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Completely rethinking physics to understand the universe

F. Salmon *1

1Inria, Univ. Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251, 200 Avenue de la Vieille Tour,
33405 Talence cedex, France

Abstract

Humans have developed mathematical theories to explain observed physical phenom-
ena in nature. However, the links between these theories are not fully understood in
2024. Apparent incompatibilities between quantum mechanics and relativity, for instance,
still exist. This paper proposes a comprehensive theory of the universe that includes
gravitation, quantum mechanics, electromagnetism, special relativity, and general rela-
tivity. All of these theories are derived from the single postulate that the universe is a
four-dimensional ball undergoing accelerating inflation, the surface of which is our three-
dimensional world. The paper shows how each theory is derived from this postulate.

Keywords – Universe, four-dimensional space, mechanical deformation, fluid mechanics, added
mass, compressibility

1 Introduction

In the mid-17th century, Isaac Newton published his law of gravitation in Philosophiae Naturalis
Principia Mathematica. He assumed that the gravitational forces experienced by the planets were re-
ciprocally proportional to the squares of their distances. The proportional constant was first measured
by Henry Cavendish in 1797. Classical mechanics remained the mainstay of science until the end of
the 19th century. The wave aspect of light, described by electromagnetism and Maxwell’s equations,
suggested that light must propagate in a medium that scientists called the luminiferous ether. In the
1880s, while most of them were convinced of its existence, A. Michelson and E. Morley [1] carried
out several experiments that challenged this hypothesis. In particular, they did not measure ”ether
wind”. Classical mechanics could not explain this result and more and more scientists abandoned
the ether concept. It was the case of A. Einstein who, together with M. Grossmann, D. Hilbert,
H. Lorentz and H. Poincaré (for the most famous scientists), contributed to the special and general
theories of relativity. These theories did not require a tangible material such as the ether medium.
They were followed by the discovery of new physical phenomena. One example is the discovery of the
expansion of the universe based on the redshift. In 1913, Slipher observed the universe’s expansion
[2]. In 1922, Friedman formulated mathematically a dynamic universe based on general relativity
[3]. Then, Lemâıtre [4] and Hubble [5] independently formulated a law according to which galax-
ies move away from each other at a rate proportional to their distance. In 1998, two independent
teams discovered that this expansion was accelerating [6, 7]. Scientists explain this phenomenon with
dark energy [8] but its physical nature remains unknown. Many experimenters have carried out tests
to check these theories. So far, special relativity and quantum mechanics have passed these tests.
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General relativity may also be consistent with observations. The precession of Mercury’s perihelion
[9, 10, 11], the bending of light by the Sun [12, 13, 14], gravitational redshift [15], and gravitational
waves [16, 17] are successes of general relativity. However, this theory requires dark matter [18], for
example to match the rotation curves of galaxies [19]. Scientists are trying to detect this hypothet-
ical matter where it should be, without success so far. Others are focusing on Modified Newtonian
Dynamics (MOND) [20], a theory in which Newton’s laws are modified to fit the properties of galaxies.

In 1901, Max Planck [21] solved the problem of black-body radiation by quantizing energy that
would later lead to quantum mechanics. This theory correctly explains the behaviour of atoms and
molecules, quantum tunnelling, supraconductivity, etc. Mathematically, the theory is described by
the Schrödinger equation, governing wave functions. Max Born interpreted the square of the complex
modulus of the wave function as the probability density of finding the particle at a given time and po-
sition. From this point on, the scientific community was divided into two categories, deterministic and
non-deterministic physicists. With the Copenhagen interpretation of quantum mechanics, the non-
deterministic physicists won the debate. This way of thinking considers that there is no hidden variable
responsible for the random behaviour of particles. In the mid-20th century, the success of quantum
electrodynamics led to the development of quantum field theory for the other fundamental interac-
tions, the weak and strong interactions. Despite many attempts, gravitation has not been successfully
embedded in such a formalism. Theoretical physicists are developing ideas to couple gravity to the
other three fundamental interactions through the so-called ”theories of everything”. The first attempt
to unify gravitation and electromagnetism was the Kaluza-Klein theory, which adds a fifth dimension
to spacetime [22, 23]. The two most famous families of theories of everything are string theory [24]
and loop quantum gravity [25]. Like string theory, many other theories take extra dimensions into ac-
count. For instance, extra dimensions are added to spacetime in the Randall-Sundrum models [26, 27].

Therefore, the question of understanding the universe remains open at the beginning of the 21st

century. This is likely due to the intrinsic dual nature of a physical theory, which consists of two
elements, a mathematical framework and an interpretation of that framework. Thus, the construction
of mathematical frameworks based on experiments, such as Newtonian mechanics, special relativity
or quantum mechanics, is the easier part of the process and ensures predictions, but not necessarily
understanding. As a result, theories may have multiple interpretations. The current main interpreta-
tion of the mathematical framework of relativity is time relativity, while the main interpretation for
quantum mechanics is the Copenhagen interpretation. However, neither has been rigorously proven.
When experimenters make measurements that are consistent with the predictions of these theories,
the measurements are often taken to confirm them. Instead, these measurements only indicate that
the mathematical frameworks are correct, possibly up to higher order terms that are negligible in this
range of measurements. It is worth noting that this does not necessarily validate our physical inter-
pretation. For instance, measuring a frequency difference with an atomic clock does not necessarily
support any particular interpretation of the mathematical framework of relativity. Regardless of the
interpretation, the mathematical framework inherently results in a variation of the measured frequency
depending on the relative velocity through the Lorentz transformation. Therefore, an atomic clock is
only a real clock under the assumption that time is relative. In a nutshell, measuring effects and not
the cause of those effects never proves the cause, but only the existence of the effects. Thus, it might
be possible to interpret relativity differently from time relativity and still predict the relativistic effects
that follow from the equations. Besides, this was the objective of several physicists around 1900, but
they failed to find a convincing explanation, like Lorentz’s theory.

Based on this observation, this article proposes alternative interpretations for existing theories,
extending some works already existing in the literature but within a more global and structured frame-
work. The aim is to propose an original and common explanation for the origin of different physical
theories that are often considered independent or without discovered links. Based on one postulate and
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several secondary hypotheses relative to each theory, we successively propose a fundamental reason
for the existence of gravitation, quantum mechanics, electromagnetism, special and general relativity.
We have developed a mathematical framework that leads to the fundamental laws of each theory,
except for quantum mechanics. In the case of quantum mechanics, we rely on the well-known pilot-
wave interpretation. In that sense, the idea discussed throughout this paper should be understood as
a hypothetical unification of existing fundamental physical theories. The postulate and the reasons
leading to it are presented first. Following this, each physical theory is detailed in a dedicated section,
outlining the corresponding mathematical approach.

2 The postulate

Before giving the postulate of the theory developed in the paper, its origin is explained based on
three points. First, general relativity is based on the curvature of spacetime caused by the presence of
matter. To aid in understanding this concept, the literature often uses the analogy of a two-dimensional
space being deformed into a three-dimensional one (Fig. 1). But this is only an illustration of how
three-dimensional space can be warped into four-dimensional space.

Figure 1: Deformation of spacetime due to the presence of a heavy body. The light body rolls
on the curved spacetime. Spacetime is represented as a 2D surface but is actually a 3D spatial
+ 1D temporal surface.

Second, the expansion of the universe shows that the observable universe does not contain a point
that could be considered as the origin of the big bang. The Hubble-Lemâıtre law states that all points
are moving away from Earth and there is no reason for our planet to be at the centre of the universe.
To understand this process, scientists again use an analogy with two-dimensional space. For example,
if the universe has a positive curvature, our habitat can be likened to the surface of an inflating ball.
All points on the surface of an inflating ball move away from each other, while the centre is not part
of this surface. Thus, the universe would be a 3-sphere (sphere in three dimensions), locally deformed
due to mass, embedded in a four-dimensional space.
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Third, it is widely believed that relativity involves the propagation of light in vacuum, making it a
non-material wave. This would be due to the impossibility for an absolute frame of reference to coexist
with relativity. In special relativity, there is indeed no absolute frame of reference, but this does not
mean that it cannot exist, this means that if it does exist, it does not take part in the mathematical
framework of special relativity. Light could propagate in matter while obeying the laws of relativity,
there is no contradiction, as already noted by Einstein himself, who returned to a concept of aether
in 1920 [28].

Based on these three points, it is proposed that the universe is a four-dimensional ball un-
dergoing accelerating inflation and containing matter that is a continuous medium, at
least near its surface. Both the observable universe and ourselves would exist on this surface.

From this single hypothesis, we will derive the same mathematical framework as special relativity,
understand in a new way the pilot wave theory, which is a candidate interpretation of quantum me-
chanics, and mathematically demonstrate the relativistic effects in gravity. In addition, in the next
section, we will show that this structure of the Universe, with additional hypotheses, involves Newton’s
law of gravitation.

Before going any further, let us give a preliminary argument in favour of the proposed theory.
The electromagnetic and gravitational waves become material waves in this theory. The speed of

light should thus be given by a common relation such as c ∝
√

P
ρ with P a parameter homogeneous

to a pressure and ρ a density, both characterising the continuous material at the surface of the
four-dimensional universe, so cosmic vacuum from our point of view. This contradicts the current
hypothesis about the speed of light, which is supposed to be a fundamental constant of the universe
and therefore not given by a formula. However, we have shown in [29] that such a relation exists:

c ∼

√
10

(ε0e−2)3(kBTCMB)4

ρc
∼ 3× 108 m.s−1 (2.1)

where ε0 is the vacuum permittivity, e is the elementary charge, kB is the Boltzmann constant,
TCMB is the temperature of the CMB (Cosmic Microwave Background) and ρc is the critical density
of the universe. The latter is close to the mean vacuum density and can be considered as such in
an order-of-magnitude analysis. The parameter (ε0e

−2)3(kBTCMB)
4 is homogeneous to a pressure in

Pa. Note that because of the 4D hypothesis, the density should be in kg.m−4 and the pressure in
N.m−3. However, the 4D density would be given by a relation like ρc

L with L the thickness of our
”three-dimensional” world (in the direction of the fourth dimension), like the pressure term. As the
ratio of both is considered in the formula, the thickness L disappears, making it possible to use 3D
terms to express the speed of light. Finally, it is worth noting that because our world appears to be
3D, L must be very weak. This point is also necessary to make this material continuous enough to
propagate waves. Too low a 4D density would indeed not characterize a continuous medium.

3 Gravitation

3.1 Preliminary considerations

3.1.1 The nature of gravitation

A direct consequence of the postulate of the theory is the nature of gravitation. Three-dimensional
high-mass bodies evolve on the surface of four-dimensional continuous matter. As the universe in-
flation is accelerating, high-mass bodies experience this acceleration along the fourth dimension and
involve mechanical deformations of the 4D material. This looks like Fig. 1 except spacetime is re-
placed by the 3D surface of the 4D material. In the vicinity of high-mass bodies, an object therefore
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also experiences the acceleration of the universe’s expansion along the fourth dimension, but due to
the surface deformation, experiences an acceleration in the 3-sphere. In the framework of the theory
developed in the paper, this is the origin of gravitation. Gravitation and the universe’s expansion
would have the same origin. This involves that gravitation is not a fundamental interaction, but the
result of accelerating inflation and mechanical deformation.

In the following of this section, we focus on the surface profile equation to be associated with
Newton’s law of universal gravitation. The continuum mechanics theory to be chosen to describe the
physical deformation of the four-dimensional material is then discussed. The second part deals with
the mathematical equations of the gravitation theory and their resolution. This theory of gravitation
is finally discussed.

3.1.2 The deformation profile

This section concerns the deformation profile associated with Newton’s law of universal gravitation.
The heavy body inducing gravitational forces experiences the acceleration of the universe’s expansion
(g) perpendicular to the undeformed 3D surface. Fig. 2 displays such a configuration, where a body of
mass M experiences an acceleration g and bends the surface profile. A lighter body then experiences
an acceleration a due to the curvature of the surface.

Figure 2: Section of the three-dimensional profile (in green) deformed by a high-mass body
(grey disk). According to Newton’s law of universal gravitation, the acceleration a of a light
body (red star) is equal to GM

r2
. g is the acceleration perpendicular to the undeformed surface

profile.

We note the surface equation f . The z-coordinate of the light body is z = f(r, θ, φ). Due to
the spherical symmetry, the equation is independent of θ (polar angle) and φ (azimuthal angle), so
z = f(r). According to Newton, the acceleration of a body in the gravitational field of a heavy body
is a = GM

r2
. Inside it, assuming the heavy body is homogeneous, a = GMr

R3 (where R is the radius of

the heavy body). Using the notations in Fig. 2, tan Ψ = dz
dr and sin Ψ = a

g .
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Both relations yield

dz

dr
=

 tan
(
arcsin

(
GMr
gR3

))
if r ≤ R

tan
(
arcsin

(
GM
gr2

))
if r ≥ R

(3.1)

Assuming that GM
R2 ≪ g, equation (3.1) becomes

dz

dr
∼

{
GMr
gR3 if r ≤ R
GM
gr2

if r ≥ R

The deformation profile is thus given by

z ∼

{
GMr2

2gR3 − 3
2
GM
gR if r ≤ R

−GM
gr if r ≥ R

(3.2)

3.1.3 Which material properties?

This section focuses on the choice of the most suitable mechanical theory to describe the hypothetical
deformation process. First, Newton’s law of universal gravitation states that gravitation forces are
proportional to the mass of bodies. Then, the force experienced by a light body in the gravitational
field of two heavy bodies is equal to the sum of both. The theory of deformation must therefore be
linear. Second, no gravitational field has ever been observed without matter. So the deformation
caused by bodies disappears when they move away. The deformation must therefore be elastic. Third,
gravitational attraction outside a body does not depend on its radius. Therefore, the hypothetical
deformation of four-dimensional matter cannot derive from the surface tension phenomenon of a fluid.
In fact, the deformation of a fluid by this process depends on the load surface. For a solid, the de-
formation does not always depend on the load surface. For instance, the deformation of thin plates
or beams depends only on the magnitude of the applied force. Thus, for the deformation to be inde-
pendent of the body radius, it would seem that the hypothetical four-dimensional material must be
thin in the fourth dimension. Given the previous considerations, continuum mechanics with Hooke’s
law will be the adopted theory. Therefore, the gravitation theory is based on a linear elastic thin
four-dimensional solid material.

It should be noted that the linear elasticity hypothesis assumes that the strains and deformations
are small. In the previous section, it was assumed that the acceleration g is much greater than the
gravitational acceleration. This assumption is actually a consequence of the linear elasticity hypothesis,
since for small deformations, a

g = sin Ψ≪ 1.

3.2 The equations of the theory

The static equations of continuum mechanics correspond to ∇.σ = 0 with σ the Cauchy stress tensor.
Due to the spherical symmetry of gravitation, the spherindrical coordinates lend themselves to this
problem. A spherinder is a four-dimensional cylinder generated by a ball instead of a disc in 3D (Fig.
A.1). The tensor analysis in spherindrical coordinates is presented in appendix A.

The Cauchy stress tensor is calculated from Hooke’s law

σ = 2µε+ λtr(ε)I

where λ and µ are the Lamé coefficients and ε = 1
2

(
t∇u+∇u

)
with u the displacement.
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Due to the symmetries, we assume that u = ur(r, z)er+uz(r, z)ez. Equation (A.2) then gives the
gradient of the displacement and the strain tensor

ε =


∂rur 0 0 1

2(∂ruz + ∂zur)
0 ur

r 0 0
0 0 ur

r 0
1
2(∂ruz + ∂zur) 0 0 ∂zuz


Considering the symmetries, the strain tensor expression and Hooke’s law, relation (A.3) leads to

∇.σ =


∂rσrr + ∂zσrz +

σrr−σθθ
r +

σrr−σφφ

r
0
0

∂rσrz + ∂zσzz +
2
rσrz

 =


0
0
0
0

 (3.3)

In terms of displacements, the set of equations (3.3) yields the following two equations:

2µ∂2
rur + λ∂r

(
∂rur + 2

ur
r

+ ∂zuz

)
+ µ∂z (∂ruz + ∂zur) + 4

µ

r

(
∂rur −

ur
r

)
= 0

µ∂r (∂ruz + ∂zur) + 2µ∂2
zuz + λ∂z

(
∂rur + 2

ur
r

+ ∂zuz

)
+ 2

µ

r
(∂ruz + ∂zur) = 0

The hypotheses given in section 3.1.3 lead to a simplification in both equations. Assuming that the
material is very thin in the fourth dimension ez, the displacement uz can be considered independent
of z, so uz(r, z) = uz(r). Note that for this type of thin geometry, such as beams or plates, there is no
longitudinal strain along the neutral axis. Fibres above the neutral axis must be in tension and those
below in compression in the configuration studied. The radial displacement ur is therefore expected
to be equal to 0 along the neutral axis (ur(r, 0) = 0). Finally, the equations to solve for a rectangular
domain {(r, z) ∈]0; +∞[×]− h

2 ;
h
2 [} are the following:{

2µ∂2
rur + λ∂r

(
∂rur + 2ur

r

)
+ µ∂2

zur + 4µ
r

(
∂rur − ur

r

)
= 0

µ∂r (∂ruz + ∂zur) + λ∂z
(
∂rur + 2ur

r

)
+ 2µ

r (∂ruz + ∂zur) = 0
(3.4)

with the following boundary conditions, consistent with the symmetries and boundary conditions
of gravitation: 

ur(0, z) = 0 ∀z ∈ [−h
2 ;

h
2 ]

∂ruz|r=0 = 0

lim
r→+∞

ur(r, z) = 0 ∀z ∈ [−h
2 ;

h
2 ]

lim
r→+∞

uz(r) = 0

σ(r,−h
2 ).ez = 0 ∀r ∈ [0; +∞[

σ(r, h2 ).ez = − Mg
4
3
πR3ez ∀r ∈ [0;R]

σ(r, h2 ).ez = 0 ∀r ∈]R; +∞[

(3.5)

It is worth noting that the pressure load applied to the material domain in 4D must be in N.m−3,
which explains why the 3D volume of the ball is considered in the sixth boundary condition of (3.5).
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3.3 Resolution

3.3.1 General solution

The second equation of (3.4) can be transformed as follows:

µ

[
∂r (∂ruz + ∂zur) +

2

r
(∂ruz + ∂zur)

]
+ λ∂z

(
∂rur + 2

ur
r

)
= 0

⇒(µ+ λ)

(
∂2
rzur +

2

r
∂zur

)
+ µ

(
∂2
ruz +

2

r
∂ruz

)
= 0

×r2⇒ (µ+ λ)
(
r2∂2

rzur + 2r∂zur
)
+ µ

(
r2∂2

ruz + 2r∂ruz
)
= 0

⇒(µ+ λ)∂r
(
r2∂zur

)
+ µ∂r

(
r2∂ruz

)
= 0

⇒(µ+ λ)∂zur + µ∂ruz =
ϕ(z)

r2
(3.6)

with ϕ an unknown function that depends only on z. Since ∂2
zur = 1

µ+λ
ϕ′(z)
r2

because ∂zuz = 0,

the first equation of (3.4) can be transformed as follows:

2µ∂2
rur + λ∂r

(
∂rur + 2

ur
r

)
+

µ

µ+ λ

ϕ′(z)

r2
+

4µ

r

(
∂rur −

ur
r

)
= 0

⇒(2µ+ λ)∂r

(
∂rur + 2

ur
r

)
+

µ

µ+ λ

ϕ′(z)

r2
= 0

⇒∂rur + 2
ur
r

=
µ

(2µ+ λ)(µ+ λ)

ϕ′(z)

r
+ 3α(z)

with α an unknown function that depends only on z. Note that a multiplication factor of 3 is used
here for simplicity. The solution of this equation is

ur(r, z) = α(z)r +
β(z)

r2
+

µ

2(2µ+ λ)(µ+ λ)
ϕ′(z)

with α and β two unknown functions. Equation (3.6) gives the vertical displacement

∂ruz =
ϕ(z)

µr2
− µ+ λ

µ
∂zur

⇒∂ruz =
ϕ(z)− (µ+ λ)β′(z)

µr2
− µ+ λ

µ
α′(z)r − ϕ′′(z)

2(2µ+ λ)

uz(r) =
(µ+ λ)β′(z)− ϕ(z)

µr
− µ+ λ

2µ
α′(z)r2 − ϕ′′(z)

2(2µ+ λ)
r + γ

with γ a constant since uz is independent of z.

3.3.2 Determination of the unknown functions

We separate two cases, one inside and one outside the heavy body.

1. Outside
The boundary conditions as r tends to infinity lead to:

� ∀z ∈ [−h
2 ;

h
2 ], lim

r→+∞
ur(r, z) = 0⇒

{
α = 0
ϕ′ = 0

� ∀z ∈ [−h
2 ;

h
2 ], lim

r→+∞
uz(r) = 0⇒


α′ = 0
ϕ′′ = 0
γ = 0
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The displacements are therefore given by{
ur(r, z) =

β(z)
r2

uz(r) =
(µ+λ)β′(z)−ϕ

µr

Note that ϕ is actually a constant, since ∀z ∈ [−h
2 ;

h
2 ], ϕ′(z) = 0. We also remember that uz

is independent of z, so ∀z ∈ [−h
2 ;

h
2 ], β′′(z) = 0 and β(z) = az + b, where a and b are two

constants. But the radial displacement along the neutral fibre is equal to 0, so ur(r, 0) = 0 and
β(z) = az.

The boundary conditions at the top and bottom of the domain result in

� σ(r, z).ez = 0 when z = −h
2 and z = h

2 . This leads to σrz(r, z) = 0 and σzz(r, z) = 0 when

z = −h
2 and z = h

2 .

– ∀r ∈]R,+∞[, σrz(r,±h
2 ) = 0 ⇔ ∂ruz|r,z=±h

2
= − ∂zur|r,z=±h

2
⇔ ϕ − (µ + λ)a =

−µa⇔ a = ϕ
λ .

– ∀r ∈]R,+∞[, σzz(r,±h
2 ) = 0⇔ ∂rur + 2ur

r = 0: always true

Finally, the displacements are given by

{
ur =

ϕ
λ

z
r2

uz =
ϕ
λr

2. Inside
The boundary conditions when r = 0 result in:

� ∀z ∈ [−h
2 ;

h
2 ], ur(r = 0, z) = 0⇒

{
β = 0
ϕ′ = 0

� ∀z ∈ [−h
2 ;

h
2 ], ∂ruz|r=0,z = 0⇒

{
ϕ = (µ+ λ)β′ = 0
ϕ′′ = 0

The displacements are therefore given by{
ur(r, z) = α(z)r

uz(r) = −µ+λ
2µ α′(z)r2 + γ

Since uz is independent of z, ∀z ∈ [−h
2 ;

h
2 ], α′′(z) = 0, so α(z) = cz + d, where c and d are two

constants. But the radial displacement along the neutral fibre is equal to 0, so ur(r, 0) = 0 and
α(z) = cz. The stress boundary condition gives the value of c:

σ

(
r,
h

2

)
.ez = − Mg

4
3πR

3
ez ⇒σzz

(
r,
h

2

)
= − Mg

4
3πR

3

⇒λ

(
∂rur|r,z=h

2
+ 2

ur(r,
h
2 )

r

)
= − Mg

4
3πR

3

⇒3λc
h

2
= − Mg

4
3πR

3

⇒c = − Mg

2hπλR3
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Finally, the displacements are given by{
ur(r, z) = − Mg

2hπλR3 zr

uz(r) =
µ+λ
2µ

Mg
2hπλR3 r

2 + γ

3. r = R
The displacement must be continuous when r = R. This gives the following relations:

� ur(R, z) = − Mg
2hπλR3 zR = ϕ

λ
z
R2 ⇒ ϕ = −Mg

2hπ

� uz(R) = µ+λ
2µ

Mg
2hπλR3R

2 + γ = ϕ
λR = − Mg

2hπλR ⇒ γ = −3µ+λ
2µ

Mg
2hπλR

Eventually, the solution is

ur(r, z) =

{
− Mg

2πhλR3 zr if r ≤ R

− Mg
2πhλ

z
r2

if r ≥ R

uz(r) =

{
Mg

4πhλµR

(
(µ+ λ) r2

R2 − (3µ+ λ)
)

if r ≤ R
−Mg
2πhλr if r ≥ R

(3.7)

3.4 Comparison with Newton’s law of universal gravitation

Solution (3.7) can be compared to Newton’s law of universal gravitation (3.2)

uz(r) ∼

{
GMr2

2gR3 − 3
2
GM
gR if r ≤ R

−GM
gr if r ≥ R

(3.8)

For equations (3.7) and (3.8) to be equivalent, it is necessary that:
G
g = g

2πhλµ(µ+ λ)

3G
g = g

2πhλµ(3µ+ λ)
G
g = g

2πhλ

One way to satisfy these three equations is to assume that µ≫ λ. This is equivalent to assuming
a Poisson’s ratio close to 0. In this case, the three previous equations become

G
g ∼

g
2πhλ

3G
g ∼

3g
2πhλ

G
g ∼

g
2πhλ

With G = g2

2πhλ , the solution is equivalent to Newton’s law of universal gravitation.

3.5 Discussion

In summary, a light body rolling on the surface of a four-dimensional material, bent by a heavy body,
is subject to the same force as gravitation, provided two assumptions are true. First, the material
must be elastic and linear, with a Poisson’s ratio close to 0. Second, the material must be thin so that
the vertical displacement is independent of z.

If there are bodies that induce forces beyond the framework of small deformations, then the law
of gravitation can no longer be considered universal. The linearity of the law of gravitation would be
lost. Newton’s law of gravitation could also be rendered invalid if the plasticity limit is exceeded. This
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would induce permanent deformations even without the presence of bodies. The theoretical models
that describe galaxies, and in particular their rotation curves, are based on the assumption that the
law of gravitation is universal. They could therefore be incorrect if one of the cases mentioned above
occurs for a mass of the order of magnitude of a galaxy.

4 Quantum mechanics

Mathematically, quantum mechanics is based on the Schrödinger equation

iℏ
∂Ψ(x, t)

∂t
= − ℏ2

2m
∆Ψ(x, t) + V (x, t)Ψ(x, t)

where Ψ is a wave function, ℏ = h
2π , m is the mass of the considered particle and V is a potential

describing the particle environment. This equation was discovered before understanding the wave
function’s meaning. Max Born interpreted the square of the complex modulus of the wave function
as the probability density to find the particle at time t and position x. This interpretation caused
a division within the scientific community between deterministic and non-deterministic physicists.
With the Copenhagen interpretation of quantum mechanics, non-deterministic physicists won the de-
bate, despite the physical oddities inherent to this interpretation. Among others, this interpretation
posits that there are no hidden variables that can explain the non-deterministic behaviour of particles.

This still remains the most widely accepted interpretation of the Schrödinger equation. However,
some scientists have proposed alternative explanations of quantum mechanics. Pilot wave theory,
initially developed by De Broglie and later by Bohm [30, 31], offers a more physical explanation of
quantum mechanics through a different interpretation of wave-particle duality [32]. In the conven-
tional interpretation of quantum mechanics, the wave and the particle are two different facets of the
same object. The pilot-wave theory posits the existence of both a particle and an associated matter
wave, with the latter guiding the former, causing it to exhibit a wave-like behaviour.

On the fringes of theoretical physics works for decades, Couder and Fort refreshed this field in 2005
with a scientific breakthrough [33, 34]. They demonstrated experimentally that pilot wave theory also
reproduces the known behaviour of quantum particles. Under specific conditions, a vibrating liquid
bath allows small droplets to be propelled by the Faraday waves generated by the impacts. The par-
ticles’s position on the surface of the bath followed the probability density solution of the Schrödinger
equation. Pilot wave theory now tends to become a credible rival to the Copenhagen interpretation of
quantum mechanics. Among others, scientists have successfully studied the interaction between two
or more droplets [35, 36] or the quantum tunneling effect [37, 38].

This interpretation is consistent with the theory developed in this paper. The experimental con-
figuration achieved by Couder and Fort, with an additional dimension, supports the general postulate
in section 2. Particles would bounce off the surface of the 4D ball, generating waves and interacting
with them, while being visible for us only when they are on the surface, in the 3-sphere. This means
that the apparent random behaviour of particles would arise from their interaction with the particles
composing the hypothetical 4D material. Therefore, similar to the speed of light, which is given by
the vacuum properties, so the properties of this hypothetical material, the Planck constant should
also be given by the same parameters. This is the case:

h ∼ 21.7

√
ρc

(ε0e−2)
5
2 (kBT )2

∼ 6.6× 10−34 J.s (4.1)

As previously mentioned in [29], the probability of finding relations for two fundamental constants
based on the same five parameters and two dimensionless numbers of a reasonable order of magnitude
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is mathematically close to 0. Therefore, regardless of the developed theory, both relations (2.1) and
(4.1) provide insight into the true nature of the speed of light and the Planck constant.

5 Electromagnetism

5.1 Well-known fluid analogy

Maxwell’s equations read: 
∇.E = ρe

ε0
∇.B = 0

∇×E = −∂B
∂t

∇×B = µ0j+
1
c2

∂E
∂t

with E the electric field, B the magnetic field, ρe the volume charge density, µ0 = 1
ε0c2

the vacuum
permeability and j the current density. Given these equations, a magnetic vector potential A and an
electric potential ϕ can be defined such that

B = ∇×A

E = −∇ϕ− ∂A
∂t

(5.1)

Let us consider the compressible equations of a perfect fluid:

∂ρ
∂t + ρ∇ · u+ u ·∇ρ = 0
∂u
∂t + (∇× u)× u+ 1

2∇(u · u) = −∇P
ρ

(5.2)

By introducing the vorticity vector ω = ∇ × u and Lamb vector L = ω × u, the momentum
equation of (5.2) becomes equivalent to

ω = ∇× u

L = −∇
(∫ P

P0

dP
ρ + 1

2u · u
)
− ∂u

∂t

(5.3)

Equations (5.3) match with equations (5.1), with

A←→ u

ϕ←→
∫ P
P0

dP
ρ + 1

2u · u
B←→ ω
E←→ L

(5.4)

Therefore, L and ω satisfy Maxwell’s equations, with the charge and current densities given by
the potentials following the same relations as in electromagnetism:

ρe
ε0

= □ϕ− ∂
∂t

(
∇ ·A+ 1

c2
∂ϕ
∂t

)
µ0j = □A+∇

(
∇ ·A+ 1

c2
∂ϕ
∂t

)
where □ = 1

c2
∂2

∂t2
− ∇2 is the d’Alembertian. Note that all the terms in analogy (5.4) can be

multiplied by a constant α without affecting the equations.

5.2 The nature of electromagnetism in the developed theory

The Lorentz force experienced by a particle moving at velocity v corresponds to F = q(E+v×B)←→
qα(v−u)×ω. Noting vP/f = v−u as the velocity of the particle relatively to the fluid, the Lorentz
force αqvP/f ×ω looks like a lift force ρVpCLvP/f ×ω, with Vp representing the volume of the particle
immersed in the fluid and CL representing the lift coefficient. Considering this, let us itemize the
different forces experienced by a solid particle in an unbounded fluid:
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� Its weight P = mg

� The buoyancy force, which compensates for the weight of a partially immersed particle Fb =
−ρVpg

� A drag force due to the viscosity of the fluid Fd = 1
2ρCDS∥vP/f∥vP/f with CD the drag

coefficient and S a characteristic surface area of the particle

� Fluid resistance, modelled by Fa = −ρVpCa
dvP/f

dt + ρVp
du
dt . The theoretical explanation of this

formula is given below.

� A lift force [39, 40] Fl = ρVpCLvP/f × ω

Fluid resistance cannot really be calculated analytically, except in simple configurations such as
incompressible potential flow or weakly rotational flow. It can be assessed using the added mass
concept. Fluid resistance stems from the mass of fluid that a body must move away from its path.
Assuming no fluid velocity, an accelerating body will cause the surrounding fluid to gain kinetic
energy T = 1

2ρ
∫
V u · udV = 1

2ρ
(∫

V
u·u
v·vdV

)
v · v = 1

2ρIv · v. The change in kinetic energy is

then equal to the power of the force representing fluid resistance: dT
dt = ρIv · dvdt = F · v. Then,

Fa = ρI dv
dt = ρVpCa

dv
dt = ma

dv
dt with ma the virtual added mass. If the fluid has a velocity, then the

force is expressed by the relation given above. Note that this force disappears at constant velocity.

Given Maxwell’s equations and the fluid analogy, particles must only experience a lift force. The
drag force can only disappear due to a negligible viscosity, which is consistent with the observation
that particles do not seem to slow down without experiencing external forces. The weight and the
buoyancy force are oriented along the fourth hypothetical dimension, so they do not appear in the 3D
equation of motion. This leaves two forces, Fa + Fl.

Given the postulate of the theory and the interpretation of quantum mechanics, particles must
remain at the surface of the fluid. The pilot-wave theory suggests that particles must bounce to
reproduce quantum effects. Therefore, the situation is more complex than a particle on the surface
of a perturbed fluid. In the context of pilot-wave theory, for the theory of electromagnetism to be
reliable, the fluid surface must not be modified by waves (otherwise quantum mechanics should apply),
so particles must be far enough away from other bouncing particles. Given the fluid analogy, we might
imagine that electromagnetism is the influence of currents in the fluid (decaying as 1

r2
) induced by other

particles. The compatibility between the interpretation of quantum mechanics and electromagnetism
requires that particles must experience lift only upon contact with the fluid. Finally, in order to match
the Lorentz force, it is necessary to assume that ∥dudt ∥ ≪ ∥

dv
dt ∥. This might be attributed to the fluid’s

higher density, which would result in greater inertia. Thus, a simple model describing the motion of
a particle bouncing on a perfect heavy fluid would be given by the following equation of motion:

(m+ma)
dv

dt
= βvP/f × ω (5.5)

The coefficient β should take into account the fact that the particle experiences lift only upon
contact with the fluid surface, the lift coefficient, the volume of the particle immersed upon diving
into the fluid, and possibly the surface tension. In this simple model, equation (5.5) is similar to the
equation of motion of a charged particle in an electromagnetic field, where β = qα and the mass is
replaced by m+ma. This prompts the question: what mass have we assigned to the particles based
on measurements? The mass is only revealed in unsteady configurations when the particle acceler-
ates, so when there is an added mass in this theory. As such, within the framework of the developed
theory, the mass assigned to particles should not be their true mass m, but rather m + ma. Note
that this means that the actual mass of particles would be unknown. Eventually, the assumption that
ρVp ≫ m not only leads to the approximation ∥dudt ∥ ≪ ∥

dv
dt ∥ as seen before, but also ma ≫ m and
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thus ma +m ∼ ma. The following section will demonstrate that the same assumption is required for
special relativity.

To know unequivocally whether equation (5.5) is sufficient to describe the physical situation as-
sumed above, it seems that only numerical simulations or experiments can help, but this is beyond
the scope of this paper.

6 Special relativity

Special relativity is based on the speed of light. Given the status of the speed of light in the presented
theory, i.e. the speed of a material wave, its appearance in the mathematical framework should betray
the compressibility of the 4D material. Therefore, this section deals with the effects of compressibility
and their comparison with the relativistic effects.

6.1 Equations

The interpretation of quantum mechanics and electromagnetism leads us to think that the 4D material
appears as a fluid from a particle’s perspective. This section therefore addresses the displacement of
a particle on the surface of a compressible, perfect fluid. The flow is assumed to be irrotational (no
electromagnetic effect). The governing equations for the fluid are

∂ρ
∂t + ρ∇ · u+ u ·∇ρ = 0
∂u
∂t + 1

2∇(u · u) = −∇P
ρ

(6.1)

As the fluid is assumed to be irrotational, there is a potential ϕ such that u = ∇ϕ. For the sake of
simplicity, we assume that the velocity of the particle is V∞ex. In the following analysis, we consider
the frame of reference of the particle, where the fluid moves at a velocity of −V∞ex. Assuming
small perturbations, ϕ satisfies the following equation (refer to Appendix B for the mathematical
developments):

1

c2
∂2ϕ

∂t2
−
(
1−Ma2

)2 ∂2ϕ

∂x2
− ∂2ϕ

∂y2
− ∂2ϕ

∂z2
− 2

c
Ma

∂2ϕ

∂x∂t
= 0 (6.2)

where Ma = V∞
c is the Mach number. The minus sign in front of the last term in equation (6.2)

differs from equation (B.5) because the fluid velocity along x-direction is negative here. It is worth
noting that the equivalent equation without the compressibility effects (c −→∞) is simply

1

c2
∂2ϕ

∂t2
− ∂2ϕ

∂x2
− ∂2ϕ

∂y2
− ∂2ϕ

∂z2
= 0 (6.3)

The compressible equation (6.2) can be written as the incompressible equation (6.3) with a coor-
dinate change. We first apply a Galilean transformation to be in the frame of reference in which the
fluid is at rest:

x̃ = x+ V∞t

ỹ = y

z̃ = z

t̃ = t
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Then, a Lorentz transformation is applied to the coordinates associated with the fluid at rest:

x′ = γ(x̃− V∞t̃)

y′ = ỹ

z′ = z̃

t′ = γ(t̃− V∞
c2

x̃

where γ =
(
1− V 2

∞
c2

)− 1
2
. This yields

x′ = γx

y′ = y

z′ = z

t′ = γ

(
t

γ2
− V∞

c2
x

)
The derivatives in this coordinate system are:

∂ϕ

∂x
= γ

∂ϕ

∂x′
− γ

V∞
c2

∂ϕ

∂t′

∂2ϕ

∂x2
= γ2

∂2ϕ

∂x′2
− 2

γ2V∞
c2

∂2ϕ

∂x′∂t′
+

(
γV∞
c2

)2 ∂2ϕ

∂t′2

∂ϕ

∂t
=

1

γ

∂ϕ

∂t′

∂2ϕ

∂t2
=

1

γ2
∂2ϕ

∂t′2

∂2ϕ

∂x∂t
=

∂2ϕ

∂x′∂t′
− V∞

c2
∂2ϕ

∂t′2

By introducing these relations into equation (6.2) and noting that (1−Ma2)2 = 1
γ2 , we get

1

c2γ2
∂2ϕ

∂t′2
− ∂2ϕ

∂x′2
+ 2

V∞
c2

∂2ϕ

∂x′∂t′
−
(
V∞
c2

)2 ∂2ϕ

∂t′2
− ∂2ϕ

∂y′2
− ∂2ϕ

∂z′2
− 2

V∞
c2

∂2ϕ

∂x′∂t′
+ 2

(
V∞
c2

)2 ∂2ϕ

∂t′2
= 0

As 1
c2γ2 +

(
V∞
c2

)2
= 1

c2
, equation (6.2) is equivalent to the following incompressible equation

1

c2
∂2ϕ

∂t′2
− ∂2ϕ

∂x′2
− ∂2ϕ

∂y′2
− ∂2ϕ

∂z′2
= 0

This theoretical development is drawn from aeronautical works carried out in the first half of the
twentieth century. The coordinate transformation is named after Glauert (in steady state) [41] but
developed by Küssner [42, 43]. Prandtl also contributed to this problem and developed the theory in
[44]. These authors aimed to estimate the effects of compressibility when the velocity approaches the
speed of sound without computers by using a compressible solution based on the incompressible one.
The coordinate transformation has no meaning, but someone who ignores compressibility might mis-
understand this transformation and attribute the presence of the additional terms in the compressible
equation to time dilation and space contraction. The great similarity between special relativity and
this theory has already been noted [45].
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6.2 Compressibility effects

6.2.1 The physical phenomenon

For an incompressible potential flow, the first-order pressure variation is given by p = −ρ∂ϕ
∂t . Based

on the coordinate change, the pressure variation for a compressible flow can be expressed as p =
−ρ ∂ϕ

∂t′ = −γρ∂ϕ
∂t . Since −ρ∂ϕ

∂t is the pressure variation calculated when the compressibility effects
are neglected, the compressibility of the fluid adds the γ term to the pressure variation expression:
pcomp = γpincomp. Near the wave speed, the pressure tends to infinity. This phénomenon is known as
the sound barrier in aviation. As an aircraft approaches the speed of sound, the pressure in front of
it increases, making it harder and harder to go faster. However, it is possible to exceed the speed of
sound despite the singularity in the pressure relation when Ma = 1. This is due to the limitations
of the presented theory, which is based on several assumptions that do not hold close to the speed
of sound. In particular, the theory assumes that the flow is irrotational and that the particle causes
negligible disturbances. In air, this theory provides consistent results up to Ma ∼ 0.6. However, for
a heavier fluid, the range of validity increases depending on its properties. At the scale of particles,
we can therefore imagine that they barely affect the surface of the hypothetical 4D material, making
the disturbances negligible and the equations developed suitable up to very close to the speed of
light. Measurements on particles could therefore show no deviation from special relativity. However,
according to the theory developed in the paper, special relativity is wrong at speeds close to the speed
of light. It is worth noting that the theory of compressible flow becomes applicable again for speeds
above the speed of sound. 1√

1−V 2∞
c2

must just be replaced with 1√
V 2∞
c2

−1

for supersonic flows.

6.2.2 Law of motion

As introduced in section 5.2, a particle in a fluid experiences fluid resistance, which can be modelled by
the concept of added mass. A particle moving in a fluid at rest is therefore governed by the following
equation of motion:

d(m+ma)v

dt
= Fext

Fluid resistance basically corresponds to the force exerted by the fluid on the surface of a particle
in the direction of motion (assumed to be ex):

∫
pdS · ex = ma

dv·ex
dt . For a compressible fluid, the

force is multiplied by γ, resulting in an equation of motion for a particle that appears as follows:

d(m+ γma)v

dt
= Fext

As discussed in section 5.2, the only way to have the same framework as special relativity is to
assume that the real mass of the particle m is small compared to the added mass ma. This could be
caused by the density of the hypothetical 4D material being much greater than that of the particles.
Under this assumption, the mass attributed to particles by scientists is approximately ma, and they
are governed by equation (6.4)

dγmav

dt
= Fext (6.4)

which is the equation of motion in special relativity.

6.2.3 Change in frequency

Let us consider a quantity oscillating with pulsation ω for an incompressible fluid, leading to a term

like eiωt. The compressible effects modify this term such that eiωt
′
= e

iω
(

t
γ
−γ V∞

c2
x
)
, giving another

pulsation ω′ = ω
γ [46]. Therefore, when an experimenter measures the frequency of a phenomenon
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associated with a system at rest, there are no compressible effects because there is no velocity, so a
pulsation ω is measured. However, the same phenomenon associated with a system moving at a certain
speed relative to the fluid exhibits a pulsation of ω′. Therefore, the compressibility effects modify the
effective frequency of the phenomenon depending on the velocity. This conclusion is qualitatively and
quantitatively the same as in special relativity.

6.2.4 Discussion

Atomic clocks are based on the hypothesis that the resonant frequency of atoms is universal and the
same in any frame of reference. The measurement of a variation in frequency must then be understood
as a dilation of time, as it only remains this explanation. In the developed theory, time is absolute, and
frequency becomes relative, while adhering to the same mathematical theory. Therefore, it is worth
noting that experiments based on atomic clocks do not prove time dilation, but only the mathematical
framework of the theory. The same applies to the mean lifetime of muons, which is assumed to be
universal and independent of the frame of reference. However, their mean lifetime could depend on
their velocity relative to the hypothetical 4D material due to the compressibility effects.

In this theory, a consequence is that the speed of light is not constant and varies in different frames
of reference. In short, the invariance of the speed of light associated with time dilation in special rel-
ativity is replaced by compressibility in the developed theory, while retaining the same mathematical
framework.

I would like to conclude this section with the assumption of a speed limit in relativity, which would
necessarily be close to, or even equal to, the speed of light. The present theory does not include such
a limit, which is actually observed in the universe. Due to the universe’s expansion, some bodies are
moving away from each other at speeds far greater than the speed of light. Physicists save the theory
of relativity by claiming that since it is spacetime that is expanding, which is immaterial, all is well.
However, the bodies in spacetime are composed of matter, and they are still moving away at faster-
than-light velocities, regardless of the cause of those velocities. In addition, special relativity is used to
estimate these velocities through red shift. So relativity can be applied to bodies moving at sublight
speeds, where the cause of the motion is the expansion of spacetime. However, for supraluminal bodies,
which violate relativity, it does not matter as the cause of the motion is the expansion of spacetime.
Hopefully, ad hoc explanations will fail to remain consensual.

7 General relativity

Similar to special relativity, we will focus on the compressibility effects caused by gravitation, as
general relativity is also based on the speed of light (and the gravitational constant).

7.1 Bending of light

As per the previous section, relativity effects are explained without assuming the invariance of the
speed of light. The bending of light can be attributed to the variation of the speed of light, which in
turn modifies the refraction index, leading to the refraction of light rays. We can imagine a modifica-
tion of the refraction index due to a local variation in the density of the 4D material caused by the
presence of high-mass bodies.

Gravitation has been supposed to arise from the deformation of the material surface, as discussed
in section 3. The deformed profile outside bodies is z = −GM

gr , as shown in equation (3.2). The
variation of z results in an overpressure dp = ρgdz. The classical equation of state of a perfect fluid
p = wρc2 is assumed, where w is a dimensionless number used to determine it. Then, dp = p

wc2
GMd1

r
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and the integration gives ln
(

p
p0

)
= GM

wc2r
with p0 the pressure at infinity. Assuming that the pressure

variation p′ = p− p0 is tiny and replacing it with density yields

ρ′ = ρ− ρ0 =
GM

wc2r
ρ0

As the variation in density is very weak, we can neglect second-order terms in the relation that
provides the refraction index. Instead, we will only consider a linear variation with the density. The
variation of the refraction index is therefore given by ρ′

ρ0
so

n = 1 +
GM

wc2r

It is possible to find the value of w to be consistent with general relativity. The Schwarzschild
metric is

c2dτ2 =

(
1− 2GM

rc2

)
c2dt2 −

(
1− 2GM

rc2

)−1

(dx2 + dy2 + dz2)

Necessarily, we need
(
1− 2GM

rc2

)
>
(
1− 2GM

rc2

)−1 v2

c2
, so v < c

(
1− 2GM

rc2

)
, making the new speed

limit, which is assumed to be the speed of light, equal to c′ = c
(
1− 2GM

rc2

)
. In the framework of the

presented theory

n =
c

c′
=

(
1− 2

GM

rc2

)−1

∼ 1 + 2
GM

rc2

To match general relativity, we need w = 1
2 .

The equation of light rays is
d

ds

(
n
dr

ds

)
= ∇n

with s the curvilinear abscissa and r the position vector. Substituting n with its corresponding
expression results in

dn

ds

dr

ds
+ n

d2r

ds2
= −2GM

c2r2
dr

ds

(
dr
ds

r dθ
ds

)
+

(
1 +

2GM

rc2

)(
d2r
ds2
− r

(
dθ
ds

)2
2dr
ds

dθ
ds + r d2θ

ds2

)
=

(
−2GM

r2c2

0

)
(7.1)

The equation in the second direction gives

2GM
rc2

(
dr
ds

dθ
ds + r d2θ

ds2

)
+ 2dr

ds
dθ
ds + r d2θ

ds2
= 0

⇒ d
ds

((
2GM
c2r

+ 1
)
r2 dθds

)
= 0

⇒
(
2GM
c2r

+ 1
)
r2 dθds = J̃

As ds = c′dt = c
(
1 + 2GM

rc2

)−1
dt,

r2
(
1 +

2GM

rc2

)2 dθ

dt
= cJ̃ = J

The first equation of (7.1) gives

d2r

ds2
− J̃2

r3
(
1 + 2GM

rc2

)2 = −2GM

c2r2

(
1 +

2GM

rc2

)−1
(
1−

(
dr

ds

)2
)

(7.2)

By replacing the derivatives with respect to s with derivatives with respect to θ using the following
relations
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dr

ds
=

dθ

ds

dr

dθ
= − J̃

1 + 2GM
rc2

d1
r

dθ

d2r
ds2

= dθ
ds

d
dθ

(
dr
ds

)
= − J̃2

r2
(
1+ 2GM

rc2

) d
dθ

((
1 + 2GM

rc2

)−1 d 1
r

dθ

)
⇒ d2r

ds2
= − J̃2

r2
(
1+ 2GM

rc2

)2

d2 1
r

dθ2
+ 2GMJ̃2

c2r2
(
1+ 2GM

rc2

)3

(
d 1
r

dθ

)2
and subsequently using the notation u = 1

r in equation (7.2), the following equation is obtained

− J̃2u2(
1 + 2GMu

c2

)2 d2udθ2
+

2GMJ̃2u2

c2
(
1 + 2GMu

c2

)3 (du

dθ

)2

=
J̃2u3(

1 + 2GMu
c2

)2− 2GMu2

c2

1 + 2GMu
c2

(
1− J̃2(

1 + 2GMu
c2

)2 (du

dθ

)2
)

Simplifying this expression finally gives

d2u

dθ2
+ u =

2GM

J̃2c2

(
1 +

2GMu

c2

)
=

2GM

J2

(
1 +

2GMu

c2

)
∼ 2GM

J2

since
(
GM
Jc

)2
is very small for light because J ∼ R⊙c with R⊙ the body radius. The bending of

light is thus twice that predicted by Newton’s law of gravitation, which is consistent with the value
observed for the Sun [12, 13, 14]. Note that the equation obtained differs from that of general relativity,
indicating a departure from this theory, in contrast to special relativity.

7.2 Shapiro time delay

In the framework of general relativity, time dilation due to high-mass bodies retards photons [47].
Here, the increase in density leads to a decrease of light speed, which retards photon. For instance, let
us consider a sginal travelling from Earth to a source (Fig. 3). As in general relativity, the curvature
of the trajectory has a negligible effect on time delay. A ”straight path” is therefore assumed in the
calculations.

Sun

Earth
Source

d

rrp
re

Figure 3: Geometrical configuration leading to Shapiro time delay.

It follows

dt =
1

c′
dr ⇒ cdt =

(
1 +

2GM

c2
√
r2 + d2

)
dr

Integrating this relation between Earth and the Sun, and then between the Sun and the source
yields
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c∆t =
∫ 0
re

(
1 + 2GM

c2
√
r2+d2

)
dr +

∫ rp
0

(
1 + 2GM

c2
√
r2+d2

)
dr

= rp + re +
2GM
c2

(
ln(
√
d2 + r2e + re) + ln(

√
d2 + r2p + rp)− 2ln(d)

)
= rp + re +

2GM
c2

ln

(
(
√

d2+r2e+re)(
√

d2+r2p+rp)

d2

)
The first term corresponds to the Newtonian term. Therefore, the additional time delay for a

round-trip travel is

4GM

c3
ln

(
√

d2 + r2e + re)(
√

d2 + r2p + rp)

d2

 ∼ 4GM

c3
ln

(
4rerp
d2

)
(7.3)

when d is small compared to re and rp. Equation (7.3) is the same relation as that obtained with
general relativity [11, 48], which is consistent with measurements [49].

7.3 Gravitational redshift

For a system at rest in a weakly compressible fluid, its natural frequency differs from that in vacuum
due to the surrounding fluid that must be displaced. This can be calculated using the added mass
concept with the relation [50]:

ν =
νvacuum√
1 + ρ

ρp
Ca

The frequency in a same medium but with a different density due to compression will then be

ν =

√
1 + ρ0

ρp
Ca√

1 + ρ
ρp
Ca

ν0

Assuming the same hypothesis required to derive the mathematical framework of special relativity,
it is considered that the mass of the particle is negligible compared to the added mass, resulting in
ρ0
ρp
Ca ≫ 1 and ν ∼

√
ρ0
ρ ν0. As noted in section 7.1, ρ =

(
1 + 2GM

rc2

)
ρ0, so

ν =
ν0√

1 + 2GM
rc2

∼
√
1− 2GM

rc2
ν0

which is the gravitational redshift derived from general relativity.

8 Conclusion

Contemporary physics comprises several theories that attempt to explain phenomena such as gravita-
tion, electromagnetism, relativistic or quantum effects. A great challenge is to unify these theories into
a single framework and supersede local explanations with a global understanding. This work has been
an endeavour to such a theoretical development. Given the existing mathematical frameworks of phys-
ical theories and experimental confirmations of predicted effects, we have proposed a single postulate
to explain most known physical observations. The universe is assumed to be a four-dimensional ball
undergoing accelerating inflation and containing continuous matter near the surface. The continuous
hypothesis is central to explaining gravitation, quantum mechanics, electromagnetism and relativistic
effects.
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We have explained gravitation using the deformation of the material surface and the acceleration
of the universe’s expansion. Newton’s law of universal gravitation has been demonstrated using con-
tinuum mechanics. In this theory, this law is not universal and results from the assumption that the
material is elastic and thin enough to neglect vertical variations of the fourth directional displacement.
In this theory, it is worth noting that when assessing the locations and amounts of dark matter for
high masses, it may be unreliable to use Newton’s law if any of the assumptions are incorrect.

We have explained quantum mechanics thanks to the well-known pilot-wave alternative interpreta-
tion. This approach fits perfectly with the theory presented in the paper. In addition, a relation that
provides the Planck constant based on the properties of the assumed 4D material has been found, as
predicted. Similarly, a formula for the speed of light has been derived based on the same parameters as
the speed of a material wave. This is compatible with our understanding of both quantum mechanics
and gravitation.

We have explained electromagnetism as a fluid phenomenon. As a direct consequence of the inter-
pretation of quantum mechanics, and based on the well-known fluid analogy of Maxwell’s equations,
we have shown the equivalence between Maxwell’s equations and the Lorentz force, and the variations
of pressure and velocity in a fluid involving lift forces on particles.

We have explained special relativity with the compressible potential flow theory. This theory was
particularly studied in aeronautics during the first half of the twentieth century to model supersonic
aircraft. It presents a direct analogy with special relativity, which deals with displacement at speeds
close to the speed of light, which is a material wave according to the postulate of the paper. It has
been recalled that the Lorentz transformation and the Lorentz factor appear naturally in the theory
of compressible potential flow. The same increase of mass as in special relativity is obtained. While
special relativity attributes this increase to time dilation, here it has been explained by the added
mass phenomenon and compressibility.

We have explained general relativity using the same physical phenomenon as special relativity, i.e.
the compressibility of the four-dimensional material and the added mass effect. The bending of light
and Shapiro time delay in the developed theory result from the modification of the refractive index
due to changes in density. Density variations also affect the added mass and, consequently, the natural
frequency of physical phenomena, involving gravitational redshift.

Although the proposed theory is rather advanced in each physical sub-theory, it may still require
further development. Specifically, it does not address certain relativistic effects. The limitations of
Newton’s law of gravitation imposed by the assumptions of the developed theory of gravitation could
also deserve a deeper study in the future.
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A Tensor calculus in spherindrical coordinates

Let us note (e1, e2, e3, e4) the natural basis of R4 and (er, eθ, eφ, ez) the spherindrical basis (Fig.
A.1).

θ

φ

e3

e2

e1

er

eθ

eφ

r

e4 = ez

Figure A.1: Example of a spherinder with spherindrical coordinates.

We consider the spherindrical coordinates (r, θ, φ, z) such as x1 = r sin θ sinφ, x2 = r sin θ cosφ,
x3 = r cos θ and x4 = z. The spherindrical basis vectors can be expressed in the natural basis such as:

er = sin θ sinφ e1 + sin θ cosφ e2 + cos θ e3
eθ = cos θ sinφ e1 + cos θ cosφ e2 − sin θ e3
eφ = cosφ e1 − sinφ e2
ez = e4

The nabla operator is given by ∇ = er∂r + eθ
1
r∂θ + eφ

1
r sin θ∂φ + ez∂z. The symbol ∂α denotes the

partial derivative with respect to the variable α.
Let us calculate the partial derivatives of the spherindrical basis vectors.

∂reα = 0, ∀ α ∈ [r, θ, φ, z]
∂θer = eθ, ∂θ eθ = −er, ∂θeφ = ∂θez = 0
∂φer = sin θ eφ, ∂φeθ = cos θ eφ, ∂φeφ = − sin θ er − cos θ eθ, ∂φez = 0
∂zeα = 0, ∀ α ∈ [r, θ, φ, z]

(A.1)
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Let us consider a vector v = vr er + vθ eθ + vφ eφ + vz ez and calculate the gradient of this vector
G = ∇v = ∂v

∂α ⊗ eα. Then,

G.er =
∂v

∂r
=

∂

∂r
(vr er + vθ eθ + vφ eφ + vz ez) = ∂rvr er + ∂rvθ eθ + ∂rvφ eφ + ∂rvz ez

because ∂reα = 0, ∀ α ∈ [r, θ, φ, z] according to relation (A.1). Then,

G.eθ =
1
r
∂v
∂θ = 1

r [(∂θvr − vθ) er + (vr + ∂θvθ) eθ + ∂θvφeφ + ∂θvzez]

G.eφ = 1
r sin θ

∂v
∂φ = 1

r sin θ [(∂φvr − sin θvφ) er + (∂φvθ − cos θvφ) eθ+

(∂φvφ + sin θvr + cos θvθ) eφ + ∂φvzez]

G.ez = ∂v
∂z = ∂zvr er + ∂zvθ eθ + ∂zvφ eφ + ∂zvz ez

The gradient of v can therefore be written

∇v =


∂rvr

1
r∂θvr −

vθ
r

1
r sin θ∂φvr −

vφ
r ∂zvr

∂rvθ
1
r∂θvθ +

vr
r

1
r sin θ∂φvθ − cot θ

vφ
r ∂zvθ

∂rvφ
1
r∂θvφ

1
r sin θ∂φvφ + vr

r + cot θ vθ
r ∂zvφ

∂rvz
1
r∂θvz

1
r sin θ∂φvz ∂zvz

 (A.2)

The divergence of the vector v is given by

∇.v = tr(∇v) =
1

r2
∂r(r

2vr) +
1

r sin θ
∂θ(sin θvθ) +

1

r sin θ
∂φvφ + ∂zvz

Now, let us consider a symmetric second-order tensor field σ and calculate its divergence. With “:”
denoting the double dot product and I = er ⊗ er + eθ ⊗ eθ + eφ ⊗ eφ + ez ⊗ ez the second order
identity tensor, ∇.σ = ∇σ : I. With A a third-order tensor field and b and c two vectors, we have
A : (b⊗ c) = (A.b).c. The divergence of σ can then be expressed as

∇.σ = (∇σ.er).er + (∇σ.eθ).eθ + (∇σ.eφ).eφ + (∇σ.ez).ez

= (∂rσ).er +
1

r
(∂θσ).eθ +

1

r sin θ
(∂φσ).eφ + (∂zσ).ez

The calculation of ∂γσ can be divided into two parts:

∂γσ = ∂γ
∑

α=r,θ,φ,z

∑
β=r,θ,φ,z

σαβ eα ⊗ eβ

=
∑

α=r,θ,φ,z

∑
β=r,θ,φ,z

(∂γσαβ)eα ⊗ eβ +
∑

α=r,θ,φ,z

∑
β=r,θ,φ,z

σαβ[(∂γeα)⊗ eβ + eα ⊗ (∂γeβ)]

The derivatives of the basis vectors are given by relations (A.1).
Since ∂reα = 0, ∀ α ∈ [r, θ, φ, z], γ = r yields ∂rσ =

∑
α=r,θ,φ,z

∑
β=r,θ,φ,z

(∂rσαβ)eα ⊗ eβ.

So,

(∂rσ).er =
∑

β=r,θ,φ,z

(∂rσrβ)eβ = (∂rσrr)er + (∂rσrθ)eθ + (∂rσrφ)eφ + (∂rσrz)ez

If γ = θ, ∑
α=r,θ,φ,z

∑
β=r,θ,φ,z

σαβ[(∂θeα)⊗ eβ + eα ⊗ (∂θeβ)] =

σrr(eθ ⊗ er + er ⊗ eθ) + σrθ(eθ ⊗ eθ − er ⊗ er − er ⊗ er + eθ ⊗ eθ)

+ σrφ(eθ ⊗ eφ + eφ ⊗ eθ) + σrz(eθ ⊗ ez + ez ⊗ eθ)− σθθ(er ⊗ eθ + eθ ⊗ er)

− σθφ(er ⊗ eφ + eφ ⊗ er)− σθz(er ⊗ ez + ez ⊗ er)
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We replaced the derivatives directly and used the symmetry of σ. Then,

(∂θσ).eθ =
∑

β=r,θ,φ,z

(∂θσθβ)eβ + (σrr − σθθ)er + 2σrθeθ + σrφeφ + σrzez

= (σrr − σθθ + ∂θσrθ)er + (2σrθ + ∂θσθθ)eθ + (σrφ + ∂θσθφ)eφ + (σrz + ∂zσθz)ez

If γ = φ,∑
α=r,θ,φ,z

∑
β=r,θ,φ,z

σαβ[(∂φeα)⊗ eβ + eα ⊗ (∂φeβ)] =

σrr sin θ(er ⊗ eφ + eφ ⊗ er) + σrθ(cos θer ⊗ eφ + sin θeφ ⊗ eθ + cos θeφ ⊗ er + sin θeθ ⊗ eφ)

+ σrφ(2 sin θeφ ⊗ eφ − 2 sin θer ⊗ er − cos θ(er ⊗ eθ + eθ ⊗ er)) + σrz sin θ(eφ ⊗ ez + ez ⊗ eφ)

+ σθθ cos θ(eθ ⊗ eφ + eφ ⊗ eθ) + σθφ(2 cos θeφ ⊗ eφ − 2 cos θeθ ⊗ eθ − sin θ(eθ ⊗ er + er ⊗ eθ))

+ σθz cos θ(eφ ⊗ ez + ez ⊗ eφ)− σφφ(sin θ(eφ ⊗ er + er ⊗ eφ) + cos θ(eφ ⊗ eθ + eθ ⊗ eφ))

− σφz(sin θ(er ⊗ ez + ez ⊗ er) + cos θ(eθ ⊗ ez + ez ⊗ eθ))

Then,

(∂φσ).eφ =
∑

β=r,θ,φ,z

(∂φσφβ)eβ + (sin θσrr + cos θσrθ − sin θσφφ)er

+ (sin θσrθ + cos θσθθ − cos θσφφ)eθ + (2 sin θσrφ + 2 cos θσθφ)eφ + (sin θσrz + cos θσθz)ez

= (sin θσrr + cos θσrθ − sin θσφφ + ∂φσrφ)er + (sin θσrθ + cos θσθθ − cos θσφφ + ∂φσθφ)eθ

+ (2 sin θσrφ + 2 cos θσθφ + ∂φσφφ)eφ + (sin θσrz + cos θσθz + ∂φσφz)ez

If γ = z,
(∂zσ).ez = (∂zσrz)er + (∂zσθz)eθ + (∂zσφz)eφ + (∂zσzz)ez

Finally, the divergence of σ given in the spherindrical basis is

∇.σ =


∂rσrr +

1
r∂θσrθ +

1
r sin θ∂φσrφ + ∂zσrz +

σrr−σθθ
r +

σrr−σφφ

r + cot θ
r σrθ

∂rσrθ +
1
r∂θσθθ +

1
r sin θ∂φσθφ + ∂zσθz + 3σrθ

r + cot θ
σθθ−σφφ

r

∂rσrφ + 1
r∂θσθφ + 1

r sin θ∂φσφφ + ∂zσφz + 3
σrφ

r + 2 cot θ
r σθφ

∂rσrz +
1
r∂θσθz +

1
r sin θ∂φσφz + ∂zσzz + 2σrz

r + cot θ
r σθz

 (A.3)
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B Compressible potential flow equation

The governing equations are (6.1), equivalent to

1
ρ
∂ρ
∂t +∇ · u+ 1

ρu ·∇ρ = 0
∂u
∂t + 1

2∇(u · u) = −∇P
ρ

(B.1)

With u = ∇ϕ, the momentum equation becomes:

∂∇ϕ

∂t
+

1

2
∇(∇ϕ ·∇ϕ) = −∇P

ρ
= −∇

∫ P

P0

dP̃

ρ
(B.2)

⇒∂ϕ

∂t
+

1

2
(∇ϕ ·∇ϕ) +

∫ P

P0

dP̃

ρ
= C

⇒∂2ϕ

∂t2
+

1

2

∂

∂t
(∇ϕ ·∇ϕ) +

∂

∂t

∫ P

P0

dP̃

ρ
= 0

⇒∂2ϕ

∂t2
+

1

2

∂

∂t
(∇ϕ ·∇ϕ) +

1

ρ

∂P

∂t
= 0

The definition of the speed of the material wave (here the speed of light) yields c2 = dP
dρ . Assuming

constant the speed of wave, c2 ∂ρ∂t = ∂P
∂t . The momentum equation therefore becomes

∂2ϕ

∂t2
+

1

2

∂

∂t
(∇ϕ ·∇ϕ) +

c2

ρ

∂ρ

∂t
= 0⇒ 1

ρ

∂ρ

∂t
= − 1

c2
∂

∂t

(
∂ϕ

∂t
+

1

2
(∇ϕ ·∇ϕ)

)
From equation (B.2),

1

ρ
u ·∇ρ =

1

ρc2
u ·∇P = − 1

c2
∇ϕ ·∇

(
∂ϕ

∂t
+

1

2
(∇ϕ ·∇ϕ)

)
As ∇ · u = ∆ϕ, the continuity equation of (B.1) yields

∆ϕ− 1

c2
∂

∂t

(
∂ϕ

∂t
+

1

2
(∇ϕ ·∇ϕ)

)
− 1

c2
∇ϕ ·∇

(
∂ϕ

∂t
+

1

2
(∇ϕ ·∇ϕ)

)
= 0

⇒∆ϕ− 1

c2

(
∂2ϕ

∂t2
+

∂

∂t
(∇ϕ ·∇ϕ) +

1

2
∇ϕ ·∇ (∇ϕ ·∇ϕ)

)
= 0

Let us note xi with i ∈ [0, 2] representing coordinates x, y and z and j ≡ i+1 (mod 3). Then the
general form of the equation is

1

c2
∂2ϕ

∂t2
=

2∑
i=0

1−

(
∂ϕ
∂xi

c

)2
 ∂2ϕ

∂x2i
− 2

c2

(
∂ϕ

∂xi

∂2ϕ

∂xi∂t
+

∂ϕ

∂xi

∂ϕ

∂xj

∂2ϕ

∂xi∂xj

) (B.3)

Let us assume small perturbations in the flow, neglecting third order terms. By introducing the

Mach number in each direction Mai =
ui
c =

∂ϕ
∂xi
c , equation (B.3) looks like

1

c2
∂2ϕ

∂t2
−

2∑
i=0

(
1−Ma2i

)2 ∂2ϕ

∂x2i
+

2

c

2∑
i=0

Mai
∂2ϕ

∂xi∂t
= 0 (B.4)

Finally, if the fluid velocity is assumed to be mainly along one direction such that u = (V∞ +
ux)ex + uyey + uzez with ux, uy and uz small velocity disturbances of the flow far smaller than V∞,
then the second-order terms in uxi can be neglected in equation (B.4):

1

c2
∂2ϕ

∂t2
−
(
1−Ma2

)2 ∂2ϕ

∂x2
− ∂2ϕ

∂y2
− ∂2ϕ

∂z2
+

2

c
Ma

∂2ϕ

∂x∂t
= 0 (B.5)
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