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We address the question of the time needed by N particles, initially located on the first sites of a finite one-
dimensional lattice of size L, to exit that lattice when they move according to a TASEP transport model. Using
analytical calculations and numerical simulations, we show that when N � L, the mean exit time of the particles
is asymptotically given by TN (L) ∼ L + βN

√
L for large lattices. Building upon exact results obtained for two

particles, we devise an approximate continuous space and time description of the random motion of the particles
that provides an analytical recursive relation for the coefficients βN . The results are shown to be in very good
agreement with numerical results. This approach sheds some light on the exit dynamics of N particles in the
regime where N is finite while the lattice size L → ∞. This complements previous asymptotic results obtained
by Johansson [Commun. Math. Phys. 209, 437 (2000)] in the limit where both N and L tend to infinity while
keeping the particle density N/L finite.

DOI: 10.1103/PhysRevE.109.034116

I. INTRODUCTION

The totally asymmetric simple exclusion process (TASEP)
model is a unidirectional model of transport of particles
with exclusion on a one dimensional lattice [1]. It has vari-
ous interesting applications in traffic on lanes, waiting times
lists, directed transport of particles through channels and
more [2–4]. It can also be mapped on models of interface
growth [5,6], providing alternate interpretations of its results.
Originally introduced in the context of the kinetics of biopoly-
merization, it has also been a paradigmatic model in the field
of biological transport since [7,8].

Most theoretical investigations of the TASEP model have
been dedicated to obtaining results at stationarity when the
flux of particles entering and exiting the lattice has reached a
stationary value. In that respect, particle density and current
properties have been thoroughly studied [9–13]. But some
results have also been obtained in nonstationary regimes,
especially in infinite lattices. For instance, the exact Green
functions of the continuous time TASEP model on Z have
been obtained by Schütz [14]. Related quantities have sub-
sequently been used to determine some asymptotic features of
the time evolution of the particle density when starting from
a step-initial condition where particles initially populate the
left half of the lattice only [15]. Much in the same vein, the
statistical features of the motion of certain (tagged) particles
along the lattice have been elucidated as well [6,16]. The ques-
tion we address here pertains to that class of nonstationary
problems: how a set of particles, transported according to the
TASEP rules, evacuate a finite lattice, especially when they
start from a “steplike” configuration where all of them are
located on the leftmost sites of that lattice? To answer that
question, we shall study the distribution of their exit time and,
more specifically, their mean exit time (MET).

Studies on exit times (also called evacuation times or
escape times) in single-file systems, that is in 1D systems
where particles cannot pass each other, generally involve

bidirectional motion like in single-file diffusion (SFD) prob-
lems (see, for instance, Refs. [17,18] and references therein).
In this context, exit time distributions may be analyzed via
the first passage time density of a “tracer” (or tagged) particle
moving within a crowd of like particles (see, e.g., Ref. [19]).
Analysis of these SFD problems shows that the tracer position
x(t ) has a subdiffusive behavior leading to a mean-squared
displacement that scales as 〈(x(t ) − x0)2〉 ∝ t2H at long times
where H is the Hurst exponent [20,21]. This behavior, due
to crowding effects generated by 1D confinement at a given
density of particles, contrasts with the 〈(x(t ) − x0)2〉 ∝ t scal-
ing typical of a diffusive behavior for which H = 1/2. In
the particular case of the symmetric exclusion process (SEP)
for instance—a 1D hard-core lattice gas problem equivalent
to the TASEP model but where particles may equally jump
to the right or to the left provided the corresponding site is
empty (see, e.g., Ref. [22])—the Hurst exponent is H = 1/4
and the SEP problem has been shown to be equivalent to a
fractional Brownian motion (fBm) that depends on the particle
density [23,24].

The exit of particles following TASEP transport rules from
a finite size lattice share some similarities with SFD systems.
In particular, the motion of a given particle is hindered by
others (exclusion) and therefore cannot perform a simple in-
dependent random walk. But there are two main differences
between SFD problems and the question we address in this
paper. First, the particle density does not remain constant over
time because particles progressively leave the system they
start from and free the motion of those that remain within
the lattice. In that respect, the escape of colloidal particles
from microfluidic channels studied in Ref. [25] is a problem
closer to ours. Second, the motion of particles is unidirectional
(particles only move to the right) that is, transport is totally
biased. This situation is similar to emergency evacuation in
trains or aircrafts where individuals have to quickly walk
down a narrow seat aisle [26,27]. The evacuation of parti-
cles according to TASEP rules might therefore provide some
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FIG. 1. Initial, intermediate, and final configurations.

insight on emergency evacuation although pedestrian dynam-
ics has a quite complex stochastic structure [28,29].

In this paper, we focus on a special setting of the TASEP
model: particles start from a steplike initial state and no
particle is injected at site 1. Moreover, all particles exit the
lattice as they reach site L + 1 (absorbing condition after the
Lth site). At time t = 0, the N particles are located on sites
1, ..N with N � L, as displayed in Fig. 1. We are interested
in the emptying time of this model which is equal to the exit
time of the leftmost particle of the lattice. In particular, we
shall use analytical calculations and numerical simulations to
determine the MET.

After introducing the model and quantities of interest in
Sec. II, we present some exact results for one and two particles
in Secs. III and IV. We then use a continuous space and time
description of the relative motion of the particles with respect
to the leading one to calculate the exit time in the large L limit
in Sec. V. This approach provides a simple physical approxi-
mate solution of the problem, yielding a recursive expression
for TN (L) in the large L limit. These results are then compared
to Gillespie simulations in Sec. VI. In Sec. VII, we discuss our
asymptotic results and compare them to those of Johansson [5]
obtained in the finite density regime.

II. TRANSPORT MODEL AND ITS
EXIT TIME DISTRIBUTION

A. TASEP model

The totally asymmetric simple exclusion process (TASEP)
is a paradigmatic dynamical model for the unidirectional
transport of particles on a lattice that takes into account exclu-
sion. Throughout this paper, we shall use the following rules:

a particle may hop to its neighboring site (on the right) with
a hopping rate p provided the latter is empty and may leave
the last lattice site with the same hopping rate p. Using 1/p
as unit of time, we shall simply set p = 1. In what follows,
we shall study the exit time distribution of N particles initially
located on the first (leftmost) N sites of a lattice containing
L � N sites, see Fig. 1 for a pictorial view.

The TASEP model is a Markov process governed by the
master equation,

d|P(t )〉
dt

= M|P(t )〉, (1)

where the probability vector may be written as

|P(t )〉 =
∑

σ

Pσ (t )|σ〉. (2)

Here, the configuration vector is |σ〉 = |σ1〉 ⊗ · · · ⊗ |σL〉 with
column vectors |σi〉 = (1 − σi, σi )T where σi = 1 when site
i is occupied by a particle and σi = 0 otherwise. The sum
runs over all 2L particle configurations. Within our settings,
the Markov matrix M reads [30]

M =
L−1∑
i=1

1Ii−1 ⊗ m ⊗ 1IL−1−i + 1IL−1 ⊗ b, (3)

where 1I is the 2 × 2 identity matrix and where

m =

⎛
⎜⎜⎝

0 0 0 0
0 0 1 0
0 0 −1 0
0 0 0 0

⎞
⎟⎟⎠; b =

(
0 1
0 −1

)
. (4)

It is worth noting that M is a 2L × 2L upper triangular matrix.

B. Exit time distribution

As the TASEP model is a random process, the time t
taken by N particles to empty an L-site lattice is a random
variable. We shall denote by pN,L(t ) its probability density
function (PDF). In the terminology of the previous section,
the probability that the lattice is empty at time t is given by
P0(t ) where 0 = (0, . . . , 0) is the configuration where the L
sites are empty. Now, the lattice is empty at time t if the
N particles have evacuated it by a time τ � t . Then, the
probability Pr(τ � t ) that the exit time of the N particles
is less than t is exactly equal to P0(t ). The exit time PDF,
pN,L(t ) = dPr(τ � t )/dt , is therefore given by

pN,L(t ) = Ṗ0(t ) = P(0,...,0,1)(t ), (5)

where the dot denotes the time derivative and where the last
equality is obtained from the master equation (1). It is thus
sufficient to evaluate the probability that only site L is occu-
pied at time t to obtain the exit time PDF.

Taking the Laplace transform of the master equation (1),
we obtain the following algebraic system:

(s − M )|P̃(s)〉 = |P(0)〉, (6)

where s is the parameter of the Laplace transform defined by

f̃ (s) =
∫ ∞

0
dt f (t )e−st . (7)
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In Eq. (6), |P(0)〉 is the initial probability vector with a single
nonzero component: P(1,...,1,0,...,0) = 1 with N 1′s and (L − N )
0′s. Solving the triangular algebraic system (6), one obtains
the Laplace transform of P(0,...,0,1)(t ) and, from there, the PDF
pN,L(t ) itself. Of particular interest is the mean exit time
(MET) of that distribution. In the next sections, we shall be
mainly interested in the asymptotic behavior of this quantity
as L becomes large while N remains finite. For that reason, we
shall denote the mean exit time of N particles from a lattice
{1, L} with L sites as T ( f )

N (L). The superscript ( f ) emphasizes
the fact that this MET is obtained for a finite lattice with L
sites and not for a section with L sites [1, L] embedded in an
infinite lattice. We shall come back to that point in Sec. IV B.
Let us just note for now that T ( f )

N (L) may be directly derived
from the Laplace transform of pN,L(t ) as

T ( f )
N (L) = − d p̃N,L(s)

ds

∣∣∣∣
s=0

. (8)

A word is in order here. The solution of Eq. (6) is tech-
nically immediate, both because the system is triangular and
because the results are rational fractions in s whose inverse
Laplace transforms are straightforward. Nonetheless, it allows
for an analytical determination of the exit time distribution
pN,L(t ) and its MET for small lattices only. The size of the
Markov matrix grows indeed exponentially fast with L and
we have not found any compact way to express the analyti-
cal solution in the general case (N � L). Of course, starting
from N particles, only configurations with at most N particles
contribute to the dynamics of the system. The dimension of
the Markov matrix reduced to these configurations is much
smaller than 2L: for instance for N = 2, the total number of
configurations with at most two particles is L(L + 1)/2 + 1
which grows algebraically as L2/2 for large L. For L = 20,
the reduced Markov matrix is then roughly 200 × 200 versus
106 × 106 for the full one. However, in spite of this drastic
reduction, analytical expressions become very lengthy when-
ever L > 20 and, although exact, they are not particularly
helpful in determining asymptotic behaviors for large L. They
provide results that can be used as benchmarks for simulations
though. Examples of such results for N = 2, 3 are provided
in Appendix A. In the next section, we shall therefore use a
different method to tackle the determination of the MET for
arbitrary large lattices.

III. ONE PARTICLE: BALLISTIC REGIME

We briefly treat here the exit time distribution of a single
particle initially located on site 1 of an L-site lattice {1, L}. As
it is more convenient, we switch from the “Eulerian” descrip-
tion based on particle configurations, that we have used so far
to express probabilities, to a “Lagrangian” approach where
particles are traced. Let us then call P(n; t ) the probability
that the particle lies on site n ∈ {1, . . . , L + 1} at time t . The
addition of a virtual (L + 1)th site allows the particle to exit
the lattice. This site is “absorbing” and P(L + 1; t ) is then
the probability that the lattice {1, L} is empty. According to
Eq. (5), we then have p1,L (t ) = P(L; t ) = Ṗ(L + 1; t ). In the

Lagrangian terminology, the master equation (1) translates
into

Ṗ(1; t ) = −P(1; t ), (9)

Ṗ(n; t ) = P(n − 1; t ) − P(n; t ), n ∈ {2, . . . , L}. (10)

Taking the Laplace transform of Eq. (9) with an initial con-
dition given by P(1; 0) = 1 (all other component being zero)
yields P̃(n; s) = (1 + s)−n. Hence,

p̃1,L(s) = P̃(L; s) = (1 + s)−L, (11)

which upon inversion yields the exit time distribution of a
single particle out of the {1, L} lattice,

p1,L(t ) = tL−1

(L − 1)!
e−t . (12)

This distribution is of the Poisson type, as expected: a single
particle indeed never experiences exclusion and spends on
each site a time that follows the same exponential distribu-
tion (e−t ). Therefore, the total amount of time it spends on
the lattice {1, L} is nothing but the sum of L exponentially
distributed variables which leads to the Poisson distribution
(12). Moreover, according to Eqs. (8) and (11), the mean exit
time of the particle is

T ( f )
1 (L) = L. (13)

The particle spends on average a unit of time on each site and
thus travels at constant velocity. In that respect, its motion is
ballistic. The purpose of the next section is to detail how this
motion is hindered when another particle seats initially next
to its right side.

IV. TWO PARTICLES: EXACT AND ASYMPTOTIC
EXPRESSIONS FOR THE MET

A. Finite lattice

Let us label the particles in their exiting order, namely from
right to left, and consider first the same problem as in the
previous section but with two particles initially located on site
2 (first particle) and on site 1 (second particle) of the lattice
{1, L}. We can show (see Appendix B) that the mean exit time
of these two particles is exactly given by

T ( f )
2 (L) = L + L − 1

4L−2
×

(
2L − 3

L − 1

)
, (14)

where
(m

n

) = m!/(n!(m − n)!) is the binomial coefficient.
Asymptotically, for large L, we then find

T ( f )
2 (L) = L + 2√

π

√
L + O(L−1/2). (15)

Comparing this expression to the 1 particle MET (13) shows
that the main effect of adding a particle next to the first one
at the start of the process is to delay its exit by an amount of
time that is proportional to the square root of the distance it
has to travel to exit. In the next section, we shall interpret that
result as a consequence of the random motion of the second
particle confined on its right side by the random motion of the
first one that it cannot overtake.
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B. Infinite lattice

We now consider a problem related to the previous one
although slightly different: what is the time T2(L) necessary
for 2 particles to exit the section[1, L] of an infinite lattice,
with the same initial positions as for the finite lattice {1, L}?
This problem has much simpler boundary conditions than in
Sec. IV A as particles keep moving on the infinite lattice in-
stead of being absorbed at site (L + 1). This will enable us to
develop a connection with a diffusion equation. The physical
difference between the two situations is that in this present
case, a particle having exited the [1, L] section still hinders
the previous ones, whereas in the finite domain problem, the
dynamics of a particle changes to a ballistic one each time
its predecessor exits the lattice {1, L}. However in the large
L limit, we expect the particles mean relative distances to
become large, and the additional constraint provided by the
following particles to be weak. Our following results will
sustain this claim.

We first use results developed in Ref. [14], which provides
an exact formula for the probability of two particles to be at
positions X1 and X2 at times t knowing their initial positions
Y1 and Y2 at time 0. From that we are able to deduce (see
Appendix C):

T2(L) = L + 2√
π

× �(L + 1/2)

�(L)
, (16)

and this again yields the same asymptotic behavior as
Eq. (15):

T2(L) = L + 2√
π

√
L + O(L−1/2), (17)

therefrom showing the equivalence of the finite and infinite
formulation of the exit problem in the large L limit.

We now make a connection between this problem and a dif-
fusion equation. Let us denote by k1 and k2 the positions of the
front and rear particles, respectively. The master equation for
this two-particle case is written as [14]

∂t P(k2, k1; t ) = P(k2 − 1, k1; t ) + P(k2, k1 − 1; t )

− 2P(k2, k1; t ), (18)

valid for k1 − k2 > 1, while for k1 − k2 = 1, we have

∂t P(k2, k1; t ) = P(k2 − 1, k1; t ) − P(k2, k1; t ). (19)

As shown by Schütz in Ref. [14], these two equations are
mathematically equivalent to Eq. (18) alone, provided we
require the following condition to hold at all times,

P(k, k + 1; t ) = P(k, k; t ). (20)

This boundary condition is another way to express the
exclusion interaction. Finally, these equations are supple-
mented with the initial condition P(1, 2; t = 0) = 1, all other
probabilities being zero at t = 0.

Now, the probability P (χ ; t ) that the distance between the
two particles be χ at time t then follows from

P (χ ; t ) =
∑
k2�1

P(k2, k2 + χ ; t ) (21)

and satisfies

∂tP (χ ; t ) = P (χ + 1; t ) + P (χ − 1; t ) − 2P (χ ; t ), (22)

with the boundary condition

J (χ = 0; t ) ≡ P (0; t ) − P (1; t ) = 0, (23)

which is but a discretized version of the diffusion equa-
tion with a no flux condition (J = 0) originating from the
exclusion constraint. This will enable us to develop an ap-
proach based on this equation in the next section.

Solving Eq. (22) we obtain for the mean distance (see
Appendix D)

〈χ (t )〉 = e−2t

2
[(4t + 1)I0(2t ) + 4t I1(2t )] + 1

2
, (24)

where Ik is the modified Bessel function of order k. Con-
sequently, for large times t , the distance between the two
particles varies like 〈χ (t )〉 � 2√

π

√
t . In the context of the

exit of two particles initially at k2 = 1 and k1 = 2, particle
1 reaches the end of the lattice after a time L, time at which
particle 2 is on average at a distance 〈χ (L)〉 ∝ L1/2 behind
particle 1. Then particle 2 reaches the end of the lattice with
a delay 〈χ (L)〉. Finally, for L large, the exit time of the two
particles is T2(L) � L + 2

√
L/π , which is consistent with our

previous exact results.

V. DIFFUSION APPROXIMATION

The former calculations suggest the following simple phys-
ical approach: since the leading particle has on average a
ballistic motion with a constant velocity, it is convenient to
study the motion of the rear particles in the reference frame
of the leading one. As we saw in Eq. (22) this leads to a
diffusion equation for the motion of the second particle with a
no flux boundary condition accounting for the exclusion. This
can be generalized to any of the (N − 1) trailing particles, the
preceding particle acting as an impenetrable wall due to exclu-
sion, to recursively find the average position of the nth particle
with respect to the leading one. We denote by x the relative
position of a particle with respect to the leading one (particle
1), and X its absolute position in the laboratory frame. Let us
first consider the occupancy probability P2(x; t ) of the second
particle. As we saw, this relative motion is simply described
by a continuous diffusion equation. We are then left with the
following set of equations in the domain x < 0:

∂tP2(x; t ) = ∂xxP2(x; t ), x < 0,

P2(x; t ) −−−−→
x→−∞ 0,

P2(x; t = 0) = δ(x − 0−), (25)

J (0; t ) ≡ −∂xP2(x = 0−; t ) = 0.

Some comments are in order: here the space domain extends
from x = 0 corresponding to the position of the leading par-
ticle up to x = −∞ when the trailing particle stays at rest in
the laboratory frame. At t = 0 particle 2 is situated next to the
leading particle, which in the continuous limit gives the stated
initial condition. Finally the exclusion caused by the leading
particle is described by a no flux condition J (x = 0) = 0. The
solution of this set of equations is elementary and is twice the
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FIG. 2. Mean exit times of the first two particles.

fundamental solution of the 1D diffusion equation. This im-
mediately leads to the average position for the second particle
with respect to the first one: 〈x2(t )〉 = −2

√
t/π . When the

leading particle exits at a mean time T1 = L the second one
therefore sits at a position 〈X2(L)〉 = L − 2

√
L/π in the lab-

oratory frame. Since we demonstrated the equivalence of the
finite and infinite lattice frames for the exit problem, we can
assume particle 2 to be then unconstrained. Hence, it needs
an additional time T2 − T1 = 2

√
L/π to exit, (see Fig. 2 for a

pictorial view). This reproduces the result obtained previously
by our exact algebraic computations (15), and this validates
our continuous approach.

Encouraged by this first result, we seek a recursive scheme
to obtain the mean position of the (n + 1)th particle with
time, assuming an average position 〈xn(t )〉 = −βn

√
t of the

previous one, always relative to the first particle. The set
of evolution equations for the (n + 1)th particle can then be
written as

∂tPn+1(x; t ) = ∂xxPn+1(x; t ), x < 〈xn(t )〉,
Pn+1(x; t ) −−−−→

x→−∞ 0,

Pn+1(x; t = 0) = δ(x − 0−), (26)

[∂xPn+1(x; t ) + 〈ẋn(t )〉Pn+1(x; t )]x=〈xn(t )〉 = 0.

The last condition can be established for example by imposing
d
dt

∫ 〈xn (t )〉
−∞ Pn+1(x; t )dx = 0 which results from the normaliza-

tion condition. It enforces a no flux condition at the moving
boundary xn(t ). The solution of Eqs. (26) is simply

Pn+1(x; t ) = 1√
πterfc(βn/2)

e−x2/4t . (27)

One can check that both the normalization and the no-flux
condition, which are related, are satisfied by the above solu-
tion when the boundary is moving ∝ √

t .
The average velocity d

dt 〈xn+1(t )〉 = −βn+1/(2
√

t ) can
finally be calculated by taking the mean of the diffusion equa-
tion as d

dt 〈xn+1(t )〉 = −Pn+1(0; t ), and this allows us to write
the following recursion relation:

βn+1 = 2√
π

exp
( − β2

n/4
)

erfc(βn/2)
, (28)

FIG. 3. Mean trajectories 〈Xn(t )〉 = t − βn

√
t of successive n =

1, 2, 3, 4, 5 TASEP particles from the continuous approach (dashed
lines). In comparison, Gillespie-simulated trajectories averaged over
1000 different histories are represented with different symbols (see
legend) and colors (online version). In addition, an example of the
time TN (L) when the N th particle exits an L-site lattice section (with
N = 5 and L = 60 here) is shown. The asymptotic behavior of the
same trajectories is displayed in the inset that shows part of a large
time simulation for L = 2000 (same symbol and color code as in
the main figure). Together, these two graphs show that the diffusion
approach is able to capture the asymptotic behavior of the individual
particles (see Sec. VI).

initiating at β1 = 0. This is the central analytical result which
allows us to calculate the actual average position of the nth
particle as a function of time in the laboratory frame as
〈Xn(t )〉 = t − βn

√
t .

In Fig. 3, we have plotted the resulting mean trajectories
for the first five particles in the laboratory frame as a func-
tion of time (see dashed lines). For comparison, trajectories
obtained by Gillespie simulations (see Sec. VI) on a lattice
with L = 150 sites (main figure) or L = 2000 sites (inset) and
averaged over 1000 replicas are also plotted with symbols. As
is clear from the figure, the continuous diffusion approxima-
tion breaks down at short times, since TASEP particles can not
have negative velocities in the laboratory frame. Yet, it works
remarkably well at larger times/positions (see inset), giving
the exact large L asymptotics for N = 1 and 2 and an error of
the order of a fraction of a percent for small values of N (see
below).

Finally, for N particles and large L the asymptotic behavior
for the mean exit time is

TN (L) � L + βN

√
L, (29)

where βN is given by Eq. (28).

VI. GILLESPIE SIMULATIONS OF EXIT TIMES

Numerical simulations were also done to compute directly
the exit times. To compare our results with real data, we sim-
ulated the emptying of a TASEP from an initial step condition
using a continuous time Gillespie algorithm; see Appendix E
for details. The simulations were done with L = 300, 600, and
1000 sites, and with up to N = 50 particles. The rather modest
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FIG. 4. Values of βG
N obtained directly by Gillespie simulations

(red stars, green crosses, blue crosshairs : L = 300, 600, 1000, re-
spectively) compared to the values of βN obtained by the recursive
scheme based on the diffusion equation approach, Eq. (28) (solid
curve). The dashed line correspond to the limit of vanishing densities
of Ref. [5]; see Sec. VII below.

number of copies was generally enough to ensure a reasonable
error on the mean exit time, since this quantity is in itself a
mean of different Gillespie times along one single history. The
values of the coefficients βG

N (L) were then computed using the
definition

βG
N (L) ≡ T G

N (L) − L√
L

(30)

and compared to the values obtained by our recursion equa-
tion (28) in Fig. 4, see the red stars (L = 300), green crosses
(L = 600), blue cross-hair (L = 1000), and black solid curve
[Eq. (28)], respectively. The agreement between these two in-
dependent methods (diffusion approximation calculation and
Gillespie simulations) is excellent for L = 1000 and for small
values of N , with a vanishing relative error at N = 1 and 2
since the diffusion method gives the exact result there, and
a relative error ranging from +1% for N = 3 to −0.7% for
N = 10. This ultimately validates our diffusion continuous
approach. We also note that for large N values, the Gillespie
simulations are getting closer to our estimation (29) when
increasing L, with an error of only −7% for N = 50 and
L = 1000. Actually we conjecture that our diffusion scheme
produces an exact result in the limit L → ∞ and N → ∞ with
N/L → 0 as we discuss in the next section.

VII. DISCUSSION AND CONCLUSIONS

In this work, we have considered the question of the mean
time taken by N particles to empty a lattice with L sites
while being transported according to the rules of the TASEP
model and starting from the leftmost sites of that lattice (step
initial condition). We have investigated two slightly different
versions of that problem: (A) particles definitively exit the
lattice as they leave the site L and (B) particles keep mov-
ing along an infinite lattice after they have crossed the Lth
site. For N = 2 particles, we have found the exact mean exit
time for both problems and we have shown that they have
a common asymptotic behavior at large L equal to T2(L) =
L + 2√

π

√
L + O(L−1/2).

Still for N = 2 particles and within the framework of
problem B, we have revisited that result by showing that the

probability distribution of the distance between the particles
obey a master equation that is a discrete version of a diffusion
equation. From there, we have calculated the mean distance
as a function of time and rederived the asymptotic behavior of
the mean exit time. Then, generalizing this approach to N � 3
particles, we have devised an approximate diffusion model
for the relative positions of consecutive particles that leads
to a mean exit time for N particles that behaves for large L as
TN (L) ∼ L + βN

√
L where βN can be calculated recursively.

Finally, we have confirmed the validity of this approximation
by Gillespie simulations for values of N � L.

Our diffusion model seems to work particularly well for a
small finite number of particles. In the limit where the lattice
size becomes infinite, L → ∞, the average particle density
N/L tends therefore to zero. It is nonetheless tempting to try
to extrapolate our results to a number of particles proportional
to the lattice size, N = μL (as L → ∞) with a proportionality
coefficient μ � 1 in order to keep N � L. Assuming Eq. (28)
to be still valid for large values of N � L, the asymptotic be-
havior βN ∼ 2N1/2 for large N obtained from Eq. (28) would
yield

TN (L) � L + 2
√

NL. (31)

Letting N = μL then provides the following asymptotic
behavior

TμL(L) ∼ (1 + 2
√

μ)L, (L → ∞, μ � 1). (32)

This is to be compared to the exact known result TμL(L) =
(1 + √

μ)2L obtained by Johansson for N = μL in the limit
L → ∞ and μ finite (see Ref. [5], Theorem 1.6, Eq. (1.19) in
which γ = 1/μ [31]). The corresponding value of βJ

N defined
as in Eq. (30) reads βJ

N = (2 + √
μ)

√
N . Using this result

in the limit μ = 0 corresponding to our vanishing density
regime, we have also plotted in Fig. 4 the corresponding
βJ

N = 2
√

N (black dashed line). We can see that our approx-
imation gives a much better estimate of TL(N ) in the finite N
regime and behaves decently at N large, with the same asymp-
totic value of βN . This leads us to conjecture that Eq. (31)
is exact in the limit L → ∞ and N → ∞ with the density
μ = N/L → 0, a region outside of the scope of Ref. [5].

Another problem of interest is the exit time of N particles
transported without exclusion. In that case, particles are all in-
dependent. They wait for a time t distributed according to the
exponential distribution e−t between two consecutive jumps to
the right, may overtake each other and occupy the same lattice
site as others. The particle to last exit the lattice among the N ,
irrespective of its initial location, sets the exit time. Evaluating
the distribution obeyed by the latter thus simply amounts to
finding the distribution of the maximum of the individual exit
times of each of the N particles (that depend on their initial
location). For N = 2 particles starting, respectively, from sites
1 and 2 of an L-site lattice, it can be shown that the exit time
asymptotically reads T2(L) ∼ L + 1√

π

√
L + O(1), for large L

[32]. Strikingly, we see that the
√

L correction to the mean
exit time of a single particle is not solely attributable to
the exclusion effect of the TASEP model. It also occurs in
independent particles as a by-product of the distribution of
the maximum of their individual exit times, although with a
different prefactor (half of the TASEP one for two particles).
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TABLE I. Exact Laplace transform and mean exit time of the exit time distribution of a finite lattice {1, L} for L � 10 and N = 2, 3.

L p̃2,L (s) T ( f )
2 (L) p̃3,L (s) T ( f )

3 (L)

2
1

(s + 1)3
3 n.a. n.a.

3
2

(s + 1)4(s + 2)

9

2

2

(s + 1)5(s + 2)

11

2

4
5s + 8

(s + 1)5(s + 2)3

47

8

12s2 + 39s + 32

(s + 1)6(s + 2)5

233

32

5
2(7s2 + 21s + 16)

(s + 1)6(s + 2)5

115

16

110s3 + 495s2 + 751s + 384

(s + 1)7(s + 2)7(s + 3)

3409

384

6
...

1083

128
...

107 617

10 368

7
...

2485

256
...

13 237 775

1 119 744

8
...

11 195

1024
...

2 132 010 983

161 243 136

9
...

24 867

2048
...

254 084 494 957

17 414 258 688

10
...

437 075

32 768
...

7 491 745 364 599

470 184 984 576

Preliminary analytical and numerical results seem to show
that for a large number N of particles, all starting from site
1 of the lattice, the prefactor of the

√
L correction of the exit

time is proportional to ln N as N → ∞. This behavior is to
be contrasted with the

√
N correction obtained in presence of

exclusion for the TASEP model.
Finally, this study can be seen as a step towards the cal-

culation of exit times of some more refined transport models.
For example, one could try to test the diffusion approximation
used in this paper to compute probabilities of interest studied
in the clearance problem of Ref. [33]. Queuing problems [3]
or experimental microfluidic setups [34] could also benefit
from our approach (e.g., by relaxing the exclusion constraint
for the queuing problem, or allowing for bidirectional trans-
port like in the ASEP or SEP models, see Refs. [16,22]).

APPENDIX A: SOME EXACT RESULTS
FOR SMALL LATTICES

In Table I, we list some exact results for the exit time
distributions and their MET that can be obtained from the
method exposed in Sec. II B. As may readily be checked from
the third column of this table, the mean exit time of N = 2
particles on a finite lattice {1, L} (L � 10) agrees with the
exact formula provided in Eq. (14). Laplace transforms of the
time distributions have been given up to L = 5 only for they
then become somewhat lengthy. From L � 3 onwards, the
denominator of p̃2,L(s) is (s + 1)L+1(s + 2)2L−5. The constant
coefficient of the numerator polynomial is 22L−5 and its high-
est degree coefficient (sL−3 for L � 3) is the Catalan number
C(L) = (2L

L

)
/(L + 1) (valid for L � 2). As for p̃3,L(s), its de-

nominator is given by (s + 1)L+2(s + 2)2L−3(s + 3)3L−14 for
L � 5.

Exact results for small lattices (up to L = 20) with N =
2, 3 particles are typically obtained by Maple on a basic laptop
within less than a minute computation time. These results may
serve as benchmarks for simulations.

APPENDIX B: EXACT MET
FOR TWO PARTICLES, FINITE LATTICE

To find the mean exit time of two particles initially located
on site 1 and 2 of the finite lattice {1, L}, it is sufficient,
according to Eqs. (5) and (8), to find the Laplace transform
(LT) of the probability that particle 2 is on site L of that lattice
while particle 1 has left it. We shall denote that quantity by
P̃o(L; s) where the subscript o indicates that particle 1 has
left the lattice. We shall denote by P̃(k2, k1; s) the LT of the
probability that particle 1 is at site k1 and particle 2 at site k2

with 1 � k2 < k1 � L. Let us write the master equation for
the LT P̃o(n; s), n ∈ [[1, L]]. Dropping the s dependence for
simplicity, one obtains

sP̃o(1) = −P̃o(1) + P̃(1, L),

sP̃o(k) = −P̃o(k) + P̃o(k − 1) + P̃(k, L),

sP̃o(L) = −P̃o(L) + P̃o(L − 1), (B1)

where k ∈ [[2, L − 1]]. Solving for P̃o(L; s) yields

P̃o(L; s) =
L−1∑
n=1

P̃(n, L; s)

(s + 1)L−n+1
. (B2)

We shall now take advantage of the fact that P(n, L; t ) is
known exactly for it is the probability that two particles lo-
cated on sites 1 and 2 at t = 0 be located at site n and L,
respectively, at time t . This transition probability is provided
by Schütz in Ref. [14] who has solved this problem on an
infinite lattice. Yet, as none of the particles have left the
section[1, L], this probability is exactly the same as for the
finite lattice {1, L}. This makes the necessary connection be-
tween the finite and infinite lattice problems. According to
Ref. [14], we have

P(n, L; t ) =
∣∣∣∣F0(n − 1; t ) F−1(n − 2; t )
F1(L − 1; t ) F0(L − 2; t )

∣∣∣∣, (B3)
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where

F0(k; t ) = t k

k!
e−t and F1(k; t ) = 1 − e−t

k−1∑
q=0

t q

q!

and where F−1(k; t ) = F0(k; t ) − F0(k + 1; t ). Expanding
P(n, L; t ) in sums of products of exponentials and powers
in t makes it easy to obtain its Laplace transform P̃(n, L; s).
Reinstating the latter in Eq. (B2) and using

T ( f )
2 (L) = − dP̃o(L; s)

ds

∣∣∣∣
s=0

(B4)

eventually yields, after a somewhat lengthy calculation,

T ( f )
2 (L) = L + L − 1

4L−2
×

(
2L − 3

L − 1

)
. (B5)

APPENDIX C: EXACT MET
FOR TWO PARTICLES, INFINITE LATTICE

The easiest way to obtain the exact MET for two particles
leaving a section[1, L] of an infinite lattice while being ini-
tially located on sites 1 and 2 of that section is probably to use
the integral formula given by Rakos and Schütz [15] for the
probability that the second leftmost particle of two initially
side by side particles has carried out at least L steps to the
right at time t . This probability, that is exactly the probability
that the two particles have left the section[1, L] by time t , is
given by

P(L, 2, t ) = Z
∫

[0,t]2
dx1dx2(x1x2)L−2e−(x1+x2 )(x1 − x2)2, (C1)

where

Z = L − 1

2[(L − 1)!]2 . (C2)

From Eq. (C1), the corresponding exit time distribution is
given by p2,L(t ) = Ṗ(L, 2, t ), whence the MET

T2(L) =
∫ ∞

0
t Ṗ(L, 2, t ) dt . (C3)

The probability P(L, 2, t ) may be evaluated in terms of in-
complete γ functions γ (n, t ) = ∫ t

0 xn−1e−xdx as

P(L, 2, t ) = Z
[
γ (L + 1, t )γ (L − 1, t ) − γ (L, t )2

]
. (C4)

Using this expression and Eq. (C3), T2(L) can eventually be
cast into the simple form

T2(L) = L + 2√
π

�
(
L + 1

2

)
�(L)

, (C5)

where �(L) = γ (L,∞) is the complete γ function. If we
compare the asymptotic expressions of T2(L) and T ( f )

2 (L)
[the MET of two particles leaving a finite lattice {1, L}—see
Eq. (14)], then we find that they differ at order L−1/2. More
precisely,

T2(L) − T ( f )
2 (L) = 1√

πL
+ O(L−3/2). (C6)

As expected, the time needed by the two particles to exit the
section[1, L] of an infinite lattice is slightly longer than the

time needed to exit the finite lattice {1, L} given that when the
rightmost particle has gone out of {1, L}, the last one is free to
move ahead while it can still be hindered by the front particle
on the infinite lattice.

APPENDIX D: EXACT MEAN RELATIVE DISTANCE
FOR TWO PARTICLES

To obtain the mean relative distance between two particles,
initially side by side, on an infinite lattice, we first take the
Laplace transform of Eqs. (22) and (23):

sP̃ (1; s) − 1 = −P̃ (1; s) + P̃ (2; s),

sP̃ (χ ; s) = −2P̃ (χ ; s) + P̃ (χ + 1; s) + P̃ (χ − 1; s),

where χ � 2. Solving for P̃ (χ ; s) and taking into account the
fact that

∑
χ�1 P (χ ; t ) = 1 (i.e.,

∑
χ�1 P̃ (χ ; s) = 1/s), we

obtain

P̃ (χ ; s) = 1 − λ

s
λχ−1, (D1)

where

λ = 1 + s

2
−

√(
1 + s

2

)2
− 1. (D2)

Then,

〈χ̃ (s)〉 :=
∑
χ�1

χP̃ (χ ; s) = 1

s(1 − λ)
, (D3)

and, upon inverting that expression, we finally obtain

〈χ (t )〉 = e−2t

2
[(4t + 1)I0(2t ) + 4t I1(2t )] + 1

2
, (D4)

where Ik is the modified Bessel function of order k: I0(x) =∑
n�0 x2n/[4n(n!)2] and I1(x) = xI ′

0(x), where the prime de-
notes derivatives with respect to x.

APPENDIX E: GILLESPIE SIMULATIONS DETAILS

Numerical simulation were performed using Octave on a
DELL XPS13. The continuous time Gillespie method was
used to produce an in silico realization of Eq. (1). In this
method, each history simulates a stochastic trajectory associ-
ated with the TASEP master equation. Most of the simulations
were done using 103 histories, to keep the computation time
manageable on a laptop, especially for large values of N � 50
and L � 1000. To estimate the error for mean values such
as T G

N (L), we performed 20 independent simulations of 103

histories and obtained a dispersion of values of the order of
�T ∼ 0.5 for T G

N (L) ∼ 300–1000. The same procedure was
then used with 104 histories and, as expected, lowered this
figure to �T ∼ 0.15.

The precision obtained with 103 copies was usually enough
to compare the simulations results with our theoretical value
βN . For small N < 5 however, the values of βN (L) estimated
by the different methods and for different length L = 300–
1000 are very close, and it was necessary to use 104 copies
to order the different values of βN (L) properly. It was found
that:
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(1) for fixed N the values of βG
N (L) are systematically

decreasing when increasing L, as seen in Fig. 4.
(2) for values of N > 10 our result (28) underestimates the

value of the coefficient, βN (L), while for small values it is
overestimating.

(3) for N � 10 the relative error of Eq. (28) with respect
to our best estimate of the exact βN , obtained with the highest
copy number and the highest L, is less than 1% (0 for N = 1
and 2 since our expression is then exact), and reaches −7%
for N = 50.
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