correlations between reported average intakes for [B-carotene and lycopene with serum

concentrations and considering intervention with carotenoid-rich foods [97].

In this review article, we summarised the current mechanisms of carotenoid metabolism including
reference levels of bioactive carotenoid metabolites with pure relevance on the human organism. To
summarise, carotenoid to bioactive metabolite metabolism is an important knowledge to justify which
biological-response pathway of carotenoids is enabled to elicit valuable beneficial effects. This is
important in order to evaluate if there might be a problem in individual dietary intake of food enriched in
specific carotenoids is present or if a genetic hereditary problem in metabolism of carotenoids to
bioactive carotenoids based on genetic polymorphisms is the cause of disturbed occurrence of bioactive

carotenoid metabolites.
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443  Table 1. Concentrations of carotenoids in various tissues, all data in nM (nmol/kg or L), adapted

444  from [97].

tissue BCAR ACAR BCRY LYC PHYE PHYF ref.
serum / plasma 360 + 10 120+ 10 230+ 10 740 + 10 40+ 20 170+ 70 [159]
serum / plasma ATBC: ATLYC [160, 161]

823 + 277 190 + 25

9CBC 5CLYC

22 +13 130+ 20

13CBC 9CLYC

29+ 22 9+5

13/15CLYC
55+ 25

sum: sum:

874 384
abdominal 1472 + 286 280+ 74 417 + 462 3329 + 448 [162]
adipose tissue
liver 5900 + 6300 8400 + 11,500 [50]
skin® [163-165]

430 + 45 95 + 20 225+ 35 695 + 45 320+ 90 46 + 20
lung 350 + 440 230 + 270 420 £ 750 570 £ 1110 [166]
kidney 550 + 730 300 + 400 450 + 1040 620 + 620 [166]
brain® 10-30 <10 [167]
adrenals 5600 *** 1220 *+* 660 *** 1900 *** [168]

(680-31,830) | (110-7520) (10-2900) (190-5600)
testes 2680 *** 370 *** 160 *** 4340 *** [168]

(750-4770) (140-610) (10-290) (410-9380)
bone 745 + 95 95+ 35 125+ 35 280 + 35 825 + 185 275+ 45 [165]
colon tissue 60 + 30 [169]
breast milk 60-200 20-40 2-10 5-25 [170]
uterus 503" 870 [171]
prostate 600 300 100 700 [172]

445

446 All values represent mean + SD; “blank” represents non determined carotenoids or no data available;

$.

447 infants, prefrontal cortex, frontal cortex, hippocampus, auditory cortex and occipital cortex; £: values given in
448 literature as “carotenes™; %: dermis and epidermis of back, forehead, inner forearm and hand; *** : including
449 upper and lower level of this range; ACAR: a-carotene; BCAR: B-carotene; BCRY: B-cryptoxanthin; LYC:

450 lycopene; PHYE: phytoene; PHYF: phytofluene.

451
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452  Table 2. Levels of major carotenoid metabolites / retinoids in blood plasma / serum and
453  tissues including molecular weight in Dalton (Da) and molecular formula of each retinoid.
Carotenoid metabolite parent serum/ metabolite concentration remark ref. occurre
carotenoid tissue in ng/g (ml) in nM nce
all-trans-retinoic acid BCAR serum 2.8 £0.8 ng/ml 9.3+2.6nM | *** [173] end.
(C2oH250, / 300.4 Da) 1.4 + 2.3 ng/ml 4.7 £7.7nM | German children [67]
1.2+ 1.6 ng/ml 4.0 £5.3nM | Turkish children [67]
1.4 + 0.3 ng/ml 47+1.0nM | * [35]
0.8 + 0.2 ng/ml 27+0.7nM | *** [174]
0.9 £ 0.2 ng/ml 3.0+ 0.6 nM | fasted adults [175]
1.2+ 0.3 ng/ml 4.0+1.0nM | -before, [37]
2.0 £0.3 ng/ml 6.7+1.0nM | -after suppl. of
food rich in BCAR
skin 0.7/2.1nglg 2.3/7.0nM | *** [173] end.
pancreas 5.9+ 2.1 ng/lg 19.7+£7.0nM | *** [176] end.
liver 15.8 + 8.3 ng/g 52.7 £27.7nM | *** [35] end.
9-cis-retinoic acid (?%) BCAR serum (?*) 0.03 ng/ml (?*) 0.1 nM | fasted adults [175] end.
liver (?*) 0.6 + 0.2 ng/g (?%)2.0+ 0.7 nM | *** [35] end.
13-cis-retinoic acid (#) BCAR serum 1.8+ 1.0 ng/ml 6.0£3.3nM | *** [35] end.
1.1 +0.2 ng/ml 3.7£0.7nM | **=* [174]
1.2 £ 0.3 ng/ml 3.9+1.0nM | fasted adults [175]
liver 1.5+ 0.4 ng/g 5.0£1.3nM | *** [35] end.
9,13-dicis-retinoic  acid serum 1.0 £ 0.3 ng/ml 0.3+0.1 nM | fasted adults [175] end.
i)
all-trans-13,14- BCAR serum ecnd ecnd | *** [117] end.
dihydroretinoic acid
(C20H3002 /302.5 Da)
pancreas 88 + 72 ng/g 290 + 238 nM | *** [113] end.
9-cis-13,14- BCAR serum 4.8 +0.7 ng/ml 15.8£2.3nM | *** [114, end.
dihydroretinoic acid 117]
9-cis-4-0x0-13,14- BCAR liver 10.3 ng/g 32.6 nM | *** [35] end.
dihydroretinoic acid
(C20H2803 /316.4 Da)
all-trans-4-oxo-retinoic BCAR/CAy | serum 0.6 £0.3 ng/ml 1.9+£0.9nM | *** [174] end.
acid
(C20H2503 /314.4 Da)
13-cis-4-oxo-retinoic acid | BCAR/CAy | serum 2.4 +£1.8 ng/ml 7.6 £57nM | *** [35] end.
all-trans-apo-13’- BCAR serum 0.8—-1.3 ng/ml 3-5nM | *** [32] end.
carotenone
(C18H2701 | 255.4 Da)
all-trans-apo-14’- BCAR serum 1,3+ 0,6 ng/ml 4,0+£1,9nM | *** [177] end.
carotenoic acid
(C22H230./ 323,5 Da)
all-trans-retinoyl- BCAR serum 3.2+ 1.9 ng/ml 6.8+4.0nM | *** [178] end.
glucuronide
(C25H3503 | 476.6 Da)
all-trans-retinol BCAR serum 510 + 217 ng/ml 1777 £759 nM | *** [173] end.
(C20H3001 / 286.5 Da) 980 + 110 ng/ml 3414 + 383 nM | **=* [35]
641 + 99 ng/ml 2233 + 345 nNM | *** [174]
skin 207 / 253 ng/g 724 /885 nM | *** [173] end.
pancreas 96 + 86 ng/g 336 £ 301 nM | ***, [176] end.
all-trans-3,4- BCAR skin 9-70ng/g 31.2-240 nM | **, *xx [179] end.
dehydroretinol
(C20H2301 / 288.5 Da)
all-trans-13,14- BCAR serum ecnd ecnd | *** [117] end.
dihydroretinol
(Congzol | 284.4 Da)
9-cis-13,14- BCAR serum 0.9 ng/ml 3.1nM | *** [117] end.
dihydroretinol
all-trans-retinal BCAR eye ecnd ecnd | *** [103] end.
(C20H2301 /1 284.4 Da)
11-cis-retinal BCAR eye ecnd ecnd | *** [103] end.
apo-6-lycopenal LYc plasma <0.1 + <0.0 ng/ml 0.1+£0.1nM | after tomato | [125] after
(C32H420, / 443.1 Da) suppl. diet supp.
apo-8’-lycopenal LYC plasma 0.2 £0.1 ng/ml 06+03nM | © [125] after
(C30H4ool /416.6 Da) supp.
apo-10"-lycopenal LYyc plasma 0.1 £ <0.0 ng/ml 0.3+£0.1nM | © [125] after
(Cz7H3601 / 376.6 Da) supp.
apo-12°-lycopenal Lyc plasma 0.2 £0.1 ng/ml 0.7£04nM | © [125] after
(C25H340, / 350.1 Da) supp.
apo-14-lycopenal LYc plasma 0.03 + <0.0 ng/ml 0.1 +<0.0nM [125] after
(C22H3001 /310.5 Da) supp.
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References:
just in mouse

all-trans-retinal BCAR serum (m) 0.6 ng/ml ~2nM [180] just
(CxoH2504 / 284.4 Da) 9.1 +1.8 ng/ml 32.2+6.2nM [181] mouse
WAT (m) ~8.5-11.4 ng/lg ~30 - 40 nM [180] just
17.9+ 1.4 ng/g 63+5nM [181] mouse
all-trans-retinol BCAR serum (m) 257 + 31 ng/ml 900 + 110 nM | *+** [181]
170 + 10 ng/ml 595 + 35 nM [35]
9-cis-retinol BCAR serum (m) 8.6 £ 2.9 ng/ml 30 £10 nM [181] just
mouse
13-cis-retinol BCAR serum (m) 11.4 £ 2.9 ng/ml 40 + 10 nM [181] just
mouse
dihydro-apo-10°- LYC WAT (m) ? P | R [130] just
lycopenoic acid mouse

(C27H3302 / 394.6 Da)

454

455 *: likely just an isomerisation product of ATRA during sample preparation; **; present in different concentrations

456 in different zones of the human skin; ***; healthy adults; ****: all-trans-retinol levels in mouse are just used as

457 reference for comparison to 9-cis- and 13-cis-retinol levels, which were just determined in mouse serum and not in

458 humans; *****: derivatives which were predicted by analytical studies ; #: 9,13-dicis- and 13-cis-retinoic acid
459 usually co-elute during HPLC-separation and are not identified separately in many described studies; *: this

460 concentration is based on a total amount of 0.1 ng in a retina, which is calculated on a predicted retina weight of 10-
461 80 mg; (1): 4-oxo-retinoic acid was described as an in vitro metabolite of canthaxanthin [182]; BCAR: B-carotene;

462 LYC: lycopene; CA: canthaxanthin; WAT: white adipose tissue; end.: endogenous; supp.: supplementation, ecnd —
463 exact concentration was not determined.

464
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Figure headings

Figure 1: Metabolic pathway starting from all-trans-B-carotene and all-trans-lycopene via a)
geometric isomerisation, b) excentric cleavage metabolism and c) centric-cleavage mechanisms.
Starting from food, towards transport and intermediate derivatives, nuclear hormone receptor
activating ligands including further regulation of transcription and thereby major mediation of
biological signalling of carotenoids and further deactivation / excretion metabolites. Arrows in
the figure indicate potential and simplified metabolic pathways. Derivatives which were not
conclusively identified to be present endogenously in humans were marked with a star (*) and
represent derivatives which were suggested as metabolites and identified in in vitro or in vivo
experimental approaches. Additional derivatives which were predicted based on analytical
studies were indicated by two starts (**). Abbreviations: AT: all-trans-, RAR: retinoic acid

receptor, RXR: retinoid-X receptor.
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