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CEMRACS PROJECT: A COMPOSITE FINITE VOLUME SCHEME FOR THE
EULER EQUATIONS WITH SOURCE TERM ON UNSTRUCTURED MESHES ∗

M. Boujoudar1, E. Franck2, P. Hoch3, C. Lasuen4, Y. Le Hénaff5 and P.
Paragot6

Abstract. In this work we focus on an adaptation of the method described in [1] in order to deal with
source term in the 2D Euler equations. This method extends classical 1D solvers (such as VFFC, Roe,
Rusanov) to the two-dimensional case on unstructured meshes. The resulting schemes are said to be
composite as they can be written as a convex combination of a purely node-based scheme and a purely
edge-based scheme. We combine this extension with the ideas developed by Alouges, Ghidaglia and
Tajchman in an unpublished work [2] – focused mainly on the 1D case – and we propose two attempts at
discretizing the source term of the Euler equations in order to better preserve stationary solutions. We
compare these discretizations with the “usual” centered discretization on several numerical examples.

Contents

1. Introduction 1
2. 1D Scheme 3
2.1. Flux based scheme 3
2.2. Well Balanced (Enhanced consistency) 4
3. 2D Schemes 5
3.1. Edge-based schemes 7
3.2. Generalization to the nodes and composite scheme 8
3.3. Boundary conditions 9
3.4. Properties of the composite scheme 9
4. Discretization of the source term 10
4.1. Well Balanced (Enhanced consistency) in 2D 10
4.2. Anti-derivative using a Poisson equation 11
4.3. Sub-volumes upwinding 11
5. Numerical results 12
5.1. 1D gravity 13

∗ We would like to warmly thank the organizing committee of the CEMRACS 2022.
1 Mohammed VI Polytechnic University, Morocco
2 Université de Strasbourg, CNRS, Inria, IRMA, F-67000 Strasbourg, France
3 CEA, DAM, DIF, 91297, Arpajon Cedex, France
4 CEA, DAM, DIF, 91297, Arpajon Cedex, France
5 Université de Rennes, IRMAR UMR 6625, Centre INRIA de l’Université de Rennes (MINGuS), France
6 Laboratoire J.A. Dieudonné, Université Côte d’Azur, France

© EDP Sciences, SMAI 2024



2 ESAIM: PROCEEDINGS AND SURVEYS

5.2. 2D gravity 13
5.3. Friction 13
5.4. 2D Riemann problem 14
6. Conclusion 15
A. Construction of the diffusion scheme (30) 18
References 21

1. Introduction
This work is concerned with the discretisation of hyperbolic systems with source term using finite volume
methods on an unstructured mesh. Here we will concentrate on the Euler equations with source term which
model the evolution of a gas:

∂tU + divF (U) = S(x, U). (1)
The unknown is U = (ρ, ρu, ρE)T ∈ R4. The density of the fluid is ρ ∈ R+, its velocity is u = (u1, u2) ∈ R2

and its total energy is E ∈ R+. The space variable is denoted by x ∈ R2. The physical flux F reads:

F (U) = (F1(U) F2(U)) =


ρu1 ρu2

ρu2
1 + P ρu1u2
ρu1u2 ρu2

2 + P
(ρE + P )u1 (ρE + P )u2

 , P = (γ − 1)ρ
(
E − 1

2‖u‖
2
)
. (2)

Fluxes are an important component of physical models, and as such their discretization in numerical models
is essential. Finite volume schemes are based on the idea of “numerical fluxes”, and when arbitrary polygonal
meshes are used, one can decide to approximate the numerical fluxes either at the nodes or edges of the
computational cells. The first approach is called pure nodal finite volume method because the numerical fluxes
are approximated at the nodes of the mesh, and the second approach is called pure edge finite volume method
because they are approximated at the edges of the mesh.

In Equation (2) appear the quantities P and γ: P is the pressure, and it is assumed to follow the ideal gas
law. The constant γ is taken to be the ideal gas constant, i.e. γ = 1.4.

Finally, in order to complete our physical model (1)–(2), we need to specify the source term S = S(x, U),
which is supposed to be a smooth function of its two variables. We focus on the following cases:

• independent from U : S = S(x),
• gravity type: S = (0, ρ∇ζ, ρ∇ζ · u)T , where ζ = ζ(x) is a smooth function,
• friction type: S =

(
0,−λρu,−αλρ‖u‖2

)T , where α and λ are constants.

The purpose of this study is to generalize on arbitrary two-dimensional polygonal meshes the ideas developed
in [2]. In that work, the authors detail a discretization of the source term that allows to exactly preserve the
stationary solutions to (1), in the one-dimensional case. We will focus on the two-dimensional framework, and
discuss the one-dimensional counterpart in Section 2 as an introduction to their method.

Several studies showed that node-based methods are efficient in Lagrangian update hydrodynamics [3,4] and
allow to obtain a local mesh update that is consistent with geometric conservation laws. It is not the case
for the edge-based approach [5]. However, the node-based methods sometimes display parasitic behaviors that
may be treated using ad-hoc processes [1, 3, 6]. On the other hand, pure edge-based finite volume schemes
perform well and benefit most from the one-dimensional numerical flux design theory. For first-order explicit
finite volume schemes, the propagation is performed via cell adjacency (i.e. edges), and this may generate an
important (numerical) travel time delay on certain specified meshes (see for instance [1, Sect. 1]).

This motivates the use of composite schemes, which make a continuous bridge between edge-based and node-
based finite volume schemes. This type of schemes was introduced in [1] to solve the homogeneous 2D Euler
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equations. The numerical results show that these schemes perform well in terms of stability. For instance,
in [1, 7, 8] the polygonal pure nodal GLACE scheme from [3] and the composite GLACE conical degenerate
extension from [7,8] were compared on the Sedov test (for the Euler Gas Dynamics) solved with Lagrange update
formulation. The authors of these papers showed that the composite GLACE conical degenerate extension
provides robust numerical results. However, the pure nodal scheme exhibits numerical instability due to lack of
numerical viscosity in the diagonal direction, and furthermore both schemes are first order in time and space.

The purpose of the present work is to develop a composite flux scheme that extends the ideas of Alouges,
Ghidaglia and Tajchman [2] in the 2D case.

The objective of the method presented in [2] is not different from the motivation of well-balancedness as
introduced in the pioneering works by Gosse, Leroux, and Greenberg [9, 10]: the idea is to discretize Equation
(1) in such a way that stationary solutions to the continuous problem – or at least a subclass of them – are
also stationary solutions to the discretized problem. Well-balanced methods have been studied for almost three
decades now (e.g. [11–15]), and their efficiency is not to be proved anymore. They have been used in many
applications, among others: [16–22] for shallow waters equations, or [23–25] for the Burgers’ or Euler’s equations.

The difference between well-balancedness and enhanced consistency (a term coined in [2] and mentioned/used
in [26]) lies in the way the source term is discretized. In the former approach, the source term is generally treated
in a particular way, different from the discretization of the other quantities in (1). In the latter approach, the
source term is written as the divergence of some (approximate) function, and the two divergence operators
on the left and right of the equation can then be discretized in the same way. We are using the ideas of [2]
thoughout this work, and to emphasize the difference of discretization between their method and other well-
balanced method, we shall use the term enhanced consistency for the ideas presented in this work (even if this
is a subclass of well balanced method).

However, upon a closer look at [2], we believe the 2D case needed more investigation, and our work is an
attempt in this direction, also using the multidimensional awareness of composite flux schemes.

The paper is organised as follows: in Section 2 we give a brief overview of the VFFC scheme in the 1D
framework, and we explain in details the main idea of [2]. In Section 3 we define a composite scheme along
the lines of [1], which is a generalization of the VFFC scheme in 2D. Section 4 is devoted to the treatment of
the source term and several methods are detailed. Eventually, some numerical tests are provided in order to
compare the different methods.

2. 1D Scheme
In this Section, we briefly recall the 1D VFFC scheme from [27], which discretizes the 1D version of (1). This

scheme is an Eulerian flux-based scheme. We also present the notion of enhanced consistency as introduced
in [2], which consists in discretizing the source term so as to preserve exactly the stationary solutions of (1).

2.1. Flux based scheme
xj−1/2 xj+1/2 xj+3/2

Ωj Ωj+1

xj xj+1

∆xj+1
2∆xj

Figure 1. 1D discretization

We consider a space discretization
{
xj+1/2

}
j
of a given interval [0, L],

and define the cells Ωj = [xj−1/2, xj+1/2]. Their length is denoted by
∆xj = xj+1/2 − xj−1/2 and we also need to define their centroid {xj}j :
xj = (xj+1/2 + xj−1/2)/2.

A classical finite volume scheme in time writes :

∆xj
Un+1
j − Unj

∆tn + Gj+1/2,n − Gj−1/2,n = Snj , ∀j,

where the superscript n denotes current time tn, assuming a time discretization
{
tk
}
k≥0. The calligraphic

letters U ,F and S correspond to the discretized approximations of U,F and S. In order to simplify notations,
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we will omit the superscript n and only leave the superscript n+ 1:

∆xj
Un+1
j − Uj

∆t + Gj+1/2 − Gj−1/2 = Sj , ∀j, (3)

The numerical source term is denoted by Sj and can be computed using several formulas (see for instance
Section 2.2).

The quantity Gj+1/2 is the numerical flux between the cells j and j + 1. To obtain a flux-based scheme, we
define it as:

Gj+1/2 = Fj + Fj+1
2 + Λj+ 1

2

Fj −Fj+1
2 , Λj+ 1

2
= sign(J(Uj+1/2)),

where the sign of a matrix is defined below, see Definition 2.1. Here, J(Uj+1/2) denotes the Jacobian matrix of
the mapping U 7→ F (U) evaluated at Uj+1/2.

The quantity Uj+1/2 is an approximation of the solution at the interface between the cells Ωj and Ωj+1. One
of the simplest approximations is the VFFC average (see [27]), and in this case Uj+1/2 is given by Uj+1/2 =
(Uj + Uj+1)/2. We emphasize the fact that Uj and Uj+1 are only the unknowns of the finite volume scheme,
and no additional knowledge about the solution is required to compute Gj+1/2.

The matrix Λj+ 1
2
is called an “upwind matrix”. We also emphasize that the superscript j+1/2 in Gj+1/2 has

to be understood now as a “global index” in the mesh, and that Gj+1/2 is the numerical flux evaluated at the
degree of freedom1 j + 1/2. More details about the notion of “global” or “local” indices are given in Section 3.

A natural way of discretizing the source term is the following:

Sj = S(xj ,Uj)∆xj . (4)

However, as explained in [2], this choice of Sj does not allow to preserve exactly the stationary solutions.
It is also neither exact nor even more precise on the source than on the rest. Indeed, the “approximate Well-
Balanced” discretization [28] are just more accurate, which in practice, is enough. We present in Section 2.2
the general procedure described designed in [2] aimed at preserving numerically the stationary solutions.

Definition 2.1 (Sign of a matrix). Let J ∈ Rm×m be a diagonalizable matrix of size m × m. Let {λi}mi=1
denote its eigenvalues, R the matrix composed of the eigenvectors associated to the eigenvalues, and L the
matrix associated to the left eigenvectors of J (i.e. the eigenvectors of JT ). We know that:

J = R diag ({λi})L, RL = LR = Im,

and we define:
sign(J) = R diag ({sign(λi)})L. (5)

In Definition 2.1, unless stated explicitely, the term “eigenvector” refers to the right eigenvectors, that is the
vectors v such that Jv = λv for some eigenvalue λ.

2.2. Well Balanced (Enhanced consistency)
One of the main disadvantages of the discretization (4) is that, even if the scheme were to be initialized

with an exact stationary solution, the approximate solution eventually drifts away from the stationary solution.
However, it is desirable to be able to accurately capture exact stationary solutions at the discrete level. This
defines our first criterion:

1“Degree of freedom” will later be abbreviated dof .
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Criterion 2.2. If, at some iteration n, we have:

∀j, Un(xj) = U∗(xj) with d

dx
F (U∗) = S(x, U∗(x)),

then
∀j, Un+1(xj) = Un(xj).

This criterion means that we want the scheme to be able to “capture” (or at least get an accurate approxi-
mation of) continuous stationary solutions. We define (enhanced consistency) Φ = F (U∗). As explained in [2],
a way of satisfying Criterion 2.2 is to define the source term as:

Sj = 1
2
[
(I + Λj+1/2)Φ(xj) + (I − Λj+1/2)Φ(xj+1)− (I + Λj−1/2)Φ(xj−1)− (I − Λj−1/2)Φ(xj)

]
= 1

2
[
(I − Λj+1/2)(Φ(xj+1)− Φ(xj)) + (I + Λj−1/2)(Φ(xj)− Φ(xj−1))

]
. (6)

Owing to the well-known formula:

Φ(xj+1)− Φ(xj) =
∫ xj+1

xj

S (y, U∗(t, y)) dy, (7)

we are able to rewrite (6) as

Sj = 1
2

(∫ xj+1

xj−1

S (y, U∗(t, y)) dy − Λj+1/2

∫ xj+1

xj

S (y, U∗(t, y)) dy + Λj−1/2

∫ xj

xj−1

S (y, U∗(t, y)) dy
)
.

Since U∗ is not known a priori, we define the source term as

Sj = 1
2

(∫ xj+1

xj−1

S (y, U(t, y)) dy − Λj+1/2

∫ xj+1

xj

S (y, U(t, y)) dy + Λj−1/2

∫ xj

xj−1

S (y, U(t, y)) dy
)
, (8)

and Criterion 2.2 is still satisfied. As noticed in [2], when S is piecewise constant (S = Sj = S(xj , U(xj)) on
cell j), Equation (8) can be reformulated in a simpler way:

Sj = 1
2
(
I + Λj−1/2

)(∆xj−1
2 Sj−1 + ∆xj

2 Sj

)
+ 1

2
(
I − Λj+1/2

)(∆xj
2 Sj + ∆xj+1

2 Sj+1

)
. (9)

This simple formula for the discretized source term S seems, at first sight, more reasonable than a centered
discretization of the source term. The work [2] provides numerical experiments to show that the discretization
(9) is indeed better than the centered discretization. The two-dimensional setting cannot be treated in the same
way, since it not possible to write (7), nor to split (8) as easily as in 1d.

We now turn to a description of the two-dimensional framework, then propose some discretizations of the
source term, and finally asses their efficiency on numerical examples.

3. 2D Schemes
Let Ω = [0, 1]2, and define T a polygonal mesh over Ω. We denote by Ωj a polygonal cell of the mesh T , and

let xr−1, xr and xr+1 three consecutive vertices of the polygon Ωj . Define

• the middle of the edge [xr,xr+1]: xr+ 1
2

= xr + xr+1
2 ,
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• the outward normal to the edge directed from xr to xr+1, [xr,xr+1]: Cr+ 1
2

j = −(xr+1 − xr)⊥,
• the normal to the node r: Cr

j = 1
2

(
Cr+ 1

2
j + Cr−1/2

j

)
,

where, for any vector v = (v1, v2) ∈ R2, we use the usual notation v⊥ = (−v2, v1) which corresponds to a
rotation of angle +π

2 . In what follows we present the composite schemes, as a combination of “node-based
schemes” – which involve Cr

j – and “edge-based schemes” – which involve Cr+ 1
2

j . This is not new, and very
much inspired from [1].
Remark 3.1. We acknowledge that it normally does not make sense to talk about a “normal vector to a node”.
However, the definition we use (which has been borrowed from [1]) is always well-defined for polygonal meshes.
For all of our purposes, it is well-suited and we shall use this definition throughout this work.

xr+1

xr+ 1
2

xr xr−1/2

xr−1

Cr+ 1
2

j Cr−1/2
j

Cr
j

Ωj

Figure 2. Normal vectors at nodes and edges: com-
posite set (not to scale).

For the sake of clarity, we start by explaining be-
low the different sums that can be performed over the
mesh, for an arbitrary function g = g(x). By conven-
tion, for any given cell we will use integers r to denote
vertices of the cell, also called nodes. They are sup-
posed to be labelled consecutively, so that it makes
sense to talk about the edge [xr,xr+1]. Moreover,
we implicitely suppose r ∈ {1, . . . , V } for a polygonal
cell with V vertices (with the loop convention that
xV+1 = x1). We also denote by half-integers r + 1

2
the middle of the edge [xr,xr+1]. Our conventions are
illustrated in Figure 2.

For a given cell Ωj we denote by dof ∈ {r : r ∈
Ωj} ∪ {r + 1

2 : r + 1
2 ∈ Ωj} any degree of freedom of

Ωj (it can be a node or the middle of an edge), and the notation gdofj denotes the evaluation of the function g
at the node or edge dof in cell Ωj . Sometimes dof will also denote a general degree of freedom in the mesh, i.e.
it can be any node or middle of an edge in the mesh. The meaning of dof will be clear from the context (think
of r and r+ 1

2 as “local indices” within a given cell, and of dof as either a “local” or “global” index, depending
on the context).

•
∑
r∈Ωj

grj : sum over all the vertices of the cell j,
•
∑
r+ 1

2∈Ωj
g
r+ 1

2
j : sum over all the mid-edge points of the cell j,

• Ndof =
∑
i:dof∈i 1: number of cells that contains the given degree of freedom dof ,

•
∑
i:dof∈Ωi

gdofi : sum, for a given degree of freedom in the mesh, over all the cells that contains this
degree of freedom,
•
∑
j∈T gj : sum over all cells in the mesh,

•
∑
r∈nodes(T ) g

r: sum over all nodes in the mesh,
•
∑
r+ 1

2∈edges(T ) g
r+ 1

2 : sum over all mid-edge points in the mesh,
• h : the maximum edge length among all edges in the mesh.

The normal vectors Cr
j satisfy the following equalities:∑

r∈Ωj

Cr
j =

∑
r+ 1

2∈Ωj

Cr+ 1
2

j = 0, ∀j ∈ T , (10)

∑
i:dof∈Ωi

Cdof
i = 0, ∀ dof ∈ {r : r ∈ Ωj} ∪ {r + 1/2 : r + 1/2 ∈ Ωj} . (11)
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xr+1 xr

Ωr
i

Ωr
m

Ωr
l

Ωr
k

xr−1/2

xr−1

xr+1/2

Ω
r+1/2
k

xj
Ωj

xk
Ωk

xl
Ωl

xm
Ωm

xi
Ωi

Ωr
jΩ

r+1/2
j

(a) Generic cell Ωj with its sub-cells Ωdofj defined around nodes r and edges
r + 1

2 .

Ωr

Ωr+1/2

xj

xk

xl

xm

xi

(b) Associated composite dual cell around
node xr: Ωr = ∪i;r∈iΩri , and around edge
xr+ 1

2
: Ωr+1/2 = Ωr+1/2

j ∪ Ωr+1/2
k .

Figure 3. Illustration of subcells (left) and composite dual cells around nodes and edge (right).

Moreover, we have the following result, whose proof can be found in [29]:
Proposition 3.2. Let g ∈ C2(R2;R). Then, for all θ ∈ [0, 1]:

1
|Ωj |

∫
∂Ωj

gn = 1
|Ωj |

(1− θ)
∑
r∈Ωj

g(xr)Cr
j + θ

∑
r+ 1

2∈Ωj

g(xr+ 1
2
)Cr+ 1

2
j

+O(h), (12)

and the remainder term in (12) vanishes if g is an affine function.
We define the sub-volumes (see Figure 3 for an illustration)

|Ωrj | =
1− θ

2 (xr − xj) ·Cr
j , |Ωr+1/2

j | = θ

2(xr+1/2 − xj) ·Cr+1/2
j , (13)

so that the volume of the cell Ωj reads

|Ωj | =
∑
r∈Ωj

|Ωrj |+
∑

r+ 1
2∈Ωj

|Ωr+
1
2

j | =
∑

dof∈Ωj

|Ωdofj |. (14)

We end this section by giving a definition that will be useful in the rest of the paper, and which generalizes
Definition 2.1 to the two-dimensional case.
Definition 3.3. We define the Jacobian matrix of the physical flux function F , given by (2), along the unit
direction vector n = (n1, n2) as

J(U ,n) = n1∇F1(U) + n2∇F2(U).
This matrix is diagonalizable because the system (1) is hyperbolic. Moreover, we have:

J(U,n) = −J(U,−n), (15)

hence, by (5),
sign (J(U,n)) = − sign (J(U,−n)) . (16)
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3.1. Edge-based schemes
We now present a 2D edge-based extension of the 1D VFFC scheme described in Section 2. First, integrate

Equation (1) on a given cell Ωj , then use Proposition 3.2 with θ = 1. We obtain that the flux is approximated
by ∫

Ωj

divF (U) =
∫
∂Ωj

F (U) · n ≈
∑

r+ 1
2∈Ωj

Gr+ 1
2 ·Cr+ 1

2
j .

Consider an edge labelled r + 1
2 that does not lie at the boundary of the computational domain (we will deal

later with the boundary conditions), and let j, k the labels of its two support cells. That is, r + 1
2 ∈ Ωj ∩ Ωk.

We define:
Gr+ 1

2 = Fj + Fk
2 + Λr+

1
2

j

Fj −Fk
2 , Λr+

1
2

j = sign J
(
Ur+ 1

2
,nr+

1
2

j

)
, (17)

where the sign of a matrix is defined in Definition 3.3, and nr+
1
2

j = Cr+ 1
2

j

/
‖Cr+ 1

2
j ‖ . Moreover, by Definition

3.3,
Λr+

1
2

j = −Λr+
1
2

k . (18)
Using (18), we note that equation (17) writes:

Gr+ 1
2 = 1

Nr+ 1
2

∑
i:r+ 1

2∈Ωi

(
I + Λr+

1
2

i

)
Fi, (19)

which will be useful in Section 3.2. Moreover, equation (18) also yields:∑
i:r+ 1

2∈Ωi

Λr+
1
2

i = 0. (20)

Finally, the average state Ur+ 1
2
is given by the VFFC average (see [27]):

Ur+ 1
2

= |Ωj |Uj + |Ωk|Uk
|Ωj |+ |Ωk|

. (21)

Remark 3.4. To emphasize the fact that Ur+ 1
2
depends on the cells j and k, we may also write it U(j,k).

3.2. Generalization to the nodes and composite scheme
We present here the composite scheme as defined in [1]. Using Proposition 3.2, we have∫

∂Ωj

F (U) · n ≈ (1− θ)
∑
r∈Ωj

Gr ·Cr
j + θ

∑
r+ 1

2∈Ωj

Gr+ 1
2 ·Cr+ 1

2
j ,

and the composite scheme reads:

|Ωj |
Un+1
j − Uj

∆t + (1− θ)
∑
r∈Ωj

Gr ·Cr
j + θ

∑
r+1/2∈Ωj

Gr+ 1
2 ·Cr+1/2

j = Sj . (22)

The edge flux Gr+ 1
2 is defined in Equation (19), and we define the node flux Gr in a similar manner:

Gr = 1
Nr

∑
i:r∈Ωi

(I + Λri )Fi. (23)



ESAIM: PROCEEDINGS AND SURVEYS 9

A natural choice for defining Λri would be

Λri = Λ̃ri , Λ̃ri := 1
Nr − 1

∑
k:r∈Ωk, k 6=i

sign J(U(i,k),nri ).

where U(i,k) is the notation for the VFFC average between cells i and k given in Remark 3.4, and nri = Cr
i /‖Cr

i ‖ .
However, as opposed to equation (20), we do not have a priori:∑

i:r∈Ωi

Λri = 0. (24)

This property is essential to ensure the consistency of the scheme: indeed, this is a key argument in the proof
of Proposition 3.6.

A way of satisfying equation (24) is to define Λri as:

Λri = Λ̃ri −
1
Nr

∑
k:r∈Ωk

Λ̃rk. (25)

One can recover the edge-based scheme (resp. the node-based scheme) by setting θ = 1 (resp. θ = 0) in the
scheme (22).

3.3. Boundary conditions
In Section 5, we will work with two types of boundary conditions. The first type is the Dirichlet condition,

applied as follows: let dof be a degree of freedom where the solution is imposed to be Uboundary. The numerical
flux is given by: Gdof = F (Uboundary). We make the assumption that the exact solution is known on the
boundary of the computational domain. Using ghost cells, we fill them by the evaluation of exact solution at
their centroïd.

The second type of boundary conditions is outflow and we apply it to a non-stationary two dimensional
Riemann problem (see Figure 13), in this case we fill the ghost cells by extrapolation of the values of their
adjacent cell inside the domain.

3.4. Properties of the composite scheme
Proposition 3.5 (Global conservativity). The scheme (22) is globally conservative, i.e.∑

j∈T
|Ωj |Un+1

j =
∑
j∈T
|Ωj |Uj + ∆t

∑
j∈T
Sj ,

up to some boundary terms.
Proof. We sum (22) over j ∈ T :

∑
j∈T

(
|Ωj |
Un+1
j − Unj

∆t − Sj

)
= −(1− θ)

∑
j∈T

∑
r∈Ωj

Gr ·Cr
j − θ

∑
j∈T

∑
r+ 1

2∈Ωj

Gr+ 1
2 ·Cr+ 1

2
j .

We can then exchange the sum over {j ∈ T } and the ones over {r ∈ Ωj} and
{
r + 1

2 ∈ Ωj
}
, and use the relation

(11) to obtain:

∑
j∈T

∑
r∈Ωj

Gr ·Cr
j =

∑
r∈nodes(T )

∑
i:r∈Ωi

Gr ·Cr
i =

∑
r∈nodes(T )

Gr ·

( ∑
i:r∈Ωi

Cr
i

)
︸ ︷︷ ︸

=0

= 0,
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and:

∑
j∈T

∑
r+ 1

2∈Ωj

Gr+ 1
2 ·Cr+ 1

2
j =

∑
r∈edges(T )

∑
i:r+ 1

2∈Ωi

Gr+ 1
2 ·Cr+ 1

2
i =

∑
r+ 1

2∈edges(T )

Gr+ 1
2 ·

 ∑
i:r+ 1

2∈Ωi

Cr+ 1
2

i


︸ ︷︷ ︸

=0

= 0.

�

Proposition 3.6 (Consistency of the fluxes). The fluxes (17) and (23) are consistent.

Proof. Let r + 1
2 be the index of an inner edge and j, k the indices of its support cells. If Uj = Uk = Ū , then

using (17), we have G = F
(
Ū
)
. Similarly, let r be the index of an inner node, meaning it does not lie on the

boundary of the computational domain. Assuming that Ui = Ū for any cell i such that r ∈ Ωi, we use equations
(23) and (24), and obtain:

Gr = F
(
Ū
)

+ 1
Nr

( ∑
i:r∈Ωi

Λri

)
︸ ︷︷ ︸

=0

F
(
Ū
)

= F
(
Ū
)
.

�

4. Discretization of the source term
In this Section, we study differents ways of computing the numerical source term Sj which satisfy a 2D

version of Criterion 2.2 (ideally) and are different from the classical discretization: Sj = |Ωj |S(xj ,Uj).

4.1. Well Balanced (Enhanced consistency) in 2D
The reasoning is identical to Section 2.2. We want to compute Sj so as to satisfy the following property,

which is a 2D generalization of Criterion 2.2:
Criterion 4.1. If, at some iteration n, we have Un(xj) = U∗(xj) for all j, and U∗ is such that divF (U∗) =
S(x, U∗(x)), then

∀j, Un+1(xj) = Un(xj).
We define (enhanced consistency) Φ∗ = F (U∗), and consider the edge (resp. node) flux as defined in (19)

(resp. (23)). In order to satisfy Criterion 4.1, the source term would need to be discretized as:

Sj = (1− θ)
∑
r∈Ωj

1
Nr

[ ∑
i:r∈Ωi

(I4 + Λri ) Φ∗i

]
·Cr

j + θ
∑

r+ 1
2∈Ωj

1
Nr+ 1

2

 ∑
i:r+ 1

2∈Ωi

(
I4 + Λr+

1
2

i

)
Φ∗i

 ·Cr+ 1
2

j .

However, we do not know a priori Φ∗ nor U∗. Therefore we define Sj as:

Sj = (1− θ)
∑
r∈Ωj

1
Nr

[ ∑
i:r∈Ωi

(I4 + Λri ) Φi

]
·Cr

j + θ
∑

r+ 1
2∈Ωj

1
Nr+ 1

2

 ∑
i:r+ 1

2∈Ωi

(
I4 + Λr+

1
2

i

)
Φi

 ·Cr+ 1
2

j , (26)

where Φ is a solution to div Φ = S(x, Un). The upwind matrices are still given by equations (17) and (25). The
scheme (22) can then be written as:

|Ωj |
Un+1
j − Unj

∆t + (1− θ)
∑
r∈Ωj

G̃r ·Cr
j + θ

∑
r+1/2∈Ωj

G̃r+ 1
2 ·Cr+1/2

j = 0, (27)
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with:
G̃dof = 1

Ndof

∑
i:dof∈Ωi

(
I4 + Λdofi

)
(Fi − Φi). (28)

However, in contrast with the 1D case, it is not possible in the general case to find an expression of Sj as
a function of S and therefore to end up with a formula that is similar to (8). In Section 4.2 we present a way
of computing Φ by solving a Poisson equation, and in Section 4.3, we try to generalize formula (9) to the 2D
framework, without guarantying that Property 4.1 is still satisfied.

4.2. Anti-derivative using a Poisson equation
First of all, let us clarify what we are looking for in this section. By “anti-derivative”, it is meant taking a

function in W ∈ Rp, we look at a function Φ ∈ Rd×p such that W = div Φ. In a one-dimensional setting, the
divergence operator is simply its derivative, hence the anti-derivative is the same as the primitive function (in
this case unique up to an additional constant).

This idea comes from [2] (see also in an other context [30]). In order to solve div Φ = S, we solve the
Poisson problem ∆ψ = S, and let Φ = ∇ψ. We impose homogeneous Dirichlet boundary conditions for ψ. The
construction of the scheme is detailed in Appendix A. With this method, the unknowns (Φi)i that appear in
(28) are given by:

|Ωj |Φj =
∑
r∈Ωj

|Ωrj |Φr +
∑

r+ 1
2∈Ωj

|Ωr+
1
2

j |Φr+ 1
2
, Φr+ 1

2
= Φr + Φr+1

2 , (29)

where the sub-volumes are defined in (13) and the anti-derivative at the nodes satisfies∑
r∈Ωj

Φr ·Cr
j = |Ωj |Sj , (30)

with  ∑
i|r∈Ωi

Cr
i ⊗ (xi − xr)

ΦTr =
∑
i|r∈Ωi

ψi ⊗Cr
i . (31)

Equations (30)-(31) define a linear system whose size is the number of cells and whose unknown is ψ. Once this
system is solved, we compute the anti-derivative at the nodes with equation (31) and the values at the centers
of the cells with equation (29).

Dirichlet boundary conditions
Let dof be a degree of freedom where the solution is imposed to be Uboundary. The numerical flux (28) is

given by: G̃dof = F (Uboundary)− Φdof , where Φdof is defined in (30) (31).

4.3. Sub-volumes upwinding
Pioneering works have been done on the construction of upwind method for source see e.g. [31, 32]. They

give a way to define natural upwind discretization of source when the flux is approximated by some edge ARS:
flux difference or flux splitting technique. We propose here to discretize the source term by upwinding the
sub-volumes around r or r + 1/2:

Sj =
∑

dof∈Ωj

1
Ndof

∑
i:dof∈Ωi

(
I4 + Λdofi

)
|Ωdofi |Si or (32)

=
∑
r∈Ωj

1
Nr

∑
i:r∈Ωi

(I4 + Λri ) |Ωri |Si +
∑

r+1/2∈Ωj

1
2

∑
i:r+1/2∈Ωi

(
I4 + Λr+1/2

i

)
|Ωr+1/2
i |Si, (33)
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where |Ωri | (resp. |Ω
r+ 1

2
i |) is the sub-volume in cell i linked to node r (resp. mid-edge r + 1

2 ). See Figure 3 in
the case 0 < θ < 1.

For example: for θ = 1, by letting k the adjacent cell of j with respect to local edge (r + 1/2), the formula
(32) gives: ∑

r+1/2∈Ωj

1
2

((
I4 + Λr+1/2

k

)
|Ωr+1/2
k |Sk +

(
I4 + Λr+1/2

j

)
|Ωr+1/2
j |Sj

)
. (34)

Knowing that Λr+1/2
j = −Λr+1/2

k , this formula gives a fully upwinding discretization at r+1/2 in cell j. Indeed,
if one consider that all eigenvalues are all strictly positives (resp. all strictly negatives), we recover a local source
flux at r + 1/2 equal to |Ωr+1/2

j |Sj (resp. |Ωr+1/2
k |Sk).

For the edge-based flux discretization at r + 1/2 (θ = 1), a more natural extension (with respect to the
geometric interpretation of the 1D case) with integral form (9) writes:

∑
r+1/2∈Ωj

1
2

(
I4 − Λr+1/2

j

)(
|Ωr+1/2
k |Sk + |Ωr+1/2

j |Sj
)
, (35)

Unfortunately, this formula (35) has not yet been tested and like the 1D case, it does not satisfy the full
upwinding property.

In the next section, we will compare discretizations 4.2 and 4.3 with the centered scheme for which Sj =
Sj |Ωj |.

5. Numerical results

Figure 4. Example of a random
mesh.

We present here some numerical tests to compare the two discretiza-
tions of the source term presented in the Section 4 against the usual
centered discretization. The computational domain is Ω = [0, 1]2. For
some stationary test cases, analytical solutions are known, and thus we
also use these solutions as initial data. We also present a nonstationary
example.

The timestep is given by ∆t = CCFL∆x with the coefficient CCFL
depending on the test case. We perform convergence analysis on Carte-
sian and random meshes. A random mesh is defined as a uniform
Cartesian mesh where the inner nodes are randomly perturbed (see
Figure 4). The final time is T = 0.1.

For each numerical case, we display the results obtained with θ =
1
2 ,

π
4 , 1. The value θ = 1

2 (resp. θ = 1) corresponds to a scheme
exactly halfway between node and edge scheme (resp. to a purely
edge scheme). The value θ = π

4 ≈ 0.78 correspond to the value obtained when considering a conical mesh with
curved edges and letting the curvature tend to zero (see [1]).

For all test cases, we display h on the x-axis, with h = 1
N and N ∈ N∗ the number of discretization points of

the interval [0, 1]. The same number of discretization points N is used in both dimensions.
We do not display the results for θ = 0, since it has been observed (see [1] for instance) that non-physical

phenomena can occur, even in the simplest frameworks. As an illustration of these non-physical phenomena,
we show in Figure 5 a solution obtained for the homogenous Euler equations, with Sedov-type test case (initial
fluid at rest, and density and pressure localised in only one cell). We observe that θ = 0 yields a propagation
only along the corners, as opposed to the results obtained with θ = 0.5 and θ = 1 where the solution propagates
as expected.
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(a) θ = 0 (b) θ = 0.5 (c) θ = 1

Figure 5. Illustration of the non-physical propagation results obtained on Cartesian mesh,
with θ = 0 (left), compared to the physical propagation with θ > 0 (center: θ = 0.5, right:
θ = 1).

Generally, the case θ = 0 is fixed by some ad-hoc processes, for example in the context of Euler equations (in
Lagrangian update context), the pure nodal GLACE scheme exhibit non physical behavior corrected by adding
subzonal entropy [33].

One goal of the current work is to show that the benefits of the purely node schemes can be recovered when
using a composite scheme while attenuating the issues observed. Namely, taking θ > 0 gives a way of curing
pathologies of pure nodal schemes by a generic method.

5.1. 1D gravity
We set u = 0. We add a source term of the form S = (0, ρ∇ζ, ρ∇ζ · u)T with ζ(x) = g · x and g = (−g, 0).

In the 1D framework, Equation (1) can be written as:

dP

dx
= −ρg, P = (γ − 1)ρE. (36)

We choose P of the form: P (x) = 2g(x0 − x) > 0, x0 = 1.5. The density is ρ = 2. We set CCFL = 0.25. The
results obtained on a uniform mesh with different discretizations of the source term are given in Figure 6. The
results obtained on a random mesh with different discretizations of the source term are given in Figure 7. We
can see that all the methods are first order convergent for θ = 1

2 ,
π
4 , 1.

5.2. 2D gravity
We set u = 0. We add a source term of the form S = (0, ρ∇ζ, ρ∇ζ ·u)T with ζ(x) = −g‖x−x0‖2. Equation

(1) can be written as:

∇P = ρ∇ζ, P = (γ − 1)ρE.

A solution writes: P = ρ = eζ and E = 1/(γ − 1). We set CCFL = 0.25. The results obtained on a uniform
mesh with different discretizations of the source term are given in Figure 9. The results obtained on a random
mesh with different discretizations of the source term are given in Figure 10. The schemes are all first order
convergent for θ = 1

2 ,
π
4 , 1.
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4 .
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(c) θ = 1.

Figure 6. L1 error on ρ (leftmost column), ρu1 (second column), ρu2 (third column) and ρE
(rightmost column), for the test case 5.1 – 1D gravity on a uniform mesh with θ = 1

2 (top row),
θ = π

4 (middle row), and θ = 1 (bottom row).

5.3. Friction
The source term is given by S = (0,−λρu,−αλρ‖u‖2)T with α = γ/(γ − 1) and λ = 1. A solution to the

system (1) writes:

ρ = 1, u = 1√
2

(1, 1), E(x) = − λ

γ − 1u · x + 1 + 2λ
γ − 1 .
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(b) θ = π
4 .
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(c) θ = 1.

Figure 7. L1 error on ρ (leftmost column), ρu1 (second column), ρu2 (third column) and ρE
(rightmost column), for the test case 5.1 – 1D gravity on a random mesh with θ = 1

2 (top row),
θ = π

4 (middle row), and θ = 1 (bottom row).

One can easily check that E > ‖u‖2/2. We set CCFL = 0.25. The results obtained on a uniform mesh with
different discretizations of the source term are given in Figure 11. The results obtained on a random mesh with
different discretizations of the source term are given in Figure 12. The methods all are first order convergent
for θ = 1

2 ,
π
4 , 1.
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5.4. 2D Riemann problem
x

y

0.5

0.5

1

1

0

12

3 4

Figure
8. 2D Rie-
mann problem
Lax-Liu (case
12)

In this subsection we display the results obtained at time T = 0.25 on a two-dimensional
Riemann problem. Here, we consider the Lax-Liu test case number 12 of [34], where the initial
data on each quadrant is piecewise constant (see Figure 8). Here, outflow boundary conditions
are imposed.

We also add a one-dimensional gravity term g = (0,−g), with g = 5 (see Figures 13b, 13c).

6. Conclusion
In this work we presented two methods to compute the numerical source term of the 2D Euler equations

using ideas from [1, 2]. The fluxes are discretized using a composite scheme that generalizes the VFFC scheme
(see [27]) to unstructured 2D meshes. We compared the centered discretization of the source term (discretized
at the center of computational cells) with a local and a global approach. The local approach uses the sub-
volumes of computational cells, and performs slightly better for a computational complexity of the same order
of magnitude. The global approach solves a Poisson equation on the whole domain, however it is much more
expensive and does not perform significantly better. The results that we obtain are not as good as we expected,
but on the basis of composite (node/edge) numerical fluxes, we have now other ways to explore, for example
extending the work of [32].

Nevertheless, on the one-dimensional gravity case, the sub-volume and centered discretizations yield very
similar results. This benefit is observable on the two-dimensional gravity test, and in this case the sub-volume
approach gives the same rate of convergence but with a lower error constant. The sub-volume approach is then
preferrable for source terms of type gravity.

A. Construction of the diffusion scheme (30)
We follow [29,35,36] and propose here a composite scheme to solve the following Poisson problem:

∆v = f, (37)
where v and f are scalar valued functions and with homogeneous Dirichlet boundary conditions. Equation

(37) is integrated over a cell Ωj : ∫
∂Ωj

∇v · n =
∫

Ωj

f. (38)

Using Proposition 3.2, we can approximate:∫
∂Ωj

∇v · n ≈ (1− θ)
∑
r∈Ωj

(∇v)(xr) ·Cr
j + θ

∑
r+ 1

2∈Ωj

(∇v)(xr+ 1
2
) ·Cr+ 1

2
j . (39)

The gradient at the nodes is computed as follows. Using a Taylor expansion, one can write:

vj = vr + (∇v)(xr) · (xj − xr) +O(h2). (40)
Multiplying (40) by Cr

j and summing over all the cells around r:

∑
i|r∈Ωi

viCr
i = vr

∑
i|r∈Ωi

Cr
i +

 ∑
i|r∈Ωi

Cr
i ⊗ (xi − xr)

 (∇v)(xr) +O(h3).

The sum vr
∑
i|r∈Ωi

Cr
i always vanishes. Indeed, if the node r is inside the domain, we have

∑
i|r∈Ωi

Cr
i = 0.

Otherwise, the node r is on the boundary and vr is given by the Dirichlet boundary condition, which is 0.
Therefore a good approximation of the gradient at node r, denoted by wr, reads as:
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4 .
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Figure 9. L1 error on ρ (leftmost column), ρu1 (second column), ρu2 (third column) and ρE
(rightmost column), for the test case 5.2 – 2D gravity on a uniform mesh with θ = 1

2 (top row),
θ = π

4 (middle row), and θ = 1 (bottom row).

 ∑
i|r∈Ωi

Cr
i ⊗ (xi − xr)

wr =
∑
i|r∈Ωi

viCr
i , (41)

and the gradient at the edge r + 1/2 is defined by:
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(b) θ = π
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Figure 10. L1 error on ρ (leftmost column), ρu1 (second column), ρu2 (third column) and
ρE (rightmost column), for the test case 5.2 – 2D gravity on a random mesh with θ = 1

2 (top
row), θ = π

4 (middle row), and θ = 1 (bottom row).

wr+1/2 = wr + wr+1
2 . (42)

Therefore wdof is well defined and is consistent with ∇v(xdof ). In addition, using (42), the diffusion flux
(39) reads:
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(b) θ = π
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Figure 11. L1 error on ρ (leftmost column), ρu1 (second column), ρu2 (third column) and ρE
(rightmost column), for the test case 5.3 – Friction on a uniform mesh with θ = 1

2 (top row),
θ = π

4 (middle row), and θ = 1 (bottom row).

(1− θ)
∑
r∈Ωj

wr ·Cr
j + θ

∑
r+ 1

2∈Ωj

wr+ 1
2
·Cr+ 1

2
j =

∑
r∈Ωj

wr ·Cr
j .

The matrix in (41) can be shown to be invertible if the mesh is not too deformed (see [35] and [37]). In
practice, it is invertible as soon as the number of cells that contain the node r is different from 1. For the nodes
located at the corner of the mesh (only one support cell, denoted as j ), we approximate: wr = vjCr

j/‖Cr
j‖2.
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Figure 12. L1 error on ρ (leftmost column), ρu1 (second column), ρu2 (third column) and ρE
(rightmost column), for the test case 5.3 – Friction on a random mesh with θ = 1

2 (top row),
θ = π

4 (middle row), and θ = 1 (bottom row).
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