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Abstract—This study presents a novel approach for fortifying
network security systems, crucial for ensuring network reliability
and survivability against evolving cyber threats. Our approach
integrates Explainable Artificial Intelligence (XAI) with an en-
semble of autoencoders and Linear Discriminant Analysis (LDA)
to create a robust framework for detecting both known and
elusive zero-day attacks. We refer to this integrated method as
AE-LDA. Our method stands out in its ability to effectively detect
both known and previously unidentified network intrusions. By
employing XAl for feature selection, we ensure improved inter-
pretability and precision in identifying key patterns indicative
of network anomalies. The autoencoder ensemble, trained on
benign data, is adept at recognising a broad spectrum of network
behaviours, thereby significantly enhancing the detection of zero-
day attacks. Simultaneously, LDA aids in the identification of
known threats, ensuring a comprehensive coverage of potential
network vulnerabilities. This hybrid model demonstrates superior
performance in anomaly detection accuracy and complexity
management. Our results highlight a substantial advancement in
network intrusion detection capabilities, showcasing an effective
strategy for bolstering network reliability and resilience against
a diverse range of cyber threats.

Index Terms—Network Anomaly Detection, Autoencoders, Un-
supervised Learning, Network Reliability, Cybersecurity

I. INTRODUCTION

In an era where the digital domain has become an inte-
gral part of our daily lives, the reliability and survivability
of network systems stand as crucial elements in ensuring
the continuity and security of our digital interactions. The
uninterrupted operation and safeguarding of these systems
against various cyber threats form the backbone of a resilient
network environment [1]. Central to this resilience is the
ability to detect anomalies, which are departures from expected
network behaviour, ranging from benign errors to malicious
cyberattacks and data breaches [2].

The early identification of such anomalies is vital in
preventing attacks and maintaining the integrity of network
operations. Traditional detection methods, which focus on
known patterns and signatures of attacks [3], often sourced
from honeypots [4], are increasingly insufficient in the face
of sophisticated and unprecedented threats, notably zero-day
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attacks. These attacks, lacking any prior signature, pose a
significant challenge to the reliability and survivability of
network systems.

In response to these challenges, recent advancements have
turned towards Machine and Deep Learning techniques [5],
such as Bidirectional Long Short Term Memory (LSTM) [6],
to capture expected behaviours in network traffic. However,
defining and interpreting these behaviours on a per-flow basis
introduces complexities in accurately identifying intricate at-
tack patterns. Moreover, prediction models exist for aggregate
traffic [7], but it is much more difficult to characterize each
traffic flow to detect anomalies.

In this context, autoencoders, a Deep Learning technique,
emerge as a promising solution for anomaly detection in
network security. They are trained on standard network traffic
to develop an understanding of ’normal’ network behaviour,
enabling them to effectively identify deviations. Inspired
by image processing, Chen et al. [8] implement convolu-
tional/deconvolutional layers before applying the autoencoder.
However, network information is not as spatial as the colocated
pixels of an image.

In this paper, we present a novel approach using an autoen-
coder enhanced with Linear Discriminant Analysis, hereafter
referred to as AE-LDA, The contributions of this paper are as
follows:

1) Advanced Anomaly Detection: Our model, built on
existing machine learning techniques, accurately detects
and classifies network anomalies

2) Versatile and Robust Performance: Our model excels in
versatility and robustness, outperforming many existing
solutions in diverse network and attack scenarios.

3) Zero-Day Attack Detection: The model’s strength lies
in detecting zero-day attacks, using an autoencoder that
characterises normal traffic and adaptive learning to
identify novel threats beyond its training data, enhancing
proactive network security.

The paper’s organization is as follows: In Section II, we

present an overview of related research in the field of anomaly
detection using autoencoders. In III, we presented the threat



model. Our proposed approach is detailed in Section IV.
Section V presents the results of our experiments. Finally, our
conclusions are summarized in Section VI.

II. RELATED WORK

Network data anomaly detection has become a crucial field
of research as a result of the increasing difficulties posed
by cyberthreats that bypass conventional defences. Anomaly
detection, as opposed to systems based on signatures, pinpoints
possible dangers by emphasising unexpected deviations.

A. Network Anomaly Detection Techniques

The complexity and size of contemporary networks have
increased significantly in the current digital era. This increase
demands strict and ongoing monitoring to quickly spot and
respond to out-of-the-ordinary tendencies that might indicate
possible security breaches or unauthorised intrusions. The
academic community and industry specialists have developed
several approaches over time to meet these needs:

a) Knowledge-Based Techniques: are rooted in prede-
fined rules and signatures derived from known threat patterns.
They represent some of the earliest methods in cybersecurity,
with the primary challenge being the creation of pattern
recognition techniques that are sufficiently generic yet effec-
tive. Techniques like heuristic analysis, signature matching
[9], and payload statistical analysis [10] play a crucial role
in identifying these patterns. However, their effectiveness is
often circumvented by attackers who employ tactics such
as embedding noise within the attack vectors to mask their
malicious activities. Specifically, they are vulnerable to attacks
based on Generative Adversarial Networks (GAN) [11].

Despite their proficiency in detecting and countering known
threats, the inherent rigidity of knowledge-based techniques is
a significant limitation. This inflexibility leads to ineffective-
ness against novel, never-before-seen threat patterns, rendering
them unsuitable for defending against modern, sophisticated
cyberattacks [12].

b) Statistical-Based Techniques: operate by establishing
baselines for typical network behaviors. They have their roots
in the field of statistics. When observed data dramatically
deviates from these predefined standards, an anomaly is found.
Typically, this departure from regular network traffic patterns
can be a reliable sign of impending dangers, particularly if
there is a significant variance [13].

¢) Machine Learning-Based Techniques: enter the field
of artificial intelligence and make use of machine learning
algorithms. They frequently use clustering techniques to divide
network data into groups based on similarity measures. Com-
monly, each cluster may represent a specific attack when the
dataset for training is labelled. This stratification helps identify
outliers or abnormalities, alerting us to possible dangers.
Particularly in contemporary IoT situations, their flexibility
and learning skills have shown great potential in identifying
complex abnormalities [14].

B. Exploiting Auto-encoders for Anomaly Detection

The landscape of anomaly detection has been significantly
shaped by the advent and evolution of deep learning tech-
niques. Among these, autoencoders have stood out due to
their innate ability to model complex non-linear relationships
within data. An autoencoder is a neural network designed to
reconstruct its input by first encoding it into a compressed
representation and then decoding it back to the original form.
The projection on the latent space is designed to minimize
the loss of information. Thus, the discrepancy between the
original input and its reconstruction, termed reconstruction
error, becomes a pivotal metric in anomaly detection. Specif-
ically, samples deviating significantly from learned patterns,
as evident from a high reconstruction error, are flagged as
anomalies [15].

Recent advancements in autoencoder-based techniques for
network anomaly detection have shed light on various facets
of this challenging domain. Wang et al. ventured into a hybrid
approach by integrating the BIRCH clustering algorithm with
autoencoders. Their amalgamation aimed to ameliorate the
computational complexity and bolster detection accuracy, a
claim substantiated by their tests on four distinct network
security datasets. However, they recognized the scope for
refining their algorithm and the challenges posed by limited
datasets [16].

Min et al. introduce a novel network intrusion detec-
tion method using a Memory-Augmented Deep Autoencoder
(MemAE). This method addresses the over-generalization
problem of traditional autoencoders by incorporating a mem-
ory module that learns normal input patterns, thus improving
the detection of anomalies. The MemAE model is trained to
reconstruct abnormal samples close to normal samples, thereby
enhancing the detection of network intrusions [17]. The effi-
cacy of the approach is demonstrated through experiments on
the CICIDS2017 dataset [18], which offers a novel solution to
handle high data dimensionality in cybersecurity contexts.

Also, Yang et al. proposed a network intrusion detection
system for Software-defined Networks, utilizing unsupervised
machine learning for the real-time detection of both known and
zero-day attacks. Griffin’s used Kitsune dataset [19] to train
and operate a set of autoencoders, achieving high accuracy
with reduced complexity and latency [20].

AE-LDA suggests a real-time resilient framework for the
detection of both conventional and elusive zero-day network
intrusions. This unique integration sets our approach apart,
particularly in its proficiency to identify and address both
known and unknown network threats effectively.

III. THREAT MODEL AND ASSUMPTIONS

A. Threat Model

In developing our network intrusion detection framework,
we have comprehensively considered the spectrum of threats
across different network layers:



TABLE I
COMPARISON OF MACHINE LEARNING METHODS FOR ANOMALY
DETECTION
Feat. Anal. ZDA Det. | High Acc. | Robust. | RT Det.

Signature based [9] v v X v
Payload statistics [10] v v X X
Flow statistics [13] v X X X
AE-LDA (ours) v v v v

1) Data Link Layer Threats: MAC spoofing, ARP poi-
soning, and identity falsification are prevalent. Our solution
incorporates mechanisms to detect unusual patterns in the
MAC address behaviour, which can be indicative of malicious
activities such as identity spoofing or unauthorised network
access attempts.

2) Network Layer Threats: encompass a variety of attacks,
including IP spoofing, routing attacks, and unauthorised packet
sniffing. Our approach involves the use of advanced analytics
to monitor for irregular traffic flows, suspicious routing pat-
terns, and other signs of intrusion, thereby providing a robust
defense against attacks targeting the network layer.

3) Transport Layer Threats: include SYN flooding, session
hijacking, and port scanning. Our system employs techniques
to recognise abnormal session patterns, unexpected port activ-
ities, and other anomalies that could signal security breaches
at the transport layer.

4) Application Layer Threats: consider zero-day exploits,
advanced malware, and targeted phishing attacks. By utilising
deep learning and pattern recognition, our framework analyses
application-level data to identify signs of malicious activities,
ensuring a high degree of protection against these increasingly
sophisticated attacks.

Table I provides a comparative overview of various machine
learning methods used for anomaly detection, highlighting
their capabilities in terms of feature analysis. In the table,
the abbreviations used are: "Feat. Anal.’ for Feature Analysis,
"ZDA Det.’ for Zero-Day Attacks Detection, 'High Acc.’
for High Accuracy, 'Robust.” for Robustness, and 'RT Det.’
for Real-time Detection. This stratified approach to threat
modelling allows us to tailor our defence mechanisms to the
specific vulnerabilities and attack vectors inherent to each
network layer, ensuring a comprehensive and effective network
intrusion detection system.

B. Design Goals and Assumptions

Our framework is strategically designed to provide a com-
prehensive and resilient approach to network intrusion detec-
tion, addressing the following key goals and assumptions:

1) Enhancing Network Reliability with Real-time Monitor-
ing: Our system is specifically designed to strengthen network
reliability by integrating real-time monitoring capabilities.
This approach ensures that the continuous surveillance and
intrusion detection activities are efficiently managed, mini-
mizing any impact on network performance. By providing
a security solution that operates seamlessly within real-time

constraints, we not only safeguard against intrusions but also
uphold the integrity and stability of network operations. This
real-time aspect is crucial in maintaining network reliability,
as it allows for immediate detection and response to potential
threats, ensuring uninterrupted and stable network functioning.

2) Explainable Al for Transparent Decision-Making: The
integration of Explainable Al (XAI) in our system ensures
that the decision-making process is both transparent and
understandable. This is essential for network administrators
to gain insights into the system’s alerts, leading to informed
and effective security management.

3) Detection of Unknown and Evolving Threats: We have a
strong focus on identifying and mitigating non-conventional,
previously unrecognised network threats, including zero-day
attacks and novel malware types. By analysing network pat-
terns that deviate from the norm, our system provides a robust
defence against these emerging security risks.

4) Resilience Against Evasion Techniques: Recognising the
evolving nature of cyber threats, our system is designed to
remain effective against sophisticated evasion tactics employed
by attackers. This involves maintaining high detection ac-
curacy even as attackers modify their strategies to evade
traditional security measures.

By aligning our design goals and assumptions with these
key areas, we ensure a robust, adaptable, and efficient frame-
work for network intrusion detection. This holistic approach
not only addresses current security challenges but also an-
ticipates future threats, ensuring the long-term resilience and
reliability of network systems.

IV. PROPOSED APPROACH FOR AE-LDA

In this section, we present our proposed approach for
anomaly detection, which encompasses a comprehensive
methodology designed to enhance the accuracy and inter-
pretability of anomaly detection in network security (see Fig.
3). The approach is composed of two main components: i)
Feature Extraction and ii) Anomaly Detection Model.

A. Feature Extraction

Our preprocessing pivotally rests on extracting significant
features from raw PCAP files ( see Fig 1). The primary goals
of this feature extraction are twofold: first, to condense the
intricate web of network interactions into clear, measurable
patterns; and second, to adapt this raw data into a format
amenable for machine learning model training. PCAP files
offer a holistic view of network traffic. By analyzing these
files, we can gain insights into network behaviour, uncover
potential vulnerabilities, and detect malicious activities. Our
main challenge is to methodically identify and categorize the
crucial data contained within these packets. To address this,
our approach is centred on devising an efficient, exhaustive set
of features apt for further analysis. This section provides an in-
depth look at our strategy for extracting features from PCAP
files, laying the groundwork for our comprehensive network
traffic study. We’ve divided the extracted features into five key
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categories, each illuminating different facets of network inter-
actions: Network Traffic Features, Session-related Information
Features, Network Flow Features, Protocol-specific Features,
and Payload Characteristics Features.

Our feature extraction process combines meticulously the
robustness of a Random Forest algorithm with the detailed
insights of SHapley Additive exPlanations (SHAP). The SHAP
value determines how a given feature explains (impacts) the
model’s prediction. We initiate with a Random Forest to
identify key features, where the Gini importance of each
feature f is calculated as:

N
1
Gini Importance(f) = ¥ Zlmpurity Decrease, (f) (1)

i=1

Where N is the number of trees, and Impurity Decrease, (f)
represents the decrease in impurity in the ¢-th tree due to
feature f.

To further refine and understand the importance of these
features, we employ SHAP values. For a feature f, its SHAP
value is determined by:

M
SHAP(f) = % ZMarginal Contribution; (f) ~ (2)
j=1

Where M is the number of all possible permutations of
features, and Marginal Contributionj( f) denotes the change
in the prediction outcome when including feature f in the
j-th permutation.

Algorithm 1 Feature Extraction Algorithm
Train a Random Forest model on the dataset.
for each feature f in the dataset do
Calculate Gini importance of f with eq. 1.
end for
Prune features based on a set importance threshold to reduce
model complexity.
for each remaining feature f do
Compute SHAP values for f with eq. 2 to understand its
contribution.
end for
Utilize optimized TreeSHAP for large datasets to balance
detail and efficiency.

Fig. 2. The autoencoder structure

This comprehensive approach lays a solid foundation for
our approach (see Algorithm 1), ensuring it is underpinned
by the most informative and relevant features for enhanced
predictive accuracy and interpretability.

B. Anomaly Detection Model

Then, we have to detect anomalies in the traffic. We rely
on an autoencoder with Linear Discriminant Analysis (LDA)
to characterize the usual network traffic, and thus, to detect
anomalies.

a) Autoencoder for Anomaly Detection: We train the
autoencoder to capture the normal behavior of network traffic.
Thus, we train the model with all the data which is i) generated
by the network when we are sure that no attack occurs (i.e, at
the first stage of the deployment), ii) a training dataset without
data labeled with an attack. Very classically, the training
objective of the autoencoder is to minimize the Mean Squared
Error (MSE) between the input vector x and its reconstruction
z, given by:

1 n
MSE = = "(x; — &) 3
n =1 (x ’ ) ( )
where n is the number of features. Anomalies are identified

when the reconstruction error exceeds a predefined threshold
0.



The specific structure of the autoencoder is described in
Fig. 2. The architecture of the autoencoder is a key aspect of its
design, reflecting our focus on capturing the intricate patterns
within the data. The input layer of the autoencoder consists
of 17 neurons, corresponding to the 17 selected features in
our scenario. This layer is followed by a series of encoding
layers that successively reduce the dimensionality of the input
data, capturing the most salient aspects of the traffic patterns.
The first encoding layer reduces the input dimensions by half,
utilizing 8 neurons, and employs a ReLU activation function.
A dropout layer with a 30% dropout rate follows to mitigate
the risk of overfitting. The second encoding layer continues
this dimensionality reduction, halving the number of neurons
to 4, and is similarly followed by a ReLU activation and a
dropout layer. We do not employ a (de)convolutional layer
since the packet’s features are not spatially dependent as pixels
of an image are.

The bottleneck, or latent space, of our autoencoder, consist-
ing of 2 neurons, serves as the crux of the model. Here, the
data representation is at its most compressed, encapsulating
the core characteristics of the normal traffic patterns.

Symmetric to the encoding path, the decoding layers of
the autoencoder serve to reconstruct the input data from
its compressed form. The first and second decoding layers
mirror their encoding counterparts, progressively increasing
the dimensions back to the original size (17 features in our
case). Each decoding layer is equipped with a ReLU activation
function and a dropout layer to maintain consistency and
effectiveness in the reconstruction process.

The output layer, with 17 neurons, completes the architec-
ture. It employs a sigmoid activation function to ensure that
the output data mirrors the scale of the original input data.

For training, we use an Adam optimizer with a learning rate
of 0.001 and a mean squared error loss function to fine-tune the
model. To further enhance the model’s performance and avoid
overfitting, we implement an early stopping mechanism, which
halts training if there is no improvement in the validation loss
over five consecutive epochs. The model is trained for up to
50 epochs with a batch size of 256, utilizing shuffled mini-
batches for each training cycle.

b) LDA for Anomaly Classification: In our approach to
network security, detecting anomalies is only the first step;
we propose then to classify these anomalies. To achieve this,
we employ Linear Discriminant Analysis (LDA), a technique
adept at distinguishing between predefined classes in a dataset.
In the context of our study, these classes are explicitly con-
structed using a labelled dataset, which includes various types
of network traffic with attacks.

The LDA operates on the premise of finding a linear
combination of features that best separates the different classes
in the dataset. This separation is crucial, as it allows for a clear
distinction between normal network behaviour and various
types of attacks, which we label as ’attack X’, ’attack Y’, etc.,
alongside the *normal’ traffic label. This distinction is visually
and analytically important, as represented in Figure 3, where

Algorithm 2 AE-LDA Algorithm
Train an autoencoder on normal network traffic data.
for each new data point do
Calculate the reconstruction error.
if error exceeds 6 then
Flag the data point as an anomaly.
Use LDA to classify the anomaly into a specific
category.
end if
end for

different types of network traffic are used to train distinct parts
of the model.

An interesting scenario arises when our autoencoder, de-
signed for anomaly detection, fails to flag an instance as
anomalous, but the subsequent classification by the LDA
indicates an attack. While the LDA is very robust in detecting
known attacks, the autoencoder has a more generic purpose:
it aims at characterising normal traffic. Thus, the autoencoder
targets rather zero-day attacks, that cannot be detected by LDA
because the classification algorithm has not been trained in that
way.

This dual approach, combining the anomaly detection ca-
pabilities of the autoencoder with the classification power of
LDA, provides a comprehensive toolset for network security.
While the autoencoder excels at flagging deviations from nor-
mal traffic patterns, the LDA offers a nuanced understanding
of the type of attack, enabling a more targeted and effective
response to potential security threats. The classification is
based on the linear combination of features that best separates
different classes, using the decision rule:

. P(y|z)
Decision Rule = log —2-2 “4)
P(-y|z)

where P(y|z) is the probability of the anomaly belonging
to a specific class given the features x.

The approach (see Algorithm 2) capitalizes on the capa-
bilities of deep learning for anomaly detection and employs
statistical analysis for classification, thereby offering a holistic
solution for the monitoring of network security.

V. EXPERIMENTAL EVALUATION

In this section, we rigorously assess the performance of our
proposed approach across various dimensions. This evaluation
is meticulously designed to validate the model’s effectiveness
in detecting and classifying network anomalies, emphasizing
both accuracy and real-time responsiveness. We exploit two
different datasets (i.e, CICIDS2017 [21], Kitsune [19]) to
illustrate the genericity of our approach and its robustness to
detect anomalies in a wide range of network activities and
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attack scenarios. We measure usual key performance metrics
expressed as follows:

A B TP+ TN 5)
cearasy = TPYTN+ FP+FN
TP
Precisi = —
recision TP+ FD (6)
TP
Recall = m (7)
2 x Precision x Recall
F1-— =
Seore Precision + Recall ®
T
Prediction time = total 9)

Npackels /Npackets per flows

Where TP, TN, FP, and FN stand for respectively True Posi-
tives, True Negatives, False Positives and, False Negatives.

A. Preliminary performance evaluation

We first evaluate the ability of our model to detect anomalies
and particularly unknown attacks. For this purpose, we train
the autoencoder with benign traffic only. For the test, we use a
dataset with attacks and benign traffic not used for the training
phase. A critical aspect of our evaluation is the model’s
proficiency in detecting unknown attacks, a feature crucial
for real-world applications. This capability is exemplified by
an Fl-score of 0.9417 and an accuracy of 0.9590 observed
in our experiments. Significantly, the model demonstrates a
remarkable ability to identify novel threats, indicative of its
robustness and adaptability to evolving security challenges.
This efficacy in recognizing zero-day attacks underpins the
advanced anomaly detection techniques integrated into our
model. The ROC curve (see Fig. 4) further illustrates the
balance achieved between sensitivity and specificity across
various operational thresholds, indicating the model’s consis-
tent performance under different conditions.

B. Performance on CICIDS2017 Dataset

We compare the performance of the following approaches:
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Fig. 4. ROC Curve depicting the model’s sensitivity and specificity across
varying thresholds.

TABLE 11
COMPARISON OF AUROC PERFORMANCE FOR CICIDS2017 FOR
DIFFERENT MODELS

Model AUROC
OCSVM [22] 0.7684
AE [23] 0.8758
MemAE [17] 0.9101
AE-LDA 0.98

e« OCSVM [22] relies on a Support Vector Machine (SVM)
to classify the traffic in different attacks/benign traffic;

o AE [23] combines an autoencoder with a one-class SVM
approach using the latent space;

e MemAE [17] exploits an autoencoder with a memory
module ;

o LAE-LDA is our approach described in section IV.

It is worth noting that Griffin [19] didn’t provide their imple-
mentation. Thus, we are not able to compare LAE-LDA with
Griffin using the CICIDS2017 dataset. We provide full access
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TABLE III

DETAILED PERFORMANCE METRICS OF OUR MODEL ON CICIDS2017
DoS Accu- Reconstruc. | Mean Area Detection
Attacks racy Err. Square Under | Time

Threshold Error Curve

Hulk 0.9811 | 31.1040 4.1459 0.99 11.99
Goldeneye | 0.98 31.0997 1.0230 0.9772 | 11.93
Slowloris | 0.9800 | 31.2328 0.8357 0.93 11.77
Slow- 0.9873 | 31.1841 0.7761 0.95 12.04
HttpTest

to our code [24] on GitHub to ensure that other researchers
and practitioners can validate, reproduce, and build upon our
work. This transparency is to our mind crucial in the field of
cybersecurity.

We evaluated these models using the Area Under the
Receiver Operating Characteristic (AUROC) metric, a crucial
indicator of a model’s ability to distinguish between different
classes (i.e., attacks and benign traffic). Higher AUROC values
signify greater discriminative power. As shown in Table II and
Fig. 5, LAE-LDA outperforms other models, including our
closest competitor, MemAE, across all types of attacks.

Table III provides a detailed breakdown of LAE-LDA’s
performance for each attack type within the CICIDS2017
dataset. Noteworthy is the model’s consistent detection time
of under 12 ms, irrespective of the attack type. This constancy
is attributed to the fixed number of computational operations
required, regardless of traffic volume, a critical feature for
real-time intrusion detection systems.

The Reconstruction Error Threshold in Table III refers to
the maximum deviation from normal traffic patterns that the
model tolerates before flagging an anomaly. The Mean Square
Error (MSE) estimates the model’s accuracy in reconstructing
input data, with lower MSE indicating higher fidelity. These
metrics, combined with high AUROC scores, demonstrate
LAE-LDA’s robustness and precision in detecting a wide range
of attacks.

AUC by Dataset and Model
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Fig. 6. Performance evaluation on the Kitsune dataset.

TABLE IV
DETECTION ACCURACY COMPARISON ON KITSUNE DATASET

Method AE-LDA | Griffin | pcStream2 | F_SVM | F_RF
ARP MitM 0.9487 0.8048 0.7219 0.7452 0.6512
Video Injection 0.9007 0.8237 0.5816 0.6718 0.6139
Active Wiretap 0.9669 0.9188 0.7413 0.9281 0.7634
OS Scan 0.9713 0.9281 0.7513 0.7517 | 0.7212
SSDP Flood 0.9945 0.9999 0.9971 0.9876 0.8674

In conclusion, the comprehensive evaluation on the CI-
CIDS2017 dataset underscores the advanced detection capa-
bilities of LAE-LDA. Our approach not only exhibits superior
performance in recognizing known attack patterns but also
shows promising potential in identifying novel and sophisti-
cated cyber threats. This advancement sets a new benchmark
in the IDS domain and opens avenues for further research into
adaptive and intelligent cybersecurity solutions.

C. Performance on Kitsune Dataset

We compare LAE-LDA with Griffin [20] and the approaches
already included in the original paper using the Kitsune
dataset [19]. Since the code of Griffin is not available online,
we can only compare our solution with Griffin using the same
dataset, extracting their original results directly from their
paper.

As depicted in Fig. 6 and Tab. IV, our model, incorporating
an autoencoder and LDA, exhibits a strong average detection
capability across various network scenarios. Griffin outper-
forms LAE-LDA only for the detection of the SSD Flood
attack, which is also well detected by other competitors.

The integration of LDA with the autoencoder in our model
is particularly noteworthy for its efficacy in classifying a wide
spectrum of network anomalies, as evidenced by the high
AUROC values. The model’s ability to maintain consistent
performance across a variety of attack scenarios, along with
the open availability of our implementation, reinforces the
practical applicability and reliability of our approach in real-
world security contexts.



D. Discussion

The experimental evaluation of our proposition pinpoints
promising results and underscores its potential in the domain
of network security. This discussion aims to delve deeper into
these findings, exploring their implications and the broader
impact of our research.

1) Model’s Robust Performance: A key highlight of our
model is its robust performance across diverse datasets, par-
ticularly in the detection of sophisticated network anomalies.
The high accuracy observed with the CICIDS2017 and Kitsune
datasets demonstrate the model’s effectiveness in handling
a variety of attack scenarios, ranging from DoS attacks to
more subtle and complex threats like Active Wiretap. This
versatility is crucial for practical deployment in real-world
network environments, where the nature of threats can be
highly varied and unpredictable.

2) Comparative Analysis and Model Superiority: The com-
parative analysis conducted with existing methodologies, such
as OCSVM, AE, and MemAE, reveals a clear superiority of
our model in terms of AUROC performance. This superiority
is not only a testament to the efficacy of our approach
but also highlights the potential shortcomings and areas for
improvement in existing methods.

3) Real-time Responsiveness: The prediction time results
from our model are indicative of its suitability for real-time
application. In the context of network security, where timely
response is critical, the ability of our model to provide quick
and accurate predictions is a significant advantage. This aspect
ensures that our model can be an effective tool in preventing
the escalation of network threats in real-time scenarios.

VI. CONCLUSIONS

In conclusion, this study introduces a robust and adaptable
model for network anomaly detection, which has demonstrated
superior performance across diverse datasets, particularly CI-
CIDS2017 and Kitsune. Its effectiveness in accurately detect-
ing a broad spectrum of network anomalies, including zero-day
attacks, significantly advances the field of network security.

Looking forward, our research opens up several avenues for
future work. Further refinement and optimization of the model
to differentiate anomaly from fault diagnosis of network and
anomaly caused by malicious activity. Also, trying to predict
the attack or anomaly from the behaviour of the network
needs further investigation. In particular, we would like to
detect an ongoing attack from the very beginning, where small
anomalies cumulate to detect malicious behaviours.

ACKNOWLEDGEMENTS

This research was funded by the Federal Ministry of Educa-
tion and Research (BMBF) under reference number COSMIC-
X 02)21D144, and supervised by Projekttriger Karlsruhe
(PTKA).

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]
[9]

(10]

(11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

(23]

[24]

REFERENCES

Y. Yamout, T. S. Yeasar, S. Igbal, and M. Zulkernine, “Beyond smart
homes: An in-depth analysis of smart aging care system security,” ACM
Computing Surveys, vol. 56, no. 2, pp. 1-35, 2023.

M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network anomaly
detection: methods, systems and tools,” leee communications surveys &
tutorials, vol. 16, no. 1, pp. 303-336, 2013.

N. Hubballi and V. Suryanarayanan, “False alarm minimization tech-
niques in signature-based intrusion detection systems: A survey,” Com-
puter Communications, vol. 49, pp. 1-17, 2014.

C. Kreibich and J. Crowcroft, “Honeycomb: Creating intrusion detec-
tion signatures using honeypots,” SIGCOMM Comput. Commun. Rev.,
vol. 34, no. 1, pp. 51-56, jan 2004.

D. K. Reddy et al., “Deep neural network based anomaly detection
in internet of things network traffic tracking for the applications of
future smart cities,” Transactions on Emerging Telecommunications
Technologies, vol. 32, no. 7, p. e4121, 2021.

Y. Imrana, Y. Xiang, L. Ali, and Z. Abdul-Rauf, “A bidirectional Istm
deep learning approach for intrusion detection,” Expert Systems with
Applications, vol. 185, p. 115524, 2021.

A. Lazaris and V. K. Prasanna, “An Istm framework for modeling
network traffic,” in IFIP/IEEE IM, 2019, pp. 19-24.

Z. Chen, C. K. Yeo, B. S. Lee, and C. T. Lau, “Autoencoder-based
network anomaly detection,” in WTS. IEEE, 2018.

B. J. Radford, L. M. Apolonio, A. J. Trias, and J. A. Simpson,
“Network traffic anomaly detection using recurrent neural networks,”
arXiv preprint arXiv:1803.10769, 2018.

K. Wang and S. J. Stolfo, “Anomalous payload-based network intrusion
detection,” in International workshop on recent advances in intrusion
detection.  Springer, 2004, pp. 203-222.

R. Chauhan and S. Shah Heydari, “Polymorphic adversarial ddos attack
on ids using gan,” in ISNCC, 2020.

A. Prayote, “Knowledge based anomaly detection,” Ph.D. dissertation,
UNSW Sydney, 2007.

C.-Y. Lin and S. Nadjm-Tehrani, “Timing patterns and correlations in
spontaneous SCADA traffic for anomaly detection,” in RAID, 2019, pp.
73-88.

A. Chatterjee and B. S. Ahmed, “Iot anomaly detection methods and
applications: A survey,” Internet of Things, vol. 19, p. 100568, 2022.
C. Zhou and R. C. Paffenroth, “Anomaly detection with robust deep
autoencoders,” in international conference on knowledge discovery and
data mining. ACM SIGKDD, 2017, pp. 665-674.

D. Wang, M. Nie, and D. Chen, “Bae: Anomaly detection algorithm
based on clustering and autoencoder,” Mathematics, vol. 11, no. 15, p.
3398, 2023.

B. Min, J. Yoo, S. Kim, D. Shin, and D. Shin, “Network anomaly
detection using memory-augmented deep autoencoder,” IEEE Access,
vol. 9, pp. 104 695-104 706, 2021.

1. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization.”
ICISSp, vol. 1, pp. 108-116, 2018.

Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune:
an ensemble of autoencoders for online network intrusion detec-
tion,” arXiv preprint arXiv:1802.09089, vol. https://doi.org/10.24432/
C5D90Q, 2018.

L. Yang, Y. Song, S. Gao, A. Hu, and B. Xiao, “Griffin: Real-time
network intrusion detection system via ensemble of autoencoder in sdn,”
IEEE Transactions on Network and Service Management, vol. 19, no. 3,
pp. 2269-2281, 2022.

“Intrusion detection evaluation dataset (CIC-IDS2017),” https://www.
unb.ca/cic/datasets/ids-2017.html.

B. Scholkopf, R. C. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt,
“Support vector method for novelty detection,” Advances in neural
information processing systems, vol. 12, 1999.

L. Mhamdi, D. McLernon, F. El-Moussa, S. A. R. Zaidi, M. Ghogho,
and T. Tang, “A deep learning approach combining autoencoder with
one-class svm for ddos attack detection in sdns,” in ComNet. IEEE,
2020.

F. Stodt, “AE-LDA,” GitHub repository, 2023, [Online; accessed 2-
April-2024]. [Online]. Available: https://github.com/f11691/Behaviour_
Anomaly_Detector



