
HAL Id: hal-04543010
https://hal.science/hal-04543010

Submitted on 7 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploring Resilient Operation of Multi-Robot Fleet in
Various Attack Scenarios

Athanasios Papanikolaou, Iason Sotiropoulos, Stamatia Rizou, Francisco
Fraile, Raquel Julia Ros, Nacim Ramdani

To cite this version:
Athanasios Papanikolaou, Iason Sotiropoulos, Stamatia Rizou, Francisco Fraile, Raquel Julia Ros,
et al.. Exploring Resilient Operation of Multi-Robot Fleet in Various Attack Scenarios. 2024 32nd
Mediterranean Conference on Control and Automation (MED), Jun 2024, Chania, Greece. �hal-
04543010�

https://hal.science/hal-04543010
https://hal.archives-ouvertes.fr

Exploring Resilient Operation of Multi-Robot Fleet in Various Attack
Scenarios*

Athanasios Papanikolaou1, Iason Sotiropoulos1, Stamatia Rizou1, Francisco Fraile2,
Raquel Julia3 and Nacim Ramdani4

Abstract— In the era of autonomous robotics and the pro-
liferation of robot fleets, the reliability of these systems in the
face of potential disruptions becomes a critical consideration.
This paper focuses on examining the resilience of robotic fleets,
specifically at the communication layer. Through a systematic
exploration of various communication-based attack scenarios,
the study seeks to unravel vulnerabilities and challenges in
maintaining seamless communication within the fleet. The
findings aim to contribute insights into fortifying the com-
munication infrastructure of robotic fleets, thereby enhancing
their overall resilience in dynamic and potentially adversarial
environments. This research aims towards advancing the ro-
bustness of autonomous systems and ensuring their dependable
operation across diverse applications.

multi-robot fleet, resilience, MQTT, cybersecurity

I. INTRODUCTION

In the era of autonomous robotics, multi-robot fleets have
emerged as a major technological advancement, demonstrat-
ing their prowess in a multitude of applications ranging
from disaster response to environmental monitoring [6], [2].
Robotic fleets composed of diverse agents working collabo-
ratively can potentially revolutionize industries and provide
innovative solutions to complex real-world challenges. How-
ever, this transformative potential also brings to the fore
an array of security concerns [5], as the reliance on in-
terconnected robots introduces vulnerabilities that malicious
actors may exploit [16]. In this dynamic landscape, where
autonomy and interconnectivity are major factors, resilience
becomes paramount. While maintaining service with reduced
performance degradation in presence of disturbance, is a
robustness feature, the concept of resilience encompasses
the ability of a system to adapt and recover swiftly from
adversity while maintaining core functionality [10], [14],
[13]. In this context, the concept of anti-fragility beyond
resilience has also been introduced in the sense that anti-
fragile systems may gain some performance when they are
exposed to adversity [12], [15].

This study aims to investigate how multi-robot fleets
handle different types of attacks. Towards this, challenges,

*This project has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Skłodowska-
Curie grant agreement No 101007673

1A. Papanikolau, I. Sotiropoulos, and S. Rizou are with SingularLogic,
14564 Nea Kifisia, Greece (email: apapanikolaou@singularlogic.eu)

2F. Fraile is with Universitat Politècnica de València, CIGIP, 46022
Valencia, Spain

3R. Julia RD is with Robotnik Automation, 46988 Paterna, Spain
4N. Ramdani is with Univ. Orléans, INSA CVL, PRISME UR 4229,

F45072 Orléans, France

vulnerabilities, and strategies to improve resilience against
cyber-threats are explored. More precisely, this paper in-
vestigates online task re-allocation and re-scheduling, as
means of augmenting a multi-robot fleet management system
with resilience mechanisms, and sets out to evaluate the
robustness of such a fleet against a range of cyber-attacks.
The idea at the core of the designed resilience mechanism is
to recompute the multi-robot task allocation and scheduling
solution while considering the current state of the fleet, when
unexpected events that degrade some performance indicators
occur. While online re-allocation strategy has been investi-
gated with human-multi-robot fleet in precision agriculture,
our study focuses on the impact of cyber-attacks on the
overall system to account for the possibility of changing
human parameters over time [9]. Resilience is a topic that
is widely investigated in the literature in different contexts.
In this paper, resilience is discussed in the context of the
communication layer when it comes to vulnerabilities. Our
work contributes to the existing literature by focusing on the
impact of such vulnerabilities on a robotic fleet and provides
simulation results, including mathematical modeling of the
associated optimization problem and re-planning in case
of perturbation. The experiment conducted in this research
represents a scenario of a medical robot fleet operating inside
a hospital. Since medical robots undertake tasks of possibly
vital importance, ensuring the security of their functions and
resilience to disturbances needs to be prioritized.

In the present research, the Fleet Management System
(FMS) uses the Message Queuing Telemetry Transport
(MQTT) protocol as the system message bus, enabling the
exchange of information among robotic agents and the inte-
gration of centralized planning and coordination functions
in the FMS. While MQTT’s lightweight design and low
overhead offer significant advantages for IoT applications, it
also exposes potential security vulnerabilities, making it an
attractive target for cyber attackers [8]. Thus, we identify the
use of MQTT as a major vulnerability of our fleet. The cyber-
attacks that are used aim at exploiting this vulnerability. We
employ various cyber-attacks against our use of the MQTT
protocol in order to record which of the explored attack
vectors have a larger impact towards such a system. We aim
to identify: (1) where is our system more vulnerable, and (2)
possible configurations to avoid potential failure.

The paper is organized as follows: First, a literature review
on MQTT security aspects is gathered in Sect. II, then the
mathematical modeling of multi-robot task allocation and
scheduling is presented in Sect. III. Following that, we briefly

present a list of attack vectors in Sect. IV, and lastly in
Sects. V and VI we present the experimentation set-up and
then the results of our study as well as details on how
the experiments were conducted. Concluding remarks are
gathered in Sect. VII.

II. RELATED WORK

The field of MQTT security has received significant
attention from researchers and cybersecurity professionals.
Numerous studies have explored potential vulnerabilities and
assessed the efficacy of various attacks on MQTT-based
systems. In [8] an extensive review of the vulnerabilities,
attack vectors, and potential solutions associated with the
MQTT (Message Queuing Telemetry Transport) protocol in
the context of the (IoT) is provided. Similarly, [4] focused on
already existing security solutions while providing a novel
and deeply technical approach to achieving confidentiality
and integrity of messages. Several works have focused on
denial of service attacks in MQTT. Specifically, [11] pro-
vided an in-depth investigation of two classes of DoS attacks
as well as some security considerations towards mitigating
those attacks. While demonstrating the exploitation of a
particular vulnerability, [17] introduces an innovative attack
method to authenticate the feasibility of the proposed exploit.
Lastly, [3], [7] dealt with detection of DoS attacks and
consequently their prevention. On the other hand, several
works focus on Man-in-the-Middle attacks in MQTT, as well
as the consequences that successful attacks of this nature
may have on IoT networks. These works [18] also utilize
various methods for message generation, after the attacker
has successfully accessed a network.

III. MULTI-ROBOT TASK ALLOCATION AND SCHEDULING

In this section we describe the mathematical modeling of
the multi-robot task allocation and scheduling problem as
well as the resilience mechanism.

A fleet of m autonomous robots defined in R = {1, ...,m}
must accomplish n tasks defined in T = {1, ...,n}. Each robot
can physically move between any pair of nodes (i.e. arcs)
(i, j) in a weighted complete directed graph G = (V,A) such
as i, j ∈ A and (i, j) ∈ V . Let C = (ci j) be a cost (distance)
matrix associated with A. Any robot r ∈ R starts its route
from the robot charging node and must return to this node at
the end of the route, such as the route does not contain any
sub-tour. The path described by each robot is then a circuit.

Such a formulation corresponds to a well-known problem
in the literature called the multiple Traveling Salesman
Problem [1]. However, our variant must take into account
time constraints such as robots must accomplish each task
within a specific time window defined beforehand.

Let E and L be respectively sets of earliest and latest
dates of execution for each task t ∈ T . Let Ω be the set
of all service time durations associated to any given task
t ∈ T . Let S be the average speed of any given robot r ∈ R.
To fully satisfy a task (i.e. with no delay), a robot must
complete the execution of the task within its allocated time
window. In the sequel, we propose a Mixed Integer Linear

Programming (MILP) formulation of our multi-robot task
allocation problem.

a) Notation: Let us define, m the number of robots, n
the number of tasks, R = {1, ...,m} the set of robots, T =
{m+1, ...,m+n} the set of tasks, A = {1, ...,m+n} the set
of all nodes (robot charging nodes and task nodes), V the
set of arcs (i, j), G = (V,A) the complete directed graph,
C = {ci j} the distance cost matrix, E the set of earliest dates
for tasks, L the set of latest dates for tasks, [et ; lt] the time
window for task t ∈ T , Ω set of all service time durations
for tasks, S = {sm} the set of robot average velocities, m a
very large number used to linearize quadratic constraints.

b) Decision variables: Let the decision variables be

∀i, j ∈ A, xi j =

{
1, if arc (i, j) is used by any robot,
0, otherwise.

(1)
where fi is the arrival date of robot on node i ∈ A, and di
the departure date of robot from node i.

c) Objective function: Let the objective function be

min(∑
i∈R

fi) (2)

The objective function (2) minimizes the sum of return dates
of the robots to their respective charging node.

d) Constraints: Let the constraints be

xii = 0 ∀i ∈ A (3)

∑
j∈T

xr j ≤ 1 ∀r ∈ R (4)

∑
i∈T

xir ≤ 1 ∀r ∈ R (5)

xrr+1 = 1 ∀r ∈ {1, ...,m−1} (6)

∑
r′∈R\{r+1}

xrr′ = 0 ∀r ∈ {1, ...,m−1} (7)

Equation (3) forbids robots to use arcs located in matrix
diagonal. Equations (4) (resp. (5)) allow for each robot only
one departure from (resp. one arrival to) its charging node,
ensuring only one circuit per robot is allowed. Equations (6)
forces a virtual move from any given robot r to the next robot
r+1 and (7) forbids the way back (i.e from any robot r to
a previous one). These two equations are later used to track
route time while keeping a light mathematical formulation
with 2-indexes binary decision variable x and single-index
continuous decision variables f and d.

∑
t∈T

xr−1t ≥ ∑
t∈T

xrt ∀r ∈ {2, ...,m} (8)

∑
t∈T

xtr−1 ≥ ∑
t∈T

xtr ∀r ∈ {2, ...,m} (9)

Constraints (8) (9) ensure that if any given robot r is used to
satisfy a task, then robot r−1 is also in use, assuming r is
not the first robot. Note that equations (6) to (9) only apply

if problem instances contain more than one robot (i.e m > 1)

∑
i∈A

xit = 1 ∀t ∈ T (10)

∑
j∈A

xt j = 1 ∀t ∈ T (11)

∑
h∈A

xht = ∑
j∈A

xt j ∀t ∈ T (12)

Equation (10) (11) are task satisfaction constraints: each task
node must be visited once by robots. Flow conservation is
ensured by constraint (12). However, this constraint isn’t
enough to eliminate sub-tours by itself. This is not an issue
since temporal continuity constraints introduced later prevent
any sub-tour possibility.

dt ≥ ft +ωt ωt ∈ Ω,∀t ∈ T (13)

f j +m · (1− xt j)≥ dt +
ct j

sr
−m · (1− xt j),

∀t ∈ T,∀ j ∈ A (14)

dr ≤ ft −
crt

sr
· xrt ∀r ∈ R,∀t ∈ T (15)

ft ≥ et et ∈ E,∀t ∈ T (16)

dt ≤ lt lt ∈ L,∀t ∈ T (17)

Temporal continuity conservation is ensured by (13) and (14)
on tasks, while constraint (15) initializes the departure date
for all robots. Adding these 3 constraints ensure that all sub-
tours are eliminated since temporal decision variables can
only increase according to the robot path. A sub-tour would
violate these constraints. Finally, constraints (16) and (17) are
the time window constraint on tasks. Note that robots are in
fact allowed to come earlier than the earliest date for any
given task t ∈ T since the value taken by decision variable
ft actually corresponds to the starting date for the execution
of task t.

A. Resilience mechanism

Resilience requires detection of performance degradation,
followed by adaptation. Our approach relies on a perfor-
mance indicator that aggregates two performance indicators:
the delay on task completion, computed as the difference
between the actual date and the planned date, and the delay
on robot motion on the prescribed path.

1) Delay on task completion: This indicator is computed
only when the task expected completion date is reached. Let
us define T k

actual the actual completion date, T k
plan the planned

completion date, and t the current date. The delay of robot
m on completing task k is then given by

if ∃Tactual,k then τm = Tplan,k −Tactual,k

else τm = Tplan,k − t (18)

Fig. 1. Implementation example. The service points (blue) and waypoints
(red). The optimal plans calculated by the optimal task planner : robot 1 in
red, robot 2 in blue. The robot fleet operation in space shared with humans.
Sensors visualisation from Robot 2 during the experiment

2) Robot motion delay: This performance indicator aims
to detect delays while the robot is moving from one ser-
vice point to another. It aims to anticipate delays on task
completion assuming the robot may not be able to catch up
delays accumulated when the robot moves from one service
point to another. The robots advertise their location to the
fleet management system periodically. Assuming a constant
robot velocity, one can then compute, for each location, the
planned time of arrival and the actual time of arrival. Hence,
a continuous motion delay of robot m is given by

σm,k = t − t̂m (19)

where the robot actual motion t̂m = Tk + p(k,m)/sm is
obtained by projecting the actual robot position onto the
planned graph. Let Ak and Ak+1 be waypoints, the two end-
nodes of the segment constituting an arc on the directed
graph G, Mm robot actual position, sm robot velocity, and
Tk the time when last node was reached. One has: p(k,m) =

cosα |MmAs|, α = ̂Ak+1MmAk. The actual robot motion does
not follow precisely the planned path. We use projection of
robot motion on graph arcs to compute motion delay on the
graph.

3) Filtered performance criteria: To filter out distur-
bances of short duration, or deviations that can easily be
corrected by robot embedded navigation and motion control
algorithms, the two performance indicators are filtered by a
first order integrator, tuned by the user. A re-planning at time
tk⋆m is triggered when the following condition is met:

k⋆mk
= min

{
k |∃mk,

(
(τm,k > ετ)∨ (σm,k > εσ)

)}
(20)

where thresholds ετ and εσ are tuned by the user. Robot
mk∗ which solves Eq.(20) is deemed not operational and
is removed from the set of robots R to be used for task
allocation.

IV. ATTACK VECTORS

The multi-robot optimal task assignment and scheduling
(MRTA) described in Sect. III is implemented as a central-
ized management system. The result of the MRTA is given
as a queue of basic tasks (e.g., go to a specific location)
that each robot needs to complete. With the fleet of robots
endowed with a centralised management system, for inter-
robot communication we use the MQTT protocol: the MQTT
broker is used to dispatch the queue of tasks to each robot
and receive status updates from the fleet. The autonomous
mobile robots are controlled with the open-source Robot
Operating System (ROS). A newly developed Command
Manager executable allows the user to send on the ROS
network, the sequence of complex command translating the
queue of optimally scheduled tasks, using simple string-
encoded messages and read the feedbacks. ROS topics are
used for node communication and for publishing and reading
command messages and feedback. A dedicated ROS-MQTT
bridge node provides functionality to the bidirectional bridge
between the MQTT and ROS messages, hence the MQTT
broker and the ROS network. Fig. 1 shows the actual
implementation with Robotnik’s RB1 mobile robots evolving
in an environment shared with humans.

In the sequel, we embark on a comprehensive explo-
ration of the multifaceted attack vectors utilized by cyber
adversaries to infiltrate, compromise, and exploit digital
systems, more specifically those systems that make use of the
MQTT protocol. Drawing on the research and insights from
the reviewed literature, we have identified the main attack
vectors that threaten our system. It is important to note that
given the ever-evolving nature of cyberattacks, it is highly
possible that we may witness an increase in the frequency
and sophistication of attacks in the future, therefore we must
acknowledge that the examined attack vectors are subject
to potential updates, considering the dynamic nature of the
subject matter. We classify the attack vectors into two over-
arching categories for better organization and understanding:
Denial of Service and Man in the Middle attacks.

A. Denial of Service

A Denial of Service attack (DoS attack) is a cyber-attack
in which the perpetrator seeks to make a machine or network
resource unavailable to its intended users by temporarily or
indefinitely disrupting the services of a host connected to a
network. In our particular setting, all DoS attacks are aimed
towards the message broker, and by disabling its function one
can potentially disable the entire system. There are various
DoS attacks in the available literature, here we deal with
those that are potentially able to shut down or considerably
slow the function of the broker, and for this purpose, we can
further classify them into the following categories:

a) Connection flood: Connection flood is a Denial of
Service (DoS) attack that targets a system by overwhelming
it with a very high number of connection requests. This
attack is designed to exhaust the resources of the target
system, rendering it incapable of responding to legitimate
users’ requests. This can result in slow communication or

complete disruption of the MQTT network, affecting all
connected devices.

b) Memory exhaustion: A memory exhaustion attack
is a form of cyber attack that aims to overwhelm a target
system’s available memory resources, ultimately causing the
system to become slow, unresponsive, or even crash. This
type of attack leverages vulnerabilities within a system’s
memory management to consume its memory resources at
an unsustainable rate. In the context of MQTT, a memory
exhaustion attack involves an attacker sending several mes-
sages to the broker or the targeted devices. These messages
are often crafted to exploit memory-related vulnerabilities,
such as buffer overflows or memory leaks. As the system
processes these malicious messages, it allocates memory
resources to handle them. However, if the messages are
designed to consume more memory than the amount which
the system can handle, the attack leads to a rapid depletion
of available memory.

c) CPU exhaustion: A CPU exhaustion attack is a
type of cyber attack that aims to deplete a system’s cen-
tral processing unit (CPU) resources, similarly to memory
exhaustion. Within the context of MQTT protocol, a CPU
exhaustion attack involves an attacker exploiting vulnerabili-
ties in the MQTT broker or the connected devices to generate
a high volume of computationally intensive operations. These
operations can include complex calculations, data processing,
or cryptographic operations that demand significant CPU
resources.

B. Man in the Middle

Man-in-the-Middle (MitM) attacks, also known as hijack
attack, are a cyber-attack where an attacker intercepts a net-
work connection to alter the data being transferred between
the two ends. A MitM attack involves cyber intrusion that
exploits vulnerabilities within the communication channels
between two parties. The primary intent of such attacks
is to intercept, manipulate, or eavesdrop on the exchanged
information, while maintaining the facade of seamless com-
munication between the legitimate parties involved. In our
scenario, an adversary positions themselves between the
clients and the broker, intercepting and possibly altering
the MQTT messages exchanged between them. This type
of attack aims to breach the confidentiality, integrity, and
authenticity of these messages, potentially leading to unau-
thorized access, data manipulation, or even complete service
disruption.

a) Attack Process: The attacker positions themselves as
an intermediary between the MQTT clients and the broker.
This can be achieved through various means, such as ARP
spoofing, DNS spoofing, or by exploiting insecure Wi-Fi
connections. As the MQTT messages flow between the
clients and the broker, the attacker intercepts the messages
and accesses their contnet without the legitimate parties
being aware of the intrusion. In some cases, the attacker
might choose to alter the intercepted MQTT messages before
forwarding them to the intended recipient.The attacker might
store the intercepted messages and replay them at a later

time. This can lead to repeated execution of commands,
unauthorized data retrieval, or even system disruption.

b) Impact: The impact of a MitM attack on a Mosquitto
broker can be severe and wide-ranging: Sensitive data ex-
changed between clients and the broker can be exposed,
leading to privacy violations and unauthorized access to
confidential information. By intercepting authentication cre-
dentials, the attacker can gain unauthorized access to the
MQTT broker, potentially compromising the entire system’s
security. Altering the contents of MQTT messages can lead
to misinformation, unauthorized control of devices, or erro-
neous system behavior. If the attacker manipulates message
flow or deliberately disrupts communication, it can lead to
service outages, impacting the functionality of IoT devices
relying on the MQTT broker.

V. EXPERIMENTATION SET-UP

For our experimentation we employed a fleet of m = 4
autonomous robots that must accomplish n = 12 tasks. We
modeled the area of our expirementation as a graph G of a
total of 36 nodes.

Robotic communications are facilitated using the MQTT
protocol. Typically, the MQTT protocol defines two types
of network entities: a message broker and several clients.
Our set-up is based on this model and our robots come
equipped with MQTT clients. Additionally, we consider a
central client that is responsible for task allocation (hereby
referred to as the fleet management system). Task allocation
is based on the mathematical model presented in Sect.III.
All these different clients can communicate via a central
message broker that transfers all communication messages
after correctly formatting them. This broker is the focus point
of our attacks.

During our experimentation, we consider several assump-
tions. Firstly, we assume that the path planning and task
allocation model is optimal and in a sense that it always
yields accurate results. Furthermore, we assume that any
perpetretor has knowledge of our system architecture. In ad-
dition, we consider that any such threat has already bypassed
most security measures, including possible passwords and
encryption. Thus, we are examining how our fleet reacts to
an attack that has already passed most of its defenses. The
simulation portrays the robots’ movement as they engage
with and execute each task. To maintain simplicity, we
allocate the same time window for every task, and these tasks
are distributed across various nodes of the graph. Before
initiating the simulation, we assign each task to a specific
robot and chart a predetermined path for each robot to
follow. These paths have been calculated using the CPLEX
optimizer. Throughout the simulation runtime, we introduce
multiple attack scenarios, while documenting the count of
failed tasks. In the context of building a resilient system,
our objective is to minimize the cumulative count of task
failures.

VI. VALIDATION

For validation purposes, we conducted a series of
simulation-based experiments using attack scenarios repre-

sentative of potential real-world challenges. The simulation
environment was custom-made, created specifically for this
study, demonstrating a high degree of relevance and fidelity
to real-world conditions, while ensuring a safe and controlled
environment. We evaluated the fleet’s performance using the
mission success rate and task delay time key metrics. These
metrics are integral to assessing the overall resilience of the
fleet in the face of adversarial challenges. All the above was
achieved by deliberately introducing the previously discussed
attack scenarios during the simulation runtime. We proceeded
to documenting the completion time for each task and the
mission success rate (i.e., how many of the missions tasks
were complete within the allocated time frame). In order
to ensure transparency of the results, we monitored our
robots’ performance during the simulation runtime without
any interference. We noticed that all tasks were completed
within the time frame.

The first step towards testing resiliency, was using a
slow DoS attack, specifically Slowite [17], on our mosquito
broker. We observe that if the simulation has already started
(i.e., our robots have already established their connection to-
wards the broker), then the tasks are successfully completed.
However, if the attack has launched successfully, our robots
are unable to connect to the broker, thus failing at completing
their allocated tasks. Another important observation is that
should we configure our broker to keep connections alive for
a small time (a method to protect against slow DoS attacks),
we might cause our robots to disconnect while the attack
persist uninterrupted.

Continuing our experimentation with denial of service, we
attempt to saturate the broker’s memory and CPU resources.
Towards that end, we implemented two simple attacks that
function quite similarly. The first attack aims to overload
the broker’s memory by sending multiple messages with the
maximum payload size. We immediately notice that once we
start sending such messages, all the robots freeze, and delays
increase significantly. In fact, several replans are launched
in vain as the robots do not regain functionality. We can
therefore surmise that our system is vulnerable to such an
attack. However, we can configure the mosquitto broker to
drop connections if a certain payload size is exceeded. We
calculate a 16.6% mission success.

The second attack focuses on exploiting the broker’s CPU
limitations. In order to achieve that, we sent numerous
requests to our broker. The messages require computation-
ally expensive operations, and the system becomes severely
slower. Visually, we confirm this by noticing a considerable
decrease in the speed of the fleet. Additionally, we notice
a gradual increase in our measured delays. Due to these
slowdowns, we calculated a success rate of 50%. All of DOS
based attacks are visually presented in Fig. 2. Continuing our
exploration, we turned focus towards our system’s response
against MitM attacks. In order to begin our test, we used
spoofing and packet capturing software (Wireshark and Bet-
terCAP). We were able to capture all messages of our MQTT
application and easily gain access to their payload. Thus,
monitoring traffic of our robotic fleet is achieved. By this

Fig. 2. Task Completion Time in DoS Scenarios

Fig. 3. Task Completion Time in MitM Scenarios

method, a perpetrator can discern a plethora of information
such as the location, direction, and movement of the robots,
and the time and place of completed tasks.

Additionally, we were able to intercept and modify
messeges between the clients and the broker. After this
was achieved, acting as the perpetrator, we could publish
malicious messages to our broker, causing robotic failure.
To delve deeper into the attack scenario, we supposed
the perpetrator dispatches a meticulously crafted message
capable of rendering a robot inactive. In this context, we
scrutinize how our system responds to the deactivation of a
particular robot at various points within the simulation.

To begin with, our first malicious message was sent at
25 seconds of the simulation runtime. Our fleet launched a
replan and managed to complete all the tasks in time, thus
leading to 100% success rate.

The identical situation unfolded when the attack occurred
precisely at the 50-second mark during the simulation,
mirroring the outcomes and circumstances observed in the
previously described scenario. One the other hand, once the
robot malfunctioned at 100 seconds, a replan was launched.
However, the optimizer could not find a solution for all tasks
to be completed on time, and task re-allocation did not occur.
As a result, the tasks handled by the dowed robot remained
incomplete. Here, we report 83.33% success rate (see Fig. 3).

VII. CONCLUDING REMARKS AND FUTURE WORK

While our study has demonstrated promising results in
fortifying multi-robot fleets against cyber-attacks, it is essen-
tial to acknowledge the potential vulnerabilities that persist,
particularly in centralized systems. Should a centralized
attack occur, our findings highlight alarming vulnerabilities

that necessitate further investigation and refinement of our
resilience mechanisms. Moving forward, addressing these
challenges will be crucial in ensuring the robustness and
security of multi-robot fleet management systems in real-
world applications. Moving forward, our research will extend
to testing with real robots to validate the efficacy of our
proposed resilience strategies in practical scenarios. Addi-
tionally, we plan to explore non-centralized implementations
to assess their feasibility and performance in enhancing the
system’s resilience against cyber-attacks.

REFERENCES

[1] T. Bektas. The multiple traveling salesman problem: an overview of
formulations and solution procedures. Omega, 34(3):209–219, june
2006.

[2] M. Carpentiero, L. Gugliermetti, M. Sabatini, and G. B. Palmerini. A
swarm of wheeled and aerial robots for environmental monitoring. In
2017 IEEE 14th ICNSC, pages 90–95, 2017.

[3] D. Dikii, S. Arustamov, and A. Grishentsev. Dos attacks detection
in mqtt networks. Indonesian Journal of Electrical Engineering and
Computer Science, 21:601, 01 2021.

[4] D. Dinculeană and X. Cheng. Vulnerabilities and limitations of mqtt
protocol used between iot devices. Applied Sciences, 9:848, 02 2019.

[5] V. Dutta and T. Zielińska. Cybersecurity of robotic systems: Leading
challenges and robotic system design methodology. Electronics,
10(22), 2021.

[6] M. A. Gutiérrez, S. Nair, R. E. Banchs, L. F. D’Haro Enriquez, A. I.
Niculescu, and A. Vijayalingam. Multi-robot collaborative platforms
for humanitarian relief actions. In 2015 IEEE R10-HTC, pages 1–6,
2015.

[7] A. P. Haripriya and K. Kulothungan. Secure-mqtt: an efficient
fuzzy logic-based approach to detect dos attack in mqtt protocol for
internet of things. EURASIP Journal on Wireless Communications and
Networking, 2019, 04 2019.

[8] A. J. Hintaw, S. Manickam, M. F. Aboalmaaly, and S. Karuppayah.
MQTT vulnerabilities, attack vectors and solutions in the internet of
things (IoT). IETE Journal of Research, 69(6):3368–3397, May 2021.

[9] M. Lippi, J. Gallou, A. Gasparri, and A. Marino. An optimal allocation
and scheduling method in human-multi-robot precision agriculture
settings. In 2023 31st Mediterranean Conference on Control and
Automation (MED), pages 541–546, 2023.

[10] S. Mayya, D. S. D'antonio, D. Saldana, and V. Kumar. Resilient task
allocation in heterogeneous multi-robot systems. IEEE Robotics and
Automation Letters, 6(2):1327–1334, Apr. 2021.

[11] U. Morelli, I. Vaccari, S. Ranise, and E. Cambiaso. Dos attacks in
available mqtt implementations: Investigating the impact on brokers
and devices, and supported anti-dos protections. pages 1–9, 08 2021.

[12] A. Munoz, J. Billsberry, and V. Ambrosini. Resilience, robustness,
and antifragility: Towards an appreciation of distinct organizational
responses to adversity. International Journal of Management Reviews,
24(2):181–187, Jan. 2022.

[13] G. Neville, S. Chernova, and H. Ravichandar. D-ITAGS: A dynamic
interleaved approach to resilient task allocation, scheduling, and mo-
tion planning. IEEE Robotics and Automation Letters, 8(2):1037–
1044, Feb. 2023.

[14] G. Notomista, S. Mayya, Y. Emam, C. Kroninger, A. Bohannon,
S. Hutchinson, and M. Egerstedt. A resilient and energy-aware task
allocation framework for heterogeneous multirobot systems. IEEE
Transactions on Robotics, 38(1):159–179, Feb. 2022.

[15] N. N. Taleb and R. Douady. Mathematical definition, mapping, and
detection of (anti)fragility. Quantitative Finance, 13(11):1677–1689,
Nov. 2013.

[16] U. Tariq, I. Ahmed, A. K. Bashir, and K. Shaukat. A critical
cybersecurity analysis and future research directions for the internet
of things: A comprehensive review. Sensors, 23(8), 2023.

[17] I. Vaccari, M. Aiello, and E. Cambiaso. Slowite, a novel denial of
service attack affecting mqtt. Sensors, 20:2932, 05 2020.

[18] H. Wong and T. Luo. Man-in-the-middle attacks on mqtt-based iot
using bert based adversarial message generation. 08 2020.

