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AN INTRODUCTION TO MIXED TATE MOTIVES

CLÉMENT DUPONT

Abstract. Mixed Tate motives are central objects in the study of co-
homology groups of algebraic varieties and their arithmetic invariants.
They also play a crucial role in a wide variety of questions related to
multiple zeta values and polylogarithms, algebraic K-theory, hyperbolic
geometry, and particle physics among others. This survey article is an
introduction to mixed Tate motives and their many facets. It was writ-
ten for the proceedings of the Summer School on Motives and Arithmetic
Groups held in Strasbourg in June 2022.

1. Introduction

Motives, as envisioned by Grothendieck, are universal cohomological in-
variants of algebraic varieties which control some of their arithmetic prop-
erties. Grothendieck’s first construction of a category of motives was only
concerned with the cohomology of smooth projective varieties, and the cor-
responding motives are now called pure. The simplest pure motives are the
pure Tate motives Q(−n), for n ∈ Z, where Q(−1) corresponds to H2(P1),
and Q(−n) = Q(−1)⊗n, with the usual convention that Q(1) is the dual of
Q(−1).

Motives of general varieties are sometimes called mixed, and the notion
of weight explains that a mixed motive can be canonically obtained as an
iterated extension of pure motives. Mixed Tate motives are by definition
the iterated extensions of the pure Tate motives. They are very rare among
all mixed motives: for instance, the motive corresponding to the H1 of an
algebraic curve is mixed Tate if and only if the curve is rational.

Although pure Tate motives are rather uninteresting in themselves, the
study of their iterated extensions reveals an amazing wealth of mathematical
structures. The goal of this survey article is to illustrate this fact with several
aspects of mixed Tate motives that we now list, referring the reader to the
main body of the article for more details and references.

Periods. Periods of mixed Tate motives include important mathematical
constants such as π, log(a) for a ∈ Q>0, the special values of the Riemann
zeta function

ζ(n) =
∞∑

k=1

1

kn
(n ∈ N≥2),

and more generally multiple zeta values

ζ(n1, . . . , nr) =
∑

1≤k1<···<kr

1

kn1
1 · · · knr

r
(n1, . . . , nr−1 ∈ N≥1, nr ∈ N≥2).

These numbers appear everywhere in particle physics via the computation
of Feynman integrals.
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2 CLÉMENT DUPONT

In the context of mixed Tate motives over a base, periods depend on
parameters and we find important special functions such as the classical
polylogarithm functions

Lin(z) =
∞∑

k=1

zk

kn
(n ∈ N≥1, z ∈ C, |z| < 1),

whose role in the computation of volumes in hyperbolic geometry was dis-
covered by Lobachevsky in the 1830s.

Algebraic K-theory. It is the study of invariants Ki(R), for i ∈ Z, asso-
ciated to a ring R. They are abelian groups that should be thought of as
homotopical invariants of the category of finitely generated projective R-
modules (also known as vector bundles on SpecR). The abelian category
MT(F ) of mixed Tate motives over a field F is expected to be related to the
rational K-theory of F via the isomorphism

(1) Exti
MT(F )(Q(−n),Q(0))

?≃ grnγK2n−i(F )Q.

Here grnγ denotes the n-th graded piece of the γ-filtration in K-theory, and
VQ denotes the rationalization V ⊗Z Q of an abelian group V . The groups
(1) are referred to in the literature as (rational) motivic cohomology groups
of the field F . The existence of the abelian category of mixed Tate motives
over a field, and the isomorphism (1), are conjectural in general but both
are known in the case of number fields.

Dedekind zeta values. Recall the Dedekind zeta function of a number
field F ,

ζF (s) =
∑

a

N(a)−s (s ∈ C,Re(s) > 1),

where the sum ranges over the non-zero ideals of the ring of integers OF , and
N(a) = |OF /a| is the norm. The analytic class number formula expresses its
residue at s = 1 in terms of important arithmetic invariants of F , including a
transcendental quantity, the regulator, which is a determinant of logarithms
of units of OF . More generally, a theorem of Borel relates the special value
ζF (n), for an integer n ≥ 2, to a higher regulator defined on K2n−1(F ).

The explicit computation of higher regulators is difficult and requires a
fine understanding of the structure of the category of mixed Tate motives, via
(1). For instance, Zagier’s conjecture predicts that ζF (n) can be expressed
in terms of special values of the n-th polylogarithm function Lin at elements
of F .

Notation and conventions. Throughout this article we use the notation
VQ := V ⊗Z Q for V an abelian group and VC := V ⊗Q C for V a Q-vector
space.

Acknowledgements. This survey paper is based on a mini-course given in
Strasbourg in June 2022 on the occasion of the IRMA Summer School on
Motives and Arithmetic Groups, and I would like to thank the organizers
and all the participants of the school for their interesting questions and
feedback. Many thanks to François Fillastre for stimulating discussions on
hyperbolic geometry, and to Javier Fresán for his many comments on a first
version of this paper.
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2. Cohomology and periods

We review some (classical and not-so-classical) facts and constructions
on Betti and de Rham cohomology of algebraic varieties, and periods. In
passing we study families of examples which we will later lift to mixed Tate
motives.

2.1. Betti and de Rham. We will be interested in two incarnations of the
cohomology of an algebraic variety X defined over a field F .

• Algebraic de Rham cohomology is available if F has characteristic zero
and produces finite dimensional vector spaces over F denoted by Hn

dR(X).
For a smooth variety X they were defined by Grothendieck [Gro66] as
the hypercohomology groups (in the Zariski topology) of the complex of
algebraic differential forms:

Hn
dR(X) := Hn(X,Ω•

X/F ).

We refer the reader to [HMS17, Chapter 3] for the case of singular varieties.
• Betti cohomology is available if F has an embedding σ : F → C and
produces finite dimensional vector spaces over Q denoted by Hn

B,σ(X),

or Hn
B(X) if σ is understood. They are defined as the singular coho-

mology groups with rational coefficients of the analytic variety Xan
σ :=

(X ×F,σ C)an. In other words, they are dual to the singular homology
groups of Xan

σ with rational coefficients:

Hn
B,σ(X) := Hn

sing(X
an
σ ;Q) = Hsing

n (Xan
σ ;Q)∨.

By de Rham [dR31] and Grothendieck [Gro66], integration of differential
forms on cycles induces a canonical C-linear comparison isomorphism

(2) compσ : H
n
dR(X)⊗F,σ C

∼−→ Hn
B,σ(X) ⊗Q C.

Its matrix, relative to the choice of an F -basis of Hn
dR(X) and a Q-basis of

Hn
B,σ(X), is called a period matrix of Hn(X). (We will use the symbol Hn(X)

for the package consisting of de Rham cohomology and Betti cohomology of
X together with the comparison isomorphism.)

Example 2.1. For F = Q, a period matrix of the cohomology group H1(A1 \
{0}) is the 1× 1 matrix

(3)
(
2πi
)
.

Indeed, a basis of H1
dR(A

1 \{0}) is given by the class of the differential form
dx
x , a basis of H1

B(A
1 \ {0})∨ = Hsing

1 (C∗;Q) is given by the class of the loop

γ : t 7→ e2πit around 0, and the corresponding period is∫

γ

dx

x
= 2πi.

We will also consider the relative cohomology group Hn(X,Y ) where Y is a
closed subvariety of X. In the de Rham setting, if bothX and Y are smooth,
it is defined as the hypercohomology of the shifted cone of the restriction
map Ω•

X/F → i∗Ω
•
Y/F , where i : Y →֒ X denotes the closed immersion. More

precisely,
Ω•
(X,Y )/F = Ω•

X/F ⊕ i∗Ω
•−1
Y/F
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where the differential is the sum of the de Rham differentials on X and Y
and the restriction, with appropriate signs. We refer the reader to [HMS17,
Chapter 3] for the general case. In the Betti setting, it is defined as the
relative singular cohomology of the pair (Xan

σ , Y an
σ ).

Example 2.2. Let F be a subfield of C and fix z ∈ F \ {0, 1}. The relative
cohomology group H1(A1 \{0}, {1, z}) has dimension 2, as can be seen from
the long exact sequence in relative cohomology:

0 → H0(A1 \ {0}) → H0({1, z}) → H1(A1 \ {0}, {1, z}) → H1(A1 \ {0}) → 0.

With well-chosen bases we get the period matrix

(4)

(
1 log(z)

0 2πi

)
,

which features (a determination of) the logarithm of z, defined as an integral
over a path from 1 to z in C∗:

∫ z

1

dx

x
= log(z).

If F is algebraic over Q, the entries of period matrices of relative co-
homology groups span a subalgebra of C which coincides with the algebra
of effective periods in the sense of Kontsevich–Zagier [KZ01], as proved in
[HMS17, Theorem 12.2.1].

2.2. Cohomology of families of algebraic varieties. Algebraic varieties
often come in families, i.e., as morphisms π : X → S. We first focus on the
case where X and S are smooth over a subfield F of C, and π is smooth and
proper. This ensures, via Ehresmann’s theorem, that πan : Xan → San is a
locally trivial fibration.

• The algebraic de Rham cohomology groups of the fibers of π assemble into
an algebraic vector bundle on S:

Hn
dR(X/S) := Rnπ∗(Ω

•
X/S).

It comes equipped with a flat algebraic connection

∇ : Hn
dR(X/S) −→ Hn

dR(X/S)⊗OS
Ω1
S/F

called the Gauss–Manin connection.
• The Betti cohomology groups of the fibers of π assemble into a local system
of finite dimensional vector spaces over Q on San:

Hn
B(X/S) := Rnπan∗ (QXan).

If San is connected and equipped with a basepoint s0, this local system is
completely determined by the monodromy representation

π1(S
an, s0) −→ AutQ(H

n
B(Xs0)).

The comparison isomorphisms (2) for the fibers of π assemble into an
isomorphism of analytic vector bundles with flat connection on San,

((Hn
dR(X/S)⊗OS

OSC
)an,∇an)

∼−→ (Hn
B(X/S)⊗QSan OSan , id⊗ d) ,
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where d : OSan → Ω1
San is the exterior differential on holomorphic forms.

Equivalently we get an isomorphism of complex local systems

((Hn
dR(X/S)⊗OS

OSC
)an)∇

an ∼−→ Hn
B(X/S)⊗QSan CSan .

The entries of period matrices are multi-valued holomorphic functions on San

and are sometimes called period functions. They naturally form solutions to
a first-order algebraic system of linear differential equations on S, which is
simply the equation ∇ = 0 in some local trivialization of Hn

dR(X/S).
This discussion generalizes to the relative cohomology of a pair (X,Y ) over

S if the pair (Xan, Y an) → San is locally trivial, i.e., locally a product of
San with a pair of varieties. The generalization to more general situations,
and in particular to non-smooth morphisms π, requires the formalism of
algebraic D-modules (on S) and constructible sheaves (on San).

Example 2.3. One may recast Example 2.2 in the language of (relative)
cohomology of algebraic varieties over the base S = A1

Q \ {0}, which is the

space of parameters z. (Strictly speaking, Example 2.2 is attached to the
family (A1

Q \ {0}, {1, z}) parametrized by a point z ∈ A1
Q \ {0, 1}, which

naturally extends to S.) In the de Rham setting we obtain the trivial vector
bundle O2

S with connection matrix

ω =

(
0 dz

z

0 0

)
.

This corresponds to the fact that the rows of the period matrix (4) satisfy
the differential equation df = fω. In the Betti setting we obtain a rank
2 local system on San = C∗, which has fiber Q2 at the basepoint 1 and
monodromy matrix

µ =

(
1 1
0 1

)
.

This reflects the fact that the columns of the period matrix (4) are multi-
valued functions on C∗ which transform as g  µg when z winds positively
around 0.

2.3. Classical polylogarithms as period functions. Classical polylog-
arithms are a natural generalization of the logarithm function (see the nice
survey [Hai94]). For an integer n ≥ 1, the n-th polylogarithm function is
defined by the power series

Lin(z) =

∞∑

k=1

zk

kn
(z ∈ C, |z| < 1).

We have Li1(z) = − log(1− z), and the recursive relation

(5) d Lin(z) = Lin−1(z)
dz

z
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for n ≥ 2, which explains that every Lin extends to a multi-valued holomor-
phic function on C \ {1}. Let us introduce the (n+ 1)× (n+ 1) matrix

(6)




1 Li1(z) Li2(z) Li3(z) · · · Lin(z)

2πi 2πi log(z) 2πi log
2(z)
2 · · · 2πi log

n−1(z)
(n−1)!

(2πi)2 (2πi)2 log(z) · · · (2πi)2 logn−2(z)
(n−2)!

(2πi)3

...

0
. . .

(2πi)n




whose entries are viewed as multi-valued holomorphic functions on C\{0, 1}.
The rows of (6) are a system of fundamental solutions of the differential
equation df = fω where

ω =




0 dz
1−z

0 dz
z 0

0 dz
z

0
. . .

0
. . . dz

z

0




.

When z winds positively around 0 and 1, the columns of (6) transform as
g  µ0g and g  µ1g respectively, where

µ0 =




1 0 0 0 0

1 1 1
2

1
(n−1)!

1 1

0
. . .

. . . 1
2

1 1

1




and µ1 =




1 −1

0 1 0

1

0
. . .

1



.

It is explained in [DF23] that (6) is the period matrix of a family of
relative cohomology groups on S = A1

Q \ {0, 1} whose fiber at z is

(7) Hn(An \ {zx1 · · · xn = 1}, {x1(1− x1) · · · xn(1− xn) = 0}).
These cohomology groups naturally stem from the integral formula

(8) Lin(z) =

∫

[0,1]n

z dx1 · · · dxn
1− zx1 · · · xn

,

valid for instance if z /∈ (1,∞). Indeed, the differential form in (8) has
poles along the hypersurface {zx1 · · · xn = 1}, while the integration do-
main has its boundary contained in the complex points of the hypersurface
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Figure 1. The hypersurfaces {zx1x2 = 1} and {x1(1 −
x1)x2(1− x2) = 0} in the affine plane.

{x1(1− x1) · · · xn(1− xn) = 0}. Figure 1 illustrates the corresponding ge-
ometry in the case n = 2.

2.4. Single-valued periods. Let us consider an embedding σ : F → C

and its complex conjugate σ : F → C. For an algebraic variety X defined
over F , complex conjugation gives rise to an anti-holomorphic isomorphism
Xan

σ −→ Xan
σ , which induces a Q-linear isomorphism

F∞ : Hn
B,σ(X)

∼−→ Hn
B,σ(X)

called the Frobenius at infinity associated to the pair (σ, σ). Following Brown
[Bro14b] we define the isomorphism

(9) sσ : H
n
dR(X)⊗F,σ C

∼−→ Hn
dR(X) ⊗F,σ C

by the following commutative diagram:

Hn
dR(X) ⊗F,σ C

compσ
//

sσ

��

Hn
B,σ(X)⊗Q C

F∞ ⊗ id

��

Hn
dR(X) ⊗F,σ C Hn

B,σ(X)⊗Q C
comp−1

σ

oo

It is called the single-valued period isomorphism associated to the pair (σ, σ).
Its coefficients are called single-valued periods for Hn(X).

The situation is simpler if σ is a real embedding, in which case we view
F ⊂ R and drop σ from the notation. The single-valued period isomorphism
is then defined over R, i.e., induces an R-linear involution

s : Hn
dR(X) ⊗F R

∼−→ Hn
dR(X) ⊗F R.

If P denotes a period matrix for Hn(X) then a matrix for s is given by the
product

P
−1
P,

which we call a single-valued period matrix for Hn(X).
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Example 2.4. In the setting of Example 2.1, a period matrix P is (3) and a
single-valued period matrix is the 1× 1 matrix

(10) P
−1
P =

(
−1
)
.

Therefore the “single-valued version” of 2πi is −1.

The term “single-valued period” is explained by the general setting of
families of algebraic varieties (see §2.2): the entries of period matrices are
multi-valued holomorphic functions on San, whereas the entries of single-
valued period matrices are single-valued real-analytic functions. This is
because the single-valued period isomorphisms assemble into an endomor-
phism of the analytic vector bundle (Hn

dR ⊗OS
OSC

)an. This can also be
viewed more concretely in matrix form: by following a loop in San the pe-
riod matrix changes as P  µP where µ is a monodromy matrix, and the
entries of the single-valued period matrix do not change:

P
−1
P  µP

−1
µP = P

−1
µ−1µP = P

−1
P

because µ has rational entries.

Example 2.5. In the setting of Example 2.2, taking for σ the implicit em-
bedding of F inside C, a period matrix P is (4) and a single-valued period
matrix is

P
−1
P =

(
1 2 log |z|
0 −1

)
,

which features the real-analytic “single-valued version” 2 log |z| of the multi-
valued holomorphic function log(z).

Remark 2.6. Computing single-valued periods is an a priori difficult task
since one needs to know an entire period matrix in order to compute any
given entry of a single-valued period matrix. However, one can give explicit
integral formulas for single-valued periods in certain natural geometric sit-
uations [BD21a] (see also [BD21b] for an application to periods arising in
string theory). For instance, in the setting of Example 2.5 we get the fol-
lowing integral formula for the “single-valued logarithm”:

2 log |z| = 1

2πi

∫∫

P1(C)
dlog

(
x− z

x− 1

)
∧ dx

x
.

2.5. Single-valued polylogarithms as single-valued period functions.

Let us apply the formalism of single-valued periods to the case of classical
polylogarithms, following Beilinson–Deligne [BD94]. We first focus on the
case of the dilogarithm and the period matrix

P =



1 − log(1− z) Li2(z)

0 2πi 2πi log(z)

0 0 (2πi)2


 ,
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which is the case n = 2 of (6). The corresponding single-valued period
matrix is

P
−1
P =



1 −2 log |1− z| 2i Im(Li2(z)) − 2 log |z|log(1− z)

0 −1 −2 log |z|
0 0 1


 .

For reasons that will become clear later (§8.4), it is natural to consider

instead the half logarithm of the unipotent matrixDP
−1
P , whereD denotes

the diagonal matrix with entries 1,−1, 1:

1

2
log(DP

−1
P ) =



0 − log |1− z| i Im(Li2(z) + log |z| log(1− z))

0 0 log |z|
0 0 0


 .

We encounter an important special function called the Bloch–Wigner dilog-
arithm,

P2(z) := Im(Li2(z) + log |z| log(1− z)).

It is a single-valued real-analytic function on C \ {0, 1}, which extends con-
tinuously to P1(C) by setting P2(0) = P2(1) = P2(∞) = 0.

By performing the same operation on the period matrix (6) for the clas-
sical polylogarithm Lin(z), we discover a well-behaved “single-valued poly-
logarithm”

Pn(z) := Ren

(
n−1∑

k=0

2kBk

k!
logk |z|Lin−k(z)

)

= Ren(Lin(z)− log |z|Lin−1(z) + · · · ),
where Ren is the real part Re if n is odd and the imaginary part Im if
n is even, and Bk are the Bernoulli numbers defined by their exponential
generating series

∞∑

k=0

Bk
xk

k!
=

x

ex − 1
.

3. First intermezzo: mixed Hodge theory

The Betti cohomology groups of a complex algebraic variety are canoni-
cally endowed with a linear algebra datum called a mixed Hodge structure,
which we now discuss. Our goal here is to introduce mixed Hodge–Tate
structures, the iterated extensions of the pure Hodge–Tate structuresQ(−n),
which are realizations of mixed Tate motives and share several formal fea-
tures with them.

3.1. Pure Hodge structures.

Definition 3.1. Let w ∈ Z. A pure Hodge structure of weight w is the
datum of a finite dimensional vector space H over Q and a C-linear decom-
position

HC =
⊕

p+q=w

Hp,q
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where the indices p, q are integers, called the Hodge decomposition, which
satisfies the Hodge symmetry

Hp,q = Hq,p for all p, q.

Here (·) denotes the complex conjugation operator on HC. A morphism of
pure Hodge structures of weight w is a Q-linear map whose complexification
is compatible with the Hodge decompositions.

Note that a pure Hodge structure of odd weight must have even dimension.
This explains why the simplest pure Hodge structures have even weight.

Definition 3.2. The pure Hodge–Tate structure Q(−n) has underlying vec-
tor space H = Q and Hodge decomposition HC = C = Hn,n. It is up to
isomorphism the unique pure Hodge structure of weight 2n and dimension
1.

The importance of Hodge structures in the study of the topology of alge-
braic varieties comes from the following landmark result of Hodge [Hod52],
for which the reader can refer to [Voi02].

Theorem 3.3. Let X be a smooth projective variety over C (or more gen-

erally a compact KÃ¤hler manifold). For every n, the cohomology group
Hn

B(X) carries a functorial pure Hodge structure of weight n, where the sub-
space

Hp,q(X) ⊂ Hn
B(X)C

appearing in the Hodge decomposition is the space of cohomology classes that
can be represented by a smooth differential form of type (p, q).

Here Hn
B(X)C is identified with the cohomology of the complex of smooth

differential forms (with complex coefficients) on Xan, and a smooth differen-
tial form of type (p, q) is one that can be written in local holomorphic coor-
dinates zi as a linear combination of forms f dzi1∧· · ·∧dzip∧dzj1∧· · ·∧dzjq
with f a smooth function.

Clearly, since H2
B(P

1
C) has dimension 1, we have the equality of pure Hodge

structures
H2

B(P
1
C) = Q(−1).

More generally, for a connected smooth projective variety X of dimension n
we have, by Poincaré duality:

H2n
B (X) = Q(−n).

3.2. The Hodge filtration. For a pure Hodge structure H of weight w
we consider the decreasing filtration F on HC, called the Hodge filtration,
defined by

FpHC :=
⊕

r+s=w
r≥p

Hr,s.

One can recover the Hodge decomposition from the Hodge filtration by the
formula

Hp,q = FpHC ∩ FqHC,

and a pair (H,F) defines a pure Hodge structure of weight w if and only if

HC = FpHC ⊕ Fw−p+1HC for all p.
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The Hodge filtration is arguably better behaved and more fundamental
than the Hodge decomposition. Indeed, it has a purely algebraic interpre-
tation: via the isomorphism Hn

B(X)C ≃ Hn
dR(X), the Hodge filtration on

Hn
dR(X) is induced by the “stupid filtration”

FpΩ•
X/C := Ω•≥p

X/C

on the complex of algebraic differential forms. As a consequence, it varies
algebraically (or holomorphically) in families: if π : X → S is a smooth
projective morphism of complex varieties over a smooth variety S, then the
cohomology groups of the fibers of π have pure Hodge structures by Theorem
3.3, and the Hp,q of these fibers do not form an algebraic sub-bundle of
Hn

dR(X/S) (or a holomorphic sub-bundle ofHn
dR(X/S)

an) in general, but the
Fp do. These sub-bundles are not preserved by the Gauss–Manin connection
but we have Griffiths transversality :

∇(FpHn
dR(X/S)) ⊂ Fp−1Hn

dR(X/S)⊗OS
Ω1
S/C.

This constraint motivates the definition of a variation of pure Hodge struc-
ture, which we will not discuss here.

3.3. Mixed Hodge structures. The extension of classical Hodge theory
to the cohomology of all complex varieties was achieved by Deligne [Del71a,
Del71b, Del74].

Definition 3.4. A mixed Hodge structure is the datum of a finite dimen-
sional vector space H over Q and

• an increasing filtration W on H, called the weight filtration
• a decreasing filtration F on HC, called the Hodge filtration

such that for each integer w, the filtration induced by F on grWw H :=
WwH/Ww−1H defines a pure Hodge structure of weight w. A morphism
of mixed Hodge structures is a Q-linear map which is compatible with the
weight filtrations and whose complexification is compatible with the Hodge
filtrations.

The category MHS of mixed Hodge structures is, surprisingly enough, an
abelian category. This comes from the fact that every morphism f : H → H ′

of mixed Hodge structures is strictly compatible with the weight and Hodge
filtrations, i.e., satisfies f(WnH) = f(H) ∩WnH

′ and f(FnHC) = f(HC) ∩
FnH ′

C for all n. The functors H 7→ grWn H (resp. H 7→ grnFHC) are exact
functors from MHS to the category of finite dimensional vector spaces over
Q (resp. over C).

Remark 3.5. It is important to note that a mixed Hodge structure (H,W,F)
contains more information than just the collection of pure Hodge structures
grWw H for all w. Indeed, the Hodge filtrations of those pure Hodge structures
are not independent, but come from a single filtration defined on H.

The importance of mixed Hodge structures in the study of the topology
of algebraic varieties comes from the following landmark result of Deligne.

Theorem 3.6. Let X be an algebraic variety over C. For every n, the
cohomology group Hn

B(X) carries a functorial mixed Hodge structure, which
is that of Theorem 3.3 in the smooth projective case.
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More generally there is a functorial mixed Hodge structure on the relative
cohomology groups Hn

B(X,Y ) for any pair (X,Y ) of complex varieties.

Example 3.7. Let C be a smooth projective complex curve and let a, b ∈ C
be two distinct points. We have a short exact sequence

(11) 0 −→ H1
B(C) −→ H1

B(C \ {a, b}) r−→ Q(−1) −→ 0

in the category MHS, where the map r is dual to a small positively oriented
cycle around a on Can and corresponds in de Rham cohomology to the
residue of a 1-form at a. One can also view r as the connecting morphism
in the Mayer–Vietoris long exact sequence for the covering of C by the two
opens C \ {a} and C \ {b}, which explains why the target of r is Q(−1) =
H2

B(C). Therefore, the mixed Hodge structure on H := H1
B(C \ {a, b}) has

two non-trivial weight-graded pieces, grW1 H ≃ H1
B(C) and grW2 H ≃ Q(−1).

Even though the weight-graded quotients do not depend on a and b, the
mixed Hodge structure on H, i.e., the extension datum, does. In particular,
H is generally not isomorphic to the direct sum of H1

B(C) and Q(−1) in
MHS. More concretely, the relevant extension group is

Ext1MHS(Q(−1),H1
B(C)) ≃ Pic0(C)Q

and the class of (11) corresponds to the difference (a)− (b) ∈ Pic0(C)Q.

There is an obvious notion of tensor product for mixed Hodge structures,
which makes MHS into a neutral Q-linear tannakian category for which the
forgetful functor (H,W,F) 7→ H is a fiber functor.

3.4. Mixed Hodge–Tate structures.

Definition 3.8. A mixed Hodge–Tate structure is a mixed Hodge structure
which is an iterated extension of the pure Hodge structuresQ(−n), for n ∈ Z,
or in other words one for which grWw vanishes for w odd and is isomorphic
to a direct sum of Q(−n) for w = 2n even.

An equivalent definition is as follows: a mixed Hodge–Tate structure is
the datum of a finite dimensional vector space H over Q along with an
increasing filtration W on H and a decreasing filtration F on HC which
satisfy

W2nHC = W2(n−1)HC ⊕ (W2nHC ∩ FnHC) for all n.

The Hodge filtration therefore splits the weight filtration over C. In other
words, if we let grWH :=

⊕
k gr

W
k H, it induces an isomorphism

(12) (grWH)C
∼−→ HC

which sends
⊕

k≤n gr
W
2kH (resp.

⊕
k≥n gr

W
2kH) to W2nH (resp. to FnHC)

for all n.
One conventionally renormalizes (12) by multiplying it by (2πi)k on grW2kH

and considers its matrix in bases induced by a basis of H compatible with
the weight filtration. Such a matrix is block upper-triangular with diagonal
blocks given by (2πi)k times an identity matrix, where k increases as one
moves along the diagonal. It is called a period matrix of the mixed Hodge–
Tate structure, and completely determines its isomorphism class. For the
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sake of illustration, the following is a period matrix of a mixed Hodge–Tate
structure H for which grWH ≃ Q(0)⊕Q(−1)⊕Q(−3)⊕2:




1 ∗ ∗ ∗
0 2πi ∗ ∗
0 0 (2πi)3 0

0 0 0 (2πi)3



.

Remark 3.9. Such a matrix can be viewed as a period matrix in the sense of
§2.1 when the mixed Hodge–Tate structure H comes from geometry, i.e., for
instance, from the cohomology of a pair of algebraic varieties defined over
Q. Indeed, in this case H = MB has a de Rham counterpart MdR which
is a vector space over Q, equipped with a weight filtration W and a Hodge
filtration F, in such a way that the comparison isomorphism

comp: MdR ⊗Q C
∼−→MB ⊗Q C = HC

is compatible with the weight and Hodge filtrations. We insist on the fact
that W and F are both defined over Q on MdR, and therefore we get a
canonical splitting

grWMdR
∼−→MdR

which fits in the following commutative diagram:

(grWMdR)⊗Q C //

grW(comp)

��

MdR ⊗Q C

comp

��

(grWH)C // HC

By Example 2.1, grW(comp) is given by multiplication by (2πi)k in weight
2k. Therefore the matrix of (12) in a basis compatible with the weight
filtration, suitably renormalized by powers of 2πi, is indeed the matrix of
a comparison isomorphism between de Rham cohomology and Betti coho-
mology, and therefore deserves the name “period matrix”. Note that this is
very special to mixed Hodge–Tate structures, and in general a mixed Hodge
structure does not contain enough information to recover a period matrix.

The mixed Hodge–Tate structures of dimension 1 are the pure Hodge–
Tate structures Q(−n), for n ∈ Z. To classify the mixed Hodge–Tate struc-
tures of dimension 2 it is enough to understand the extensions of Q(−n) by
Q(0) for some n ∈ Z, because the pure Hodge–Tate structures Q(−i) are
⊗-invertible. One sees that we have

(13) Ext1MHS(Q(−n),Q(0)) ≃
{
C/(2πi)nQ if n ≥ 1;

0 if n ≤ 0.

For n ≥ 1, the extension class corresponding to α ∈ C/(2πi)nQ has period
matrix (

1 α

0 (2πi)n

)
.
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4. Motives

We sketch the construction of several categories of motives. More details
and references on the foundations of the theory of motives can be found in
[And04].

4.1. The idea of motives. Grothendieck’s idea of motives is that of a
universal cohomology theory for algebraic varieties. It involves an abelian
Q-linear category Mot(F ) whose objects are called motives over F (with
coefficients in Q), and functors

(14) Mn : (Var/F )op → Mot(F ) , X 7→ Mn(X)

where Var/F denotes the category of varieties over F , and Mn(X) is called
the motive of X in degree n.

One should think of Mn(X) as a universal object which controls the dif-
ferent cohomology groups Hn

? (X) for ? ∈ {dR,B, . . .}. More precisely, a
cohomology theory, viewed as a functor H•

? : (Var/F )
op → Vectk for some

field k, should (under certain conditions) factor through (14) via a realiza-
tion functor

ω? : Mot(F ) −→ Vectk.

Furthermore, for a field F ⊂ C, the Betti realization functor ωB should lift
to a Hodge realization functor

Mot(F ) −→ MHS.

This is sometimes called an enriched realization functor.

4.2. Grothendieck’s category of Chow motives. Grothendieck’s con-
struction of a category of motives (first written down by Manin [Man68]) is
only concerned with smooth projective varieties, and is based on algebraic
cycles. The reason is that if X and Y are smooth projective varieties then
an algebraic cycle Z of codimension r in X × Y (also known as a corre-
spondence) has a class [Z] ∈ H2r

? (X × Y ) in any cohomology theory, and
therefore induces a linear map
(15)

H•
?(X)

(prX)∗
// H•

?(X × Y )
·[Z]

// H•+2r
? (X × Y )

(prY )∗
// H

•+2r−2 dim(X)
? (Y ),

where prX : X × Y → X and prY : X × Y → Y denote the projections.
Grothendieck’s intuition is that those linear maps are the only ones that are
common to all cohomology theories.

The category of Chow motives with rational coefficients, denoted by
CHM(F ), is a symmetric monoidal Q-linear category equipped with a sym-
metric monoidal functor

M: (SmProjVar/F )op −→ CHM(F ) , X 7→ M(X),

where the monoidal structure on the category SmProjVar/F of smooth pro-
jective varieties over F is given by the product of varieties. Morphisms
between Chow motives of varieties are related to algebraic cycles via the
formula

(16) HomCHM(F )(M(X),M(Y )) = CHdim(X)(X × Y )Q,
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where CHr denote the Chow groups of algebraic cycles of codimension r
modulo rational equivalence. The composition of morphisms is given by the
formula

Z23 ◦ Z12 = (pr13)∗ ((pr12)
∗(Z12) · (pr23)∗Z23)

for algebraic cycles Zij in Xi ×Xj , where prij : X1 ×X2 ×X3 → Xi ×Xj

denote the projections.

Remark 4.1. Not all Chow motives are of the form M(X). Indeed, the
category CHM(F ) is pseudo-abelian by design, and hence any projector p of
M(X) gives rise to a splitting M(X) = ker(p)⊕ Im(p) in CHM(F ).

Every cohomology theory H•
? gives rise to a realization functor on CHM(F )

which sends M(X) to the direct sum of all the Hn
? (X) and an algebraic cycle

Z of codimension dim(X) in X × Y to (15). For a field F ⊂ C there is a
Hodge realization functor

CHM(F ) −→ MHS

whose image lands in the category of direct sums of pure Hodge structures.

Remark 4.2. One of the drawbacks of this construction is that it is not known
whether a Chow motive M(X) splits as a direct sum of objects Mn(X) which
lift the individual cohomology groups Hn

? (X), i.e., whether the “Künneth
projectors” H•

?(X) ։ Hn
? (X) →֒ H•

?(X) are induced by a correspondence
as in (15). This is one of Grothendieck’s standard conjectures on algebraic
cycles [Gro69, Kle94].

The unit of the tensor product of CHM(F ) is Q(0) := M(SpecF ). More
generally, we have for every integer n a⊗-invertible objectQ(−n) of CHM(F ),
and these objects satisfy Q(−i) ⊗ Q(−j) ≃ Q(−(i + j)). One should think
of Q(−1) as playing the role of H2(P1), in the sense that we have a direct
sum decomposition M(P1

F ) = Q(0) ⊕ Q(−1), induced by any point x of P1
F

as in Remark 4.1 (the algebraic cycle P1
F × {x} ⊂ P1

F × P1
F is a projector of

M(P1
F )). The tensor product

M(−n) := M ⊗Q(−n)
is called a Tate twist of M . Generalizing (16) we have the following formula
for morphisms between Tate twists of Chow motives of varieties:

HomCHM(F )(M(X)(−m),M(Y )(−n)) = CHdim(X)+m−n(X × Y )Q.

It is justified by the fact that in general the composition (15) for ? = B is a
morphism of (pure) Hodge structures only up to the Tate twist (−(dim(X)−
r)) on the target.

4.3. Voevodsky’s triangulated category of mixed motives. There
does not seem to be any obvious way to generalize Grothendieck’s con-
struction of the category of Chow motives to incorporate varieties that are
neither projective nor smooth. The first obvious obstruction is that the
pushforward map (prY )∗ in (15) does not make sense in general.

It was suggested by Beilinson and Deligne independently to ground the
category of mixed motives on the complexes that compute cohomology groups
rather than on the cohomology groups themselves, following a two-step pro-
gram:
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1) Define a triangulated category DM(F ) which should play the role of the
derived category of the abelian category of motives. This was done by
Voevodsky [Voe00] and indepently by Hanamura [Han95] and Levine
[Lev98]. The category DM(F ) is symmetric monoidal and equipped with
a symmetric monoidal functor

(17) M: Var/F −→ DM(F ) , X 7→ M(X).

In the triangulated context, realization functors take values in derived
categories of vector spaces D(Vectk). We warn the reader that (17) is
naturally a covariant functor, and therefore M(X) ∈ DM(F ) should be
viewed as a motivic lift of a complex which computes the homology of X.

2) Extract the abelian category of motives using the Beilinson–Bernstein–
Deligne–Gabber formalism of t-structures [BBDG18]. At present, this
second step can only be made to work for certain subcategories of DM(F ),
as we will explain in the next section.

Here is a rough idea of the steps involved in one possible definition1 of
DM(F ):

A) We consider the category of presheaves of vector spaces over Q on the
category SmVar/F of smooth varieties defined over F , together with its
(linearized) Yoneda embedding:

(18) SmVar/F −→ PreSh(SmVar/F,Q) , X 7→ QHomSmVar/F (−,X).

We will be interested in those presheaves which are sheaves for the étale
topology on SmVar/F , and in the sheafification functor

(19) PreSh(SmVar/F,Q) −→ Sh(SmVar/F,Q).

We denote the composition of (18) and (19) by

(20) SmVar/F −→ Sh(SmVar/F,Q) , X 7→ Q(X).

Finally, since we want to work with complexes, we consider the derived
category of the abelian category Sh(SmVar/F,Q).

B) The second step is called A1-localization. For a smooth variety X over
F , the projection map X×A1

F → X induces an isomorphism in all coho-
mology theories, and we would like that to be true at the level of motives.
We therefore consider the Verdier quotient of D(Sh(SmVar/F,Q)) which
forces the complexes

0 → Q(X × A1
F ) −→ Q(X) → 0

to be zero. It is denoted by DMeff(F ) and called the category of effective
Voevodsky motives over F (with rational coefficients). It is a Q-linear
triangulated category and has a symmetric monoidal structure induced
by the tensor product of vector spaces.

C) Let Q(1) be the object of DMeff(F ) given by the complex Q(P1
F ) −→

Q(SpecF ) induced by the structure morphism P1
F → SpecF , where

Q(P1
F ) is in degree −2. This should be thought of as playing the role of

1This is not Voevodsky’s original definition, but gives an equivalent category. The
category that we define here appears in the literature under the name category of étale
motives (without transfers) and is usually denoted by DAét(F ).
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H2(P
1
F ). We define DM(F ) to be the category obtained from DMeff(F )

by formally adding a tensor inverse to Q(1), denoted by Q(−1).
D) Every smooth variety X over F gives rise to the object M(X) ∈ DM(F )

via (20), hence a functor SmVar/F → DM(F ). With some more work,
one can extend it to all varieties over F and obtain (17).

The spaces of morphisms in DM(F ) are related to algebraic cycles via a
generalization of Chow groups discovered by Bloch and called higher Chow
groups [Blo86], denoted by CHr(X,n), where CHr(X, 0) = CHr(X) are the
classical Chow groups. We have an isomorphism:

(21) HomDM(F )(Q(−n),M(X)[i]) ≃ CHn(X, 2n − i)Q.

Remark 4.3. The opposite category of CHM(F ) is a full subcategory of
DM(F ), where the embedding is given by

M(X) 7→ M(X)[2 dim(X)](dim(X))

for X a smooth projective variety, where on the left-hand side M(X) denotes
the (cohomological) Chow motive of X and on the right-hand side it denotes
the (homological) Voevodsky motive of X. The shift and Tate twist come
from the passage from homology to cohomology via Poincaré duality:

H•(X) ≃ H2 dim(X)−•(X)(dim(X)).

Remark 4.4. The category of Chow motives is not abelian in general, and
therefore is not the sought-for abelian category of pure motives, whose de-
rived category is expected to embed in DM(F ). Such a role is conjecturally
played by a variant of Chow motives called numerical motives, which is not
based on Chow groups but rather on their quotients by numerical equiva-
lence. We refer the reader to [And04, Chapitre 21] for more details on this
matter.

Voevodsky’s triangulated category DM(F ) is endowed with realization
functors taking values in derived categories of vector spaces:

ω? : DM(F ) −→ D(Vectk).

One should think of ω?(Q(X)) as a complex which computes the homology
groups H?

•(X). For instance, if F has an embedding σ : F → C then we have
a Betti realization functor

(22) ωB,σ : DM(F ) −→ D(VectQ)

which is such that for every variety X defined over F ,

ωB,σ(Q(X)) = Csing
• (Xan

σ ;Q)

is the complex of rational singular chains on Xan
σ .

5. Second intermezzo: algebraic K-theory

5.1. Basics. Quillen [Qui73] associates to every ringR a sequence of abelian
groups Ki(R), for i ≥ 0, which are “homotopical” invariants of the category
of finitely generated projective R-modules. We will here restrict to commu-
tative rings R. The first three K-groups, K0, K1, and K2, predate Quillen’s
work and are relatively easy to define (not so much to compute):
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• K0(R) is the Grothendieck group of the category of finitely generated
projective R-modules, i.e., the abelian group generated by isomorphism
classes [P ] of finitely generated projective R-modules P , modulo the rela-
tions

[P ] = [P ′] + [P ′′]

given by short exact sequences

0 −→ P ′ −→ P −→ P ′′ −→ 0.

The morphism Z → K0(R) , 1 7→ [R] is injective if R is a non-zero com-
mutative ring, and an isomorphism if all finitely generated projective R-
modules are free, e.g., if R is a field.

• K1(R) is the abelianization of the infinite general linear group GL(R),
defined as the inductive limit of the groups GLN (R) where GLN (R) →֒
GLN+1(R) is given by g 7→

(
g 0
0 1

)
. There is a surjective map K1(R) →

R× given by the determinant of matrices. It is an isomorphism if R is a
field by Gaussian elimination.

• K2(R) was defined by Milnor [Mil71], and shortly after Matsumoto gave
a presentation of K2 of a field by generators and relations [Mat69].

We refer the reader to [Ros94] for more information on the definition of
higher K-groups. They are notoriously difficult to compute, even in the case
of a field. Their rationalized versions

Ki(R)Q := Ki(R)⊗Z Q

are more tractable objects because they can be computed in terms of group
homology thanks to the Milnor–Moore theorem [MM65]:

K•(R)Q ≃ Prim(H•(GL(R),Q)).

(Here H•(GL(R),Q) has the structure of a graded Hopf algebra and Prim(·)
denotes its space of primitive elements, i.e., solutions of ∆(x) = 1⊗x+x⊗1.)

5.2. The Dirichlet regulator and the analytic class number for-

mula. Let F be a number field and let OF be its ring of integers. We have
isomorphisms

K0(OF ) ≃ Z⊕ Cl(F ),

where Cl(F ) is the ideal class group (a finite abelian group), and

K1(OF ) ≃ O×
F

by a theorem of Bass–Milnor–Serre [BMS67]. The latter group was com-
puted by Dirichlet in 1846. Let r1 denote the number of real embed-
dings F →֒ R, that we label σ1, . . . , σr1 , and r2 denote the number of
pairs of complex conjugate non-real embeddings F →֒ C, that we label
σr1+1, . . . , σr1+r2 , σr1+1, . . . , σr1+r2 . We have [F : Q] = r1+2r2. The Dirich-
let regulator is the group morphism

ρ : O×
F ⊕ Z −→ Rr1+r2

defined by

ρ(x) = (log |σ1(x)|, . . . , log |σr1(x)|, log |σr1+1(x)|2, . . . , log |σr1+r2(x)|2)
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for x ∈ O×
F , and ρ(k) =

1
r1+r2

(k, . . . , k) for k ∈ Z. Dirichlet’s unit theorem
states that ρ is injective modulo torsion and that its image is a lattice in
Rr1+r2 . In particular,

rkO×
F = r1 + r2 − 1.

The regulator RF is defined as the covolume of the image of ρ in Rr1+r2 .
The analytic class number formula expresses the residue of the Dedekind
zeta function of F at s = 1 in terms of the regulator, the number wF of roots
of unity in F , the discriminant DF , and the class number hF = |Cl(F )|:

lim
s→1

(s− 1)ζF (s) =
2r1+r2hF
wF

πr2√
|DF |

RF .

In what follows we will not be concerned with rational prefactors and will
therefore write the formula as:

(23) lim
s→1

(s − 1)ζF (s) ∼Q×

πr2√
|DF |

det(log |σi(εj)|)1≤i,j≤r1+r2−1 ,

where (ε1, . . . , εr1+r2−1) is a basis of O×
F modulo torsion, and a ∼Q× b means

that a ∈ Q×b.

5.3. The Borel regulator and higher K-theory of number fields.

Borel [Bor74, Bor77] made crucial contributions to the computation of the
algebraic K-theory of number fields, in the spirit of Dirichlet’s work and the
analytic class number formula. For an integer n ≥ 2 let us write

dn =

{
r1 + r2 if n is odd

r2 if n is even

and fix the following identification, induced by the real or imaginary part:

(24)

( ⊕

σ : F→C

C/(2πi)nR

)+

≃ Rdn ,

where the symbol + denotes the space of invariants for complex conjugation
acting on each C/(2πi)nR and on the set of embeddings σ : F → C.

Borel proved that all even rational K-groups K2i(F )Q, for i ≥ 1, are
zero. In the case of odd K-groups he defined for all n ≥ 2 a class in
H2n−1(GL(C),C/(2πi)nR), giving rise to a morphism

K2n−1(C) → C/(2πi)nR,

which is compatible with complex conjugation. By functoriality of K-theory
for all embeddings σ : F → C, and taking (24) into account, we obtain a
morphism

(25) ρn : K2n−1(F ) −→ Rdn ,

called the Borel regulator, which is a higher version of the Dirichlet regula-
tor2, as the following important theorem of Borel shows.

2The Dirichlet regulator is related to K1(OF ) ≃ O×

F and not K1(F ) ≃ F×, which has
infinite rank. However, for i ≥ 2 we have Ki(OF )Q ≃ Ki(F )Q.



20 CLÉMENT DUPONT

Theorem 5.1. Let n ≥ 2. The Borel regulator ρn is injective modulo torsion
and its image is a lattice in Rdn. In particular

(26) rkK2n−1(F ) = dn.

Furthermore, the covolume R
(n)
F of the image of ρn in Rdn is related to the

value at s = n of the Dedekind zeta function of F via the formula:

ζF (n) ∼Q×

πn([F :Q]−dn)

√
|DF |

R
(n)
F .

In contrast with the Dirichlet regulator, the Borel regulators are not easy
to express explicitly in terms of special functions, even for small n and small
number fields. As we will now see, a more concrete description of Borel
regulators would follow from a deep understanding of categories of mixed
Tate motives.

6. Mixed Tate motives

6.1. The abelian category of mixed Tate motives: definition.

Definition 6.1. Let F be a field. The triangulated category of mixed Tate
motives over F , denoted by DMT(F ), is the triangulated subcategory of
DM(F ) generated by the pure Tate motives Q(−n), for n ∈ Z.

In other words, an object of DMT(F ) is an iterated extension (in the
triangulated sense) of the objects Q(−n)[r], for n, r ∈ Z. The key to un-
derstanding mixed Tate motives therefore lies in the morphisms between
shifts of pure Tate motives. Generalizing the Riemann–Roch isomorphism
involving Chow groups and K0, Bloch [Blo86] proved a general relationship
between higher Chow groups and algebraic K-theory, which allows one to
rewrite (21) for X = SpecF as follows:

(27) HomDMT(F )(Q(−n),Q(0)[i]) ≃ grnγK2n−i(F )Q.

Here grγ denotes the successive quotients for the γ-filtration defined by Soulé
[Sou85], a byproduct of the λ-structure in K-theory (or, alternatively, of the
Adams operations). The following vanishing conjecture, stated indepen-
dently by Beilinson [Bei85] and Soulé [Sou85], plays a central role in the
study of mixed Tate motives.

Conjecture 6.2. For any field F and any integer n ≥ 1,

(28) grnγK2n−i(F )Q = 0 if i ≤ 0.

This conjecture is known to hold for finite fields, whose higher rational K-
groups vanish by Quillen [Qui72], and, more importantly for us, for number
fields by the work of Borel discussed in the previous section. Indeed, in this
case we have, for all n ≥ 1:

(29) grnγK2n−i(F )Q = 0 if i 6= 1.

Definition 6.3. Let F be a field for which the Beilinson–Soulé vanishing
(28) holds. The abelian category of mixed Tate motives over F , denoted
by MT(F ), is the full subcategory of DMT(F ) consisting of iterated exten-
sions (in the triangulated sense) of the pure Tate motives Q(−n), for n ∈ Z.
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The difference with Definition 6.1 is that shifts are not allowed. Levine
proves [Lev93] that MT(F ) is an abelian category by recasting it as the heart
of a natural t-structure on DMT(F ). The Beilinson–Soulé vanishing (28)
enters the proof of the vanishing of HomDMT(F )(M,M ′) forM ∈ DMT(F )≤0

andM ′ ∈ DMT(F )≥1, which is one of the axioms of a t-structure (mimicking
the fact that for objects A, B of an abelian category and an integer i < 0,
every morphism A→ B[i] in the derived category is zero).

6.2. The abelian category of mixed Tate motives: formal structure.

The category MT(F ) has the same formal properties as the category of mixed
Hodge–Tate structures:

1) All the pure Tate objects Q(−n) are in MT(F ), and they are the only
simple objects. We have

HomMT(F )(Q(−n),Q(−n′)) =
{
Q if n = n′;

0 otherwise.

2) Every object M ∈ MT(F ) is equipped with a finite weight filtration W
indexed by even integers, such that grW2nM is isomorphic to a direct sum
of a finite number of copies of Q(−n). The weight filtration is functorial.

3) The tensor product of DM(F ) makes MT(F ) into a neutral tannakian
category over Q, for which

(30) ω : MT(F ) −→ VectQ , M 7→
⊕

n∈Z

HomMT(F )(Q(−n), grW2nM)

is a fiber functor.

We also have at our disposal the classical de Rham and Betti fiber functors

ωdR : MT(F ) −→ VectF and ωB,σ : MT(F ) −→ VectQ.

The “canonical” fiber functor (30) is a rational structure on the de Rham
fiber functor

(31) ωdR ≃ ω ⊗Q F,

which essentially follows from the argument of Remark 3.9.

6.3. The case of number fields, and the Hodge regulator. If F is
a number field then (27) and (29) yield a complete description of the Ext
groups between pure Tate motives:

(32) Ext1
MT(F )(Q(−n),Q(0)) ≃

{
K2n−1(F )Q if n ≥ 1;

0 if n ≤ 0.

Furthermore, all higher Ext groups vanish. There are two different cases to
consider:

• For n = 1 we get

(33) Ext1
MT(F )(Q(−1),Q(0)) ≃ K1(F )Q ≃ F×

Q ,

which has infinite dimension. Those extensions of Q(−1) by Q(0) are
easy to describe: they are the Kummer motives, which lift the objects of
Example 2.2, as we will see in the next paragraph.
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• For n ≥ 2, (32) has finite dimension, given by Borel’s theorem (26). How-
ever, the corresponding extensions are difficult to describe explicitly even
for small number fields F . An explicit description of those extensions
would lead to explicit formulas for Borel’s regulator, in the following sense.
For every complex embedding σ : F → C there is a Hodge realization func-
tor [DG05]

MT(F ) −→ MHTS,

which sends the mixed Tate motive Q(−n) to the mixed Hodge–Tate
structure Q(−n). In view of (13) and (32), the induced morphisms on
Ext1 read

̟(σ)
n : K2n−1(F )Q −→ C/(2πi)nQ.

By summing them over all complex embeddings of F and composing with
the quotient map C/(2πi)nQ → C/(2πi)nR, we obtain via (24) the Hodge
regulator

̟n : K2n−1(F )Q −→ Rdn ,

which is expected to be equal to the Borel regulator (25):

(34) ρn
?
= ̟n.

6.4. A first family of mixed Tate motives: Kummer motives. We
construct motivic lifts of the objects of Example 2.2. Let F be a number
field, let x ∈ F×, and consider the object M of DM(F ) defined by the
complex

0 → Q({1}) ⊕Q({x}) −→ Q(A1
F \ {0}) → 0,

where Q(A1
F \ {0}) is placed in degree −1 and the differential is induced by

the closed immersions of {1} and {x} inside A1
F \ {0}. It plays the role3

of the relative homology group H1(A
1 \ {0}, {1, x}). The object of DM(F )

defined by the subcomplex

Q({1}) −→ Q(A1
F \ {0})

is isomorphic to Q(1) by a motivic lift of the Mayer–Vietoris argument that
proves that H1(A

1 \ {0}) ≃ H2(P
1). Since the object Q({x}) is the trivial

object Q(0), we see that M sits in a distinguished triangle

Q(1) −→M −→ Q(0)
+1−→

in DM(F ). This proves thatM is an object of the category MT(F ). Its dual,
which plays the role of the relative cohomology group H1(A1 \ {0}, {1, x}) is
called the Kummer motive Kx, and sits in a short exact sequence

(35) 0 −→ Q(0) −→ Kx −→ Q(−1) −→ 0

in MT(F ). Under the isomorphism (33), the extension class of Kx corre-
sponds to the element x ∈ F×

Q , and we see that we completely understand

the extensions of Q(−1) by Q(0) in MT(F ). As seen in Example 2.2, the pe-
riod matrix of Kx, relative to an embedding σ : F → C, is (4) with z = σ(x),
and the corresponding class in Ext1

MHTS
(Q(−1),Q(0)) ≃ C/2πiQ is therefore

log(σ(x)).

3Strictly speaking, this is only true if x 6= 1.
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6.5. What are the mixed Tate motives of rank 2? Let F be a number
field, let n ≥ 2, and assume that we are given a family of extensions

(36) 0 −→ Q(0) −→ Ej −→ Q(−n) −→ 0

in MT(F ), for j = 1, . . . , dn, whose classes span the corresponding Ext
group. Write a period matrix of Ej relative to an embedding σ : F → C as

(
1 α

(σ)
j

0 (2πi)n

)
.

Then, under the equality of regulators (34) we have, thanks to Theorem 5.1,
an expression for the special value of the Dedekind zeta function of F :

(37) ζF (n) ∼Q×

πn([F :Q]−dn)

√
|DF |

det
(
α
(σi)
j

)
1≤i,j≤dn

.

Such a formula would be a higher version of the analytic class number for-
mula (23).

Unfortunately, the extensions (36) are hard to find “in nature”, i.e., when
looking at relative cohomology groups of pairs of varieties. We break the
quest for these extensions into two subtasks:

1) Produce interesting families of mixed Tate motives over F that are “as
rich as possible”. They will almost never be extensions (36). Section 7
will be devoted to a description of such families.

2) Understand those examples well enough to create extensions (36) out of
them. The main tool for this is the tannakian formalism, that we will
develop in sections 8 and 9.

7. Some families of mixed Tate motives

7.1. How to construct mixed Tate motives? The Voevodsky motive
M(X) ∈ DM(F ) of a variety X over F almost never lives in the triangulated
category DMT(F ) of mixed Tate motives, for the same reason that the mixed
Hodge structure on H•

B(X) is almost never a mixed Hodge–Tate structure.
However, the motive of affine n-space is M(An

F ) ≃ M(SpecF ) = Q(0), and
is therefore in DMT(F ). One can use this fact to construct more mixed Tate
motives, as follows.

If X is smooth and decomposes as the union Z ∪U where Z is a smooth
subvariety of codimension r and U is its complement, then the localization
triangle

(38) M(Z)[−2r](−r) −→ M(X) −→ M(U)
+1−→

shows that if two out of M(Z), M(X), M(U) are in DMT(F ) then the third
one is as well. Hence, the motive M(X) of a variety X obtained by “cutting
and pasting” affine spaces is in DMT(F ). Taking cohomology with respect
to Levine’s t-structure and dualizing therefore produces objects

Mn(X) ∈ MT(F )

which lift the cohomology groups Hn
? (X). Unfortunately, such mixed Tate

motives are rarely very interesting in the sense that they tend to be pure
Tate motives in a lot of cases. For instance, for any union L of hyperplanes
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in PN
F , the motive Mn(PN

F \ L) is a direct sum of the pure Tate motives
Q(−n), as can be seen by induction on the number of hyperplanes using the
localization triangle (38).

The key to producing interesting (i.e., non-pure) mixed Tate motives is
to consider relative cohomology groups. Let (X,Y ) be a pair defined over
F , write Y as the union of varieties Yi and assume that X, the Yi, and all
their multiple intersections are smooth. Consider the complex

(39) M(X,Y ) : · · · −→
⊕

i<j

Q(Yi ∩ Yj) −→
⊕

i

Q(Yi) −→ Q(X) −→ 0,

whose arrows are alternating sums of the maps induced by the natural closed
immersions. If all the objects M(X), M(Yi), M(Yi ∩ Yj), and so on, are
in DMT(F ), then M(X,Y ) is as well. Taking cohomology for Levine’s t-
structure and dualizing produces objects

Mn(X,Y ) ∈ MT(F )

which lift the relative cohomology groups Hn
? (X,Y ). In the case X = A1

F \
{0} and Y = {1, x}, this is how we defined Kummer motives in the previous
section.

7.2. Polylogarithm motives. For x ∈ F \ {0, 1} we define the n-th poly-
logarithm motive

L(n)
x = Mn(An

F \ {xx1 · · · xn = 1}, {x1(1− x1) · · · xn(1− xn) = 0}),
which lifts (7). As explained in [DF23], it is an object of MT(F ) whose
period matrix, relative to an embedding σ : F → C, is (6) with

z = σ(x).

We have short exact sequences

(40) 0 −→ Q(0) −→ L(n)
x −→ Symn−1(Kx)(−1) −→ 0

and

(41) 0 −→ L(n−1)
x −→ L(n)

x −→ Q(−n) −→ 0,

which reflect the block-triangular shape of (6).

7.3. Motives of bi-arrangements of hyperplanes, and Aomoto poly-

logarithms. Kummer motives are of the form

M1(P1
F \ {0,∞}, {1, x})

and one can naturally construct more general mixed Tate motives using
projective geometry in higher dimension. From the data (L,M) of two
unions of hyperplanes in projective space Pn

F , one constructs mixed Tate
motives

(42) Mn(Pn
F \ L,M \ L ∩M).

Their periods, relative to an embedding of F in C, look like∫

α
ω,

where ω is an algebraic n-form on Pn
F \ L, and α is a topological n-cycle in

(Pn \ L)(C) whose boundary lies in M(C).
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This construction is not very useful when L,M are not in general position
because in this case there might not be many interesting integration domains
α. For instance, working in affine space instead of projective space for
simplicity, consider the geometric situation of Figure 2, with L = {(1 −
zt1)t2 = 0} andM = {t1(t2−t1)(1−t2) = 0}. The triangle {0 ≤ t1 ≤ t2 ≤ 1}
meets the line {t2 = 0} and therefore does not live in (Pn \L)(C). However,
the integral

(43)

∫∫

0≤t1≤t2≤1

z dt1
1− zt1

dt2
t2

converges if z /∈ (1,∞), and in fact equals Li2(z) (expand 1
1−zt1

as a geo-

metric series and integrate first in t1 then in t2). In order to view it as a
period of relative cohomoloy, we work in the blow-up π : X → A2 along the
triple point (0, 0) as in Figure 2 below. There, the pull-back π∗(ω) only has

poles along the strict transform A = L̃, and the triangle {0 ≤ t1 ≤ t2 ≤ 1}
transforms into a quadrilateral with boundary along the union B = M̃ ∪ E
where E is the exceptional divisor. The motive

M2(X \ A,B \A ∩B)

therefore has (43) as a period.

Figure 2. In A2, the blow-up of the origin separates the
boundary of the simplex {0 ≤ t1 ≤ t2 ≤ 1} from the pole
divisor {(1 − zt1)t2 = 0}. By removing the strict transform
of {t2 = 0} one recovers the geometry of Figure 1.

The generalization of this construction to all pairs (L,M) leads to interest-
ing mixed Tate motives which we call motives of bi-arrangements of hyper-
planes (some tools for computing them can be found in [Dup17]). They were
considered for the first time by Beilinson et al. in [BVGS90], where their
periods are called Aomoto polylogarithms as an homage to Aomoto’s work
on related families of integrals and cohomology groups (see, e.g., [Aom77]).
Polylogarithm motives are special cases of this construction.

7.4. Iterated integrals and motivic fundamental groups. Let X be a
manifold, let γ : [0, 1] → X be a smooth path, and let ω1, . . . , ωn be smooth
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1-forms on X. We define the iterated integral of the formal word ω1 · · ·ωn

along γ as

(44)

∫

γ
ω1 · · ·ωn :=

∫

0≤t1≤···≤tn≤1
f1(t1) dt1 · · · fn(tn) dtn

where we have set fi(t) dt := γ∗(ωi). The case n = 1 is simply the integral of
a 1-form along a smooth path. If X is the analytification of an algebraic va-
riety and the ωi’s are algebraic, then (44) is a period of relative cohomology,
by a theorem of Beilinson [Gon01, DG05]. We describe the corresponding
Betti–de Rham comparison isomorphism in a special case.

Let S ⊂ P1(F ) be a finite set of points, with ∞ ∈ S, and let us consider
the punctured projective lineX = P1

F \S. We fix two basepoints a, b ∈ X(F ).
Deligne and Goncharov define in [DG05] an ind-mixed Tate motive over F
(i.e., an object of the ind-category ofMT(F )), called the (algebra of functions
on the) motivic fundamental group, that we denote by

M = O(πmot
1 (X, a, b)).

• Its de Rham realization is

MdR = F 〈ωs, s ∈ S \ {∞}〉,
the space of words in the letters

ωs =
dx

x− s
(s ∈ S \ {∞})

which form a basis of H1
dR(X). The weight filtration remembers the length

of the words.
• Its Betti realization relative to an embedding of F in C is the algebra of
functions on the unipotent completion of π1(X

an, a, b). To define it, let
I ⊂ Q[π1(X

an, a)] denote the augmentation ideal of the group algebra of
the topological fundamental group of Xan based at a, and consider its
powers In+1, for n ≥ 0. Any path δ from a to b in Xan induces a Q-linear
isomorphism Q[π1(X

an, a)] ≃ Q[π1(X
an, a, b)], γ 7→ γδ, and we can view

the ideals In+1 as subspaces of Q[π1(X
an, a, b)], which are independent of

the choice of δ. We then have

MB = lim
n

(
Q[π1(X

an, a, b)]/In+1
)∨
,

the space of Q-valued functions on π1(X
an, a, b) which are zero on In+1

for some n ≥ 0. The weight filtration remembers the index n.
• The Betti–de Rham comparison

(45) MdR ⊗F C
∼−→MB ⊗Q C

is induced by iterated integration, i.e., by

π1(X
an, a, b) × F 〈ωs, s ∈ S \ {∞}〉 −→ C , (γ, ωs1 · · ·ωsn) 7→

∫

γ
ωs1 · · ·ωsn .

Remark 7.1. The construction of the ind-motive M relies on a theorem of
Beilinson [Gon01, DG05] which identifies the truncation Q[π1(X

an, a, b)]/In+1

with an explicit relative homology group. The isomorphism (45) is originally
due to Chen [Che77] in the context of rational homotopy theory, and was
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used by Hain [Hai87] to define the mixed Hodge structure on MB without
the use of cohomology or motives.

A very useful variant of this construction, designed by Deligne [Del89],
replaces the basepoint a and/or b by a tangential basepoint at infinity. Such
an object is the datum of a point s ∈ S together with a non-zero tangent
vector v ∈ (TsP

1
F )

×. The de Rham theory does not change (in fact, it is
clear by the description above thatMdR does not depend on basepoints) but
the corresponding Betti theory is concerned with paths γ in P1(C) that may
start or end “at infinity”, i.e., at the point s ∈ S, with prescribed outgoing
or incoming velocity v. The extra datum of v is needed to give a meaning
to the possibly divergent iterated integral of a word of 1-forms along γ (this
is called logarithmic regularization, see the next example).

Example 7.2. Consider X = P1
Q\{0,∞} and fix a tangential basepoint (0, v)

at 0, with v ∈ (T0P
1
Q)

× = Q×, and a classical basepoint z ∈ X(Q) = Q×.

Even though the form dx/x is not integrable near 0, one can make sense
of its integral along a smooth path γ : [0, 1] → P1(C) satisfying γ(0) = 0,
γ′(0) = v, γ(1) = z, and γ(t) /∈ {0,∞} for t ∈ (0, 1]. For this, the recipe is
to consider the integral

∫ 1

ε

dγ(t)

γ(t)
(ε > 0)

and then let ε→ 0 while formally discarding the terms log(ε). Since γ(ε) ∼
εv, one sees that the result is a determination of log(z/v). We refer the
reader to [DPP23] for an interpretation of this recipe in cohomological terms
in the language of logarithmic geometry.

Things start to get interesting for X = P1
Q\{0, 1,∞}. For instance, Lin(z)

has a natural representation as an iterated integral on X, for the basepoints
0 (with any choice of non-zero tangent vector) and z:

Lin(z) =

∫

0≤t1≤···≤tn≤1

z dt1
1− zt1

dt2
t2

· · · dtn
tn

= −
∫ z

0
ω1ω0 · · ·ω0.

This is related to our first integral representation (8) by the change of vari-
ables

(t1, t2, . . . , tn) = (x1x2 · · · xn, x2 · · · xn, . . . , xn).
Other iterated integrals for P1

F\S include themultiple polylogarithms [Gon95b]

(46) Lin1,...,nr(z1, . . . , zr) =
∑

1≤k1<···<kr

zk11 · · · zkrr
kn1
1 · · · knr

r
(ni ∈ N≥1, |zi| < 1).

7.5. Multiple zeta values and the motivic fundamental groupoid

of P1 \ {0, 1,∞}. For integers n1, . . . , nr−1 ≥ 1 and nr ≥ 2, one can set
z1 = · · · = zr = 1 in (46), which produces the multiple zeta values

ζ(n1, . . . , nr) =
∑

1≤k1<···<kr

1

kn1
1 · · · knr

r
.
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They are iterated integrals on P1
Q \ {0, 1,∞}:

(47) ζ(n1, . . . , nr) = (−1)r
∫ 1

0
ω1ω0ω0 · · ·ω0︸ ︷︷ ︸

n1

· · ·ω1ω0ω0 · · ·ω0︸ ︷︷ ︸
nr

,

where the path from 0 to 1 is simply the interval [0, 1]. Therefore, they are
periods of the motivic fundamental group

(48) O(πmot
1 (P1

Q \ {0, 1,∞}, (0, v), (1, w))).
Here the vector v corresponds to 1 ∈ Q× = (T0P

1
Q)

×, and w corresponds to

−1 ∈ Q× = (T1P
1
Q)

×. An important remark is that the tangential basepoints

(0, v) and (1, w) are defined over Z in the sense that v and w are Z-points of
the punctured tangent spaces of P1

Z at 0 and 1 respectively, which are copies
of Gm,Z. This is the reason why (48) lives in the full tannakian subcategory

MT(Z) ⊂ MT(Q)

of mixed Tate motives over Z, also known as unramified mixed Tate motives
over Q [DG05].

Note that there are only 6 basepoints of P1
Q \ {0, 1,∞} which are defined

over Z, namely (0, v), (0,−v), (1, w), (1,−w), and the two tangential base-
points at ∞ corresponding to 1 and −1 in Q× = (T∞P1

Q)
×. They form a

torsor under the action of the symmetric group S3 on P1, generated by the
involutions x 7→ 1− x and x 7→ 1/x, that globally stabilizes {0, 1,∞} (sym-
metries of the cross-ratio). It is therefore natural to consider the motivic
fundamental groupoid of P1

Q \ {0, 1,∞} relative to those 6 basepoints. More

generally, one can replace P1
Q \ {0, 1,∞} with the moduli space

M0,n

of (smooth projective) genus zero curves with n marked points, and con-
sider its motivic fundamental groupoid relative to the finite set of tangential
basepoints at infinity defined over Z. This object has a rich (operadic) struc-
ture and plays a central role in Grothendieck–Teichmüller theory [BN98], a
fascinating subject in itself which goes beyond the scope of this survey.

7.6. Volumes in hyperbolic geometry. We follow Goncharov’s seminal
article [Gon99] (see also [Bro13] and [Rud23] for more recent developments).
Consider an odd-dimensional hyperbolic simplex Σ ⊂ H2n−1, with n ≥ 1.
In the Klein model,

H2n−1 = {(x1, . . . , x2n−1) ∈ R2n−1 | x21 + · · · + x22n−1 < 1}
is the unit ball, and Σ is bounded by a union D = D0 ∪ · · · ∪ D2n−1 of
hyperplanes in R2n−1. Up to complexifying and projectifying we can view
everything in complex projective space P2n−1(C), where the boundary of
H2n−1 is given by the real points of the quadric

Q = {q = 0} with q = x20 − x21 − · · · − x22n−2 − x22n−1.

The hyperbolic volume of Σ is given by the formula

(49) vol(Σ) =

∫

Σ
ωQ,
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where

ωQ =
dx1 · · · dx2n−1(

1− x21 − · · · − x22n−1

)n

extends to an algebraic (2n−1)-form on P2n−1 \Q. It is therefore clear that
(49) is a period of the relative cohomology group

(50) H2n−1(P2n−1 \Q,D \Q ∩D).

One can then consider such cohomology groups for any smooth quadric Q
and any union of hyperplanes D. If Q and D are defined over a number
field F and if Q splits over F , then (50) lifts to a mixed Tate motive over F .
This is used in [Bro13] to give formulas for special values of the Dedekind
zeta function of a totally real number field as in (37).

7.7. Feynman integrals and motives. In modern particle physics, Feyn-
man integrals are an essential tool to predict the interactions between par-
ticules at high energy (for instance in a particle collider such as the Large
Hadron Collider). To a Feynman graph Γ (a graph in the usual mathemati-
cal sense equipped with certain physical decorations) with n edges and first
Betti number h one associates the (n− 1)-fold integral

(51) IΓ =

∫

σ

Φ
n−2(h+1)
Γ

Ξn−2h
Γ

n∑

i=1

(−1)ixi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn,

where ΦΓ, ΞΓ are the graph polynomials (homogeneous of degree h and
h+1 respectively), and σ is the locus in Pn−1(R) where x1, . . . , xn ≥ 0. The
cohomological and motivic study of Feynman integrals was launched by
Bloch–Esnault–Kreimer [BEK06] and later developed by Brown [Bro17a].
One finds interesting mixed Tate motives in this way, although the motives
underlying (51) are rarely mixed Tate.

8. The tannakian formalism for mixed Tate motives: tools

We now survey the tools provided by the tannakian formalism for mixed
Tate motives, which were first advertised and used by Beilinson–Deligne
[BD94] and Goncharov [Gon94], and further developed by Brown [Bro17b].
Examples will follow in the next section.

8.1. Motivic Galois groups. Let F be a field for which the Beilinson–
Soulé vanishing conjecture holds. The tensor product of DM(F ) induces
the structure of a tannakian category on MT(F ), for which (30) is a fiber
functor. We let

GMT(F ) := Aut⊗(ω)

denote the corresponding Tannaka group. It is an affine group scheme over
Q and ω induces an equivalence of categories

(52) MT(F )
∼−→ Rep(GMT(F )).

Definition 8.1. We call GMT(F ) the motivic Galois group of MT(F ).
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The action of GMT(F ) on ω(Q(−1)) = Q induces a morphism of group
schemes GMT(F ) → Gm whose kernel is denoted by UMT(F ), so that we have
a short exact sequence of group schemes

0 −→ UMT(F ) −→ GMT(F ) −→ Gm −→ 0.

A first important remark is that this short exact sequence splits because the
fiber functor ω is naturally Z-graded. More precisely, the natural splitting

(53) τ : Gm → GMT(F )

sends an invertible scalar λ to the automorphism of ω which acts by λn on
the n-th component of the direct sum in (30). This implies that we have a
semidirect product decomposition:

(54) GMT(F ) ≃ Gm ⋉ UMT(F ).

A second important remark is that UMT(F ) is a pro-unipotent group scheme,
i.e., a limit of unipotent algebraic groups. Indeed, for an object M of
MT(F ), the action of UMT(F ) on ω(M) respects the filtration by the sub-

spaces ω(W2nM) and acts trivially on the successive quotients ω(grW2nM)
because grW2nM is a direct sum of tensor powers of Q(−1). Therefore, after
choosing a basis of ω(M) compatible with the grading, the action of UMT(F )

is given by unipotent matrices.

8.2. The motivic Hopf algebra and Lie coalgebra. As is usual with
Tannaka groups, exhibiting points for them is difficult, whereas it is easy
to produce and manipulate functions on them. This is already the case for
the more classical Galois groups: only two elements of Gal(Q/Q) are known
(the identity and complex conjugation), whereas every quadratic extension
K of Q gives rise to a character Gal(Q/Q) → Gal(K/Q) ≃ {±1}.

This suggests that the more concrete object to consider is the Hopf al-
gebra of functions on the motivic Galois group GMT(F ). Since the latter is
completely determined by UMT(F ) with its action of Gm by (54), we make
the following definition instead.

Definition 8.2. The motivic Hopf algebra of MT(F ) is the algebra of func-
tions on the pro-unipotent group scheme UMT(F ):

H(F ) := O(UMT(F )).

It is a Hopf algebra over Q. The action of Gm on O(UMT(F )) translates as
a grading on H(F ), and by (52) and (54) one has that MT(F ) is equivalent
to the category of graded comodules over H(F ):

MT(F )
∼−→ grComod(H(F )).

If F is a number field then (32) implies that H(F ) is a cofree Hopf algebra
cogenerated in degree n ≥ 1 by a copy of K2n−1(F )Q. Therefore it is non-
negatively graded and connected, i.e.,

H(F ) =
⊕

n≥0

Hn(F ) with H0(F ) = Q,
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and one can “compute” the rational K-theory of F as the space of primitive
elements of H(F ):

(55) K2n−1(F )Q ≃ ker

(
∆ : Hn(F ) −→

n−1⊕

k=1

Hk(F )⊗Hn−k(F )

)
,

where ∆(x) := ∆(x)− 1⊗ x− x⊗ 1 is the reduced coproduct. One can also
consider the space of indecomposables

C(F ) := H>0(F )/H>0(F )H>0(F ),

whereH>0(F ) :=
⊕

n>0Hn(F ). The coproduct of H(F ) induces a cobracket

δ : C(F ) −→ Λ2C(F )
which gives C(F ) the structure of a Lie coalgebra. It is sometimes called the
motivic Lie coalgebra and contains as much information as the motivic Hopf
algebra, which can be recovered as its universal coenveloping coalgebra. In
particular, we have the following variant of (55):

(56) K2n−1(F )Q ≃ ker
(
δ : Cn(F ) −→ (Λ2C(F ))n

)
.

8.3. Matrix coefficients. The motivic Hopf algebra H(F ) is a rather con-
crete object. By the general tannakian formalism, the Hopf algebra

O(GMT(F ))

is spanned by matrix coefficients

(57) (M,ϕ, v)

with M an object of MT(F ), v ∈ ω(M) and ϕ ∈ ω(M)∨. The function on
GMT(F ) corresponding to (57) is

g 7→ 〈ϕ, g · v〉,
where 〈·, ·〉 is the duality pairing. The Q-linear relations among matrix
coefficients are spanned by the obvious relations

(M,ψ, f(v)) = (N, f∨(ψ), v)

for morphisms f : M → N in MT(F ) and v ∈ ω(M), ψ ∈ ω(N)∨. The
coproduct of O(GMT(F )) is computed on matrix coefficients by the formula

∆(M,ϕ, v) =
∑

i

(M,ϕ, ei)⊗ (M,e∨i , v),

where (ei) is any basis of ω(M) and (e∨i ) denotes the dual basis.

Example 8.3. We define the Lefschetz element of O(GMT(F )) as

L := (Q(−1), 1∨, 1)

where 1 denotes the canonical basis element of ω(Q(−1)) = Q. It is a
group-like element of the Hopf algebra O(GMT(F )) in the sense that

∆(L) = L⊗ L.
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The motivic Hopf algebra H(F ) is the quotient of O(GMT(F )) by the
(Hopf) ideal generated by (L − 1), which has the effect of “trivializing”
Tate twists. The space Hn(F ) of homogeneous elements of degree n is
spanned by the matrix coefficients (57) for which ϕ : grW0 M → Q(0) and
v : Q(−n) → grW2nM .

Example 8.4. Let x ∈ F \ {0, 1}. By the short exact sequence (35) there are
canonical identifications grW0 Kx ≃ Q(0) and grW2 Kx ≃ Q(−1). We denote
the corresponding matrix coefficient by

logH(x) ∈ H1(F ).

It is a primitive element of the Hopf algebra H(F ) in the sense that

∆(logH(x)) = 1⊗ logH(x) + logH(x)⊗ 1.

The notation is justified by the fact that logH satisfies the functional equa-
tion of the logarithm:

(58) logH(xy) = logH(x) + logH(y).

8.4. Regulators as single-valued periods. Let F be a number field and
σ : F → C be an embedding. The single-valued period isomorphism (9)
induces, thanks to (31), a C-linear isomorphism

sσ : ω ⊗Q C
∼−→ ω ⊗Q C,

i.e., a complex point of the motivic Galois group GMT(F ). By the computa-
tion of Example 2.4, its image by the map GMT(F ) → Gm is −1, therefore
it does not live in the pro-unipotent group scheme UMT(F ). It is however
possible to correct it and set

svHσ := τ(−1) sσ,

where τ is the splitting (53), which defines a complex point of UMT(F ), or
equivalently a morphism of algebras

svHσ : H(F ) → C,

sometimes called the single-valued period map (for mixed Tate motives over
F ).

Now since UMT(F ) is pro-unipotent one can take the logarithm of svHσ ,
which lives in its Lie algebra, i.e., is a complex-valued function on the motivic
Lie coalgebra. We then define

svCσ :=
1

2
log(svHσ ) : C(F ) → C

and call it the single-valued Lie-period map. In view of the definition of C(F )
as the space of indecomposables in H(F ), the map svCσ “kills products”,
which makes it better behaved than svHσ in certain situations.

Concretely, an element of Cn(F ) is an equivalence class of a matrix coef-
ficient (M,ϕ, v) with M ∈ MT(F ), ϕ : grW0 M → Q(0), and v : Q(−n) →
grW2nM , considered modulo products. Let P be an (ω, ωB)-period matrix for
M , i.e. a matrix for the comparison isomorphism

ω(M)⊗Q C ≃ ωdR(M)⊗F,σ C
∼−→ ωB,σ(M)⊗Q C,
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relative to a graded basis of ω(M). Let D be the basis of τ(−1) acting
on ω(M), i.e., the diagonal matrix with entry (−1)k in weight 2k. The

product DP
−1
P is unipotent, and the single-valued Lie-period map is then

computed as

svCσ(M,ϕ, v) =
1

2
〈ϕ, log(DP −1

P )v〉.

Example 8.5. Let M ∈ MT(F ) be an extension

0 −→ Q(0) −→M −→ Q(−n) −→ 0,

and let ξ = (M,ϕ, v) ∈ Cn(F ) denote the corresponding matrix coefficient.
Write the period matrix of M in the form

P =

(
1 α

0 (2πi)n

)
.

Then we have

log(DP
−1
P ) =


0 α− (−1)nα

0 0




and therefore

svCσ(ξ) =

{
Re(α) if n is odd

i Im(α) if n is even.

For instance, in the case n = 1, we have α = log(σ(x)) and therefore

(59) svCσ(log
H(x)) = Re(log(σ(x))) = log |σ(x)|.

This example gives a concrete way of computing the Hodge regulator
via the following commutative diagram, where the horizontal inclusion is
induced by (56):

K2n−1(F )
�

�

//

̟
(σ)
n

%%❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
Cn(F )

svCσ
zz✈✈
✈✈
✈✈
✈✈
✈✈
✈✈

C/(2πi)nQ

9. The tannakian formalism for mixed Tate motives: examples

Let F be a number field. We use our examples from §7 to produce el-
ements of the motivic Hopf algebra (resp. the motivic Lie coalgebra) of
MT(F ) and compute their coproduct (resp. their cobracket).

9.1. Motivic polylogarithms. For x ∈ F \ {0, 1} and n ≥ 1, recall the

polylogarithm motive L(x)
n , for which we have canonical isomorphisms

grW0 L(n)
x ≃ Q(0) and grW2nL(n)

x ≃ Q(−n),
induced by (40) and (41). We denote by

LiHn (x) ∈ Hn(F )

the corresponding matrix coefficient, and by

LiCn(x) ∈ Cn(F )
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its image modulo products. They are sometimes referred to as motivic poly-
logarithms. As explained in §2.5, we have

svCσ(Li
C
n(x)) = Pn(σ(x)).

From the structure (40) and (41) of the polylogarithm motive one easily
derives the coproduct formula:

∆(LiHn (x)) =

n−1∑

k=0

LiHn−k(x)⊗
(logH(x))k

k!
+ 1⊗ LiHn (x).

Modulo products, we get an even simpler cobracket formula:

(60) δ(LiCn(x)) = LiCn−1(x) ∧ logC(x).

This formula is reminiscent of the differential equation (5) for the classical
polylogarithms, written as d Lin(z) = Lin−1(z) dlog(z). This is not a coinci-
dence and can be explained by the general compatibility between the motivic
coproduct and the Gauss–Manin connection for motivic periods over a base
[Bro17b, §7].

Zagier’s polylogarithm conjecture predicts that motivic polylogarithms are
enough to capture all primitive elements in the motivic Lie coalgebra, i.e.,
to span the algebraic K-theory of number fields by (56).

Conjecture 9.1. The space of primitive elements in Cn(F ) is spanned by
Q-linear combinations of elements LiCn(x), for x ∈ F \ {0, 1}.

Under the equality of regulators (34), it implies Zagier’s original conjec-

ture [Zag91], which is an expression (37) where each α
(σ)
j is of the form

∑

k

ak Pn(σ(xk))

for some ak ∈ Q and xk ∈ F \ {0, 1}. This has been proved by Zagier for
n = 2, Goncharov [Gon95a] for n = 3, and Goncharov and Rudenko [GR18]
for n = 4. We refer the reader to the survey article [Dup21] for more details
on Zagier’s conjecture and its motivic aspects.

Remark 9.2. The cobracket formula (60) is so simple that it sometimes
allows one to produce many primitive elements in Cn(F ). For instance, if x
is a root of unity then logC(x) = 0 and therefore LiCn(x) is primitive. One
can prove that those elements LiCn(x) span the space of primitive elements
if F is a cyclotomic field, which settles Zagier’s conjecture in this case. For
another example borrowed from [ZG00], take F = Q(

√
−7), n = 2, and

consider the element

ξ = 2LiC2(y) + LiC2(y
′) for y =

1 +
√
−7

2
and y′ =

−1 +
√
−7

4
.

Since LiC1(x) = − logC(1 − x), one easily proves using (60) and (58) that
δ(ξ) = 0. (Hint: use 1− y = −2y′ and 1− y′ = −y2.)
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9.2. Motivic iterated integrals. Using motivic fundamental group(oid)s
one can produce “motivic” versions of iterated integrals on the punctured
projective line. Following [Gon05], we write

I(a0; a1, . . . , an; an+1) :=

∫ an+1

a0

ωa1 · · ·ωan ,

for elements a0, . . . , an+1 ∈ F (one potentially needs to specify tangential
basepoints at a0 and an+1), and define

(61) IH(a0; a1, . . . , an; an+1) ∈ Hn(F )

to be the matrix coefficient corresponding to the mixed Tate motive

(62) M = O(πmot
1 (P1

F \ {a1, . . . , an}, a0, an+1))

with ϕ : grW0 M
∼→ Q(0) the obvious identification, and v : Q(−n) → grW2nM

given by the word ωa1 · · ·ωan . The coproduct of the elements (61) is con-
strained by the structure of motivic fundamental group(oid)s and given by
Goncharov’s formula

∆(IH(a0; a1, . . . , an; an+1)) =
∑

0≤k≤n
0=i0<i1<···<ik<ik+1=n+1

(
k∏

s=0

IH(ais ; ais+1, . . . , ais+1−1; ais+1)

)
⊗ IH(a0; ai1 , . . . , aik ; an+1).

(63)

Its cobracket version (i.e., modulo products) simplifies as

δ(IC(a0; a1, . . . , an; an+1))

=
∑

0≤i<j≤n

IC(a0; a1, . . . , ai, aj+1, . . . , an; an+1) ∧ IC(ai; ai+1, . . . , aj−1; aj) .

Goncharov [Gon95b] conjectures that iterated integrals are enough to
understand the structure of mixed Tate motives.

Conjecture 9.3. The motivic iterated integrals (61), for all choices of ai ∈
F , span the motivic Hopf algebra H(F ).

Remark 9.4. By the tannakian dictionary, this would translate as the fact
that motivic fundamental groups (62) generate MT(F ) as a tannakian cat-
egory.

Prompted by Conjecture 9.3, one may dream of giving a complete “com-
binatorial” description of the motivic Hopf algebra H(F ) by generators and
relations. This idea has been pursued by Goncharov who gave such conjec-
tural descriptions in low weight and proved that they are compatible with
known descriptions of the algebraic K-theory of fields. We refer the reader
to [Dup21] for an introduction to this circle of ideas, which we call the
Goncharov program.

Remark 9.5. Zagier’s conjecture (Conjecture 9.1) does not imply Conjec-
ture 9.3 because it only gives information on the primitive elements in
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H(F ). Conversely, Conjecture 9.3 does not imply Zagier’s conjecture be-
cause the latter predicts that a very specific family of motivic iterated in-
tegrals, namely the motivic versions of classical polylogarithms, span the
primitives of H(F ).

9.3. Motivic multiple zeta values. As a special case of the construction
of motivic iterated integrals, using (47), one gets motivic multiple zeta values

ζH(n1, . . . , nr) ∈ Hn(Z) with n = n1 + · · ·+ nr,

where H(Z) denotes the motivic Hopf algebra of the category MT(Z) ⊂
MT(Q). Brown [Bro12, Bro14a] defined certain variants that we denote by

(64) ζP(n1, . . . , nr) ∈ Pn(Z).

They live in the algebra of motivic periods for MT(Z), defined as

P(Z) := O(Isom⊗(ωdR, ωB)),

where ωdR, ωB : MT(Z) → VectQ are the de Rham and Betti fiber functors.
The comparison isomorphism (2) induces a morphism of algebras

(65) per : P(Z) −→ C,

called the period map. It allows one to recover multiple zeta values from
Brown’s motivic versions (64):

per(ζP(n1, . . . , nr)) = ζ(n1, . . . , nr).

The Hopf algebra structure on H(Z) is replaced by a coaction [Bro17b]

P(Z) −→ P(Z)⊗H(Z),

which can be computed on (64) by a variant of Goncharov’s formula (63).
These tools are the main inputs of the proof of the following important the-
orem of Brown [Bro12] (previously known as the Deligne–Ihara conjecture).

Theorem 9.6. The object O(πmot
1 (P1 \ {0, 1,∞}, (0, v), (1, w))) generates

MT(Z) as a tannakian category.

The proof of this theorem actually gives a more detailed description of the
structure of mixed Tate motives over Z. Using the period map (65), one gets
the following theorem (conjectured by Hoffman [Hof97]), whose statement
does not involve mixed Tate motives at all, but whose only proof (at the
time of writing) requires the help of the motivic machinery.

Theorem 9.7. Every multiple zeta value can be expressed as a Q-linear
combination of multiple zeta values ζ(n1, . . . , nr) for which all ni ∈ {2, 3}.

We refer the reader to the survey article [Dup24] and the monograph
[BGF] for more details on multiple zeta values, their motivic versions, and
Brown’s theorem.
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9.4. Motivic volumes in hyperbolic geometry. Using the mixed Tate
motives which lift the relative cohomology groups (50), Goncharov [Gon99]
defines a motivic version of the volume of a hyperbolic simplex Σ in H2n−1

whose faces (in Klein’s model) are defined over a number field F ,

(66) volH(Σ) ∈ Hn(F ).

Its coproduct
∆(volH(Σ)) ∈ H(F )⊗H(F )

is related to the Dehn invariant of Σ, which was used to solve Hilbert’s third
problem by proving that two polyhedra with equal volume cannot always
be transformed into one another by cutting and pasting.

By triangulating a given hyperbolic (2n−1)-manifold M of finite volume,
Goncharov defines a motivic version

volH(M) ∈ Hn(F )

of its volume as a sum of elements (66), and proves that it gives rise to a
primitive element in the motivic Hopf algebra. This builds a bridge between
volumes of hyperbolic manifolds on the one hand, and regulators and special
values of Dedekind zeta functions on the other hand.
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2019. Éditions de l’École polytechnique, 2024.
[Gon94] A. B. Goncharov. Polylogarithms and motivic Galois groups. In Motives (Seat-

tle, WA, 1991), volume 55 of Proc. Sympos. Pure Math., pages 43–96. Amer.
Math. Soc., Providence, RI, 1994.

[Gon95a] A. B. Goncharov. Geometry of configurations, polylogarithms, and motivic
cohomology. Adv. Math., 114(2):197–318, 1995.

[Gon95b] A. B. Goncharov. Polylogarithms in arithmetic and geometry. In Proceedings
of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994),
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