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Tomasz Jeliński * , Maciej Przybyłek , Magdalena Mianowana, Kinga Misiak and Piotr Cysewski

Department of Physical Chemistry, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń,
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Abstract: In this study, both practical and theoretical aspects of the solubility of edaravone (EDA) in
Deep Eutectic Solvents (DESs) were considered. The solubility of edaravone in some media, including
water, can be limited, which creates the need for new efficient and environmentally safe solvents. The
solubility of EDA was measured spectrophotometrically and the complex intermolecular interactions
within the systems were studied with the COSMO-RS framework. Of the four studied DES systems,
three outperformed the most efficient classical organic solvent, namely dichloromethane, with the
DES comprising choline chloride and triethylene glycol, acting as hydrogen bond donor (HBD), in a
1:2 molar proportion yielding the highest solubility of EDA. Interestingly, the addition of a specific
amount of water further increased EDA solubility. Theoretical analysis revealed that in pure water
or solutions with high water content, EDA stacking is responsible for self-aggregation and lower
solubility. On the other hand, the presence of HBDs leads to the formation of intermolecular clusters
with EDA, reducing self-aggregation. However, in the presence of a stoichiometric amount of water,
a three-molecular EDA–HBD–water complex is formed, which explains why water can also act as a
co-solvent. The high probability of formation of this type of complexes is related to the high affinity
of the components, which exceeds all other possible complexes.

Keywords: edaravone; solubility; Deep Eutectic Solvents; molecular complexes; cosolvency;
choline chloride

1. Introduction

Edaravone (5-methyl-2-phenyl-4H-pyrazol-3-one, CAS Number: 89-25-8) is a novel
antioxidant compound that exerts its effects through various mechanisms, including inhibit-
ing non-enzymatic peroxidation and lipoxygenase activity, as well as preventing cerebral
edema after ischemia [1,2]. It is also used in the treatment of amyotrophic lateral sclerosis
(ALS) [3,4]. The above actions result from its antioxidant activity related to the fact that
edaravone is an effective free radical scavenger [5,6]. In addition to its antioxidizing activ-
ity, edaravone also exhibits anti-inflammatory, anti-apoptotic, and anti-necrotic effects [7].
Interestingly, recent research has highlighted the potential nephroprotective effects of edar-
avone against various nephrotoxic agents [8,9]. Therefore, it is no surprise that edaravone
attracts the interest of many scholars and is the subject of numerous studies [10,11]. A
serious limitation in the application of this active pharmaceutical ingredient, resulting in
poor bioavailability, is its low aqueous solubility, as evidenced by the categorization of
edaravone as a class IV drug according to the Biopharmaceutics Classification System. The
mentioned limited solubility of edaravone can be attributed to its chemical structure [12].
The presence of a phenyl group and a methyl group attached to the pyrazolone ring makes
edaravone a relatively hydrophobic molecule, which is the reason for its decreased affinity
for water, and thus low aqueous solubility. Also, the rather bulky structure of edaravone,
and the lack of functional groups facilitating hydrogen bonding with water molecules may
contribute to this limitation. Several solubility studies were conducted to find suitable
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solvents, which included both neat and binary systems [12–15]. The rather complicated
tautomeric structure of edaravone was also investigated [16–18].

The importance of solubility studies for active pharmaceutical ingredients cannot be
underestimated, as it is a crucial parameter influencing many aspects of a drug, including
its reactivity, stability, and bioavailability. Therefore, it is not surprising that this property
has been extensively investigated, especially from the perspective of the pharmaceutical
industry [19–24]. Many efforts are undertaken to develop effective methods of solubility
determination [25–28], as well as its improvement [29–36]. Also, the prediction of solubility
is an important aspect of pharmaceutical practice, aiding in the selection of optimal solvents
and their mixtures [37,38]. Particularly, the COSMO-RS framework [39] was proven to
be a useful tool in the pharmaceutical industry not only for solubility modeling [40,41]
but also for the description of two-phase systems [42,43] or determining co-crystallization
abilities [44,45].

In this context, it must be emphasized that not all solvents or solubility-enhancement
techniques are suitable and attractive for pharmaceutical applications. The main goal of
current research, regardless of the field of application, is to provide solvents that are not
only safe from the perspective of human health but also have a minimal environmental
impact, i.e., the so-called “green solvents” [46–49]. This, of course, has become both a
challenge and an opportunity for the pharmaceutical industry [50–52].

When the term “green solvents” appears, it can be immediately associated, among
other things, with a specific group of designed solvents called Deep Eutectic Solvents,
abbreviated as DESs [53–55]. Deep Eutectic Solvents differ from ionic liquids, even though
they share many features, by the fact that they utilize non-ionic species as their compo-
nents [56]. Also, very often, they include organic acids, alcohols, amino acids, sugars, or
other plant-based primary metabolites [57,58]. DESs generally comprise a hydrogen bond
acceptor (HBA) and a hydrogen bond donor (HBD). As the former, choline chloride is
very often used due to its desirable properties, such as nontoxicity and low cost [59]. On
the other hand, various polyols are commonly used as HBDs [60,61]. There are a number
of properties that make DESs attractive as potential solubilizing media, including low
volatility, sustainability and biodegradability, low cost and simplicity of preparation, and
the ability to be fine-tuned for specific applications [62,63], although their environmental
friendliness has been questioned [64]. The ecotoxicity of DESs is therefore a crucial aspect
of their application, and several studies have evaluated their performance in this context,
including the systems used in this work [65–67]. Despite these limitations, DESs are exten-
sively utilized in many applications, including the pharmaceutical industry [68–70]. In fact,
one of our previous studies was focused on the solubility of edaravone in DESs [71].

This particular study was aimed at determining the solubility of edaravone in a range
of Deep Eutectic Solvents, thus extending our previous study and explaining the origins of
the observed solubility increase in aqueous DES mixtures. The studied DESs comprised
choline chloride as a hydrogen bond acceptor (HBA) and four different polyols playing the
role of hydrogen bond donors (HBD). The theoretical analysis of the possible complexes
occurring in the studied systems supplemented the experimental results. The presented
results offer new solubility data for edaravone which can be utilized not only in future
experiments but also for computational and modeling purposes. Also, the results can guide
researchers in selecting deep eutectic systems for the effective dissolution of other active
pharmaceutical ingredients. Finally, they allow for a better understanding of the observed
phenomena occurring in the studied systems.

2. Results and Discussion
2.1. Solubility Determination

The current study is an extension of the previous investigations regarding the solubility
of edaravone in organic solvents [72] and DES systems [71]. The main motivation is finding
pharmaceutically acceptable systems with elevated solubility of this active pharmaceutical
ingredient. In the former study, ethaline (ETA) and glyceline (GLE), i.e., deep eutectic
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systems involving choline chloride (ChCl) with ethylene glycol (EG) and glycerol (GL),
were studied. Here, a similar reasoning was adopted, and four other choline chloride-based
DES systems were investigated, which included 1,2-propanediol (P2D), 1,3-butanediol
(B3D), diethylene glycol (DEG), and triethylene glycol (TEG) as HBD constituents. All
of these selected compounds are quite often used in solubility studies as neat solvents,
components of solvent mixtures, and constituents of Deep Eutectic Solvents [60,73–79].

In the initial phase of the solubility experiments, three distinct formulations of DESs were
tested. These formulations encompassed an equal ratio of the two constituents, along with
two- and four-times excess amounts of either of the four studied polyols. No formulations
with an excessive amount of choline chloride were employed, as in previous experiences
this was proven to be inefficient. In all four studied cases, the 1:2 molar ratio turned out to
yield the highest solubility of edaravone, which is consistent with previous findings regard-
ing ethylene glycol and glycerol. Also, for all systems in consideration, the 1:4 molar ratio
proved to be the second most effective composition, with the unimolar proportion of both
constituents being the least effective. In the case of P2D and B3D, the 1:4 molar ratio comprises
about 80% of the optimal solubilization efficiency, while for the 1:1 proportion, this is about
60%. In the case of DEG and TEG, these values are around 85% and 70%, respectively. The
application of TEG resulted in the highest solubility of edaravone among the studied systems,
irrespective of the molar ratio. The solubility of edaravone at 298.15 K in the optimal system
involving TEG was xE = 0.2159 and was larger than for the eutectics studied previously [71].
Also, the deep eutectic solvent involving DEG was characterized by a greater solubility with
xE = 0.1769. On the other hand, systems with P2D and B3D performed worse (xE = 0.0661 and
xE = 0.0760, respectively) than those utilized in the earlier study. Overall, the following decreas-
ing order of solubilizing potential can be inferred (including systems from the earlier study):
TEG > DEG > (ETA) > (GLY) > B3D > P2D. Interestingly, three of the four DESs studied here
outperform dichloromethane, which has been recognized so far as the best organic solvent for
edaravone dissolution (xE = 0.0688) [14]. For TEG, DEG, and B3D, there is a 1.10-, 2.60-, and
3.14-fold respective increase in mole fraction solubility compared to this organic solvent. Only
the P2D system is slightly less effective than dichloromethane. All the results discussed above
are summarized in Table 1.

Table 1. The solubility of edaravone dissolved in DESs comprising choline chloride and the second
constituent in different molar ratios (choline chloride first) at 298.15 K. Standard deviation values are
given in parentheses.

HBD

1:1 1 1:2 1:4

xE (×104)
cE

(mg/mL) xE (×104)
cE

(mg/mL) xE (×104)
cE

(mg/mL)

P2D 464.15
(±6.51)

79.01
(±1.00)

660.63
(±7.59)

120.6
(±1.27)

560.48
(±3.17)

110.86
(±0.52)

B3D 572.96
(±4.75)

88.53
(±0.74)

760.16
(±8.22)

123.21
(±1.25)

658.32
(±11.89)

112.47
(±2.01)

DEG 1142.86
(±12.68)

175.47
(±2.24)

1786.68
(±32.15)

274.56
(±4.47)

1430.41
(±33.48)

227.6
(±5.31)

TEG 1338.15
(±24.28)

182.36
(±3.13)

2158.65
(±28.83)

283.35
(±3.78)

1730.97
(±44.63)

224.62
(±5.19)

1 molar ratio of ChCl:HBD in non-aqueous solutions free of solute.

For the second phase of solubility experiments, the 1:2 molar ratio of ChCl:HBD was
chosen as the one offering the highest increase in edaravone solubility. The systems in
question were diluted with water and the dissolution effectiveness of the obtained ternary
solvents composed of water, choline chloride, and one of four polyols was experimen-
tally determined. For precise concentration profile monitoring, nine different DES-water
compositions were considered, with a step of 0.1 mole fraction of water added to DES.
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In general, the discrepancy between the majority of API’s solubility in water and pure
DESs is very high. Hence, water is supposed to be an extremely effective anti-solvent,
which is also the case with EDA. However, it is known that in some cases the addition of
water can improve the solubility of a particular active pharmaceutical ingredient compared
to neat DESs [58,62,71,80], a phenomenon recognized in the literature as a co-solvency
effect. Indeed, also here the application of DES-water mixtures resulted in the identification
of the co-solvent role of water, contrary to its typically expected anti-solvent properties. The
measured solubility profiles are collected in Table 2 and Figure 1, which also contain the
results obtained in an earlier study. It is worth pointing out that the ordinate axis in Figure 1
represents the mole fraction of water in saturated systems. This way of presentation was
chosen to emphasize the fact that, for all four studied eutectic systems, there is an unimolar
proportion of HBD and water at maximum solubility. This, expressed in terms of solute-
free solvent, corresponds to the values of x*

DES = 0.6 and x*
w = 0.4, where the subscript

star stands for solute-free solutions. For the optimal DES-water mixture, the edaravone
solubilities in P2D, B3D, DEG, and TEG systems are xE = 0.0904, xE = 0.1044, xE = 0.2169,
and xE = 0.2635, respectively. These values correspond to an increase in edaravone solubility
equal to around 1.37 times for P2D and B3D, as well as around 1.22 times for DEG and TEG.
This shows a slight difference between these two pairs of studied systems, which is even
visible in the shape of the solubility profiles. Obviously, it is an even greater solubility gain
if compared to dichloromethane or other studied solvents [12–15]. It is worth noting that
no known binary solvents, as well as no DES-water systems, studied earlier [71] performed
better, and that the decreasing solubility order observed for neat eutectics remains valid
also in the case of their mixtures with water.

Table 2. The solubility of edaravone dissolved in mixtures of water and DESs comprising choline
chloride and the second constituent in a 1:2 molar ratio at 298.15 K. Standard deviation values are
given in parentheses.

x*
DES

1 P2D B3D DEG TEG

xE (×104) cE (mg/mL) xE (×104) cE (mg/mL) xE (×104) cE (mg/mL) xE (×104) cE (mg/mL)

0.0 2 1.73
(±0.01)

1.72
(±0.01)

1.73
(±0.01)

1.72
(±0.01)

1.73
(±0.01)

1.72
(±0.01)

1.73
(±0.01)

1.72
(±0.01)

0.1 50.98
(±0.45)

34.08
(±0.32)

70.37
(±1.40)

44.66
(±0.84)

181.86
(±6.36)

108.49
(±3.61)

251.94
(±5.21)

136.67
(±2.81)

0.2 140.32
(±2.37)

71.00
(±1.19)

173.10
(±3.15)

81.10
(±1.32)

502.69
(±22.14)

210.35
(±7.66)

607.00
(±10.63)

217.30
(±3.64)

0.3 270.15
(±7.15)

108.69
(±2.67)

350.90
(±5.04)

127.93
(±1.52)

969.29
(±21.54)

305.56
(±5.60)

1223.75
(±19.47)

325.47
(±3.52)

0.4 463.56
(±8.70)

153.13
(±2.61)

538.01
(±9.72)

161.55
(±2.67)

1518.63
(±23.66)

384.60
(±4.36)

1852.86
(±13.62)

398.73
(±2.73)

0.5 694.74
(±26.13)

195.31
(±6.52)

831.86
(±8.04)

209.27
(±1.69)

1983.79
(±41.52)

431.02
(±7.05)

2388.18
(±23.29)

444.40
(±4.09)

0.6 904.23
(±9.14)

222.13
(±1.86)

1044.48
(±23.52)

229.98
(±4.43)

2189.62
(±40.44)

429.00
(±6.24)

2635.92
(±25.61)

447.50
(±3.27)

0.7 863.77
(±38.78)

195.04
(±7.79)

1007.49
(±15.00)

203.22
(±2.83)

2049.69
(±42.53)

377.45
(±6.40)

2524.97
(±37.72)

397.24
(±4.90)

0.8 801.94
(±10.87)

168.23
(±1.97)

928.82
(±34.85)

173.25
(±6.06)

1911.17
(±62.54)

331.84
(±9.52)

2313.80
(±40.79)

343.41
(±5.34)

0.9 736.17
(±10.62)

143.75
(±1.93)

854.66
(±13.27)

148.11
(±2.21)

1828.09
(±51.23)

299.48
(±7.79)

2213.70
(±45.66)

308.19
(±6.00)

1.0 660.63
(±7.59)

120.60
(±1.27)

760.16
(±8.22)

123.21
(±1.25)

1786.68
(±32.15)

274.56
(±4.47)

2158.65
(±28.83)

283.35
(±3.78)

1 x*
DES denotes the mole fractions of a particular DES in solute-free mixtures with water. 2 solubility of edaravone

in water was obtained from a previous study [71].
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Figure 1. Mole fraction solubility of edaravone in mixtures of water and DESs comprising choline
chloride and the second constituent in a 1:2 molar ratio. Grey lines and points denote the results
obtained in a previous study [71]. On the abscissa, xw represents the mole fractions of water in the
saturated solutions. The dashed line corresponds to the unimolar proportion of HBD and water in
saturated solutions.

It has to be emphasized that the solubility of edaravone in commonly known efficient
organic solvents, such as DMSO [72] is significantly lower compared to that of considered
DES. Additionally, conventional solvents cannot be used as drug excipients. This highlights
the additional benefits offered by DESs, which are, in general, non-toxic systems suitable
for pharmaceutical applications, including the development of liquid formulations. The
recommended daily dosage of edaravone, namely 60 mg [81,82], is easily achievable with
the studied systems, and their potential for fine-tuning is another promising aspect in
formulating the new liquid forms of this drug. The separation of edaravone and the DES,
after solubilization of the former, could be achieved by the addition of water, which plays
an anti-solvent role at xw > xE. This approach is widely utilized in the case of DESs [83,84]
and allows for the recovery of both the solute (through precipitation) and the solvent (by
evaporating the volatile anti-solvent).

2.2. Instrumental Characteristics of Studied Systems

To assess the possible impact of solvents on the crystalline structure of edaravone, the
residues obtained after the post-shake flask procedure were subjected to analysis using
DSC and FTIR–ATR techniques. An inherent difficulty in performing such experiments is
the very low volatility of Deep Eutectic Solvents. While this property is often described
as a “green feature” [85,86], and is promising from an environmental point of view, it also
makes it difficult to properly dry the samples. Using very high temperatures in order to
aid this process is also not recommended, as it might affect the crystalline structure of the
sample. This problem was encountered during the previous studies involving edaravone
in DESs [71]. In the case of each DES, two specific systems were studied, namely the pure
eutectic in its optimal (1:2) molar ratio and the system containing water in its optimal
amount (x*

DES = 0.6). Also, for comparison, the results obtained for pure edaravone
are shown. The most important observation resulting from Figures 2 and 3, depicting
FTIR-ATR and DSC analysis, respectively, is the fact that the formation of solvates or new
polymorphs was not observed for all studied systems. However, two classes of systems
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can be distinguished, and the differences can be attributed to the difficulties in drying
the samples.
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When taking into account the FTIR spectra, characteristic peaks of edaravone can be
seen in all studied cases, as evidenced by comparison with the spectrum of pure edaravone.
Nonetheless, for the pure DESs, characteristic peaks coming from alcohols can be seen,
namely two low-intense bands at 2880 and 2936 cm−1 (υasCH2 and υsCH2) and one wide
band at 3343 cm−1 (υOH), which is in accordance with the literature’s data [87]. As for
the DSC analysis, the melting points (determined as onset values) of edaravone samples
in DES–water mixtures are in very good accordance with the melting point of pure edar-
avone, which was determined as 400.73 K. For P2D + water, DEG + water, TEG + water,
and B3D + water, the melting points are 400.79 K, 400.89 K, 400.91 K, and 400.75 K, respec-
tively. Again, this is in good accordance with the literature [13,15]. For the pure eutectics
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however, a slight decrease in the melting point, resulting from impurities in the samples,
can be observed and the values for neat P2D, DEG, TEG, and B3D are 396.82 K, 396.22 K,
397.31 K, and 396.93 K, respectively. The general picture inferred from the presented results
is consistent with earlier findings [71].

2.3. Intermolecular Interactions of Edaravone in Studied DESs

As it was already documented in Figure 1, the maximum solubility corresponds
xDES

* = 0.6. Interestingly, this composition is quite close to a 1:1 molar ratio of HBD:water in
either of the saturated systems. This intriguing observation can be rationalized by a detailed
analysis of intermolecular interactions occurring in the saturated solutions of EDA in DESs.
For this purpose, the most probable contacts were screened via a conformational analysis, as
documented in the methodology section. The results are presented in Figure 4. The affinity
values correspond to the activity equilibrium constants determined at a standard state
(T = 298.15 K). Such values, by definition, are concentration-independent and can be used
as a measure of interactions, irrespective of the mole fraction of components in a given DES.
Hence, the affinities of EDA self-association and intermolecular pair formation with water and
choline chloride are independent of the system. It is worth noting that the affinities of EDA
to water and ChCl are nearly identical and equal to −7.7 and −8.0 kcal/mol, respectively.
However, the self-association of EDA is much stronger, with ∆G◦

r(a) = −14.7 kcal/mol. The
other two types of clusters studied here comprise either hetero-molecular contacts involving
an EDA–HBD pair or an EDA–HBD–W three-molecular complex. It is hypothesized that
the presence of the latter clusters is responsible for the increased solubility of EDA in
wet DESs. As directly inferred from Figure 4, such three-molecular complexes are very
probable since the affinity for their formation is very high. Indeed, for all studied cases,
the following two conditions are fulfilled, namely ∆G◦

r(a)
(EDA−HBD−W) < ∆G◦

r(a)
(EDA−HBD)

and ∆G◦
r(a)

(EDA−HBD−W) < [∆G◦
r(a)

(EDA−HBD) + ∆G◦
r(a)

(EDA−W)]. This means that not
only does the probability of EDA−HBD−W complex formation exceed the probability of
EDA−HBD pairs occurrence, but there is also a non-negligible cooperative effect between
EDA, HBD, and water. Thus, the increase in water concentration increases the solubility
due to the rising concentration of the EDA−HBD−W cluster, stabilizing the dissolved form
of this solute. However, after exceeding unimolar proportions, the excess amount of water
acts as an anti-solvent by solvating HBD, which in turn enhances the EDA self-aggregation
and eventual precipitation.
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To further illustrate the clustering of EDA in the studied aqueous solutions of DESs,
the most representative structures are collected in Figure 5, which comprises the results
of two alternative minimization procedures, as described in the methodology section. It
is evident that all clusters are stabilized by hydrogen bonding between EDA, water, and
HBD, which is the reason for the high stability of all the considered complexes. Besides, the
active role of the water molecule cannot be ignored, as it is involved in hydrogen-bonded
bridges and is seldom bound via a single hydrogen bond.
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3. Materials and Methods
3.1. Materials

Edaravone (EDA, CAS: 89-25-8, MW = 174.203 g/mol) with a purity of ≥99% was
purchased from Sigma Aldrich (Saint Louis, MO, USA). The following DES constituents
were also supplied by Sigma Aldrich and similarly had a purity of ≥99%: choline chloride
(ChCl, CAS: 67-48-1), diethylene glycol (DEG, CAS: 111-46-6), triethylene glycol (TEG, CAS:
112-27-6), 1,2-propanediol (P2D, CAS: 57-55-6), and 1,3-butanediol (B3D, CAS: 107-88-0).
Methanol (CAS: 67-56-1) supplied by Avantor Performance Materials (Gliwice, Poland)
with a ≥99% purity was used throughout the study as a solvent. Choline chloride was
dried before use, while all the other compounds were used without any initial procedures.

3.2. Preparation of the Calibration Curve

The initial step in creating a calibration curve required the preparation of an edaravone
stock solution. This primary solution was then appropriately diluted with methanol in
10 mL volumetric flasks to produce solutions of decreasing concentrations. A total of ten
solutions were prepared, with concentrations ranging from 0.0023 mg/mL to 0.023 mg/mL.
These solutions were then analyzed spectrophotometrically. The wavelength corresponding
to the highest absorbance was identified as 243 nm. Three separate curves were created,
and the final curve was obtained by averaging the results. The linear regression equation
was determined as A = 85.603 × C + 0.0179 (where A is absorbance, and C is concentration
expressed in mg/mL), and the determination coefficient, R2, was calculated to be 0.999,
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indicating a high degree of accuracy. The limits of detection (LOD) and quantification
(LOQ) were found to be 5.899 × 10−4 mg/mL and 1.770 × 10−3 mg/mL, respectively.

3.3. Preparation of the Samples and Solubility Measurements

In this study, the widely used shake flask method was employed to determine EDA
solubility in considered DES systems. Importantly, this particular procedure has been
applied in our previous reports and validated on various solutes and solvents [88–91]. The
comparison of the obtained solubility values with the available literature data confirmed
the reliability of this approach.

In all the investigated Deep Eutectic Solvents, choline chloride was constantly present
as one of the constituents. The second component included one of the four compounds men-
tioned earlier, namely diethylene glycol (DEG), triethylene glycol (TEG), 1,2-propanediol
(P2D), and 1,3-butanediol (B3D). To create a DES formulation, choline chloride was mixed
with the second compound in various molar ratios within sealed test tubes. These tubes
were then placed in a water bath at 363.15 K until a homogeneous solution was formed.
The resulting DESs were used either in their pure form or in aqueous binary mixtures with
varying proportions of water. After the solvents were prepared, excess amounts of edar-
avone (EDA) were added to the test tubes containing either neat DES or binary mixtures.
In this manner, saturated solutions of EDA in the studied systems were obtained. The
prepared samples were then placed in an Orbital Shaker Incubator ES-20/60 from Biosan
(Riga, Latvia) and incubated for 24 h at 298.15 K. The temperature adjustment accuracy
was maintained at 0.1 K, with a variation of ±0.5 K observed over a 24 h cycle. During
the mixing process, all samples were agitated at a speed of 60 rev/min. Subsequently,
the samples were filtered using a syringe equipped with a PTFE syringe filter featuring
a pore size of 0.22 µm. To prevent precipitation, the test tubes, syringes, pipette tips, and
filters were initially heated to match the temperature of the handled sample. Finally, small
volumes of the filtered solution were transferred to test tubes containing methanol, and
the diluted samples were measured on a spectrophotometer. Additionally, to determine
the mole fractions of edaravone, the density of the samples was measured by weighing a
fixed 1 mL volume of the solution in 10 mL volumetric flasks. Eppendorf (Hamburg, Ger-
many) Reference 2 pipette was used throughout the study with a systematic error of 0.6 µL.
The used RADWAG (Radom, Poland) AS 110 R2.PLUS analytical balance had a precision
of 0.1 mg.

To determine the solubility of edaravone in the investigated systems, the samples
prepared according to the aforementioned procedure were subjected to spectrophotometric
analysis using an A360 spectrophotometer from AOE Instruments (Shanghai, China). The
spectral data were recorded within the wavelength range of 190 nm to 500 nm, with a
resolution of 1 nm. Initially, methanol was employed for spectrophotometer calibration,
and it was also used to dilute the measured samples. Dilution was necessary to ensure
that the absorbance values remained within the linearity threshold. Specifically, the ab-
sorbance values at 243 nm were considered, and based on the earlier prepared calibration
curve, the concentration of edaravone in the samples was determined, along with its
mole fractions. These values were derived by averaging the results obtained from three
separate measurements.

3.4. Instrumental Analysis of the Samples

After the solubility measurements, the solid residues remaining in the test tubes were
analyzed using Fourier transform infrared spectroscopy (FTIR) and differential scanning
calorimetry (DSC). The FTIR spectra were obtained using a Spectrum Two spectrophotometer
from Perkin Elmer (Waltham, MA, USA) equipped with an attenuated total reflection (ATR)
device. The samples were analyzed within a wavenumber range of 450–4000 cm−1. For
the DSC measurements, a DSC 6000 calorimeter from PerkinElmer (Waltham, MA, USA)
was utilized. The heating rate was set at 10 K/min, and a nitrogen flow of 20 mL/min
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provided the inert atmosphere. The samples were placed in regular aluminum pans, and
the instrument was calibrated using indium and zinc standards prior to the analysis.

3.5. Intermolecular Interactions Computations

The solute–solute and solute–solvent intermolecular interactions are important char-
acteristics of the solid–liquid equilibria (SLE) and were utilized in our precious works
as sets of effective molecular descriptors for machine learning purposes [92,93]. Here,
the mutual affinities of components in saturated solutions are determined to explain the
role of water acting as a co-solvent in certain concentration ranges. The general compu-
tational procedure is analogous to our previous projects, so only indispensable details
are provided here. The affinities of two- and three-molecular cluster formation are ex-
pressed as the negative values of the Gibbs free energies of corresponding reactions, as
depicted in Scheme 1. Two paths leading to an EDA–HBD–W complex were considered,
differing in the order of monomer attachments to EDA. Since both monomers and clus-
ters are represented by a series of conformers, there are many combinations of possible
products. For an adequate representation of the structural diversity of every contact, ex-
tended conformational analysis was performed for the identification of the lowest energy
and the most probable complexes. This was done using the tandem of COSMOtherm
(v.22.0.0) [94] and TURBOMOLE (v.7.5.1) [95] programs for cluster generation and full
gradient geometry optimization, respectively. The former step was performed using the
“CONTACT = {1 2} ssc_probability ssc_weak ssc_ang = 15.0” command for automatic
generation of pairs by alteration of the mutual orientation of the two contacting molecules
with a 15◦ step rotation interval. Not only hydrogen bonding but also weak interactions
were included in the computation of the probability statistics. This step typically leads to a
quite large number potential structures, the geometries of Ih are far from optimal. Hence,
the second step involving structure optimization was performed using the RI-DFT BP86
(B88-VWN-P86) approach. The pool of obtained contacts underwent data reduction by
excluding similar and high-energy geometries. Two criteria were used for this purpose,
namely the RMSD values and the relative energy with respect to the most stable conformer.
Hence, unique contacts within a 2.5 kcal/mol threshold window were included in the final
pool of conformers representing a given complex. This procedure was applied to generate
both two- and three-molecular complexes. It is worth mentioning that COSMOtherm, offer-
ing the description of reaction thermodynamics, requires two sets of conformers optimized
in the gas phase and additionally in the bulk system, as defined by the COSMO-RS ap-
proach. Hence, the conformation analysis was repeated twice for these two environments.
The final step required the generation of “cosmo” and “energy” files in the format suitable
for application of the BP_TZVPD_FINE_21.ctd parameter set, i.e., the finest level available
in COSMOtherm, which corresponds to computations on the RI-BP/TZVP//TZVPD-FINE
level. The two alternative paths presented in Scheme 1 typically lead to different structures,
and the final pool of conformers comprises the results of both ways of three-molecular
complex formation. The actual affinity values were computed with COSMOtherm by
using the option of concentration-independent Gibbs free energy, ∆Gr(a), for the reactions
defined in Scheme 1. This value, accounting for the non-ideality of the system, guarantees
that the affinity values are independent of concentrations of components in saturated
EDA−DES systems.
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4. Conclusions

The solubility of a particular active pharmaceutical ingredient is a very important
factor from the point of view of the pharmaceutical industry. Here, both practical and
theoretical aspects of the solubility of edaravone (EDA) in Deep Eutectic Solvents (DESs)
were considered.

A number of DESs were investigated for their potential to improve the solubility
of various chemical compounds. Indeed, three of the four DES systems studied were
found to be more efficient than dichloromethane, which is the classical organic solvent
best suited for dissolving EDA. The 1:2 molar ratio of the components of DESs, namely
chlorine chloride and a selected polyol, was identified as the most efficient. The DES
with triethylene glycol was the most effective, while the eutectic with diethylene glycol
came second. These systems were also more efficient than the two systems with ethylene
glycol and glycerol described in a previous study. It is known that the addition of a certain
amount of water often improves the solubility of various compounds in DESs thanks to
a cosolvency effect, and this was also the case in this study. An aqueous DES mixture of
xDES

* = 0.6 and xw
* = 0.4 was responsible for the highest EDA solubility in all studied

systems. Even though the increase in solubility was not very pronounced compared to
pure DESs, it still outperformed all other binary solvents studied so far in the literature.
Interestingly, the above composition of a DES-water mixture was found to be quite close to a
1:1 ratio of HBD:water, which inspired a detailed analysis of the intermolecular interactions
in the saturated solutions of EDA in DESs to explain this phenomenon. In this context, the
affinities of EDA to self-associate and form intermolecular complexes with water, choline
chloride, and polyols (acting as HBDs) were studied. From the performed analysis, it
was concluded that the three-molecular complex EDA-HBD-water is responsible for the
increased solubility of EDA in aqueous DES mixtures. The formation of these complexes is
very likely due to their high affinity, which exceeds the affinities of other complexes studied.
Therefore, the addition of water to a given DES increases the concentration of the EDA-
HBD-water complex, thus promoting the solubility of EDA in the system. However, if the
water content exceeds an unimolar fraction, water acts as an antisolvent by solvating HBD
and thus promoting the self-aggregation of EDA, which in turn leads to its precipitation.
A detailed analysis of the three-molecule complexes of the studied systems revealed that
their high stability is the result of hydrogen bonding between EDA, water, and HBD.
Interestingly, water plays a crucial role in these complexes, as it is usually involved in
multiple hydrogen bonds and not only in a single one, which is a factor stabilizing the
considered complexes.

The presented findings provide novel solubility data for edaravone, applicable not
just in forthcoming experiments but also for computational modeling. Additionally,
the obtained results can assist researchers in choosing appropriate deep eutectic sys-
tems for enhancing the dissolution of various active pharmaceutical ingredients. Ulti-
mately, they contribute to a deeper comprehension of the observed phenomena within the
investigated systems.
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