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GENERIC CONTROLLABILITY OF EQUIVARIANT SYSTEMS AND

APPLICATIONS TO PARTICLE SYSTEMS AND NEURAL NETWORKS

ANDREI AGRACHEV AND CYRIL LETROUIT

Abstract. There exist many examples of systems which have some symmetries, and which
one may monitor with symmetry-preserving controls. Since symmetries are preserved along the
evolution, full controllability is not possible, and controllability has to be considered inside sets
of states with same symmetries. We prove that generic systems with symmetries are controllable
in this sense.

This result has several applications, for instance: (i) generic controllability of particle sys-
tems when the kernel of interaction between particles plays the role of a mean-field control; (ii)
generic controllability for families of vector fields on manifolds with boundary; (iii) universal in-
terpolation for neural networks architectures with “generic” self-attention-type layers - a type of
layers ubiquitous in recent neural networks architectures, e.g., in the Transformers architecture.

The tools we develop could help address various other questions of control of equivariant
systems.
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1. Introduction and main results

1.1. A motivating example. Given n points at positions x1, . . . , xn ∈ Rd (a point cloud),
their empirical measure is the probability measure µ = 1

n

∑n
j=1 δxj . We are interested in time-

dependent evolutions in the set of point clouds, and more precisely in controlling these evolutions,
which amounts to operating control in the set of empirical measures. To monitor these evolutions,
we control the interactions of the points, assumed to be of the form

∀i ∈ {1, . . . , n}, xi(0) = x0i ∈ Rd and
d

dt
xi(t) = Kt

(
xi(t),

1

n

n∑
j=1

δxj(t)

)
(1)

where (Kt)t∈R is our control, and for any time t ∈ R, Kt belongs to a given time-independent
family K. This is a particular type of mean-field control.

Said with words, the influence felt by xi(t) and generated by the points xj(t), j ̸= i, is
given by the time-dependent kernel Kt which we control. Each kernel K ∈ K depends both
on xi(t) and all other positions xj(t), but not on their labels: Kt writes Kt(xi(t), µ(t)) where
µ(t) = 1

n

∑n
j=1 δxj(t). This form of monitoring of particle systems evolution through control of

the kernel arises for instance in neural networks architectures, as we will see later.
If τ denotes the permutation τ = (ij) acting on (Rd)n by permuting the i-th and j-th particles,

then this action commutes with the evolution (1). This observation implies the important
property that the evolution (1) induces an evolution in the set of empirical measures; only
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2 ANDREI AGRACHEV AND CYRIL LETROUIT

positions of the points matter, not their labels. Moreover, (1) and the induced evolution of
empirical measures necessarily preserve the mass of individual points, since

xi(0) = xj(0) ⇒ ∀t ∈ R, xi(t) = xj(t) (2)

(here and in the sequel, we assume that the evolution (1) is globally well-posed).
Given a fixed time T > 0 and initial and final empirical measures µ0, µ1, our goal is to choose

Kt ∈ K for each t ∈ [0, T ] in a way that the solution to (1) with µ(0) = µ0 satisfies µ(T ) = µ1.
To achieve this goal, the following mass-preservation constraint must hold, due to (2): to each
point in the support of µ0 must correspond a point in the support of µ1 with the same mass,
and this correspondance must be one-to-one. Equivalently,

∃x1, . . . , xn, y1, . . . , yn ∈ Rd, such that µ0 =
1

n

n∑
j=1

δxj , µ1 =
1

n

n∑
j=1

δyj ,

and for any i, j ∈ {1, . . . , n}, xi = xj if and only if yi = yj .

(3)

Our aim in this paper is to prove that if the constraint (3) is satisfied, this control problem
is generically feasible. More precisely, if K contains at least two elements, and that they are
“generic” enough, the condition (3) is the only constraint that initial and final data must satisfy
to achieve our goal of sending µ0 to µ1 through an evolution of the form (1).

It turns out that this problem may be rephrased abstractly as a control problem in a manifold
M endowed with the action of a compact Lie group G. In the above example, M = (Rd)n and
G = Sn is the symmetric group which acts on M by permuting copies of Rd (see Example 1.1).
As already observed, permutations commute with the evolution (1). In the general case, we
consider only evolutions in M following vector fields which are equivariant under the action of G
(see definition below). Consequently, motion in M is constrained to remain inside some strata.
In the above example, each stratum gathers points clouds with the same repartition of mass,
i.e., two point clouds belong to the same stratum if and only if their empirical measures µ0 and
µ1 satisfy (3). In the general case, strata are given by connected components of sets of points
in M whose isotropy groups (=stabilizers) are in the same conjugacy class.

Solving this abstract control problem requires to dive into the subtle geometry of equivariant
dynamical systems. As a result, it offers a wide range of applications, sometimes far from our
original example of particle systems. Also, we believe that the tools we develop to solve this
problem could be useful to address other questions related to control of equivariant systems.

Section 1.2 is devoted to the formulation of our main results, and Section 1.3 sketches some
of its applications, which are developed in more detail in Section 2.

1.2. Main results. Let M be a real analytic1 manifold and let G be a compact Lie group acting
analytically on M . M is thus called an analytic G-manifold, and

MG := M/G = {Gq | q ∈ M}

is the orbit space, each set Gq being an orbit, or a G-orbit. The set of C∞ vector fields on M
is denoted by Vec(M). In the sequel, for s ∈ N, we use the notation [s] = {1, . . . , s}.

The isotropy group at q ∈ M is

Gq = {g ∈ G | gq = q}.

Notice that if q, q′ belong to the same G-orbit, then Gq and Gq′ are conjugate. The action of G
on M induces a natural stratification

MG =
⊔
i∈IG

Si
G (4)

where for each i ∈ IG, Si
G is a connected component of the set of all orbits whose representatives

have isotropy groups conjugate to2 some given subgroup Hi of G.

1in this paper, all real analytic manifolds are assumed to be paracompact and second countable.
2this does not depend on the representative
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While reading the rest of this section, it might be helpful to keep in mind the example of
Section 1.1, summarized here.

Example 1.1. In Section 1.1, G = Sn acts on M = (Rd)n through

σ · (x1, . . . , xn) = (xσ(1), . . . , xσ(n)).

Then MG may be identified with the set of n-points empirical measures, i.e., probability measures
of the form µ = 1

n

∑n
j=1 δxj . Two elements of MG belong to the same stratum in the decomposi-

tion (4) if the corresponding empirical measures, denoted for instance by µ0 and µ1, satisfy (3).
The number of strata is finite.

The stratification (4) is sometimes called “stratification by isotropy types”. As recalled in
Section 3.3, IG is countable and each stratum Si

G is a smooth submanifold.
Given g ∈ G we define the diffeomorphism Pg on M by Pgq = gq. The pushforward Y =

(Pg)∗X of a vector fieldX through Pg is given by Y (q) = (dPg)P−1
g (q)(X(P−1

g (q))) for any q ∈ M .

Equivariant vector fields are those which are compatible with the action of G: X ∈ Vec(M) is
equivariant under the action of G if for any g ∈ G there holds

(Pg)∗X = X. (5)

Any equivariant vector field induces a vector field on MG. We denote by VecG(MG) the set of
vector fields induced on MG by C∞ equivariant vector fields on M . This set is equipped with
the (induced) C∞ topology on compact sets, whose definition is recalled in Section 3.1.

We are interested in controllability properties in the quotient set MG, with vector fields
in VecG(MG). We will see in Section 3 that this is tightly related, but not equivalent, with
controllability in M with equivariant vector fields (controllability in MG is slightly weaker). We
prove in Lemma 3.9 that any element of VecG(MG) is tangent to strata defined in (4). Therefore,
any integral curve of VecG(MG) is contained in a single stratum, which implies that it is not
possible to connect points q, q′ ∈ MG by integral curves of VecG(MG) if q, q′ do not belong to
the same stratum. However, it might be possible to connect them if the two points q, q′ belong
to the same stratum. This observation motivates the following definition:

Definition 1.2 (Controllability in strata). Let X1, . . . , Xk ∈ VecG(MG). We say that control-
lability holds in strata if for any q, q′ ∈ MG belonging to the same stratum in (4), there exist
m ∈ N, t1, . . . , tm ∈ R and i1, . . . , im ∈ [k] (not necessarily distinct) such that

q′ = et1Xi1 ◦ . . . ◦ etmXim q

where etX denotes the flow at time t of the vector field X on MG.

Our first main result is the following:

Theorem 1.3. There exists for any k ≥ 2 a set of k-uples (X1, . . . , Xk) ∈ (VecG(MG))
k which

is residual in (VecG(MG))
k and for which controllability holds in strata.

This roughly means that controllability in strata holds for “almost any” k-uples of vector
fields in VecG(MG). Since VecG(MG) is infinite-dimensional, residual sets are an appropriate
framework to state “almost-sure” properties.

We actually prove a slightly stronger statement than Theorem 1.3; namely, we prove the
controllability in the leaves of the foliation generated by the equivariant fields on M \M ′, where
M ′ is defined in Section 3. The precise statement is given in Theorem 3.3.

In view of applications3, it is natural to extend our result to the simultaneous control of N
points in MG. Simultaneous control (also called “ensemble control”) means that with a single
control that is shared by all N points in MG, we seek to drive the N initial points to their N
respective targets (see [AS20]). In Example 1.1, this means driving N empirical measures to N

3The main application we have in mind here is to self-attention layers of neural networks, see Section 2.4. Neural
networks with self-attention layers are designed to map billions of sequences to billions of target sequences. Self-
attention layers are implemented for instance in the Transformers architecture [V+17], whose success in machine
learning calls for mathematical explanations.
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other empirical measures, evolving each of them independently (i.e. the empirical measures do
not interact with each other), but with the same interaction kernel Kt which may depend on
time.

Definition 1.4 (Simultaneous controllability in strata). Let X1, . . . , Xk ∈ VecG(MG) for some
k ≥ 2. We say that simultaneous controllability in strata (of dimension ≥ 2) holds if for any
N ∈ N, any q1, . . . , qN , q′1, . . . , q

′
N ∈ MG satisfying:

(i) for any distinct i, j ∈ [N ], qi ̸= qj and q′i ̸= q′j
(ii) for any j ∈ [N ], qj and q′j belong to the same stratum in (4), and the dimension of this

stratum is ≥ 2

the following conclusion holds: there exist m ∈ N, t1, . . . , tm ∈ R and i1, . . . , im ∈ [k] (not
necessarily distinct) such that

∀j ∈ [N ], q′j = et1Xi1 ◦ . . . ◦ etmXim qj .

We prove the following result, which is a generalization to the equivariant framework of [AS20,
Theorem 3.2]:

Theorem 1.5. For any k ≥ 2, there exists a set of k-uples of equivariant C∞-vector fields
(X1, . . . , Xk) which is residual in (VecG(MG))

k, and for which simultaneous controllability in
strata holds.

[AS20, Theorem 3.2] can be recovered by taking G reduced to the identity. Our proof of
Theorem 1.5 (and of Theorem 1.3) is constructive, whereas the proof of [AS20, Theorem 3.2]
relied on the multijet transversality theorem as a black-box.

1.3. Applications. Theorems 1.3 and 1.5 have various applications, which are developed in
Section 2.

(i) Control in manifolds with boundary (Section 2.1). Indeed, any manifold with boundary
may be written as the quotient of a manifold without boundary by a reflection. This
application of Theorem 1.3 is technically the simplest where G is non-trivial, since G is
just Z/2Z.

(ii) Control of the spectrum of symmetric (or Hermitian) matrices (Section 2.2). We apply
Theorem 1.3 to the case where M is the set of symmetric matrices, and G is the orthogonal
group, acting by conjugation on M . Each element A of M/G may be identified with
the spectrum of any of its representatives (=symmetric matrices), i.e., the collection of
eigenvalues seen up to permutations. The stratum to which A belongs depends on the
cardinality of each packet of coincident eigenvalues of A.

(iii) Control of particle systems (Section 2.3). This covers the example presented in Section 1.1,
and its generalizations. In this case the particles live in some manifold W , so M = Wn,
and G = Sn (the particles are indistinguishable). The orbit space MG is identified with
the set of n-points empirical measures on W .

(iv) Universal interpolation for generic self-attention layers in neural networks (Section 2.4).
This can be framed as a particular case of the previous application. In this case each ele-
ment of MG represents for instance a sentence, each element of W is a word embedding (“a
token”), and the time-evolution corresponds to evolution across layers. The goal explained
in Section 1.1 of sending the initial empirical measure to the target one typically represents
a translation task, realized sentence by sentence (and not word by word).

(v) Control of quantum systems with symmetries, notably symmetric Ising spin networks of n
spin 1

2 particles (Section 2.5). These networks of n states evolve according to Hamiltonians
which are invariant under permutations of the spins. This is a particular case of application
(iii), in the case where W is the unit sphere of C2, in which spins live.

1.4. Open questions. Here are a few open questions which we believe of particular interest:

(1) generalize Theorem 1.3 to the case where G is not compact. Natural examples are the
groups of translations and homotheties (centered at the origin) in Euclidean spaces.
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(2) generalize Theorem 1.3 (or the simpler theorem by Lobry [Lob72], see Section 1.5) to the
case where M has infinite dimension. This would possibly have applications to control
of measures, of diffeomorphisms, and control of the spectrum of general self-adjoint or
Hermitian operators of infinite dimension. There already exist in the literature results
on the genericity of the controllability of infinite-dimensional quantum systems, seen as
a Schrödinger PDE, see for instance [MS10].

(3) in the present paper, we only study the controllability problem, but the optimal control
problem is also certainly worth studying, for instance for an ensemble of N points on
MG. This is natural in view of application to neural networks architectures. See [Sca23]
in the case where there is no group acting on M .

Also, let us mention here that our assumption of analyticity on M and G (which is satisfied in
all natural examples) is technical. Although we do not know how to avoid it, we do not believe
that this assumption is fundamental.

1.5. Bibliography. The idea of proving controllability for “generic dynamics” as in Theorem
1.3 is not new: in [Lob72], Lobry proved that for a generic family of k ≥ 2 vector fields on
a connected manifold M without boundary, any couple of points of M may be connected by
an integral path of the family. An outcome of our approach is an extension of Lobry’s result
to manifolds with boundary, see Corollary 2.1. Lobry’s paper has been extended in [AS20] to
the case of ensembles of points on M evolving according to a shared open loop control; the
points are not interacting with each other but they are driven by the same control. This has
direct applications to universal interpolation for so-called “neural ODEs”. Theorem 1.5 in the
present work generalizes [AS20, Theorem 3.2] to the equivariant framework, which is relevant
among other applications to neural networks equipped with self-attention layers (see Section
2.4). Compared to [Lob72] and [AS20], our proofs are constructive and do not use (multi-)jet
transversality. Also, the fact that M is endowed with a group action is not a mere additional
technicality: our proofs require a detailed understanding of the structure of orbits and strata of
G-manifolds, partly based on the so-called slice theorem.

It is important to mention that there already exists a vast literature on equivariant dynamical
systems, see e.g. the book [Fie07] for a detailed account. Controllability and observability of
equivariant dynamical systems, which are basically systems with symmetries, are well-developed
subjects, see for instance [BMR08], [BMR09], and [MGH22] for a review. To our knowledge,
generic controllability has never been studied in this framework, and the applications which we
propose are original. We believe our fine analysis of equivariant dynamics (e.g., Lemma 3.9)
is of independent interest and could be useful to address other questions related to control of
equivariant systems.

More references on applications of our results are given in Section 2.

1.6. Organization of the paper. The applications sketched in Section 1.3 are developed in
Section 2.

We prove Theorem 1.3 in Section 3. For this, we do not use equivariant transversality theory4.
Using this theory might seem to be a natural lead since the papers [Lob72], [AS20] rely on
transversality theory, but it turns out to be very cumbersome since equivariant transversality
theory has many subtleties. Instead, our proofs rely on averaging techniques and codimension
computations, and, as already said, require a detailed understanding of the structure of orbits
and strata of G-manifolds, partly based on the so-called slice theorem.

In Section 4, we prove Theorem 1.5, which is a generalization of the proof of Theorem 1.3.

1.7. Acknowledgments. We would like to thank Claude Viterbo and Mike Field for early
discussions on this project, and Domenico d’Alessandro, Benjamin Apffel, Ugo Boscain, Thomas
Iadecola, Tony Jin, Antoine Levitt and Eugenio Pozzoli for discussions about quantum evolutions
and quantum control. We also thank Alessandro Scagliotti for feedbacks on a previous version of
this manuscript. This project has received funding from the European Research Council (ERC)

4see [Fie07] for an exhaustive treatment of this theory.
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under the European Union’s Horizon 2020 research and innovation programme (grant agreement
No. 945655). The second author would like to thank Luca Rizzi for his kind invitation to the
SISSA in January 2024, where part of this work was carried out.

2. Applications

This section develops the applications which have been sketched in Section 1.3.

2.1. Manifolds with boundary. Let M̃ be a real-analytic manifold with smooth boundary

∂M̃ ̸= ∅. We denote by U the set of C∞-vector fields on M̃ , defined up to the boundary ∂M̃ , and

which are tangent to ∂M̃ . This set is endowed with the C∞ topology on compact sets. Corollary
2.1 asserts that for a generic k-uple (k ≥ 2) of elements of U , any two points belonging either

to the same connected component of ∂M̃ or to the same connected component of the interior of

M̃ may be connected by an integral path of the vector fields. This result is a generalization to
manifolds with boundary of a result due to Lobry [Lob72] (which does not require the analyticity
assumption).

Corollary 2.1 (Generic control on manifolds with boundary). Let M̃ be a real-analytic and

connected manifold with smooth boundary ∂M̃ . Then for any integer k ≥ 2 there exists a
residual set of k-uples (X1, . . . , Xk) ∈ Uk for which the following property holds. For any q, q′

belonging either to the same connected component of ∂M̃ or to the same connected component

of the interior of M̃ , there exist m ∈ N, t1, . . . , tm ∈ R and i1, . . . , im ∈ [k] (not necessarily
distinct) such that q′ = et1Xi1 ◦ . . . ◦ etmXim q.

Let us explain how Corollary 2.1 follows from Theorem 1.3. To any compact manifold M̃
with smooth boundary is naturally associated a G-manifold M , with G = Z2 (here Z2 = Z/2Z),
constructed as follows. First, the double M of M̃ is formed by gluing together two copies of M̃
along their common boundary. There is a natural action of Z2 by reflection on the manifold M

fixing the common boundary, and sending each point of the first copy of M̃ to the same point

in the second copy of M̃ , and vice versa. Then, the quotient space M/Z2 can be identified with

M̃ .
The strata of M̃ ≃ M/Z2 are the connected components of the boundary and of the interior

of M̃ . As an illustration, if M̃ is a disk, then M is a 2-dimensional sphere, and the set of fixed
points through the mirror action is an equator of M . Equivariant vector fields on M are tangent

to this equator. Then Theorem 1.3 applied to M̃ yields Corollary 2.1. Of course, there exists
an “ensemble version” of Corollary 2.1, which follows from Theorem 1.5.

2.2. Spectrum of matrices. Our results also have applications to control of symmetric and
Hermitian matrices. Let us consider the natural action of the orthogonal group G = On on the
space of symmetric matrices Sn: any P ∈ On acts by Sn ∋ S 7→ PSP⊤. By diagonalization
of symmetric matrices, we identify an element of Sn/On with the empirical measure of the
eigenvalues of any of its representatives in Sn, i.e.,

Sn/On ≃ Rn/Sn ≃ Mn(R)
where Sn denotes the symmetric group over n elements, acting on Rn by permuting the co-
ordinates, and Mn(R) is the set of empirical measures over n points in R, that is, the set of
probability measures on R of the form µ = 1

n

∑n
j=1 δxj .

Given S ∈ Sn/On, we denote by λ1 < . . . < λn(S) the distinct eigenvalues of any repre-
sentative, and by m1, . . . ,mn(S) their respective multiplicities. The tuple (m1, . . . ,mn(S)) is
called the ordered multiplicities of S. Then S, S′ ∈ Sn/On belong to the same stratum if and
only if their ordered multiplicities coincide, i.e., n(S) = n(S′) and mi(S) = mi(S

′) for any
1 ≤ i ≤ n(S) = n(S′). As a side remark, recall that it is known since Von Neumann and Wigner
[VW29] that in Sn, the set of matrices with two coincident eigenvalues has codimension 2.

We denote by W the set of vector fields on Sn/On ≃ Mn(R) induced by On-equivariant C
∞

vector fields on Sn. Along each integral curve in Sn/On of the family W, ordered multiplicities
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are preserved. Our result may be phrased as follows: for generic k-uples (k ≥ 2) of elements of
W, it is possible to transfer by appropriate composition of the flows of these vector fields any
empirical measure of eigenvalues to any other empirical measure of eigenvalues with the same
ordered multiplicities.

Corollary 2.2 (Generic control of the spectrum of symmetric matrices). For any integer k ≥ 2
there exists a residual set of k-uples (X1, . . . , Xk) ∈ Wk, for which the following property holds.
For any S, S′ ∈ Sn/On ≃ Mn(R) whose ordered multiplicities coincide, there exist m ∈ N,
t1, . . . , tm ∈ R and i1, . . . , im ∈ [k] (not necessarily distinct) such that S′ = et1Xi1 ◦ . . .◦etmXimS.

This statement is a consequence of Theorem 1.3, and there exists an “ensemble version”
which follows from Theorem 1.5. Also, an analogous statement holds for the natural action of
the unitary group on the space of n× n Hermitian matrices.

2.3. Particle systems. We develop now the application of our results to (mean-field) control of
particle systems, making rigorous Section 1.1. If n ∈ N and W is a manifold, the set Mn (W ) of
empirical measures over n points in W , that is, the set of measures of the form µ = 1

n

∑n
j=1 δxj ,

also naturally carries a G-manifold structure. It is isomorphic to the quotient of Wn by the
action of the symmetric group Sn given by

σ : (x1, . . . , xn) 7→ (xσ(1), . . . , xσ(n)) (6)

for σ ∈ Sn. The isotropy group Gq as q = (x1, . . . , xn) is not reduced to the identity if and only
if at least two of the xi’s are equal.

In the sequel we assume that W is real-analytic, connected and of dimension ≥ 2 (the case
where dim(W ) = 1 is actually treated in Section 2.2). Two points q, q′ ∈ Wn, q = (x1, . . . , xn),
q′ = (x′1, . . . , x

′
n) have conjugate isotropy groups if and only if there exists h : W → W and

σ ∈ Sn such that h(xℓ) = x′σ(ℓ) for any ℓ ∈ [n], in other words if and only if the numbers of

pairs/triples/quadruples/... of points among x1, . . . , xn which are equal coincide with the same
numbers computed for x′1, . . . , x

′
n. This condition is actually necessary and sufficient for q and

q′ to belong to the same stratum: since W is connected and of dimension ≥ 2, it is easy to
construct a smooth path from 1

n

∑n
j=1 δxj to 1

n

∑n
j=1 δx′

j
.

It is possible to give an analytic characterization of Sn-equivariant vector fields on Wn. For
this we denote by M•

n(W ) the set of couples (x, µ) where µ ∈ Mn(W ) and x ∈ supp(µ). Then
equivariant vector fields are in one-to-one correspondance with functions f : M•

n(W ) → T•W
where this notation means that f(x, µ) ∈ TxW for x ∈ supp(µ). Let us describe this one-to-one
correspondance. If f : M•

n(W ) → T•W , then for x = (x1, . . . , xn) ∈ Wn, we define

V (x) = (f(x1, µ), . . . , f(xn, µ)) ∈ TxW
n, where µ =

1

n

n∑
j=1

δxj .

It is immediate to verify that V is an equivariant vector field on Wn. Conversely, if V =
(V1, . . . , Vn) is an equivariant vector field, for (x, µ) ∈ M•

n(W ) we set

f(y, µ) = V1(y, x2, . . . , xn) ∈ TyW (7)

where we have written µ = 1
n(δy +

∑n
j=2 δxj ). The right-hand side in (7) does not depend on

the order in which we put x2, . . . , xn since V is equivariant. Therefore (7) yields a well-defined
f : M•

n → T•W .
We denote by V the set of functions f : M•

n(W ) → T•W such that the equivariant vector field
on Wn associated with f is C∞ and generates a globally defined flow. The set V is endowed
with the C∞ topology on compact sets.

According to the above characterization of equivariant vector fields on Wn, Theorem 1.3 reads
as follows in this context:

Corollary 2.3 (Generic control of particle systems). For any integer k ≥ 2 there exists a residual
set of tuples (f1, . . . , fk) ∈ Vk for which the following property holds. For any µ0, µ1 ∈ Mn(W )



8 ANDREI AGRACHEV AND CYRIL LETROUIT

in the same stratum, written as

µ0 =
1

n

n∑
r=1

δx0
r

and µ1 =
1

n

n∑
r=1

δx1
r

(8)

there exist m ∈ N, 0 = t0 < t1 < . . . < tm ∈ R, indices i1, . . . , im ∈ [k] (not necessarily distinct),
and signs ε1, . . . , εm ∈ {−1, 1} such that the unique solution to the system of coupled ODEs

∀ℓ ∈ [n], ∀j ∈ [m], ∀t ∈ [tj−1, tj [,
d

dt
xℓ(t) = εjfij (xℓ(t), µ(t)), µ(t) =

1

n

n∑
r=1

δxr(t) (9)

with initial values (x1(0), . . . , xn(0)) = (x01, . . . , x
0
n) satisfies

1

n

n∑
r=1

δxr(tm) = µ1. (10)

With the stronger Theorem 3.3, it is even possible to impose that xr(tm) = x1r for any r ∈ [n]
instead of the weaker condition (10) (but for this it is necessary that the points x0r , x

1
r in the

writing (8) are numbered in a way that x0r = x0r′ if and only if x1r = x1r′ , which is possible since
µ0 and µ1 belong to the same stratum).

There are other natural group actions on Wn for which Theorem 1.3 has natural corollaries,
for instance the action by rotations and/or reflections when W = Rd. We leave the precise
statements to the reader. We also mention that the same G-manifold structure has been used
to model the geometry of chords of music instruments, see e.g. [Tym06].

2.4. Universal interpolation with generic self-attention layers. The application of The-
orem 1.3 (or Theorem 1.5) to particle systems, developed in the previous section, is relevant
in machine learning. One of our motivations for this paper is actually to understand the pos-
sibilities of approximation offered by a relatively new neural network architecture introduced
in [V+17], called Transformers, which play nowadays a central role in the inner workings of
large language models (the last letter in “Chat-GPT” stands for Transformers): more precisely,
we would like to study which classes of functions these neural networks architectures are able
to approximate. If this class is large, it suggests that the architecture is able to handle many
different types of data and problems.

Approximation and interpolation properties of some neural networks (see [CLLS23] for precise
definitions) are known to be equivalent to controllability properties of some non-linear systems
of ODEs in discrete or continuous time. In the past 5 years, tools from geometric control like Lie
bracketing have therefore been used to study the controllability properties of so-called ResNets
(standing for “residual neural networks”) and their continuous-time version called neural ODEs,
see e.g. [CLT20], [TG22], [AS20].

However, Transformers are not of the same nature as ResNets and neural ODEs. The main
difference is that they incorporate self-attention layers, which may be seen from the mathematical
point of view as interacting particle systems or evolutions in the set of (empirical) measures (see
[VBT20], [SABP22], [GLPR23a], [GLPR23b]). The results of the present paper give insights on
the approximation/interpolation properties of (generalized) self-attention layers, if one forgets
about the rest of the architecture of Tranformers which, in addition to self-attention layers,
usually incorporate also normalization layers and multi-layer perceptrons.

Our definition of self-attention layers is much broader than the specific self-attention layers
used in practice: we call “generalized self-attention layer” any vector field on (Rd)n which may
be written for some f : M•

n(Rd) → T•Rd as

(x1, . . . , xn) 7→ (f(x1, µ), . . . , f(xn, µ)), where µ =
1

n

n∑
r=1

δxr . (11)

In other words, generalized self-attention layers are nothing else than the infinitesimal-time
version of a permutation-equivariant sequence-to-sequence maps. In discrete time, they would
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take the form of a discrete system of coupled ODEs

xi((m+ 1)∆t) = xi(m∆t) + (∆t)f(xi(m∆t), µ(m∆t)), µ(m∆t) =
1

n

n∑
r=1

δxr(m∆t) (12)

for some fixed ∆t > 0, and any m ∈ N. In the terminology of neural networks, the term xi(m∆t)
in the right-hand side is called a skip-connection.

Our result, which is a genericity result, works for “almost all generalized self-attention layers”,
but does not say anything about the interpolation properties of the specific self-attention layers
used in practice, which correspond to the choice of functions f of the form

f
(
x,

1

n

n∑
j=1

δxj

)
=

H∑
h=1

∑n
j=1 e

⟨Qhx,Khxj⟩Vhxj∑n
j=1 e

⟨Qhx,Khxj⟩
(13)

for some d× d matrices Qh,Kh, Vh (see below for literature on this problem).
The study of the interpolation properties of generalized self-attention layers boils down to a

problem of controllability of interacting particle system of the form presented in Corollary 2.3
(or Corollary 2.4 below). Our goal is not to control an interacting particle system with fixed
interaction kernel by acting on a subset of particles, which is a classical question; instead, in our
problem, the controls are directly given by a family of interaction kernels.

One particular feature of generalized self-attention layers (or equivalently interacting parti-
cle systems) is that they are equivariant with respect to permutation of particles. Therefore,
approximation/interpolation properties are considered in the class of permutation-equivariant
maps. Recall that equivariant neural networks are of particular interest because they main-
tain their performance even when the input data undergoes certain transformations, such as
rotations, translations, or scaling, and they have a reduced number of parameters compared to
non-equivariant counterparts, as they exploit the inherent symmetries in the data.

In the context of particle systems, Theorem 1.5 takes the form of Corollary 2.4 below. Inter-
preted as a universal interpolation result, it says that if we take k ≥ 2 sufficiently generic maps
(=layers) of the form (11), then it is possible for any given initial set of N point clouds and any
given final set of N (target) point clouds, to compose these k maps5, possibly many times and
in some appropriate order, in a way to move each of the N point clouds to its target. In other
words,

universal interpolation is a generic property of k-uples of generalized self-attention layers.

Corollary 2.4. For any integer k ≥ 2 there exists a residual set of tuples (f1, . . . , fk) ∈ Vk for
which the following property holds. Let N ∈ N and µ0

1, . . . , µ
0
N , µ1

1, . . . , µ
1
N be distinct elements

of Mn(W ) such that for any h ∈ [N ], µ0
h and µ1

h are in the same stratum. For any h ∈ [N ] we
write

µ0
h =

1

n

n∑
r=1

δx0
h,r

and µ1
h =

1

n

n∑
r=1

δx1
h,r

.

Then there exist m ∈ N, 0 = t0 < t1 < . . . < tm ∈ R, indices i1, . . . , im ∈ [k] (not necessarily
distinct) and signs ε1, . . . , εm ∈ {−1, 1} such that for any h ∈ [N ], the unique solution to the
system of coupled ODEs

∀ℓ ∈ [n], ∀j ∈ [m], ∀t ∈ [tj−1, tj [,
d

dt
xh,ℓ(t) = εjfij (xh,ℓ(t), µh(t)), µh(t) =

1

n

n∑
r=1

δxh,r(t)

(14)
with initial condition (xh,1(0), . . . , xh,n(0)) = (x0h,1, . . . , x

0
h,n) satisfies

1

n

n∑
r=1

δxh,r(tm) = µ1
h.

5At the level of the discretized equation (12), this would mean alternating between different f for different
values of m.
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Compared to previous results in the literature [YBRRK19], [ADTK23], our result does not
need to incorporate multi-layer perceptrons to achieve universal interpolation. Besides, it is not
restricted to the Euclidean setting and works for data on general manifolds W , thus it may be
considered as a statement in geometric deep learning (see [BBLSV17], and [G+23] for geometric
deep learning with equivariant neural networks). However, its main drawback is that it does
not rely on self-attention layers used in practice, namely (13), but on “generic” self-attention
layers, of the general form (11). Also, it deals with universal interpolation instead of universal
approximation.

It would be relevant to prove an analogue of Corollary 2.3 in restricted classes of particle
systems. We have in mind the following type of statement: for generic k-uples of functions
chosen in a class of evolutions F smaller than Vp, the same conclusion as in Corollary 2.3 holds.
For instance, does it hold when F is the family of evolutions driven by pairwise interactions?
I.e., each fi in (9) is of the form

fi

(
x,

1

n

n∑
j=1

δxj

)
=

n∑
j=1

Ki(x, xj)

for some kernel Ki.
Another family F with meaningful applications is given by the attention dynamics in Trans-

formers without layer normalization, i.e., each fi would be of the form (13) (see [SABP22],
[GLPR23a], [GLPR23b]) for some H ∈ N, and some d× d matrices Qh,Kh, Vh.

Finally, let us mention that there are other equivariant neural networks architectures for which
universal approximation theorems in the class of equivariant maps have already been proved,
see for instance [KP19] for Graph Neural Networks. Our results might also be applicable to this
setting.

2.5. Control of quantum systems with symmetries. Theorem 1.3 also applies to quan-
tum systems controlled through Hamiltonians which display some symmetries. Let us develop
one example. The papers [CZDP17], [AD18] study symmetric Ising spin network where n spin
1
2 particles (i.e., vectors in the unit sphere of C2) interact through a sum of an uncontrolled
permutation-invariant Hamiltonian H0, with some controlled permutation-invariant Hamiltoni-
ans Hj , j = 1, . . . , k:

H(t) = H0 +

k∑
j=1

uj(t)Hj (15)

where u = (u1, . . . , uk) : [0,+∞) → Rk is the control. What we call here a permutation-invariant
Hamiltonian is a Hamiltonian which is invariant under permutation of the spins, for instance

Hzz =
∑

1≤k<m≤n

1⊗ . . .⊗ 1⊗ σz︸︷︷︸
kth place

⊗1⊗ . . .⊗ 1⊗ σz︸︷︷︸
mth place

⊗1⊗ . . .⊗ 1

or else

Hxyz =
∑

i,j,k distinct

1⊗ . . .⊗1⊗ σx︸︷︷︸
ith place

⊗1⊗ . . .⊗1⊗ σy︸︷︷︸
jth place

⊗1⊗ . . .⊗1⊗ σz︸︷︷︸
kth place

⊗1⊗ . . .⊗1

where

σx :=

(
0 1
1 0

)
, σy :=

(
0 i
−i 0

)
, σz :=

(
1 0
0 −1

)
are the Pauli matrices, and 1 is the 2 × 2 identity matrix. We will say that two networks

q1 = (q
(1)
1 , . . . , q

(n)
1 ) and q2 = (q

(1)
2 , . . . , q

(n)
2 ) of n labelled spin 1

2 particles (each q
(j)
i belongs to

the unit sphere of C2) have same symmetries if q
(i)
1 = q

(j)
1 ⇔ q

(i)
2 = q

(j)
2 , for any i, j ∈ [n]. Our

results (precisely, Theorem 3.4) imply that if we are given at least two generic permutation-
invariant Hamiltonians H1, . . . ,Hj , j ≥ 2, and two networks q1, q2 of n spin 1

2 particles having
same symmetries, then there exists a path from q1 to q2 corresponding to some choice of control
u(t) in (15). In other words, subspace controllability (see [Dal23, Section 1]) generically holds.
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The focus of [AD18] is different but related: the authors give explicit examples of permutation-
invariant Hamiltonians for which they are able to prove controllability and to design control laws.

More generally, concerning the Lie bracket approach to control of quantum systems, we also
mention the paper [Llo95], in which it is shown that generically, a quantum logic gate with two
or more inputs is computationally universal, i.e., copies of the gate can be “wired together” to
effect any desired logic circuit, and to perform any desired unitary transformation on a set of
quantum variables. This result exactly corresponds to Lobry’s theorem [Lob72], applied in the
particular context of unitary transformations: in other words, it asserts that if one can apply
some Hamiltonians (at least two) repeatedly to a few variables at a time one can in general
effect any desired unitary time evolution on an arbitrarily large number of variables.

3. Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3. We actually prove a slightly stronger
statement, given in Theorem 3.3. In the whole paper, we work under the assumptions that M
is a real analytic manifold and G is a compact Lie group acting analytically on M .

3.1. A stronger statement. This subsection is devoted to introducing notation and stating
Theorem 3.3.

Orbits, i.e., sets of the form Gx, are closed submanifold (see e.g. [Fie07, Corollary 3.1.17]).
We denote by M ′ the set of points x ∈ M at which all equivariant vector fields are tangent to
the orbit Gx. This set M ′ is closed and G-invariant.

Example 3.1. If G acts transitively on M , then M ′ = M . Even if G is finite, the set M ′ may
be non-empty: for instance, if M is the unit circle in R2 and G acts by permuting coordinates,
then M ′ has cardinal 2.

Although the above example shows that M ′ is not empty in general, there holds M ′ = ∅ in
all applications listed in Section 2 and in Example 1.1. When M ′ ̸= ∅, controllability is not
necessarily possible inside connected components of M ′, as shown in Example 3.5, therefore we
need to adapt the definition of controllability, see Definition 3.2.

We denote by VecG(M) the set of equivariant C∞ vector fields on M , equipped with the
C∞ topology on compact sets defined as follows. For any chart (ϕ,U) of M , any compact set
K ⊂ U , any X ∈ VecG(M), k ∈ N and ε > 0, we consider the set U(X,ϕ,K, ε, k) of vector fields
Y ∈ VecG(M) such that

sup
x∈ϕ(K),0≤|α|≤k

∥Dα(ϕ∗X)(x)−Dα(ϕ∗Y )(x)∥ < ε.

The C∞ topology on compact sets is defined as the set of all such sets U(X,ϕ,K, ε, k). Since no
confusion is possible, the quotient topology on VecG(MG) is also called C∞ topology on compact
sets.

The set VecG(M) is an involutive distribution, therefore it is integrable according to Frobe-
nius’s theorem. We foliate M with maximal connected integral manifolds of this distribution.
An equivariant leaf is any of the leaves of this foliation. As a consequence, it is possible to
connect any two points in an equivariant leaf by following equivariant vector fields.

Definition 3.2 (Controllability in equivariant leaves). Let X1, . . . , Xk ∈ VecG(M). We say
that controllability holds in equivariant leaves if for any q, q′ ∈ M \ M ′ belonging to the same
equivariant leaf, there exist m ∈ N, t1, . . . , tm ∈ R and i1, . . . , im ∈ [k] (not necessarily distinct)
such that

q′ = et1Xi1 ◦ . . . ◦ etmXim q

where etX denotes the flow at time t of the vector field X on M .

Theorem 3.3. There exists for any k ≥ 2 a set of k-uples (X1, . . . , Xk) ∈ (VecG(M))k which
is residual in (VecG(M))k and for which controllability in equivariant leaves holds.
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We refer the reader to Example 3.14 for an illustration of the concept of controllability in
equivariant leaves.

Recall that the Lie algebra generated by a family F ⊂ VecG(M) is the smallest sub-algebra
of VecG(M) containing F , namely

Lie(F) := Span {[Y1, . . . , [Yj−1, Yj ]], Yi ∈ F , j ∈ N} .

Theorem 3.3 is a corollary of the following result (see Section 3.5 for a proof of this implication).

Theorem 3.4. For any k ≥ 2, there exists a set of k-uples (X1, . . . , Xk) ∈ (VecG(M))k which
is residual in (VecG(M))k and for which

∀q ∈ M \M ′, Lieq(X1, . . . , Xk) = VecG(M)|q. (16)

We end this section with an example showing that controllability does not necessarily hold
inside connected components of M ′ even if they form equivariant leaves, which explains why the
set M ′ is excluded in Definition 3.2.

Example 3.5. We consider M = Rd/Zd for some d > 2, and G the set of all translations in M .
The action is transitive. Then equivariant vector fields are constant vector fields, automatically
tangent to the unique orbit, therefore M ′ = M . However, for any k ≤ d − 1 equivariant vector
fields X1, . . . , Xk, controllability cannot hold inside M ′. Indeed, since X1, . . . , Xk are constant,
the integral curves of the distribution spanned by X1, . . . , Xk are strict subsets of M .

Remark 3.6. We will see in Corollary 3.10 that M ′/G is a set of isolated points in MG, and
that each point in M ′/G is a stratum in (4). Therefore controllability in the sense of Definition
1.2 is automatically satisfied in M ′/G, although all elements of VecG(MG) vanish in M ′/G by
definition of M ′. This is why the set M ′/G does not need to be excluded in the statement of
Theorem 1.3. On the other side, Example 3.5 shows that controllability does not hold inside M ′,
which illustrates why M ′ needs to be removed in the statement of Theorem 3.3 (actually it is
removed in Definition 3.2).

3.2. Averaging. We gather in this section a definition and a proposition that are required for
the rest of the proof.

First we define the averaging operator, which turns any vector field on M to an equivariant
one by averaging over G-orbits. Recall that equivariant vector fields are vector fields on M , and
that they induce vector fields on MG.

Definition 3.7 (Averaging). Given X ∈ Vec(M), we set

Xeq =

∫
G
(Pg)∗X dµG(g) ∈ VecG(M) (17)

where µG is the normalized Haar measure on G.

Averaging commutes with Lie brackets, as shown in the following proposition in which X is
required to be equivariant.

Proposition 3.8 (Averaging and bracketing commute). If X ∈ VecG(M), then for any Y ∈
Vec(M),

[X,Y eq] = [X,Y ]eq (18)

Proof. Since X is equivariant, there holds (Pg)∗X = X for any g ∈ G, hence

[X,Y eq] =

∫
G
[X, (Pg)∗Y ] dµG(g) =

∫
G
[(Pg)∗X, (Pg)∗Y ] dµG(g) = [X,Y ]eq

where for the last equality we used (Pg)∗[X,Y ] = [(Pg)∗X, (Pg)∗Y ]. □
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3.3. Density of vector fields transverse to G-orbits. We introduce a stratification of M ,
whose link with the stratification (4) is clarified below. The action of G on M induces a natural
stratification

M =
⊔
i∈I

Si (19)

where for each i ∈ I, Si is a connected component of the set of points of M whose isotropy
group is conjugate to some given subgroup Hi of G. The slice theorem recalled in the proof of
Lemma 3.9 has several consequences. Firstly, according to [Fie07, Proposition 3.7.2], each Si

is a smooth submanifold. Secondly, I is countable: this is e.g. a consequence of the proof of
[Fie07, Proposition 3.7.4]. Moreover, as a consequence of Lemma 3.9 below, any equivariant leaf
(see Section 3.1) is contained in one of the strata in (19). The image of any stratum in (19)
under quotient by G is a stratum in (4). Conversely, the preimage of any stratum in (4) is the
union of a finite number of strata in (19).

Recall that M is assumed real-analytic. For any invariant subset U ⊂ M , we denote by
X ω
eq(U) (resp. X∞

eq (U)) the set of real-analytic (resp. smooth) equivariant vector fields on U
and by C∞

G (U) the set of smooth G-invariant real-valued functions on U . We consider the
C∞
G (U)-module

AU =

∑
j∈J

ajYj | J finite, ∀j ∈ J , aj ∈ C∞
G (U), Yj ∈ X ω

eq(U)

 .

Then we set

A = {X ∈ X∞
eq (M) | ∀x,∃Ux ̸= ∅ invariant open neighborhood of x s.t. X|Ux

∈ AUx}
For x ∈ M , we denote by Ax the operator Ax : A → TxM ,

Ax : X 7→ Xeq(x) (20)

(see (17)). Its image is denoted by Im(Ax). We recall that G-orbits, i.e., sets of the form Gx
for some x ∈ M , are closed submanifolds (see e.g. [Fie07, Corollary 3.1.17]).

Lemma 3.9. Let S be one of the strata in (19) and let x ∈ S. Then

Im(Ax) ⊂ TxS ⊂ Im(Ax) + Tx(Gx). (21)

Lemma 3.9 is fundamental in the sequel, and it may be tested for instance on Example 3.14
for which the inclusion of Im(Ax) in TxS is strict.

Proof of Lemma 3.9. Our proof of (21) is based on the slice theorem (Theorem 3.5.2 in [Fie07])
whose statement is the following: for every x ∈ M , it is possible to choose a smooth family of
pairwise-disjoint slices

S = {Sy | y ∈ Gx}
satisfying the following properties:

• For y ∈ Gx, Sy ⊂ M is a Gy-invariant embedded disk of M of dimension dim(M) −
dim(Gx) which is transverse to Gx.

• For y ∈ Gx and g ∈ G, g · Sy = Sg·y. In particular, g · Sy = Sy for g ∈ Gy.
• For y ∈ Gx, Sy is G-equivariantly diffeomorphic via expy to the representation given by

the linear action of Gy on (TyGx)⊥.
• For z ∈ Sy, Gz is a subgroup of Gy (see Lemma 3.7.1(a) in [Fie07]).
• GSx =

⋃
y∈Gx Sy is an open G-invariant neighbourhood of Gx which is G-equivariantly

diffeomorphic to the twisted product G×Gx Sx.

These slices are actually defined as follows. We first define a G-invariant metric ν onM by taking
any Riemannian metric on M , then pushing it forward by the G-action and finally averaging
the result with respect to the Haar measure. For y ∈ Gx we denote by Ny(ε) the set of

v ∈ (TyGx)⊥ such that νy(v) < ε. Then the slices Sy for y ∈ Gx are given by Sy = expy(Ny(ε))
for some ε sufficiently small and depending only on x. The key point is that the exponential
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map exp : TM → M is G-equivariant, giving the linear action of Gy on (TyGx)⊥. It is easily
checked that if z = expy(v) for some v ∈ Ny(ε), then

Gz = {g ∈ Gy | g∗(v) = v}. (22)

Therefore, the slice theorem follows from this construction.
We first prove that

Im(Ax) = TxEx (23)

where Ex is the set of points with same isotropy group as x. Notice that Ex is locally dif-
feomorphic near x to the subspace of (TxGx)⊥ given by vectors which are invariant under the
linear action of Gx (by (22)), hence it is a submanifold. Also, this observation shows that
Im(Ax) ⊂ TxEx since equivariant vector fields evaluated at x are invariant under Gx.

We then prove TxEx ⊂ Im(Ax). Let v ∈ TxEx, then h∗v = v for any h ∈ Gx. We define
a vector field on Sx as follows, using the third point of the slice theorem: we consider the
preimage u of v through the diffeomorphism expx, which is a vector at the origin in (TxGx)⊥

which verifies g∗(u) = u for any g ∈ Gx, we extend u to a constant vector field on (TxGx)⊥, and
then we push it forward to Sx through expx. This vector field is well-defined and equivariant
because if g2z = g1z for some z ∈ Sx, then g2 = g1h for some h ∈ Gx according to the second
point of the slice theorem. We extend this vector field to GSx by pushforward by G, obtaining
an equivariant and analytic (because the action is analytic) vector field. We then use a smooth
G-invariant cut-off6 equal to 1 on GSx to obtain an element X ∈ A, equal to v on GSx. The
involution g 7→ g−1 preserves the normalized Haar measure µG on G because compact Lie groups
are unimodular (i.e. the left-invariant measure is also right-invariant). Hence

Xeq(x) =

∫
G
((Pg)∗X)(x) dµG(g) =

∫
G
((Pg−1)∗X)(x) dµG(g) =

∫
G
(Pg−1)∗(Pg)∗v dµG(g) = v

therefore v ∈ Im(Ax) which concludes the proof of (23).
To prove (21) it is now sufficient to prove TxEx ⊂ TxS ⊂ TxEx + Tx(Gx). The inclusion

TxEx ⊂ TxS follows from the definition of strata. Let us prove that TxS ⊂ TxEx + Tx(Gx). For
this, we use the fourth point of the slice theorem. Since all elements of S have isotropy groups
conjugated to Gx, we deduce Sx ∩ S ⊂ Ex. Hence

TxS ⊂ Tx(Sx ∩ S) + Tx(Gx) ⊂ TxEx + Tx(Gx),

which concludes the proof of (21). □

The following corollary may be deduced from the above proof.

Corollary 3.10. M ′/G is a set of isolated points, and each point of M ′/G is a stratum in (4).

Proof. Let x ∈ M ′, and denote by S the stratum containing x. If the smooth submanifold Gx
has dimension 0, then according to Lemma 3.9 there holds TxS = {0}, therefore Gx is a stratum
in (4), reduced to a point. If Gx has dimension ≥ 1, since Gx ⊂ S and x ∈ M ′, Lemma 3.9
implies that TxS = Tx(Gx). The slice theorem shows that if z ∈ Sx \ {x} (where Sx denotes the
slice at x, see proof of Lemma 3.9), then Gz ⊊ Gx. Therefore Gx ∈ M ′/G is a stratum in (4).

As recalled at the beginning of Section 3.3, the number of strata is locally finite. Therefore,
M ′/G is a set of isolated points. □

We say that X ∈ Vec(M) is transverse to the G-orbit at x if X(x) /∈ Tx(Gx). Lemma 3.9 is
useful to prove the following result.

Lemma 3.11. Assume k ≥ 2. Then there exists a residual set of k-uples (X1, . . . , Xk) ∈ Ak

such that for any x ∈ M \M ′, at least one of the vectors X1(x), . . . , Xk(x) is transverse to the
G-orbit at x.

6this is the main reason why we introduced the module A: to be able to make cut-offs of analytic fields.
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Proof. In the proof of Lemma 3.9 we recalled the slice theorem. We also recall from [Fie07,
Proposition 3.7.4] that if M is a compact G-manifold or a G-representation, then the number of
isotropy types (i.e. different isotropy subgroups, up to conjugation) for the G-action is finite. It
follows from the proof of [Fie07, Proposition 3.7.4] that even if M is not assumed compact, for
any compact set K ⊂ M , the number of strata of M in the sense of the stratification (19) (in
particular strata are connected sets) which have non-empty intersection with K is finite. This
property is called Property P in the sequel.

We exhaust the open set M \M ′ by increasing compact sets Mj , j ∈ N (this is possible thanks
to Whitney’s embedding theorem) assumed to be G-invariant:

M =
⋃
j∈N

Mj , ∀j ∈ N, Mj ⊂ Mj+1, GMj = Mj .

In the sequel j ∈ N is fixed. Let S be a stratum intersecting Mj . The set S/G is a smooth
manifold, and we denote its dimension by ℓ(S). The dimension of Tx(Gx) does not depend on
x ∈ S (because Gx, Gx′ are conjugate for x, x′ ∈ S) and there holds ℓ(S) = dim(TxS/Tx(Gx))
for any x ∈ S.

We consider for x ∈ M the linear map hx : Ak → (TxM/Tx(Gx))k

hx : (X1, . . . , Xk) 7→ (AxX1 mod(Tx(Gx)), . . . , AxXk mod(Tx(Gx))).

According to Lemma 3.9, for x ∈ S, the application hx has rank kℓ(S). The domain of hx is
infinite-dimensional, but to compute codimensions, we restrict hx to a finite-dimensional space,
while preserving its range: for any x ∈ Mj , we choose a finite dimensional subspace of Ak such
that for any y in some open neighborhood of x the restriction of hy to this subspace has same
range as hy. Covering the compact set Mj with a finite number of such open neighborhoods, we

end-up with a finite dimensional subspace Fj ⊂ A such that the restriction h̃x := hx|Fk
j
has also

rank kℓ(S) for any x ∈ Mj ∩ S. Its kernel h̃−1
x (0) ⊂ F k

j has codimension kℓ(S) for x ∈ Mj ∩ S.

The union
⋃

x∈Mj∩S h̃−1
x (0) is a subset of F k

j of codimension ≥ (k− 1)ℓ(S). This quantity is ≥ 1

as soon as ℓ(S) ≥ 1 (since k ≥ 2).
The above reasoning implies that for any j ∈ N, for any stratum S having non-empty inter-

section with Mj ,
⋃

x∈Mj∩S h−1
x (0) is a subset of codimension ≥ (k − 1)ℓ(S). Taking the union

over the locally finite number (according to Property P above) of strata for which ℓ(S∩Mj) ̸= 0,
we obtain that the codimension of

⋃
x∈Mj

h−1
x (0) is ≥ 1. Therefore there exists a dense set of

k-uples (X1, . . . , Xk) ∈ Ak on M such that for any x ∈ Mj there exists i ∈ {1, . . . , k} having
the property that Xi(x) is transverse to the G-orbit at x. This set of k-uples is open since Mj

is compact. Taking the intersection of these sets over j ∈ N, we obtain Lemma 3.11. □

Remark 3.12. Assume G is finite. Since any orbit is discrete, a vector field X is transverse to
the G-orbit at x if and only if X(x) ̸= 0. Therefore, Lemma 3.11 means that for an open dense
set of k-uples (X1, . . . , Xk) of elements of Ak, for any x ∈ M \ M ′ at least one of the vectors
X1(x), . . . , Xk(x) is ̸= 0.

3.4. Proof of Theorem 3.4. Recall the notation

ad0XY = Y, adkXY = [X, adk−1
X Y ],

for any k ≥ 1 and any vector fields X,Y . Our proof of Theorem 3.4 is based on the following
lemma.

Lemma 3.13. Let K ⊂ M be a G-invariant compact set. Let X,Y ∈ A and let O ⊂ K be a
tubular open set of the form

O =
⊔

t∈]−T,T [

etXΣ (24)

where Σ ⊂ M is a G-invariant hypersurface, X is transverse to Σ, and T > 0 is small enough so
that (24) defines tubular coordinates in O. There exists p(K) ∈ N (depending only on K) such
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that for any p ≥ p(K), any ε > 0 and any neighborhood of the closure O, there exists Z ∈ A
supported in this neighborhood and with ∥Z∥Cp ≤ ε such that

∀q ∈ O, Span
(
ad0X(Y + Z)(q), . . . , adpX(Y + Z)(q)

)
= VecG(O)|q.

We postpone the proof of Lemma 3.13 to the end of this section, and first explain how to
finish the proof of Theorem 3.4. In the C∞ topology on compact sets (defined in Section 3.1),
k-uples of vector fields satisfying (16) form a countable intersection of open sets. Therefore, we
only need to prove their density.

Let us fix (X1, . . . , Xk) ∈ (VecG(M))k. By density of A in VecG(M) together with Lemma
3.11, we may assume that (X1, . . . , Xk) ∈ Ak satisfy the conclusion of Lemma 3.11, i.e., for
any x ∈ M \M ′, at least one of the vectors X1(x), . . . , Xk(x) is transverse to the G-orbit at x.
Thanks to Lemma 3.11, we cover M \M ′ with G-invariant open sets (Oj)j∈J which are tubular
neighborhoods of the form (24) for some hypersurface Σ := Σj transverse to the G-orbits in Oj ,
some T := Tj ∈ R+ and some X := Xij where ij ∈ {1, . . . , k} for any j ∈ J . We may assume
that this covering is locally finite, i.e., for any compact subset of M \M ′, the number of elements
of this covering which intersect this compact set is finite, therefore J = N or J = {1, . . . , J} for
some J ∈ N. We also fix an increasing sequence (Kℓ)ℓ∈N of compact sets such that M =

⋃
ℓ∈NKℓ.

We modify the vector fields X1, . . . , Xk inductively, for j = 1, 2, . . . (j ∈ J ). At the end of

step j ∈ J , we have the vector fields X
(j)
1 , . . . , X

(j)
k and we ensure that:

(1) X
(j)
1 , . . . , X

(j)
k satisfy

∀q ∈
⋃
j′≤j

Oj′ , Lieq(X1, . . . , Xk) = VecG(M)|q.

(2) For any j′ ∈ J , X
(j)
ij′

is transverse to Σj′ .

Fix j ∈ J and assume that step j − 1 has been done. We pick αj ∈ [k] \ {ij} (arbitrarily).

We modify X
(j−1)
αj in a neighborhood of Oj . The modification only affects Xαj : it is of the form

X(j)
αj

= X(j−1)
αj

+ φjZj (25)

X
(j)
i = X

(j−1)
i for i ̸= αj .

In particular X
(j)
ij

= X
(j−1)
ij

. Let us explain the construction of φj and Zj .

Let us fix an index ℓ such that Oj ⊂ Kℓ. We choose Zj thanks to Lemma 3.13 such that for
any q ∈ Oj the vectors

adk
X

(j)
ij

X(j)
αj

(q) = adk
X

(j−1)
ij

(X(j−1)
αj

+ Zj)(q), k = 0, . . . , p

span VecG(M)|q. The regularity index p above only depends only on Kℓ but not on Oj according
to Lemma 3.13. We also take φj a C∞(M) and G-invariant cutoff function supported near Oj ,
with value 1 in Oj , and 0 outside a small neighborhood of Oj . Moreover, we require the following
properties:

• ∥Zj∥Cp ≤ ε2−j .
• (1) and (2) are satisfied.

The second bullet is guaranteed by taking ∥Zj∥Cp sufficiently small and the support of φj to be

a sufficiently small neighborhood of the closure Oj . Here we use the fact that the covering of
M \ M ′ is locally finite, hence the transversality condition (2), which is an open condition, is
perturbed only for a finite number of j′ ∈ J , and therefore remains true if the perturbation is
sufficiently small.

Once j has run over J , and at each step a perturbation of the form (25) has been added, we
obtain modified vector fields which we denote by X ′

1, . . . , X
′
k ∈ VecG(M). Convergence of the

series of modifications is guaranteed by the first bullet above, with ∥X ′
i −Xi∥Cpℓ (Kℓ) ≤ ε for any

i ∈ [k] and for some pℓ depending only on Kℓ. Moreover, the vector fields satisfy (16) thanks to
(1). This concludes the proof of Theorem 3.4.
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We finally prove Lemma 3.13.

Proof of Lemma 3.13. Any module generated by real-analytic vector fields is locally finitely
generated, due to the Nötherian property of the ring of germs of real-analytic functions (see
[Fri67, Theorem I.9]). Therefore, the module AK is locally finitely generated: there exist m ∈ N
and analytic vector fields f1, . . . , fm on K such that

AK =

{
m∑
i=1

aifi | ∀i ∈ [m], ai ∈ C∞
G (K)

}
. (26)

Of course, the analytic vector fields f1, . . . , fm, when restricted to O, also generate AO. But
it is important for us that the number m of vector fields depends only on K (not on O ⊂ K).
Besides, f1, . . . , fm ∈ X ω

eq(K) since all vector fields in AK are equivariant.
Since adXfi ∈ AO (according to (18)) and AO is finitely generated by the fj ,

adXfi =

m∑
j=1

aijfj

for some aij ∈ C∞
G (O), 1 ≤ i, j ≤ m. We set

f t
i := (etX)∗fi (27)

and observe that

d

dt
f t
i = −

m∑
j=1

(aij ◦ e−tX)f t
j , f0

i = fi. (28)

Since the equation (28) is linear and the fj verify (26), the f t
j , j = 1, . . . ,m verify

AO =

{
m∑
i=1

aif
t
i | ∀i ∈ [m], ai ∈ C∞

G (O)

}
(29)

for any t ∈]− T, T [. For some sufficiently large p ∈ N and some matrix α ∈ Mm×(p+1), both to
be chosen later, we consider for i = 0, . . . , p

gi =
m∑
j=1

αijfj . (30)

Then gti := (etX)∗gi verify

gti =
m∑
j=1

αijf
t
j . (31)

In the sequel, each point of O is written as etXq0 where t ∈]− T, T [ and q0 ∈ Σ, thanks to (24).
For such gi’s, we consider

Z(etXq0) = (etX)∗

(
p∑

i=0

ti

i!
gi(q0)

)
. (32)

We want to compute adγXZ for γ = 0, . . . , p. For this, we notice

[(eεX)∗Z](etXq0) = (eεX)∗(e
(t−ε)X)∗

(
p∑

i=0

(t− ε)i

i!
gi(q0)

)
=

p∑
i=0

(t− ε)i

i!
gti(e

tXq0)

where for the second equality we used gti = (etX)∗gi. We differentiate γ times with respect to ε
at 0: we obtain

[adγXZ](etXq0) = (−1)γ
dγ

dεγ |ε=0

p∑
i=0

(t− ε)i

i!
gti(e

tXq0) =

p∑
i=γ

ti−γ

(i− γ)!
gti(e

tXq0).
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Therefore writing adγXY =
∑m

j=1 βγjfj where β = (βkj) is a (p+ 1)×m matrix, we obtain

adγX(Y + Z)(etXq0) =

m∑
j=1

βγj(e
tXq0) +

p∑
i=γ

ti−γ

(i− γ)!
αij


︸ ︷︷ ︸

:=δγj

f t
j (e

tXq0) (33)

thanks to (31). The goal is to choose the constant-coefficients matrix α = (αij) (with 0 ≤ γ ≤ p
and 1 ≤ j ≤ m) in a way that δ = (δγj) ∈ M(p+1)×m defined in (33) has rank m at any point in
O. We notice that η(t) ∈ M(p+1)×(p+1) defined by its coefficients

ηγi(t) = 1i≥γ
ti−γ

(i− γ)!
(34)

is a triangular matrix with non-zero diagonal coefficients, hence it is invertible. Thus, δ = β+ηα
has rank m if and only if η−1β + α has rank m. When x = etXq0 varies in O, η(t)−1β(etXq0)
describes a submanifold of M(p+1)×m of dimension ≤ n = dim(M). Hence, if p + 1 ≥ n + m,
then for α in a codimension p + 2 −m − n ≥ 1 submanifold, δ has rank m at any point in the
neighborhood.

Fix such α and take Z according to (30), (32). As a consequence of (29), (33) and the fact
that δ has rank m, we have at any point q ∈ O

Span
(
ad0X(Y + Z)(q), . . . , adpX(Y + Z)(q)

)
= Span(f t

1(q), . . . , f
t
m(q)) = VecG(O)|q.

Finally, recall that m depends only on K, therefore p(K) := n+m−1 depends only on K, which
concludes the proof. □

3.5. Proof of Theorem 3.3 and an example. Each equivariant leaf is by definition a sub-
manifold of M . Let X1, . . . , Xk be a tuple satisfying the conclusion of Theorem 3.4. We may
apply Chow-Rashevskii’s theorem [AS04, Theorems 5.1 and 5.2] in any equivariant leaf L. We
obtain that for any q, q′ ∈ L, there exist m ∈ N, t1, . . . , tm ∈ R and i1, . . . , im ∈ [k] (not neces-
sarily distinct) such that q′ = et1Xi1 ◦ . . .◦etmXim q. In other words, controllability in equivariant
leaves holds, which concludes the proof of Theorem 3.3.

The following example illustrates the fact that controllability does not necessarily generically
hold in strata of M given in (19). This is because strata are possibly larger sets than equivariant
leaves.

Example 3.14. Let m, ℓ ≥ 1 and take M = Sm × Rℓ (or M = Sm × Tℓ with T = R/Z if we
want M to be compact) equipped with the action of the orthogonal group G = O(m+1) given by
O · (a, b) = (Oa, b) for (a, b) ∈ Sm × Rℓ. The equivariant vector fields are all vector fields that
are tangent to Rℓ and do not depend on the point on the sphere. There is a single stratum for
(19), equal to M , and controllability cannot hold in the whole stratum. Equivariant leaves are
sets of the form La = {(a, x) | x ∈ Rℓ} for a ∈ Sm, and controllability in equivariant leaves is
possible (and generic according to Theorem 3.3). Also, controllability in M/G = Rℓ holds since
C∞ equivariant vector fields induce on M/G ≃ Rℓ all smooth fields.

3.6. Proof of Theorem 1.3. Recall that the image of any stratum in (19) under quotient by
G is a stratum in (4). Combining Theorem 3.4 with Lemma 3.9 and Corollary 3.10, we obtain:

Theorem 3.15. For any k ≥ 2, there exists a set of k-uples (X1, . . . , Xk) ∈ (VecG(MG))
k which

is residual in (VecG(M))k and for which

∀q ∈ MG, Lieq(X1, . . . , Xk) = TqS
i
G. (35)

Here i = i(q) denotes the index of the stratum containing q.

Theorem 1.3 follows from Theorem 3.15 and Chow-Rashevskii’s theorem.
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4. Proof of Theorem 1.5

This section is devoted to the proof of Theorem 1.5. Since an intersection of residual sets is
still a residual set, it is sufficient to prove the result for fixed N , i.e., simultaneous controllability
in strata for any N points with N fixed. Let us fix N ∈ N. For a vector field X ∈ Vec(M),
consider its N -fold, defined on the product MN as

XN (x1, . . . , xN ) = (X(x1), . . . , X(xN )).

For X,Y ∈ Vec(M) and N ≥ 1 we define the Lie bracket of the N -folds XN , Y N on MN

“componentwise”: [XN , Y N ] = [X,Y ]N where [X,Y ] is the Lie bracket of X,Y on M . The
same holds for the iterated Lie brackets.

We set

M (N) = {(q1, . . . , qN ) ∈ (M \M ′)N | ∀i ̸= j, Gqi ∩Gqj = ∅}.
Given equivariant vector fields X1, . . . , Xk on M , we say that their N -folds XN

1 , . . . , XN
k form a

bracket-generating system in equivariant leaves on U ⊂ M (N) if

∀(q1, . . . , qN ) ∈ U, Lie(q1,...,qN )(X
N
1 , . . . , XN

k ) = VecG(M)|q1 × . . .× V ecG(M)|qN . (36)

This equality is written for points in U ⊂ M (N) because it cannot hold in MN \M (N) due to

equivariance. Notice that for N > 1, (36) for U = M (N) is strictly stronger than the property
(16) (which corresponds to the case N = 1).

In this section we prove the following statement:

Theorem 4.1. For any N ≥ 1, there is a residual set of k-uples of vector fields (X1, . . . , Xk)
in (VecG(M))k, such that for any (X1, . . . , Xk) from this set the N -folds (XN

1 , . . . , XN
k ) form a

bracket generating system in equivariant leaves on M (N).

Recall that the image of any stratum in (19) under quotient by G is a stratum in (4). Combin-
ing Theorem 4.1 with Lemma 3.9 and Corollary 3.10, we obtain the following result (where the
definition of N -fold of elements of VecG(MG) is deduced from N -fold of elements of VecG(M)).

Theorem 4.2. For any k ≥ 2, there exists a set of k-uples (X1, . . . , Xk) ∈ (VecG(MG))
k which

is residual in (VecG(MG))
k and for which for any distinct q1, . . . , qN ∈ MG,

Lie(q1,...,qN )(X
N
1 , . . . , XN

k ) = Tq1S
i(q1)
G × . . .× TqNS

i(qN )
G . (37)

Here i(q) denotes the index of the stratum in (4) containing q ∈ MG.

Theorem 1.5 is a direct consequence of Theorem 4.2 combined with the Chow-Rashevskii
theorem, as in [AS20, Proposition 3.1]. The condition in Definition 1.4 that the stratum has
dimension ≥ 2 is necessary because in dimension 1, ordering of points is preserved (and indeed,
q1, . . . , qN are assumed distinct in (37), therefore they cannot cross).

The rest of this section is devoted to the proof of Theorem 4.1. Since the proof consists in a
slight modification of the proof of Theorem 3.4, we only provide the key ideas and highlight the
modifications compared to the proof of Theorem 3.4.

We write M (N) as a union of compact sets M
(N)
s , s ∈ N, which are invariant under the action

of GN given by

(g1, . . . , gN ) · (q1, . . . , qN ) = (g1q1, . . . , gNqN ).

It is sufficient to prove Theorem 4.1 in M
(N)
s for fixed s ∈ N, instead of M (N), since taking

intersection over s of the sets of vector fields will yield a countable intersection of residual sets,
which is still a residual set. Therefore, we fix s ∈ N and we prove that there exists ps ∈ N such
that

the set of k-uples of vector fields (X1, . . . , Xk) in (VecG(M))k, such that

the length ≤ ps brackets of the N -folds (XN
1 , . . . , XN

k ) generate in M
(N)
s

all equivariant leaves is open and dense in (VecG(M))k.
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Moreover, for any compact set K ⊂ M , the regularity index ps in the above statement may be

taken the same for all s such that M
(N)
s ⊂ K.

Openness in the above statement is immediate since M
(N)
s is compact. Therefore, we only

need to prove the density.
Let us fix (X1, . . . , Xk) ∈ (VecG(M))k. By density of A in VecG(M) together with Lemma

3.11, we may assume that (X1, . . . , Xk) ∈ Ak satisfy the conclusion of Lemma 3.11, i.e.,

∀x ∈ M \M ′, ∃i ∈ [k] such that Xi(x) is transverse to the G-orbit at x. (38)

For each (q1, . . . , qN ) ∈ M
(N)
s we do the following. Thanks to (38) we fix a linear combination

a1X1 + . . .+ akXk which is transverse to the G-orbit at qi for any i ∈ [N ]. Then we consider a
product of tubular neighborhoods

O1 × . . .×ON ⊂ M (N) (39)

where qℓ ∈ Oℓ, eachOℓ is of the form (24), and theOℓ’s have empty intersection, which is possible
since q1, . . . , qN are pairwise distinct. We assume that the neighborhood (39) is sufficiently small
so that the linear combination a1X1+ . . .+ akXk is transverse in O1 ∪ . . .∪ON to the G-orbits.

Doing this for any (q1, . . . , qN ) ∈ M
(N)
s , we have obtained an open covering of the compact

set M
(N)
s , from which we select a finite sub-covering Ṽ1, . . . , Ṽj0 . For fixed j ∈ [j0], we have by

definition

Ṽj = O(j)
1 × . . .×O(j)

N (40)

where each O(j)
ℓ is of the form (24) (with t ∈] − T

(j)
ℓ , T

(j)
ℓ [ and Σ

(j)
ℓ denotes the hypersurface),

and O(j)
ℓ , O(j)

ℓ′ are separated (“at positive distance”) for any ℓ ̸= ℓ′. For any j ∈ [j0], there exist

a
(j)
1 , . . . , a

(j)
k ∈ R such that a

(j)
1 X1 + . . .+ a

(j)
k Xk is transverse to the G-orbits in

Vj =

N⊔
ℓ=1

O(j)
ℓ . (41)

(Notice that the Vj ’s do not necessarily have empty intersection.)
We perturb (X1, . . . , Xk) in V1, . . . , Vj0 successively; at step j we perturb the vector fields in

Vj , and the vector fields which we obtain at the end of this step are denoted by (X
(j)
1 , . . . , X

(j)
k ).

We need to modify the construction made in the proof of Lemma 3.13. Fix a step j ∈ [j0].

We set X = a
(j)
1 X1 + . . .+ a

(j)
k Xk and

Y =

{
X1 if (a

(j)
1 , . . . , a

(j)
k ) ̸= (λ, 0, . . . , 0) for any λ ∈ R

X2 otherwise.

We construct below a perturbation Z of Y , supported near Vj . We use the same idea of Taylor
expansion as in (32), just taking larger p in order to generate all directions in the tangent space at
any (et1Xq1, . . . , e

tNXqN ). We introduce the set C of parameters (t,q) such that t = (t1, . . . , tN )

with tℓ ∈]− T
(j)
ℓ , T

(j)
ℓ [, and q = (q1, . . . , qN ) ∈ Σ

(j)
1 × . . .× Σ

(j)
N .

The vector field Z is constructed in the following way. We pick analytic vector fields f1, . . . , fm
as in the proof of Lemma 3.13, in order for (26) to hold. We follow (27) to (31) in all O = O(j)

ℓ ,

i = 1, . . . , N , and define Z through (32): for each ℓ ∈ [N ] there is a matrix α = α(ℓ), which

defines Z in O(j)
ℓ . The vector field Z is thus supported near Vj . An analogous formula to (33)

holds:

adγX(Y + Z)(etℓXqℓ) =

m∑
r=1

β(ℓ)
γr (e

tℓXqℓ) +

p∑
i=γ

ti−γ

(i− γ)!
α
(ℓ)
ir


︸ ︷︷ ︸

:=δ
(ℓ)
γr

f t
r(e

tℓXqℓ) (42)
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The goal is to choose the constant-coefficients matrices α(ℓ) = (α
(ℓ)
ir ) (with 0 ≤ γ ≤ p and

r ∈ [m], ℓ ∈ [N ]) in a way that the N(p+ 1)×Nm block matrix

δ′ =


δ(1) 0 . . . 0

0 δ(2) . . . 0
...

...
. . .

...

0 0 . . . δ(N)


(whose N2 blocks are of size (p+ 1)×m) has rank Nm for any (t,q) ∈ C. We denote by η′ the
N(p+ 1)×N(p+ 1) matrix defined by N2 blocks of size (p+ 1)× (p+ 1), all equal to 0 except
the on-diagonal ones taken equal to the matrix η introduced in (34). We define similarly β′ and
α′ as N(p + 1) × Nm block matrices having blocks equal to 0 except ℓth diagonal block equal

respectively to β(ℓ) and α(ℓ) which appear in (42). We obtain δ′ = β′ + η′α′.
Since η′ is invertible, δ′ has rank Nm if and only if η′−1β′+α′ has rank Nm. When (t,q) vary

in C, η′−1β′ describes a submanifold of M(p+1)N×mN of dimension ≤ nN , where n = dim(M).
Hence, if p+ 1 ≥ (m+ n)N , then for α in a codimension p+ 2− (m+ n)N ≥ 1 submanifold, δ′

has rank mN at any point in the neighborhood.
For α′ and Z taken in this way, we obtain that the Lie algebra generated by the (restrictions

of the) N -folds vector fields XN
1 , . . . , XN

k equals VecG(O1) × . . . × VecG(ON ) - this is a direct
consequence of the fact that δ′ has rank Nm together with (29).

Besides, we take the perturbations α′ and Z sufficiently small so that the condition that

a
(j′)
1 X1 + . . .+ a

(j′)
k Xk is transverse to the G-orbits in Vj′ for any j′ ∈ [j0] is preserved.

By definition, if we set X ′
1 = X1,j0 and X2 = X2,j0 , then their N -folds X

′(N)
1 and X

′(N)
2

form a bracket-generating system in equivariant leaves in all Vj (j ∈ [j0]), hence in M
(N)
s . This

concludes the proof of Theorem 4.1.
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