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Abstract:  26 

Many epidemiological studies have emphasised the relation between carotenoid dietary intake and their 27 

circulating concentrations and beneficial health effect, such as lower risk of cardiometabolic diseases and 28 

cancer. However, there is dispute as to whether the attributed health benefits are due to native carotenoids 29 

or they are rather induced by their metabolites. Several categories of metabolites have been reported, 30 

most notably due to a) modifications at the cyclohexenyl-ring or the polyene chain, such as epoxides and 31 

geometric isomers, b) excentric cleavage metabolites with also alcohol-, aldehyde- or carboxylic acid-32 

functional groups or c) centric cleaved metabolites with additional hydroxyl-, aldehyde- or carboxyl-33 

functionalities, not counting their potential phase-II glucuronidated/sulphated derivatives. Of special 34 

interest are the apo-carotenoids, which originate in the intestine and other tissues from carotenoids 35 

cleavage by beta-carotene oxygenases 1/2 in a symmetrical / non-symmetrical fashion. These are more 36 

water soluble and more electrophilic, and therefore putative candidates for interactions with transcription 37 

factors such as NF-kB and Nrf2, as well as ligands for RAR-RXR nuclear receptor interactions. In this 38 

review, we discuss in vivo detected apo-carotenoids, their reported tissue concentrations, and potential 39 

associated health effects, focussing exclusively on the human situation and based on quantified / semi-40 

quantified carotenoid-metabolites proven to be present in humans.  41 

 42 

Key-words: Apo-carotenoids, apo-lycopenoids, cleavage products, tissue concentrations, liver.   43 
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1.  Introduction 44 

Carotenoids are typically colourful, mostly C-40 based pigments, which are generally obtained via plant 45 

food items. Over 1100 different carotenoids have been recognized [1], and additional new carotenoids are 46 

being discovered, including shorter (C-30), and longer (C-50) analogues of bacterial origin [2]. Likewise, 47 

the apo-carotenoids, their breakdown products formed in plants [3] or after human ingestion [4], can be 48 

considered to belong to this group.  49 

 50 

The interest in these secondary plant compounds has been thoroughly increased in the last 2-3 decades, 51 

due to the relation of their intake and circulating plasma concentrations with chronic disease risk. A high 52 

carotenoid intake within a plant-food rich diet and concentrations in plasma have been related, among 53 

others, to a reduced risk of type-2 diabetes [5], age-related macular degeneration [6], some types of 54 

cancer such as those of the prostate [7], and even total mortality [8]. The underlying mechanisms for such 55 

associated health-benefits are not quite clear and the topic of controversial discussions, but have included 56 

direct antioxidant effects such as quenching of singlet oxygen and lipid peroxides [9], interactions with 57 

transcription factors related to inflammatory pathways (e.g., NF-kB) and oxidative stress (e.g., Nrf-2) 58 

[10], and also their interaction with the nuclear factors retinoid-X receptors (RXRs) and retinoic acid 59 

receptors (RARs) together with peroxisome proliferator-activated receptors (PPARs) [11-13].  60 

 61 

It has also been postulated that the potential health benefits are conveyed not necessarily by the native 62 

carotenoids, following their absorption in the small intestine, but by their metabolites / cleavage products. 63 

Carotenoids as lipophilic constituents are absorbed following their micellization into the enterocytes, 64 

where they may partly undergo cleavage by carotenoid-oxygenases, namely BCO1 and BCO2, resulting 65 

in the formation of symmetrical or non-symmetrical cleavage products [14].  66 

 67 

While some of the symmetrical cleavage products have vitamin A activity (following e.g. cleavage of β-68 

carotene or β-cryptoxanthin) by BCO1, the biological role of the other cleavage products remains 69 

uncertain. These cleavage products or apo-carotenoids have been proposed to be bioactive. For instance, 70 
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in in vitro studies, lycopene derivatives were shown to have higher affinity to Nrf-2 and NF-kB, due to 71 

their higher electrophilicity, and perhaps better aqueous solubility [15-19]. Lycopene has been shown to 72 

act in part similarly to vitamin A metabolites in normalizing a vitamin A-deficient diet in rats/mice [20]. 73 

It cannot also be excluded that bacteria in the colon produce more hydrophilic metabolites of carotenoids 74 

that are bioavailable and bioactive [21].  75 

 76 

Therefore, there has been increased interest in carotenoid-metabolites and their potential connection to 77 

health benefits. A limitation of their detection in human specimens is the lack of commercial standards, in 78 

addition to their lower concentration and the lower sensitivity of UV-detection, the most common 79 

technique employed in their quantification, due to the shortened delocalized electron system in the 80 

molecule.  81 

 82 

In this review, we strive to present the current state of knowledge of metabolites and breakdown product 83 

of carotenoids in humans, their known concentration ranges, and potential health benefits involved, as 84 

well as pointing out gaps and potential ways forward in this research domain. In this review, we 85 

exclusively focussed on the human situation, based on the proven presence of the described carotenoids 86 

and carotenoid-metabolites in humans. 87 

 88 

 89 

2.  Carotenoid metabolites in plasma and tissues  90 

2.1.  Rationale for interest on metabolites and overview on metabolites  91 

Carotenoids, with major human food relevance (Figure 1 and Table 1), were mainly investigated for their 92 

metabolism in the human body and it is uncertain whether the native compounds alone or rather their 93 

metabolites are responsible for the attributed health effects. Mainly nuclear hormone receptor-mediated 94 

effects were in the focus of these studies [22, 23]. These ligand-activated receptors include especially 95 

RARs and RXRs, which may become activated, resulting in altered gene expression of a large set of 96 

genes involved in inflammation, differentiation, proliferation and lipid metabolism / homeostasis [24-27]. 97 
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 98 

The activation of RARs and / or RXRs was shown to be related to physiologically- and nutritionally-99 

relevant levels of endogenous carotenoid metabolites [28-31]. Thus, native carotenoids may not interact 100 

on their own with gene-regulatory pathways, but rather via their metabolites, the apo-carotenoids, here 101 

conclusively the apo-15-carotenoids / retinoids and potentially others, such as apo-13/14-carotenoids that 102 

might interact with the binding grooves of RARs and RXRs [32-34]. Here, a focus for activating 103 

compounds is put on apo-carotenoids with an acid functionality, while apo-carotenoids with aldehyde or 104 

alcohol functionalities might result in low affinity activators / antagonistic compounds [34]. 105 

Consequently, knowing more on their identity, concentration, metabolic pathways and homeostatic 106 

control and further RAR-RXR-mediated signalling appears critical for estimating potential health 107 

benefits of carotenoids [35-39] (Tables 1 and 2). 108 

 109 

Individual carotenoids, listed in Table 1 including their endogenous levels in serum / plasma as well as 110 

selected organs, may be either cleaved by BCO1 (centric cleavage) or BCO2 (excentric cleavage) to 111 

produce a variety of apo-carotenoids / retinoids (Figure 1, Table 1,2) [40, 41].  112 

 113 

In general, there are three different kinds of carotenoid metabolites, which occur in human plasma / 114 

serum and tissues and have been detected especially after carotenoid supplementation: a) non-cleaved 115 

carotenoids with modifications at the cyclohexenyl ring or the polyene chain, such as epoxycarotenoids, 116 

geometric isomers and metabolites resulting from further rearrangement pathways, b) excentrically-117 

cleaved metabolites with also alcohol-, aldehyde- or carboxylic acid-functionalities and, c) centrically-118 

cleaved metabolites with additional alcohol-, aldehyde- or carboxylic acid-functionalities (Figure 1, 119 

Table 1,2). Of note, glucuronidated products are also formed, following phase II conjugation, prior to 120 

their excretion via the kidney, as reported e.g. for retinoic acids [42-44]. 121 

 122 

The origin of selected apo-15-carotenoids / retinoid-derivatives, such as retinyl esters, retinol, retinal and 123 

retinoic acids, might occur from various metabolic pathways including a) central cleavage of individual 124 



6 

 

carotenoids such as β-carotenes or β-cryptoxanthins (Figure 1) by BCO1-cleavage [45-47] b) by 125 

interaction of these previously-mentioned carotenoids with environmental or endogenous oxidants and 126 

following cleavage [10, 48, 49] or c) by BCO1-cleavage of individual apo-carotenoids, which might 127 

originate from food directly or by mitochondrial-based BCO2-cleavage in the human organism [14, 45, 128 

47].  129 

 130 

Alternatively, these apo-15-carotenoids / retinoids might originate from food derived apo-15-carotenoids 131 

present at high concentration in animal derived food matrices, such as retinol and retinyl-esters, or from 132 

bio-active retinoids, for instance retinoic acids and retinal, which are present in low amounts in the food 133 

matrix. Unfortunately, it is not possible to quantitatively describe which derivative originated from which 134 

individual pathway, or even at which percentile amount, due to the large variety of individually-135 

consumed food sources and individual enzymatic pathways present in humans [49-51]. 136 

 137 

Interestingly, some studies reported that blood and tissue concentrations of active vitamin A retinoids 138 

differ significantly between disease and health state [reviewed in 52]. These results raise the question as 139 

to whether the differences in such levels are caused by the disease or the low intake of carotenoids has 140 

led to the development of these conditions. It appears that at least in inflammation-related diseases, 141 

vitamin A active compounds are often less abundant in plasma, likely as a consequence and not as a 142 

cause of the disease [52], as a potential feedback to counteract inflammation mediated by bioactive 143 

vitamin A derivatives induced by pro-inflammatory RAR- and RXR-mediated signalling [53, 54]. 144 

 145 

In many countries, shortage of food and especially vitamin A deficiencies are still common [55], and 146 

supplementation with provitamin A carotenoids / vitamin A appears to be a prudent strategy. However, in 147 

our Western society, vitamin A intakes are very often quite high, while carotenoid intake is generally 148 

lower [56, 57]. This has partly been associated with pathophysiological situations [58-63]. Whether 149 

increased all-trans-retinoic acid (ATRA) concentrations in plasma or tissue following carotenoid 150 

supplementation are purely beneficial has thus been discussed controversially [64-67]. The lipid hormone 151 
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ATRA has been described to be associated to cell differentiation, proliferation and apoptosis with 152 

beneficial relevance mainly for cancer prevention [68, 69], and various diseases related to reduced 153 

inflammatory competence [70, 71]. Unfortunately, ATRA has also been associated with toxic effects, 154 

especially embryonic toxicity [72, 73].  155 

 156 

Recently, ATRA has been discussed more controversially in the context of diabetes, obesity, allergies 157 

and osteoporosis [74-76]. Especially the adverse effects of retinoids regarding inflammatory processes, 158 

related to many diseases in Western societies, and altering local and systemic lipid metabolism and 159 

homeostasis are regarded as critical [73, 77, 78]. If supplementation in such countries with retinoids / 160 

carotenoids is in general beneficial must therefore be carefully evaluated.  161 

 162 

2.2.  General properties of metabolites originating from β-carotene and β-cryptoxanthin 163 

When focusing on β-carotene, we may obtain a large variety of known and yet unknown, although partly 164 

postulated, metabolites (Figure 1). In this chapter β-carotene isomers such as α– or γ-isoforms of 165 

carotene, geometric isomers of these carotenes were included in addition we add also the provitamin A 166 

carotenoid β-cryptoxanthin as a relevant precursor for the later mentioned carotenoid-metabolites under 167 

this sub-chapter (Figure 1, Table 1). 168 

 169 

Firstly, several chain-modified carotenoid metabolites have been identified, also in mammals and human 170 

serum, with epoxy-, oxo- and hydroxyl-containing functional groups located at the cyclohexenyl ring or 171 

at the polyene chain, as well as additional isomers [79, 80]. Whether these metabolites originate from 172 

plant-based metabolism or from mammalian endogenous metabolism is not always obvious. 173 

Concentrations of these potential metabolites, which are usually lower than those of its parent direct / 174 

indirect nutritional precursor all-trans-β-carotene, are rarely reported. Problematic is their precise 175 

quantification, i.e. lack of commercially available standards and also lower UV-Vis sensitivity.  176 

 177 
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Several similar compounds may also be generated during digestion or during food processing [80]. For 178 

example, upon gastrointestinal exposure to oxidizing agents, such as iron, a large variety of degradation 179 

products in the intestine have been reported, including several β-apo-carotenals [81], epoxides, and 180 

diketones [82]. On the other hand, many reports have stated that carotenoids from plant matrices remain 181 

relatively stable upon in vitro digestion, as demonstrated for β-carotene [83], lutein [84] and lycopene 182 

[85]. Whether such degradation products can be absorbed, and whether they are then further metabolized 183 

in vivo, remains unknown [81]. 184 

 185 

Various apo-carotenoids originating from excentric cleavage of carotenoids were identified in the 186 

mammalian and partly in the human organism after carotenoid-supplementation [86, 87]. Both BCO1 and 187 

BCO2 appear able to cleave β-carotene. While BCO1 appears to favour full-length provitamin A 188 

carotenoids resulting in centric cleavage, BCO2 appears to cleave both provitamin A carotenoids and 189 

xanthophylls excentrically [40, 41, 88] and is induced in Bcmo1
-/-

 mice adipose tissue, leading to a β-apo-190 

10′-carotenol accumulation [89]. It is possible that some of these metabolites are themselves substrates 191 

for BCO1/2, as indicated for β-apo-8′-carotenal, β-apo-10′-carotenal, β-apo-12′-carotenal and β-apo-14′-192 

carotenal in chicken and rats [86, 90, 91]. Unfortunately, as already outlined, a clear ordination which 193 

individual carotenoid-metabolite is created by which specific individual metabolic pathway with specific 194 

substrate / product derivatives is not possible due to the large diversity of food sources and individual 195 

human enzymatic pathways [49, 92]. This large variety of food sources with individual carotenoid-196 

metabolite precursors and endogenous enzymatic pathways is an important feature of the mammalian 197 

organism [49, 92]. It entails the use of various regional and timely-restricted available food sources to 198 

create and degrade ligands for nuclear hormone receptors to enable normal healthy biological functions. 199 

This also includes auto-regulative metabolic and uptake pathways to regulate ligand creation and 200 

degradation, as exemplified and described in particular detail in a review relevant for β-carotene [49], 201 

outlined in Figure 1. 202 

 203 
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Different apo-carotenals and apo-carotenoic acids of various chain lengths were found after β-carotene 204 

supplementation [86, 87]. These were then synthesized ex vivo and further studied in molecular biological 205 

experiments, and partly identified after direct supplementation of β-carotene and food items rich in β-206 

carotene. These described apo-carotenoids are of different chain lengths, ranging from apo-8´-, apo-10´-, 207 

apo-12´- and apo-14´-carotenals, and can further be oxidized to apo-carotenoic acids (Figure 1). 208 

Contrarily, endogenously produced levels have rarely been described, only for selected derivatives [93]. 209 

Following the ingestion of a high β-carotene tomato juice (360 mL, 30 mg β-carotene, 35 μg apo-210 

carotenoids / day), only apo-10´- and 12´-carotenal were claimed to be detected in plasma of some 211 

individuals under the set quantification limit, though unfortunately without any added visualized 212 

analytical confirmation [94]. It could not be distinguished whether these were absorbed or formed de 213 

novo in vivo [81, 94]. In a study by Kopec et al. [81], (
13

C-10)-β-carotene was administered to healthy 214 

subjects. Though non-symmetrical β-apo-carotenals were found in the gut, none were observed in the 215 

plasma TRL fraction, suggesting a low bioavailability.  216 

 217 

Following excentric cleavage, the shorter products such as β-ionone, β-cyclocitral and related derivatives, 218 

have also been described in vitro as well as in animals [41, 95]. Carotenoid metabolites, originating from 219 

two-side carotenoid cleavage, were also described as carotenedials in vitro, including rosafluene and 220 

crocetindial [45], but these have not yet been identified in vivo and thereby were also not further 221 

investigated regarding physiologically-relevant nuclear hormone mediated-signalling. 222 

 223 

Finally, and possibly most important for the biological activity of carotenoids, centric-cleavage 224 

metabolites have been described. These metabolites of β-carotene, α-carotene, and β-cryptoxanthin are 225 

the apo-15-carotenoic acids, termed retinoic acids [96]. Retinoic acids are well-known endogenous 226 

derivatives, functioning as lipid hormone receptor ligands, responsible for activating two major families 227 

of nuclear hormone receptors, i.e. the RARs and RXRs. These receptors can, following ligand-activation, 228 

modify transcription of receptor specific genes [22, 23]. The major products are retinoic acids, mainly in 229 

the form of ATRA, the endogenous ligand of the RARs (RARα, β, γ), as reviewed earlier [31]. 230 
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Endogenous levels of ATRA in serum / plasma were in the range of 0.8 – 2.8 ng/ml (2.7 – 9.3 nM) and 231 

up to 6 ng/g (20 nM) in the pancreas and 16 ng/g (53 nM) in the liver (Table 2). Thus, these 232 

concentrations are at least 1-2 magnitudes lower than those of β-carotene in the bloodstream, with 233 

concentrations around 0.1 - 2 µM (Table 1, [97]). While these centric cleavage products are the main 234 

activators of RARs and RXRs [38, 39], the excentric apo-carotenoid apo-13-carotenone is present at 235 

lower endogenous levels of 0.8 – 1.3 ng/ml (3–5 nM) and has been demonstrated to act as “antagonist” or 236 

low affinity partial agonist or competitive antagonist, but the physiological and nutritional relevance is 237 

not yet known [32, 87]. The physiological- and nutritional-relevance of the “antagonism” / partial agonist 238 

activity was never convincingly determined for humans, though in in vitro experiments, with weak and 239 

questionable prediction potential for humans, but is deemed plausible when considering endogenous 240 

concentrations in human serum (3-5 nM, Table 2 and Figure 1). 241 

 242 

In addition to ATRA, other geometric isomers were identified endogenously, such as 13-cis-, 9,13-dicis-, 243 

and 9-cis-retinoic acid [98-100], with low concentrations (Table 2). A large focus was placed on 9-cis-244 

retinoic acid (9CRA), which was postulated as “an” or even “the” endogenous ligand of RXRs (RXRα, β, 245 

γ) [29, 30]. However, this is seen as controversial by the authors / additional experts in the field of 246 

retinoid-lipidomics [36, 101, 102] focusing on ultrasensitive retinoid-lipidomics analysis, as its 247 

endogenous presence and function as a physiologically-relevant lipid hormone could not be confirmed. 248 

Alternative endogenous geometric isomers of retinoic acid, including 13-cis-, 9,13-dicis- and 11-cis-249 

retinoic acid were not described to be of relevant major biological activity mediated via the activation of 250 

RARs-RXRs [29]. For retinal, the endogenous cycle between all-trans-retinal and 11-cis-retinal in the 251 

visual cycle in the eye is well established [103, 104], but it is of no systemic relevance for the whole 252 

human organism.  253 

 254 

For ATRA, increased serum levels of 1.2 towards 2.0 ng/ml (4.0 –> 6.7 nM) were found following 255 

supplementation of β-carotene-rich foods [37]. Whether these increased serum levels reflect also tissue 256 

levels and increased RAR-mediated signalling was and could not be identified. The physiological and 257 
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nutritional relevance in humans could also not be evaluated. This intervention with food items rich in β-258 

carotene resulted in low and non-significant alterations of interleukin (IL) secretion and immune response 259 

as indicators of RAR-mediated signalling [105, 106]. Whether such β-carotene interventions are 260 

beneficial for humans is questionable. Interestingly, the strongest effects were identified in the carotenoid 261 

wash-out phase prior to intervention, resulting in reduced IL-2, natural killer (NK) cell cytotoxicity and 262 

lymphocyte proliferation, a potential consequence of β-carotene (or general carotenoid) or even vitamin 263 

A deficiency and possibly reduced RAR-RXR-mediated signalling [106]. These reductions were rapidly 264 

recovered after β-carotene- or lycopene-supplementations, likely as a consequence of recovered RAR-265 

RXR-mediated signalling [106]. In animal studies, β-carotene-supplementation resulted in the recovery 266 

of vitamin A deficiency indicated by visualized RARE-mediated signalling. In addition serum, but not 267 

liver ATRA concentrations were improved, while retinol levels recovered and even increased [20]. It can 268 

be assumed that β-carotene supplementation can reinstate basal retinol and ATRA concentrations and 269 

RAR-mediated signalling. However, no further increase in ATRA concentrations in organs and enhanced 270 

RAR-mediated signalling could be observed as a result of increased storage and transport of retinol due 271 

to a highly regulated homeostasis of retinoid / vitamin A / RAR-mediated signalling pathways.  272 

 273 

Nutritionally-relevant β-carotene intake is mainly contributing to the anti-infective properties of vitamin 274 

A, which is commonly identified as its major activity besides ocular functions [12, 107]. It is suggested 275 

that provitamin A carotenoids are relevant for maintaining vitamin A activity, while being of no further 276 

physiologically- and nutritionally-proven relevance.  277 

 278 

In contrast, long term high-dose supplementation of pure synthetic all-trans-β-carotene, studied in 279 

tobacco smoke exposed ferrets, may alter RAR-RXR-mediated signalling by a negative feedback 280 

regulation [108], thereby strongly reducing RARβ- and ATRA levels in the lung, as the target organ [109, 281 

110].  282 

 283 
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In addition, it is questionable whether higher than basal RAR-mediated signalling is more beneficial or 284 

whether it can be considered as detrimental, while increased RXR-mediated signalling may be considered 285 

mainly beneficial [25]. Based on these limited studies we conclude that β-carotene can prevent general 286 

vitamin A deficiency [37, 106], reaching a plateau, while higher and pure β-carotene supplementation 287 

seems unrelated to improved health status [49]. That moderate or even high dietary consumption of 288 

natural food items rich in β-carotene and additional bioactive derivatives including other carotenoids 289 

transmits non-beneficial effects seems unlikely. 290 

 291 

Recently, dihydro-metabolites of apo-15-carotenoids were described in mice, likely originating from 292 

13,14-dihydroretinol [111] (Figure 1; Table 2). In a larger cohort study, 13,14-dihydroretinol and the 293 

novel identified endogenous all-trans-13,14-dihydroretinoic acid [112, 113] and 9-cis-13,14-294 

dihydroretinoic acid [33, 36, 102] were analysed in human serum [114] as well as adipose tissue (Rühl et 295 

al. unpublished). All-trans-13,14-dihydroretinoic acid was described as a medium affinity endogenous 296 

RAR-ligand [38, 115] and recently, 9-cis-13,14-dihydroretinoic acid (9CDHRA) became a focus of 297 

attention, as it appears to be an or even the physiologically- and nutritionally-relevant RXR-ligand in 298 

mammals, serving as a novel endogenous lipid hormone [33, 36, 102]. Further nutritionally-relevant 299 

precursors of 9CDHRA, such as 9-cis-13,14-dihydroretinol, 9-cis-dihydrocarotenoids and even the well-300 

known 9-cis-β-carotene were recently postulated [116] and confirmed [117] as even being a new 301 

independent vitamin A signalling pathway, termed vitamin A5 (Figure 1) [118].  302 

 303 

2.3. Metabolites of lycopene  304 

In addition to β-carotene, lycopene is one of the major carotenoids present in the diet, resulting in high 305 

tissue and blood concentrations (Figure 1 and Table 1, 2). However, the metabolism of lycopene has been 306 

studied to a much lesser extent compared to that of β-carotene and especially when focusing on the 307 

human situation. 308 

 309 
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Oxidative metabolism of lycopene and of additional acyclic carotenoids such as phytoene and 310 

phytofluene (Table 1) were described [119], while such metabolism was neither conclusively observed 311 

nor the focus in studies employing lutein and other carotenoids with hydroxyl- / oxo-functional groups, 312 

such as zeaxanthin, canthaxanthin, β-cryptoxanthin and astaxanthin, which would have broader relevance 313 

for the human situation. Selected xanthophylls were described to interact and block apo-carotenoid 314 

mediated signalling [120, 121] while no mechanism involving xanthophyll-metabolites was mentioned 315 

and outlined. Both excentric and centric metabolism was described for lycopene [40, 41]. Except for 316 

lycopenoids, there was no further focus on the identification of potential endogenous derivatives or 317 

molecular biological examination to investigate their biological activities [122-124]. Various lycopenals 318 

were identified and predicted in the food matrix and in the human organism after a tomato product 319 

intervention. Human serum levels were reported to be low (Figure 1 / Table 2 [125]).  320 

 321 

While many studies display a complex pattern of lycopene metabolism via various pathways [40, 125-322 

129], and potential lycopene metabolites were found after supplementing high amounts of lycopene in 323 

experimental animal models [124, 130-132], a direct association of human relevance was only recently 324 

indirectly concluded [133]. An indirect evidence of lycopene activity and a further lycopene-metabolite 325 

for RAR-activation was revealed, using a RARE-luciferase expressing mouse model [20, 134]. Based on 326 

RARE-mediated signalling, a partial vitamin A activity following lycopene intervention was found [20]. 327 

An identification of the involved functional metabolites was only partly achieved, and apo-15-lycopenoic 328 

acids were claimed to be present endogenously, especially after lycopene-supplementation [124, 135].  329 

 330 

Other lycopenoic acids might also be bioactive, as it was shown earlier in a mouse study that the potential 331 

lycopene metabolite apo-10’-lycopenoic acid [131] reduced hepatic fat accumulation [136]. The 332 

physiological and nutritional relevance of apo-10’-lycopenoic acid was only shown in ferrets [131], but 333 

could not be confirmed in vivo in mice and ex vivo in humans [130]. Alternatively, due to extensive 334 

metabolism, a dihydro-apo-10’-lycopenoic acid analogue was identified and based on UV and MS-335 

characteristics predicted to be 7,8-dihydro-apo-10’-lycopenoic acid. How lycopene is metabolized to 336 
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dihydro-apo-10’-lycopenoic acid and whether apo-10’-lycopenoic acid is a potential intermediate are yet 337 

unanswered questions. Likely these dihydro-apo-10-lycopenoids are direct precursors of dihydro-apo-15-338 

lycopenoids, which might be highly potent RAR- and / or RXR-ligands, as postulated in [124]. 339 

 340 

2.4. Summary for carotenoid metabolites 341 

Thus, for many metabolites it remains inconclusive whether they derive from human metabolism or are 342 

ingested via animal origin as pre-formed carotenoid metabolites in the forms of retinol and mainly retinyl 343 

esters [12, 137]. In addition, the biological function and the concentration-dependent activity of various 344 

carotenoid metabolites besides ATRA has generally not been studied, mostly due to the lack of available 345 

standard compounds and established sensitive and selective analytical methods. Furthermore, the direct 346 

link between carotenoid intake and RAR-RXR-mediated transcriptional signalling as a multi-step 347 

procedure has not yet been proven. However, each step of this cascade has been clearly demonstrated 348 

with experimental data: a) higher carotenoid supplementation resulting in higher carotenoid levels in 349 

supplemented individuals [105, 138]. b) higher β-carotene levels correlating and resulting in increased 350 

ATRA concentrations [37, 49], c) higher ATRA levels causing increased RAR-mediated signalling [134]; 351 

and d) higher RAR-mediated signalling resulting in increased individual specific immune responses [52, 352 

77, 139, 140] and altered lipid metabolism [141, 142], with partially beneficial or detrimental effects. 353 

 354 

Recently, a novel class of bioactive carotenoid-metabolites, namely strigolactones, was described to be 355 

enzymatically synthesized in certain plants, such as carlactones [143-145] and identified as plant-relevant 356 

hormones during germination [143] and branching-inhibition [146]. If these derivatives are also of direct 357 

or indirect relevance for the human organisms remains speculative. 358 

 359 

In summary, human supplementation studies with food items rich in β-carotene / lycopene or 360 

supplemented β-carotene / lycopene, focusing on multi-targeted analyses, and identifying β-carotene / 361 

lycopene and retinoid concentrations and further RARE-mediated signalling, have not yet been 362 

performed and should be addressed. Due to the access of multi-omic techniques, serum markers or novel 363 
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transcriptional markers of diseases [147, 148], possibly also co-associated with vitamin A / carotenoid 364 

deficiency or reduced RAR-RXR-mediated dysfunction [25, 149], should be compared to carotenoid 365 

intake and serum / plasma carotenoid / retinoid concentrations to obtain valuable correlations. 366 

 367 

 368 

3. Discussion and Perspectives 369 

Several carotenoids are implicated in health-related outcomes, from AMD (lutein and zeaxanthin) to 370 

possible effects regarding cardio-metabolic diseases (predominantly, β-carotene) and diabesity / cancer 371 

(predominantly, lycopene). The dietary intake of carotenoids has also changed over time. While lycopene 372 

intake was uncommon in the pre-industrialized human diet, especially considering the primarily 373 

European-focused world sight, it strongly increased in the Western society, due to a high consumption of 374 

tomatoes and tomato products [150].  375 

 376 

Additionally, it became obvious that light irradiation [151] and more practically relevant thermal food 377 

processing [152], as also reviewed by Khoo et al. [153], including cooking >100°C appears to constitute 378 

an important mechanisms for carotenoid isomerisation, yielding different precursor carotenoids for 379 

different functional apo-carotenoids, as well as a non-endogenous human generated apo-carotenoids, 380 

serving as easy accessible substrates for functional apo-carotenoids [154]. This highlights cooking and 381 

food-processing as important cultural achievement for generating bioactive derivatives for enabling a 382 

healthy and well-functioning human organism [155].  383 

 384 

However, carotenoids are generally considered as lipid precursors (mainly for bioactive vitamin A / 385 

retinoids) in the diet, while their complex and multi-step metabolic pathways and the relationship to 386 

health beneficial effects are still poorly understood. In this review we summarised all available relevant 387 

information focussing on the human organism with implication of mechanistic results from further in 388 

vitro to in vivo experiments. Unfortunately, these experimental results are difficult to compare with the 389 

human because carotenoids obtain a non-similar nutri-kinetics pattern [156] and different eating 390 
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behaviour in contrast to the pure vegetarian dietary pattern of rodents, which are frequently used as 391 

experimental animal models . 392 

 393 

 394 

4. Conclusions 395 

As a cornerstone, we suggest that besides benchmark concentrations for carotenoids, also retinoids 396 

should be suggested, including both “normal” and deficiency threshold ranges. These ranges should 397 

correlate with well-defined and established nuclear hormone receptor signalling cascade markers, disease 398 

markers, prognostic early markers of diseases as well as markers of impairments of physiologically-399 

important functions based on novel “omics” markers such as transcriptomics, lipidomics and proteomics, 400 

which are now frequently published for various target diseases [157]. In the case of diseases and 401 

dysfunctions related to carotenoid and vitamin A deficiency, underlying molecular mechanisms such as 402 

RAR-RXR- / RXR-plus additional nuclear hormone receptor (NHR)-dysfunctional signalling [22, 25, 403 

158] (i.e. signalling not associated with a healthy condition as present in various diseases of the Western 404 

society), should also be considered.  405 

 406 

Based on these two ranges, targeted supplementation strategies may be recommended to overcome 407 

deficiencies and towards reaching and maintaining “normal” concentration ranges. A correlation between 408 

dietary intake, serum levels and bioactive carotenoid metabolites and further examination of RXR-RAR / 409 

RXR-NHR in an easy accessible compartment such as peripheral blood mononuclear cells (PBMCs), plus 410 

target genes of relevant diseases are desperately missing in carotenoid / retinoid nutritional research.  411 

 412 

The basal benchmark concentration indicating a higher risk for chronic diseases appears to constitute a 413 

total carotenoid plasma / serum concentration <1.000 nM and should further focus on endogenous 414 

retinoids. The second benchmark concentration reflecting “normal” carotenoid intake are average plasma 415 

/ serum concentrations of individual and total carotenoids indicating, and here defined as, a healthy 416 

varied diet. Such levels can then be translated into the intake of relevant food items rich in carotenoids, 417 



17 

 

based on correlations between reported average intakes for β-carotene and lycopene with serum 418 

concentrations and considering intervention with carotenoid-rich foods [97].  419 

 420 

In this review article, we summarised the current mechanisms of carotenoid metabolism including 421 

reference levels of bioactive carotenoid metabolites with pure relevance on the human organism. To 422 

summarise, carotenoid to bioactive metabolite metabolism is an important knowledge to justify which 423 

biological-response pathway of carotenoids is enabled to elicit valuable beneficial effects. This is 424 

important in order to evaluate if there might be a problem in individual dietary intake of food enriched in 425 

specific carotenoids is present or if a genetic hereditary problem in metabolism of carotenoids to 426 

bioactive carotenoids based on genetic polymorphisms is the cause of disturbed occurrence of bioactive 427 

carotenoid metabolites.  428 

 429 
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Table 1. Concentrations of carotenoids in various tissues, all data in nM (nmol/kg or L), adapted 443 

from [97]. 444 

tissue BCAR ACAR BCRY LYC PHYE PHYF ref. 

serum / plasma 360 ± 10 
 

120 ± 10 230 ± 10 740 ± 10 
 

40 ± 20 170 ± 70 [159] 

serum / plasma ATBC: 
823 ± 277 
 
9CBC 
22 ± 13 
 
13CBC 
29 ± 22 
 
 
 
 
sum: 
874 

  ATLYC 
190 ± 25 
 
5CLYC 
130 ± 20 
 
9CLYC 
9 ± 5 
 
13/15CLYC 
55 ± 25 
 
sum: 
384 

  [160, 161] 
 

abdominal 
adipose tissue 

1472 ± 286 280 ± 74 417 ± 462 3329 ± 448   [162] 

liver 5900 ± 6300   8400 ± 11,500   [50] 

skin
&
  

430 ± 45 
 
95 ± 20 

 
225 ± 35 

 
695 ± 45 

 
320 ± 90 

 
46 ± 20 

[163-165] 

lung 350 ± 440 230 ± 270 420 ± 750 570 ± 1110   [166] 

kidney 550 ± 730 300 ± 400 450 ± 1040 620 ± 620   [166] 

brain
$
 10-30  <10    [167] 

adrenals 5600 *** 
(680-31,830) 

1220 *** 
(110-7520) 

660 *** 
(10-2900) 

1900 *** 
(190-5600) 

  [168] 

testes 2680 *** 
(750-4770) 

370 *** 
(140-610) 

160 *** 
(10-290) 

4340 ***  
(410-9380) 

  [168] 

bone 745 ± 95 95 ± 35 125 ± 35 280 ± 35 825 ± 185 275 ± 45 [165] 

colon tissue 60 ± 30      [169] 

breast milk 60-200  20-40  2-10 5-25   [170] 

uterus 503
£
 870     [171] 

prostate 600 300 100 700  [172]  

 445 

All values represent mean ± SD; “blank” represents non determined carotenoids or no data available; 
$
: 446 

infants, prefrontal cortex, frontal cortex, hippocampus, auditory cortex and occipital cortex; 
£
: values given in 447 

literature as “carotenes”; 
&

: dermis and epidermis of back, forehead, inner forearm and hand; *** : including 448 
upper and lower level of this range; ACAR: α-carotene; BCAR: β-carotene; BCRY: β-cryptoxanthin; LYC: 449 
lycopene; PHYE: phytoene; PHYF: phytofluene. 450 
  451 
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Table 2. Levels of major carotenoid metabolites / retinoids in blood plasma / serum and 452 

tissues including molecular weight in Dalton (Da) and molecular formula of each retinoid. 453 
Carotenoid metabolite parent 

carotenoid 
serum/ 
tissue 

metabolite concentration 
in   ng/g (ml)            in nM  

 remark ref. occurre
nce 

all-trans-retinoic acid 
(C20H28O2 / 300.4 Da) 

BCAR  serum 2.8 ± 0.8 ng/ml 
1.4 ± 2.3 ng/ml 
1.2 ± 1.6 ng/ml 
1.4 ± 0.3 ng/ml 
0.8 ± 0.2 ng/ml 
0.9 ± 0.2 ng/ml 

 
1.2 ± 0.3 ng/ml 
2.0 ± 0.3 ng/ml 

9.3 ± 2.6 nM 
4.7 ± 7.7 nM 
4.0 ± 5.3 nM 
4.7 ± 1.0 nM 
2.7 ± 0.7 nM 
3.0 ± 0.6 nM 

 
4.0 ± 1.0 nM 
6.7 ± 1.0 nM 

*** 
German children 
Turkish children 
*** 
*** 
fasted adults 
 
-before,  
-after suppl. of 
food rich in BCAR  

[173] 
[67] 
[67] 
[35] 
[174] 
[175] 
 
[37] 

end. 

  skin 0.7 / 2.1 ng/g 2.3 / 7.0 nM *** [173] end. 

  pancreas 5.9 ± 2.1 ng/g 19.7 ± 7.0 nM *** [176] end. 

  liver 15.8 ± 8.3 ng/g 52.7 ± 27.7 nM *** [35] end. 

9-cis-retinoic acid (?*) BCAR serum (?*) 0.03 ng/ml  (?*) 0.1 nM  fasted adults [175]  end. 

  liver (?*) 0.6 ± 0.2 ng/g (?*) 2.0 ± 0.7 nM *** [35] end. 

13-cis-retinoic acid (#) BCAR  serum 1.8 ± 1.0 ng/ml 
1.1 ± 0.2 ng/ml 
1.2 ± 0.3 ng/ml  

6.0 ± 3.3 nM 
3.7 ± 0.7 nM 
3.9 ± 1.0 nM 

*** 
*** 
fasted adults 

[35] 
[174] 
[175] 

end. 

  liver 1.5 ± 0.4 ng/g 5.0 ± 1.3 nM *** [35] end. 

9,13-dicis-retinoic acid 
(#) 

 serum 1.0 ± 0.3 ng/ml 0.3 ± 0.1 nM fasted adults [175] end. 

all-trans-13,14- 
dihydroretinoic acid 
(C20H30O2 / 302.5 Da) 

BCAR serum ecnd ecnd *** [117] end. 

  pancreas 88 ± 72 ng/g 290 ± 238 nM *** [113] end. 

9-cis-13,14- 
dihydroretinoic acid 

BCAR serum 4.8 ± 0.7 ng/ml 15.8 ± 2.3 nM *** [114, 
117] 

end. 

9-cis-4-oxo-13,14- 
dihydroretinoic acid 
(C20H28O3 / 316.4 Da) 

BCAR liver 10.3 ng/g 32.6 nM *** [35] end. 

all-trans-4-oxo-retinoic 
acid 
(C20H26O3 / 314.4 Da) 

BCAR/CA(1) serum 0.6 ± 0.3 ng/ml 1.9 ± 0.9 nM *** [174]
 

end. 

13-cis-4-oxo-retinoic acid BCAR/CA(1) serum 2.4 ± 1.8 ng/ml 7.6 ± 5.7 nM *** [35]
 

end. 

all-trans-apo-13´-
carotenone 
(C18H27O1 / 255.4 Da) 

BCAR  serum 0.8 – 1.3 ng/ml 3 - 5 nM *** [32] end. 

all-trans-apo-14´- 
carotenoic acid 
(C22H23O2/ 323,5 Da) 

BCAR serum 1,3 ± 0,6 ng/ml 4,0 ± 1,9 nM *** [177] end. 

all-trans-retinoyl-
glucuronide 
(C26H36O8 / 476.6 Da) 

BCAR serum  3.2 ±  1.9 ng/ml  6.8 ± 4.0 nM *** [178] end. 

all-trans-retinol 
(C20H30O1 / 286.5 Da) 

BCAR serum 510 ± 217 ng/ml 
980 ± 110 ng/ml 
641 ± 99 ng/ml 

1777 ± 759 nM 
3414 ± 383 nM 
2233 ± 345 nM 

*** 
*** 
*** 

[173] 
[35] 
[174] 

end. 

  skin 207 / 253 ng/g 724 / 885 nM *** [173] end. 

  pancreas 96 ± 86 ng/g 336 ± 301 nM ***. [176] end. 

all-trans-3,4-
dehydroretinol 
(C20H28O1 / 288.5 Da) 

BCAR  skin  9 - 70 ng/g 31.2 – 240 nM **, *** [179] end. 

all-trans-13,14-
dihydroretinol 
(C20H32O1 / 284.4 Da) 

BCAR  serum  ecnd ecnd *** [117] end. 

9-cis-13,14-
dihydroretinol 

BCAR serum 0.9 ng/ml 3.1 nM *** [117] end. 

all-trans-retinal 
(C20H28O1 / 284.4 Da) 

BCAR  eye ecnd ecnd *** [103] end. 

11-cis-retinal BCAR eye ecnd ecnd *** [103]
 

end. 

apo-6´-lycopenal 
(C32H42O1 / 443.1 Da) 

LYC plasma <0.1 ± <0.0 ng/ml 0.1 ± 0.1 nM after tomato 
suppl. diet 

[125] 
 

after 
supp. 

apo-8´-lycopenal 
(C30H40O1 / 416.6 Da) 

LYC plasma 0.2 ± 0.1 ng/ml 0.6 ± 0.3 nM  “ [125]
 

after 
supp. 

apo-10´-lycopenal 
(C27H36O1 / 376.6 Da) 

LYC plasma 0.1 ± <0.0 ng/ml 0.3 ± 0.1 nM “ [125] after 
supp. 

apo-12´-lycopenal 
(C25H34O1 / 350.1 Da) 

LYC plasma 0.2 ± 0.1 ng/ml 0.7 ± 0.4 nM “ [125] after 
supp. 

apo-14´-lycopenal 
(C22H30O1 / 310.5 Da) 

LYC plasma 0.03 ± <0.0 ng/ml 0.1 ± <0.0 nM “ [125] after 
supp. 
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References: 
just in mouse 

all-trans-retinal 
(C20H28O1 / 284.4 Da) 

BCAR  serum (m) 0.6 ng/ml 
9.1 ± 1.8 ng/ml 

~2 nM 
32.2 ± 6.2 nM 

 [180] 
[181] 

just 
mouse 

  WAT (m) ~8.5 – 11.4 ng/g 
17.9 ± 1.4 ng/g 

~30 - 40 nM 
63 ± 5 nM 

 [180] 
[181] 

just 
mouse 

all-trans-retinol BCAR serum (m) 257 ± 31 ng/ml 
170 ± 10 ng/ml 

900 ± 110 nM 
595 ± 35 nM  

**** [181] 
[35] 

 

9-cis-retinol BCAR serum (m) 8.6 ± 2.9 ng/ml 30 ± 10 nM  [181] just 
mouse 

13-cis-retinol BCAR serum (m) 11.4 ±  2.9 ng/ml 40 ± 10 nM  [181] just 
mouse 

dihydro-apo-10´- 
lycopenoic acid 
(C27H38O2 / 394.6 Da) 

LYC  WAT (m) ? ? ***** [130] just 
mouse 

 454 
*: likely just an isomerisation product of ATRA during sample preparation; **: present in different concentrations 455 
in different zones of the human skin; ***: healthy adults; ****: all-trans-retinol levels in mouse are just used as 456 
reference for comparison to 9-cis- and 13-cis-retinol levels, which were just determined in mouse serum and not in 457 
humans; *****: derivatives which were predicted by analytical studies ; #: 9,13-dicis- and 13-cis-retinoic acid 458 
usually co-elute during HPLC-separation and are not identified separately in many described studies; 

##
: this 459 

concentration is based on a total amount of 0.1 ng in a retina, which is calculated on a predicted retina weight of 10-460 
80 mg; (1): 4-oxo-retinoic acid was described as an in vitro metabolite of canthaxanthin [182]; BCAR: β-carotene; 461 
LYC: lycopene; CA: canthaxanthin; WAT: white adipose tissue; end.: endogenous; supp.: supplementation, ecnd – 462 
exact concentration was not determined. 463 
  464 



21 

Figure headings 465 

 466 

Figure 1: Metabolic pathway starting from all-trans-β-carotene and all-trans-lycopene via a) 467 

geometric isomerisation, b) excentric cleavage metabolism and c) centric-cleavage mechanisms. 468 

Starting from food, towards transport and intermediate derivatives, nuclear hormone receptor 469 

activating ligands including further regulation of transcription and thereby major mediation of 470 

biological signalling of carotenoids and further deactivation / excretion metabolites. Arrows in 471 

the figure indicate potential and simplified metabolic pathways. Derivatives which were not 472 

conclusively identified to be present endogenously in humans were marked with a star (*) and 473 

represent derivatives which were suggested as metabolites and identified in in vitro or in vivo 474 

experimental approaches. Additional derivatives which were predicted based on analytical 475 

studies were indicated by two starts (**). Abbreviations: AT: all-trans-, RAR: retinoic acid 476 

receptor, RXR: retinoid-X receptor. 477 

  478 
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