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Abstract

The presence of heteroscedasticity in data can often throw statistical modeling into dis-
array. In the context of mixed models and longitudinal data, this paper directly addresses
this problem. We develop a quantile estimator based on the asymmetric Laplace distribu-
tion, which explains the heteroscedasticity between different groups of data. In addition to
developing this new model, our paper establishes the good asymptotic properties of this es-
timator under minimal assumptions on the data and verifies them using simulations. Instead
of improving performance point by point, our model focuses on the correct representation
of data dispersion. Using the permissive formalism of the asymmetric Laplace distribution,
we demonstrate the asymptotic properties of a class of estimators defined by a generalized
optimization problem inspired by maximum likelihood. A Ridge penalization is proposed to
address problems of variability overestimation. More generally, this paper presents a model
for handling volume estimation problems more accurately. An application to the diet diver-
sity of coral reef fish is proposed through the representation of isotopic niche sizes.

Keywords: Asymmetric Laplace Distribution, Linear Quantile Mixed Models, Gaussian Quadra-
ture, Ridge Regression, Penalized Linear Quantile Mixed Models
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1 Introduction

In this article, we propose a formal theory to deal with heteroscedasticity in a panel data model.

In certain applications, it may be useful to have a precise estimator of data dispersion, in par-

ticular to measure heteroscedasticity. This is what the model in this article attempts to achieve,

by explicitly mentioning the differences in variability between different groups of data. What’s

more, the underlying mathematical formalism proposed allows for the simple addition of penal-

ties, thus allowing control on the modelization error. By studying several independent variables

of interest using the model in this paper, it is then possible to perform volume estimation in the

broad sense (for spaces of dimensions greater than 1), controlling the within-group dispersion of

each of these variables.

Here, we consider quantile regression models to provide robustness against outliers. Koenker

and Basset introduced quantile regression in 1978 (Koenker and Bassett (1978)) as a more robust

alternative to classical linear least-squares regression. An overview of robust statistics literature

can be found in Hampel et al. (2011), Jurecková and Sen (1996), Hubert and Branden (2003) and

Koenker et al. (2017). Instead of focusing on the changes in the mean, the quantile regression

approach allows one to test whether there is a change in the τ th quantile of the model response

for any given τ ∈ (0, 1). When the conditional distributions are non-Gaussian, the mean might

not be the best summary, and a change in distributions may not be detected. Inference for lin-

ear quantile regression models has become a subject of intense investigation in the past years.

Our article establishes a general theoretical framework based on regression quantile for panel

data allowing for heteroscedasticity in the data. We define a new class of estimators by adding a

term to the optimization problem defining the maximum likelihood estimator. One of the main

advantages of our method is the generalization of good asymptotic properties to this class of
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estimators. This makes it possible to implement a wide choice of penalty, introducing a bias

which could compensate for the modeling error. A penalization is also introduced to approach

between-measurements variability in a better way. Instead of showing better performances, this

new modelization aims at making the proposed model more explicable in order to predict and

apprehend multi-level variability more effectively.

The development of quantile regression is linked to a desire to get away from the “normality

dogma”, following several criticisms of the Gaussian distribution, notably its absence in certain

econometric applications (Stigler (1973)). More precisely, instead of considering the calculated

response as an average using least-squares minimization, we use a minimization problem defining

the quantiles of a series of observations to establish an estimator. This provides greater resistance

to the addition of outliers and relaxes assumptions on the residuals.

We take the following linear regression model defined by :

Yn = Xnβ + εn (1)

where for all n ≥ 1, Yn = (Y1, . . . , Yn)t is the vector of observations, Xn is a known matrix of

dimension n × p with rows xti ∈ Rp, i = 1, . . . , n, εn = (ε1, . . . , εn)t is a vector of independent

and identically distributed (i.i.d.) errors and β = (β1, . . . , βp)
t denotes the unknown vector of

regression parameters to be estimated.

We call τ -regression quantile any solution of the minimization problem

β(τ) = arg min
β∈Rp

n∑
i=1

ρτ
(
Yi − xtiβ

)
(2)

where ρτ (u) = u(τ − 1u<0) with 1P takes the value 1 or 0 depending on whether the condition

P is satisfied or not. The function ρ is called the “quantile loss function” and is classically used

to define the quantile of a random variable. This estimator shares the asymptotic properties of a
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classical least-square regression estimator, with less restrictive assumptions (Koenker and Bassett

(1978)).

This specificity allows a wide range of uses of the quantile regression models. We can cite

applications to sociological data (Abrevaya and Dahl (2008)), medical data (Peng et al. (2009)),

genomic data (Durrieu and Briollais (2009) and Briollais and Durrieu (2017)) or ecological data

(Cade and Noon (2003)).

The development of quantile regression for panel data kind of follows the path of the devel-

opment of generalized linear models (Liang and Zeger (1986)). Koenker (2004) was interested

in longitudinal data, a classical form of data that can be found in medicine, ecology, or biology.

In this paradigm, we account for dependency between grouped measurements (for example a

medical measurement on the same subject). This led to the formulation of a quantile regression

model with fixed effects, expressed as a lasso (least absolute shrinkage and selection operator)

penalty (Lamarche (2010)).

The link with generalized models only got stronger, notably with an approach to quantile

regression with random effects (Arellano and Bonhomme (2013), Galvao and Poirier (2019)).

Several quantile regression-based modeling approaches were introduced, such as Bayesian quan-

tile modeling (Alhamzawi and Yu (2014), Ji and Shi (2022)), semi-parametric modeling (Kim

and Yang (2011)) or composite modeling (Wang and Xiang (2017), Wu and Yao (2016), Lu and

Fan (2015)). A summary of advances in quantile regression and its applications is available in

Yu et al. (2003) and Koenker (2017).

In this article, we consider the development of quantile modeling based on the asymmetric

Laplace distribution (Yu and Zhang (2005)). Several seminal papers have established the link be-

tween the quantile regression minimization problem and the maximum likelihood estimator (Yu

and Moyeed (2001), Geraci and Bottai (2007)). This made it possible to use classical likelihood
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estimator resolution algorithms to determine the quantile regression estimator. Note the use of

Bayesian theory (Luo et al. (2012), Alhamzawi and Yu (2014), Aghamohammadi and Moham-

madi (2017), Ji and Shi (2022)) or the Expectation-Maximization algorithm (Geraci and Bottai

(2014), Geraci (2014), Galarza et al. (2017) Tian et al. (2020), Battagliola et al. (2022)). This

article follows in these authors’ footsteps, exploiting the asymmetric Laplace distribution and its

link with quantile regression, using it on longitudinal data with random effects.

Section 2 is dedicated to the description of the model, its properties, and the numerical estima-

tion. Our model is first introduced. Our approach makes it possible to include heteroscedasticity

in the model explicitly. Next, the asymptotic statistical properties of the proposed quantile esti-

mator are studied. A generalization of our model is also introduced, along with its asymptotic

properties. Using this generalization, we can deal with the overestimation of dispersion. The

sketch of the proofs is given in the same Section 2. Next, our estimation procedures are ex-

plained. Next, the asymptotic properties of our approach are illustrated in Section 3 on simulated

data and an application of the method on ecological data is provided in Section 4. The latter

highlights the value of our method in terms of surface estimation. This application was crucial

to our methodological development, as it was the original motivation for developing our quantile

estimator. Finally, Section 5 concludes with a general discussion of our approach and its feasi-

bility and applicability in practice. All the proofs are postponed in the supplementary material.

The estimation algorithms can be found at https://github.com/I621974/hlqmm.
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2 Model and estimation

2.1 Quantile regression for heteroscedastic longitudinal data using the asym-

metric Laplace distribution

We consider the framework of longitudinal data. Let n ∈ N be the number of individuals. The

index i ∈ {1, . . . , n} corresponds to the individual levels and for each individual i, there are

ni ∈ N measurements. The index j ∈ {1, . . . , ni} corresponds to the j-th measure of the i-th

individual. Let Y = (Yij)1≤i≤n,1≤j≤ni ∈ RN be a response variable, with N =
∑n

i=1 ni .

The general form of the mixed model is

Yij = X t
ijβ + etiν + εij (3)

where for all i ∈ {1, . . . , n} and all j ∈ {1, . . . , ni}, Xij ∈ Rp are the observations for the

j-th measure of the i-th individual, p ∈ N is the number of variables, β ∈ Rp are the regression

parameters ( who can contain fixed effects ), ei ∈ Rn is the i-th vector of the standard basis,

ν ∈ Rn is the vector of random effects, describing a individual-level effect as an intercept, and

εij is a centered random variable representing the error term.

Following Geraci and Bottai (2014), we have two more assumptions on the model. First, let ν ∼

N (0, φΣ), with φ ∈ R denoting a fixed parameter and Σ ∈ Rn
2 being a known positive definite

matrix. The latter is given later and shall represent the dependency structure between individuals.

Secondly, we suppose that εij follows an asymmetrical Laplace distribution, similarly to Geraci

and Bottai (2007). We say that a random variable Z follows an asymmetrical Laplace distribution

of parameters (µ, σ, τ) ( which is denoted by Z ∼ ALD(µ, σ, τ) ) if its density can be expressed

as:

fZ(z) =
τ(1− τ)

σ
exp

(
−ρτ

(
z − µ
σ

))
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with ρτ (u) = u(τ − 1u<0) the quantile loss function. For more information about the asym-

metric Laplace distribution, see Yu and Zhang (2005). More precisely, we assume that εij ∼

ALD(0, σi, τ), where 0 < τ < 1 denotes the order of the quantile and σ = (σi)1≤i≤n ∈ (R∗+)n

corresponds to the scale parameters. Using this assumption, we explicitly take into account

the heteroscedasticity that exists between individuals. Moreover, we suppose that all εij are in-

dependent from each other and from the random effects. Finally, we have to infer the vector

θ = (σ,β) ∈ (R∗+)n × Rp.

This framework is inspired by Geraci (2014) but, in this former article, they assumed that for

all i ∈ {1, . . . , n}, σi = σ ∈ R∗+. What we are doing here is allowing some heteroscedasticity

between individuals by letting the scale parameters depend on i. This is crucial to our work as we

are interested in controlling within-individual variations in the presence of heteroscedasticity for

longitudinal data. This is a new approach and one of the main differences with previous quantile

estimators for mixed models.

In an inference framework, it is instructive to study the asymptotic properties of an estimator.

Asymptotic normality is of particular interest, as it makes it easy to control the estimator’s be-

havior at infinity. These properties have already been demonstrated in mixed models for least-

squares estimators ( Demidenko (1997), Jiang (1998), Jiang (2017)) and other quantile estimators

( Sheather and Marron (1990), Koenker (1994), Koenker (2005), Koenker et al. (2017) ).

Regarding asymptotics, one consequence of this modeling choice is the way to tend toward in-

finity. As the number of parameters to estimate now depends on n, we are not interested in the

limit when n tends to infinity. Instead, we determine the limit of our estimator when for all

1 ≤ i ≤ n, ni → +∞, that is when the number of measures per individual tends to infinity.
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We define our estimator θ̂ of θ as a maximum likelihood estimator of θ. Let

fYij |β,ν,σ(yij,v) =
τ(1− τ)

σi
exp

(
−ρτ

(
yij − µij

σi

))
be the density of the response conditionally on the parameters with µij = X t

ijβ + etiv. Because

of the independence assumptions, we obtain for all y and v the multivariate density:

fY ,ν|θ(y,v) =
n∏
i=1

ni∏
j=1

fYij |β,ν,σ(yij,v)fν|φ(v). (4)

By integrating (4) on the random effects, we obtain the likelihood function. We first have:

fY (y) =

∫
Rn
fY ,ν|θ(y,v)dv (5)

and the estimator θ̂ of θ is given by

θ̂ = argmax
θ∈Θ

(
log

(∫
Rn
fY ,ν|θ(y,v)dv

))
(6)

with Θ ⊂ (R∗+)n × Rp the parameter space.

The minimization problem is equivalent to the quantile regression estimator minimization prob-

lem (Koenker and Bassett (1978)). This equivalence is the main motivation behind the use of the

asymmetric Laplace distribution.

Furthermore, we define an additional estimator θ̂f of θ which is defined as the solution of the

following maximization problem

θ̂f = arg max
θ∈Θ

∫
Rn

(
n∑
i=1

ni∑
j=1

ρτ

(
yij − µij

σi

)
+

n∑
i=1

ni ln (σi) +
n∑
i=1

fni(θ)

)
dv (7)

where (fni)1≤i≤n is a sequence of functions taking its values in the space of parameter Θ. This

optimization problem corresponds to the maximum likelihood optimization problem with the

penalty term
∑n

i=1 fni(θ) added. Such regularization term can be added to the maximum like-

lihood optimization problem to reduce model complexity and prevent over-fitting (Tibshirani
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(1996), Friedman et al. (2000)). Moreover, one specificity of this modelization is the possibility

to easily consider a modified optimization problem by only multiplying the data by an appropri-

ate quantity, as in equation (7).

As quantile regression grows more complex, for instance with the addition of hierarchy or ran-

dom effects, resolving the original optimization problem defining the quantile regression can be

challenging. No exact solution exists and then using some numerical algorithms to get a solution

can easily be computationally expensive ( Koenker (2005), Koenker et al. (2017)). Nonetheless,

the asymmetric Laplace distribution allows us to use all the algorithms available for maximum

likelihood estimation ( like the EM algorithm ) to compute the quantile estimator ( Booth and

Hobert (1999),Geraci and Bottai (2007), Galarza et al. (2017)).

Most of the computational problems are shared by the method of Geraci and Bottai (2007) and

Geraci and Bottai (2014) and developed in detail in these articles. The computation time neces-

sary for the estimation can remain quite long and the optimization method used will suffer from

a curse of dimensionality when n grows (and therefore the number of parameters). Where our

model gains in explainability by modeling the parameters σi, 1 ≤ i ≤ n, it loses in computational

ease.

2.2 Theoretical results

In order to investigate the asymptotic behavior of our estimates, it is necessary to introduce

several assumptions.

A1. We have N → +∞ and for all i ∈ {1, . . . , n}, ni → +∞ so that ni = O(N).

A2. The true value of θ is denoted by θ0 and we have θ0 ∈ int(Θ), where int(Θ) is the interior

of Θ.
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A3. For all i ∈ {1, . . . , n} and j ∈ {1, . . . , ni}, the random variables εij are independent from

each other and independent from ν.

A4. The sequence 1
ni

∑ni
j=1Xij tends to ci ∈ Rp when ni → +∞ for all i ∈ {1, . . . , n}.

A5. The sequence 1
ni

∑ni
j=1XijX

t
ij tends to a positive definite matrix Ci ∈ Rp×p when ni →

+∞ for all i ∈ {1, . . . , n}.

A6. For all i ∈ {1, . . . , n} and j ∈ {1, . . . , ni}, the random variables E[εij|Y ] are independent

from each other and independent from E[ν|Y ].

Assumption (A1) is linked to the way we reach infinity as explained in Section 2.1. The partic-

ularity here is that n stays constant but N reaches infinity because all the ni, 1 ≤ i ≤ n go to

infinity. Assumption (A2) is a classical assumption for quantile regression and is needed for the

main theorem used during the proof of the asymptotic behavior of our estimator. Assumptions

(A3) to (A5) constrain the form the data can take and ensure the existence of first- and second-

order moments. These assumptions are also commonly used in quantile regression. We can see

that neither the data nor the variability term εij need to follow a normal distribution for asymptotic

results to be established. The last assumption (A6) is needed for the proof and is rarely used. We

can see an usage and a detailed explanation of this assumption in Weidenhammer (2017).

The main results of the paper is the following theorem which provides the asymptotic nor-

mality of our estimates.

Theorem 1. Assume assumptions (A1) to (A6) hold. Then we have as N tends to infinity the

asymptotic normality

diag((
√
N,
√
N)) (θ̂ − θ0) =


√
N(σ̂ − σ0)

√
N(β̂ − β0)

 D−→ N (0, B−1(θ0)) (8)
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where B(θ0) is a definite positive (n+ p)× (n+ p) matrix.

Moreover, we can compute the value of B(θ0), allowing us to establish precise confidence

intervals. This also enables us to compare the asymptotic distribution of the parameter with the

estimator one and gives us information about the rate of convergence, that is to say,
√
N . The

consistency of our estimator will immediately follow this result, as in Weidenhammer (2017).

We define two more assumptions on (fni)1≤i≤n from equation (7):

C1. For all 1 ≤ i ≤ n, we have fni
ni
−→ l ∈ R when ni tends to infinity.

C2. The application

Φ : Θ −→ (R∗+)n

θ −→
(
σi exp

(
fni (θ)

ni

))
1≤i≤n

is a bijective function.

Theorem 2. Assume assumptions (A1) to (A6),(C1) and (C2) hold. Then, we have as N tends

to infinity the asymptotic normality

diag((
√
N,
√
N)) (θ̂f − θ̃0) =


√
N(σ̂f − σ̃0)

√
N(β̂f − β0)

 D−→ N (0, B̃−1(θ0)) (9)

where θ̃0 = (σ̃0,β0), for all i ≤ n, σ̃0
i = exp (

fni (θ
0)

ni
)σ0

i and

• B̃σ,σ(θ0) = e2lBσ,σ(θ0),

• B̃σ,β(θ0) = elBσ,β(θ0),

• B̃β,β(θ0) = Bβ,β(θ0).

Theorem 2 will allow us to ensure asymptotic normality for an all-new class of estimators θf .

Therefore, by using an appropriate sequence of functions (fni)1≤i≤n, we can quite modify the
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optimization problem (7) while keeping the same theoretical guarantees. Here, we are interested

in the case where the function f is as ridge penalization and so we want to solve

θ̂f = arg max
θ∈Θ

∫
Rn

(
n∑
i=1

ni∑
j=1

ρτ

(
yij − µij

σi

)
+

n∑
i=1

ni ln (σi) + λ

n∑
i=1

σ2
i

)
dv (10)

We can apply Theorem 2 to (10) in which fni(θ) = λσ2
i , for all 1 ≤ i ≤ n and with λ > 0 a

fixed parameter. We have the condition (C1) as, for all 1 ≤ i ≤ n, we have fni
ni
−→ 0.

In this case, the assumption (C2) also holds. Indeed, if we write σ̃i = σi exp (λ
σ2
i

ni
), we can

obtain the desired scale parameters σi in the following way:

σi =

√
W
(

2λσ̃2
i

ni

)
ni

√
2λ

with W being the Lambert function, defined as the inverse function of x→ xex.

As a consequence, the estimator defined by the optimization problem (7) including a Ridge pe-

nalization term λ
∑n

i=1 σ
2
i is asymptotically normal, with the same variance-covariance matrix

as the non-penalized problem ( as l = 0 here). We can hope that the ridge penalization al-

lows for greater control over the estimation of the scale parameters of the model. Moreover, if

Z ∼ ALD(µ, σ, τ), we have the following result ( Yu and Zhang (2005)):

V ar(Z) =
σ2(1− 2τ + 2τ 2)

(1− τ)2τ 2
. (11)

As σi is the scale parameter for the i-th individual, one can observe that penalizing σi allows us to

deal with over-estimation of the variance between measures of the same individual. In some way,

information about the scale parameter σi gives us knowledge about the dispersion or diversity of

measures for an individual.

We want to note that model error and measurement error aren’t taken into account in our linear

mixed model. Indeed, the between-measurements variability is considered as a consequence of

natural differences between measurements. Therefore, we hope that controlling λ allows us to
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cope with the differences between our model and real data. Adding a Ridge penalization to our

model will add bias to our estimates, but our aim is to accurately represent the dispersion, not

necessarily to have a better point-by-point estimate.

The next section provides the proofs of Theorem 1 and Theorem 2.

2.3 Proofs

Proof of Theorem 1. We follow the same steps proposed in Weidenhammer (2017). To establish

the asymptotic normality, we shall make use of the Theorem 3 of Weiss (Weiss (1971, 1973)):

Theorem 3. Let N observations Y1, . . . , YN from a known distribution PY |θ with θ ∈ Θ ⊂ Rk

a parameter vector in the parameter space of dimension k. Considering the density fY (y|θ)

of the vector Y = (Y1, . . . , YN), we can define the log-likelihood l(θ|Y ) = log fY (y|θ). Let

θ0 ∈ int(Θ) be the true value of the parameter vector and assume there exist 2 k sequences

K1(N), . . . , Kk(N) and M1(N) . . . ,Mk(N) such that, for all ι ∈ {1, . . . , k}, Kι(N)
N→+∞−→

+∞, Mι(N)
N→+∞−→ +∞ and Mι(N)

Kι(N)

N→+∞−→ 0.

We assume the two following conditions:

B1. We have the following convergence in probability when N tends to infinity:

− 1

Kι1(N)Kι2(N)

∂2

∂θι1∂θι2
l(θ|Y )

∣∣∣∣
θ=θ0

P−→Bι1,ι2(θ
0)

where Bι1,ι2(θ
0) is continuous and the k × k matrix B(θ0) is positive definite.

B2. There exists two positive sequences (γ(N,θ0))N and (δ(N,θ0))N so that (γ(N,θ0))N
N→+∞−→

0 and (δ(N,θ0))N
N→+∞−→ 0 and we have for all θ ∈ Nn(θ0)

Pθ(Rn(θ0, γ(N,θ0))) > 1− δ(N,θ0)

with

13



• Nn(θ0) =
{

(θ1, . . . ,θk)
t ; |θι − θ0

ι | ≤
Mι(N)
Kι(N)

, ι ∈ {1, . . . , k}
}

,

• Rn(θ0, γ) =

{
Y ∈ RN ;

∑k
ι1,ι2=1Mι1(N)Mι2(N) sup

θ∈Nn(θ0)

|ει1,ι2(θ,θ0, n,Y )| ≤ γ

}
,

• ει1,ι2(θ,θ0, n,Y ) = − 1
Kι1 (N)Kι2(N)

∂2

∂θι1∂θι2
l(θ|Y )−Bι1,ι2(θ

0).

Under all these assumptions, we have the existence of a maximum likelihood estimator sequence

θ̂(N) of θ, roots of the equation ∂l(θ|Y )
∂θ

= 0, so that:

diag(K1(N), . . . , Kk(N))
(
θ̂ − θ0

)
D−→ N (0, B−1(θ0)).

In order to apply Theorem 3, we shall check the conditionsB1 andB2.

Checking of the ConditionB1

The condition B1 asserts the convergence of the second derivatives of the log-likelihood. From

the weak law of large numbers, it is possible to relate these derivatives to their expectations. We

can find a more precise description of this assumption and its relation to the Fisher information

in Weidenhammer (2017), page 70− 72.

Considering the Theorem of Schwartz, we only have to calculate the second derivatives of the

log-likelihood with respect to (σ,σ), (σ,β) and (β,β).

One can find the calculation of the second derivatives in our case in the supplementary material

in Section 6. We can notice that every second derivative can be expressed as a function of con-

ditional derivatives with respect to Y . It follows from Weidenhammer (2017), pages 81-82 that

these conditional expectations can be expressed as an integral with respect to the measure Pν|Y .

After calculating all the second derivatives, we obtain from the weak law of large numbers the

expression of Bθ1,θ2(θ
0) for all θ1,θ2 ∈ {σ,β}. The sequences Kι(N), for all ι are exactly the

rate of convergence of the corresponding law of large numbers. Let ξ, ξ1, ξ2 3 random variables,

it follows from Steyer (2013) :

E [Var(ξ|Y )] = Var(ξ)− Var (E [ξ|Y ])
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and

E [Cov (ξ1, ξ2|Y )] = Cov (ξ1, ξ2)− Cov (E [ξ1|Y ] ,E [ξ2|Y ]) .

Details on the calculation of Bθ1,θ2(θ
0) for all θ1,θ2 ∈ {σ,β} are in the supplementary material

in Section 6. We obtain from (20) and (21)

(Kσ(N), Kβ(N)) = (
√
N,
√
N), Bσ,σ(θ0) = (bi,kσ,σ)1≤i,k≤n

where

bi,kσ,σ =
E [E2 [εi1 (τ − 1εi1≤0)|Y ]]|θ=θ0

(σ0
i )

4
1k=i.

Furthermore, it follows from (22)

Bσ,β(θ0) = Bβ,σ(θ0) = (bi,kσ,β)1≤i≤n,1≤k≤p

with

bi,kσ,β =
cik

(σ0
i )

2

(
τ +

1

σ0
i

E [E [εi1 (1εi1≤0 − τ)|Y ] E [1εi1≤0|Y ]]|θ=θ0

)
,

and

Bβ,β(θ0) =
n∑
i=1

E [E2 [1εi1≤0|Y ]]− τ
(σ0

i )
2

Ci.

For all i such that σ0
i 6= 0 (always true by definition), the continuity of B(θ0) is obtained by the

composition of continuous function.

We have the positive definiteness of B(θ0) in the same way as in Weidenhammer (2017), page

110 − 112. The form of the inverse of the variance-covariance matrix is very close to the one

developed in this thesis, composed mainly of expectation or expectation of conditional expec-

tation with respect to Y . However, two main differences in our article are that the number of

individuals n is not set to +∞ and, as explained before, the (σi)1≤i ≤n are not equal, allowing for

heteroscedasticity. This also changes the asymptotic properties of our estimates.
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Checking of the ConditionB2

Condition B2 determines the behavior of the second derivatives of the likelihood at θ = θ0

when N tends to infinity. More precisely, this condition allows the development of a Taylor se-

ries around the true parameter vector θ0. Further details on this condition can also be found in

Weidenhammer (2017), page 70− 72. In the same way as in Miller (1977) and Pinheiro (1994),

we define the following quantity:

κ(N) = max
ι1,ι2

∣∣∣∣− 1

Kι1(N)Kι2(N)
Eθ0
[

∂2

∂θι1∂θι2
l(θ|Y )

∣∣∣∣
θ=θ0

]
−Bι1,ι2(θ

0)

∣∣∣∣
which allows us to construct for all ι the following sequences:

M ≡Mι(N) = min

{√
N

1
4 , κ−

1
4 (N)

}
.

The value of M is chosen so as to make future proofs of convergence possible. In order to prove

conditionB2, it is only necessary to check that for ι1, ι2 and for all θ2 ∈ NN(θ0)

M2 sup
θ1∈NN (θ0)

∣∣∣∣− 1

Kι1(N)Kι2(N)

∂2

∂θι1∂θι2
l(θ|Y )

∣∣∣∣
θ=θ1
−Bι1,ι2(θ

0)

∣∣∣∣ PY |θ2−→ 0. (12)

This difference in (12) can be decomposed in the following way:

sup
θ1∈Nn(θ0)

(
− 1

Kι1Kι2

∂2

∂θι1∂θι2
l(θ|Y )

∣∣∣∣
θ=θ1
−Bι1,ι2(θ

0)

)
= sup
θ1∈Nn(θ0)

(
− 1

Kι1Kι2

(
∂2

∂θι1∂θι2
l(θ|Y )

∣∣∣∣
θ=θ1
− ∂2

∂θι1∂θι2
l(θ|Y )

∣∣∣∣
θ=θ2

))
︸ ︷︷ ︸

=Φ1

− 1

Kι1Kι2

(
∂2

∂θι1∂θι2
l(θ|Y )

∣∣∣∣
θ=θ2
− Eθ2

[
∂2

∂θι1∂θι2
l(θ|Y )

∣∣∣∣
θ=θ2

])
︸ ︷︷ ︸

=Φ2

− 1

Kι1Kι2

(
Eθ2
[

∂2

∂θι1∂θι2
l(θ|Y )

∣∣∣∣
θ=θ2

]
− Eθ2

[
∂2

∂θι1∂θι2
l(θ|Y )

∣∣∣∣
θ=θ0

])
︸ ︷︷ ︸

=Φ3

− 1

Kι1Kι2

(
Eθ2
[

∂2

∂θι1∂θι2
l(θ|Y )

∣∣∣∣
θ=θ0

]
− Eθ0

[
∂2

∂θι1∂θι2
l(θ|Y )

∣∣∣∣
θ=θ0

])
︸ ︷︷ ︸

=Φ4

− 1

Kι1Kι2

(
Eθ0
[

∂2

∂θι1∂θι2
l(θ|Y )

∣∣∣∣
θ=θ0

]
−Bι1,ι2(θ

0)

)
︸ ︷︷ ︸

=Φ5

.
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By a careful analysis of each term in the decomposition, by definition of M , we have

|Φ5| ≤ κ =⇒ M2Φ5 −→
N→+∞

0.

To prove the convergence for the other part of this equation, we mainly use the fact that θ1,θ2 ∈

NN(θ0), knowing that we can control the rate of convergence between these parameters and θ0

when N → +∞. The computation of Φ1,Φ2,Φ3 and Φ4 is quite tedious and so is left as supple-

mentary material in Section 6. We can however notice that Φ2 is a difference between a random

variable and its expectation, which allows the use of the Bienaymé-Tchebychev inequality to

show the appropriate convergence.

Once this is done, we are in the conditions of application of the Theorem 3 of Weiss under the

assumptions (A1) to (A6). Weidenhammer (2017) page 146-147 showed that the asymptotic

normality implied the consistency of the estimator θ̂ of θ. From the Theorem 3 of Weiss, we

obtain successfully the asymptotic normality of our estimator.

Proof of Theorem 2. We consider the expanded data Ỹ and X̃ so that Ỹij = exp
(
fni (θ)

ni

)
Yij

and X̃ij = exp
(
fni (θ)

ni

)
Xij . We have the following linear mixed model:

Ỹij = X̃ t
ijβ + exp

(
fni(θ)

ni

)
etiν + ε̃ij (13)

with ε̃ij ∼ ALD(0, σi exp (
fni (θ)

ni
), τ).

As assumptions (A1), (A3) and (A6) hold for the original data, they also hold for the expanded

data given in (13). Because of assumption (C1), we also have assumption (A4) and (A5) for X̃ ,

thanks to the strict positiveness of the exponential. We can notice that the parameter space is now

changed because of the dilatation of the data. The parameter β is the same as the original prob-

lem, but the parameter σ is now changed to σ̃ with σ̃i = exp (
fni (θ)

ni
)σi. We can then define the

vector of the true value for parameters in the expanded model (13) as θ̃0 = (Φ(θ0),β0). Using

condition (C2), we have θ̃0 in the interior of the new parameter set, and so we have assumption
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(A2) for the expanded model given in (13).

From Theorem 1, we deduce the asymptotic normality for the maximum likelihood estimator

of the expanded data given by (13). We can now consider the optimization problem defining this

estimator. The function of θ̃ to optimize can be written in the following form:

∫
Rn

(
n∑
i=1

ni∑
j=1

ρτ

(
Ỹij − µ̃ij

σ̃i

)
+

n∑
i=1

ni ln (σ̃i)

)
dv

with µ̃ij = X̃ t
ijβ + exp (

fni (θ)

ni
)eti v. We can rewrite this expression as a function of θ :

n∑
i=1

ni∑
j=1

ρτ

(Yij − µij) exp
(
fni (θ)

ni

)
σi exp

(
fni (θ)

ni

)
+

n∑
i=1

ni ln

(
σi exp

(
fni(θ)

ni

))

which is exactly equal to (7) when simplified. Therefore, we have the estimator of the expanded

problem (13) equal to the estimator θf of θ by definition. This allows us to conclude of the

asymptotic normality of θf . Finally, from (20) together with (21) and (22), it follows the form of

B̃(θ0).

We proved the appropriate properties of the estimator, including asymptotic normality, consis-

tency, and the possibility to easily add a term in the optimization problem defining our estimator

using expanded data. Our estimation algorithm is carefully described in the following subsection.

2.4 Numerical estimation

Using the equivalence between the maximization of the likelihood and the minimization of the

optimization problem defining the quantile estimator, we are therefore able to compute this esti-

mator using classical likelihood optimization algorithms. As mentioned before, we approximate

the likelihood given in (5) using Gauss quadrature, via the same lines as in Geraci and Bottai

(2014). Their method was coded in an R package called lqmm (Geraci, 2014). Based on their
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algorithm, we then want to find θ̂ that maximizes the following approximated likelihood defined

lapp(θ|Y ) as

log

(
K∑

k1,...,kn=1

τN(1− τ)N∏n
i=1 σ

ni
i

exp

(
−

n∑
i=1

ni∑
j=1

ρτ

(
Yij − µ(k1,...,kn)

ij

σi

))
fν(vk1,...,kn)

n∏
l=1

wkl

)
(14)

with

fν(vk1,...,kn) =
1

(2πφ)
n
2

√
|Σ|

exp

(
−
vtk1,...,knΣ−1vk1,...,kn

2φ

)
,

µ
(k1,...,kn)
ij = X t

ijβ − etivk1,...,kn , |Σ| denoting the determinant of the Σ matrix, K ∈ N∗ being the

order of the quadrature, vk1,...,kn ∈ Rn being the nodes and wki ∈ R denoting the weights of the

quadrature for all ki ∈ {1, . . . , k} and i ∈ {1, . . . , n}.

As the maximization of (14) does not have an analytical solution, a numerical optimization

algorithm is used to solve it. We use either a gradient-search method or a direct search method

in which both initial values for θ and φ are required to generate a sequence of improving approx-

imate solutions. For βinit, we use the least squared regression estimate of (1) computed on the

data while for σinit we use the link between variance and the scale parameters, as shown in (11),

so that we set for all i ∈ {1, . . . , n}

σiniti =
τ 2(1− τ 2)

(1− 2τ + 2τ 2)

1

ni

ni∑
j=1

(
Yij −X t

ijβ
init − 1

ni

ni∑
j=1

(Yij −X t
ijβ

LS)

)2

To initialize φ, we use the following estimator:

φinit =
1

n

n∑
i=1

((
Σ−

1
2 Qτ (Y −X tβinit)

)
i
− 1

n

n∑
i=1

(
Σ−

1
2 Qτ (Y −X tβinit)

)
i

)2

(15)

with Qτ (V ) ∈ Rn being the vector of the τ -th empirical quantiles for all the measures of each

individual of the RN vector V .

Once these initial values are computed, the numerical optimization algorithm can be used

to infer a first estimate θ̂1 of θ̂. For the parameter φ, we obtain a first a value φ1 by using
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equation (15) in which βinit is replaced by β1. Then, the optimization process is repeated until

the various estimates stay unchanged between two consecutive iterations. In order to illustrate

the properties of our model, we implement a simulation study based on N = 1000 realizations.

For more simplicity, we call our models hlqmm for heteroscedastic linear quantile mixed model

and phlqmm for penalized heteroscedastic linear quantile mixed model.

3 Simulation study

This section is devoted to numerical experiments in order to evaluate the performance of our

estimates. All our algorithms used in this paper can be found here: https://github.com/

I621974/hlqmm.

3.1 Asymptotic normality and convergence

We first study the empirical distribution of θ̂ and compare it to the asymptotic theoretical distri-

bution. To compute our estimate, we need to evaluate the asymptotic variance-covariance matrix

that involves some conditional expectations with respect to Y (as shown in Section 2.2). To that

end, we use an empirical estimator of conditional expectation with respect to Y for each i ≤ n

that can be defined in our case for a generic random variable Z ∈ Rni as:

1

ni

ni∑
j=1

1

|Sj|
∑
k∈Sj

Zk

where |Sj| denotes the cardinal of Sj defined as the set of indices {k |Yk = Yij }.

To study the empirical distribution of θ̂, we consider the following simulation design in which

p = 9, n = 6, for all i ∈ {1, . . . , n} ni = J = 1000, τ = 0.5 and

ψ = 2, σ0 = (1, 2, 1, 3, 1, 0.5), β0 = (1, 2,−2,−1, 3, 5.5, 0.5, 0.1), φ = 5
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where ψ denotes the true value for the intercept. Then, we consider three distributions to gen-

erate the co-variables X , namely a normal distribution N (2, 2), a Laplace distribution L(2, 3)

and a Bernoulli distribution B(0.33). For each distribution, we represent the frequency histogram

for both σ̂ and β̂ of 1000 Monte Carlo replications and compare it to the asymptotic theoreti-

cal normal distribution. Figure 1 displays the empirical distributions of β̂ when covariates are

generated according to the normal distribution N (2, 2). All the Figures for the other covariate

distributions and parameters can be found in the supplementary material.
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Figure 1: Empirical distribution of β̂ − β for a normal generation of co-variables following

N (2, 2). For the estimator ψ̂, the empirical bias was removed.

Firstly, we can see that all empirical distributions fit the theoretical ones, except for the in-

tercept one. There exists a bias on the intercept, which was removed in Figure 1 by centering φ.

One can find some explanation of this bias, as well as a justification of the use of an intercept

in quantile regression in Jurecková and Sen (1996) and Battagliola et al. (2022). Otherwise, we

can see that all estimators seem to fit the theoretical normal distribution. In Figure 2, except for

some rare extreme values, almost all points indicate a strong match with the asymptotic theoret-

ical distribution for the parameter σ. This was also confirmed by some Shapiro’s tests which all
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provided p value lower than 5%.

The behavior for other co-variable distributions is mostly the same, except for the Bernoulli
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Figure 2: QQ-plot of σ̂ − σ0 for a normal generation of co-variables following N (2, 2).

generation which presents a higher rate of extreme values. Figures 5 to 19 for these distributions

are displayed in the supplementary material.

Next, to study the convergence of our estimator θ̂, we use the same simulation design, but

we make the number of measurements, J , vary. We can see the convergence of the algorithm

in Figure 3 for parameter σ when J increases. Here, the results are fairly similar, whatever the

distribution used to generate the co-variables. Looking at the scale on the ordinate axis, we can

see that the closer the parameter is to 0, the harder it is for the method to estimate it correctly.

Results are the same for parameter β and for other generations of covariables (as we can see in

Figures 5 to 19 in the supplementary material).
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Figure 3: Convergence plot of σ̂−σ0 for a Laplace generation of co-variables following L(2, 3).

4 Application for real data

We consider a data set consisting of isotopic signature measurements on coral reef fish and envi-

ronmental and biological covariables from the Marquesas Islands (Fey et al. (2021)). Here, we

are interested in the isotopic signatures of carbon δC and nitrogen δN , which provide information

on the diet of observed species (Fry (1988),Vander Zanden and Rasmussen (1999)). Precisely,

the objective is to predict the trophic diversity of these fish correctly. The trophic diversity, which

denotes the diversity of the diet of a species (Newsome et al. (2007)), can be defined by using the

size of the isotopic niche. The latter can be calculated from the area of the convex envelope of the

measurements when viewed in the (δC , δN) plane (Fey et al. (2021)). As a high variance can be,

at the first order, interpreted as a high diversity, we expect that our method can better predict the

isotopic niche’s size, with the use or not of the penalized version. Firstly, heteroscedasticity is ex-

plicitly included in our models (with and without penalty) through the parameters σi, 1 ≤ i ≤ n.

This gives us access to a measure of diversity for each species.Secondly, the penalized version of

our model could compensate for the modeling error, especially when our model without penalty
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provides an overestimation of variability. Overall, our models (with and without penalty) provide

us with information on trophic diversity, as well as on the links between the isotopic niche and

the environmental and biological variables in our dataset.

Regarding the dataset, it contains information about 43 species with enough measurement

to compute our model, ranging from 9 to 70 fishes of one species. There are two environmental

covariables studied, namely the wind exposition and the season of the measurements, as well as 6

biological covariables, mostly qualitative variables depending only on the species, like a descrip-

tion of the diet or the schooling of the species. As several species are studied in the data set and

because we are interested in predicting the trophic diversity of a species, the species are consid-

ered as our individuals for which several measurements are available. We apply our method on

the dataset and we construct two models: one model to both explain and predict the carbon iso-

topic signature and a second one to both explain and predict the nitrogen isotropic signature. In

these two models, the environmental and biological covariables are used as explanatory variables

and Yij denotes, for the j-th measurement of the i-th species, the model response that is either the

carbon isotopic signature or the nitrogen isotropic signature. Finally, we use the predicted values

for both the carbon isotopic signature and the nitrogen isotropic signature to predict the trophic

diversity of a species.

The isotopic niche for a given species, denoted by Tα, is defined as the convex envelope of the

α% points closest to the barycenter of all the points in the plane (δC , δN). It is described in more

detail in Fey et al. (2021). Moreover, the area used to compute the size of the isotropic niche for

one species heavily depends on the within-species variance, which is the variance of the measure-

ments for the considered species. Therefore, being able to control the within-species variability
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of each isotopic signature should enable us to predict more accurately the size of the isotopic

niche. In our model (3), the within-species variability is controlled by σ defined in (11). Then,

improvement in the computation of the parameter vector σ can help to study the trophic diversity.

Furthermore, our method requires that the variance-covariance matrix Σ, which defines the

dependency between each species, to be known. Here, we use the phylogenetic proximities. As

in Grafen (1989), the dependency between two species is defined based on a hierarchical classi-

fication depending on different phylogenetic scales (family, genus, species). First, we compute

a phylogenetic distance h that is evenly distributed on the [0, 1] axis according to whether or not

two individuals belong or not to different hierarchical classes (1 if the two species are not from

the same family, 0 if the two species are the same). Then, Σ is defined as:

(Σ)i1,i2 = 1− h(i1, i2)ρ i1, i2 ∈ {1, . . . , n}

where ρ is a fixed parameter, chosen by cross-validation and under the constraint that Σ has to

be positive definite. Here, as the dataset contains 43 distinct species, Σ is a 43×43 matrix. This

also means that the parameter space Θ is at least of dimension 43, and so makes the estimation

problem challenging.

Here, to be able to measure the performance of our methods on the data, we split the data

between a training set containing 75% of the data and a testing set. We then perform a Monte-

Carlo cross-validation to fix the value of (ρ, τC , τN , λC , λN). Determining the order of the τC

and τN quantiles by cross-validation is unusual, but coherent insofar as these parameters are also

involved in the (3) equation defining the model, and not just in calculating the estimator θ̂ of

equation (6). To validate our model, we simulate the asymptotic distribution of carbon and ni-

trogen isotope signatures according to our model. We therefore generate data on the same model

as the available dataset. By empirically estimating parameters from normal distributions for
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quantitative co-variables and Bernoulli distributions for qualitative co-variables, we can simulate

isotopic signatures for each species according to equation (3). Random effects can be inferred in

the same way as in Geraci and Bottai (2014). We then estimate the theoretical isotopic niche of

the species studied for different values of α between 0 and 100. The parameter set chosen will

then be that which simulates an isotopic niche of parameter α containing a percentage as close as

possible to α% of the real data from the training set, for all values of α.

Once this is done, we can compare our two methods hlqmm and phlqmm with the rqpd function.
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Figure 4: Figure a represents a theoretical isotopic niche simulated with the hlqmm model for

the species Epinephelus fasciatus as well as real data points. Figure b compares the performance

of hlqmm, phlqmm and rqpd for the species Chaetodon ornatissimus. Figure c compares the

performance of hqlmm, phlqmm and rqpd for the species Thalassoma amblycephalum.

The test data set is added and the match between the theoretical isotopic niche and the real data is

observed again. Figure 4a shows an example of the theoretical isotopic niche, with the simulated

points in black and the real data in red. In Figures 4b and 4c, we display the convex envelopes

defining the isotopic niche for α = 90% and α = 10% for both the three estimators and the real

data. We, therefore, want 90% of the real data, represented by red dots, to fall within the largest
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of the convex envelopes of a given color, and 10% of this data to fall within the smallest envelope.

Figure 4b shows a case where the hlqmm method best predicts the data. The penalized method

phlqmm applies too strong a constraint on the (σi)1≤i≤n, not sufficiently capturing the points fur-

thest from the barycenter. We can see that hlqmm performs better as the farthest three red dots on

the right are inside the dotted black convex hull but not inside the blue and green one. It’s when

the hlqmm method overestimates within-species variability that the penalized method performs

better, as shown in Figure 4c. Here, isotopic niches for small α values are poorly estimated by

the hlqmm method, and penalization brings the isotopic niche closer to its true shape. We can see

that phlqmm performs better as the two red dots inside the black convex hull delimited by a solid

line are not inside the blue one. In all case, the 10% convex hull of rqpd is too little to be seen

here. The rqpd routine consistently under-performs our two models in terms of isotopic niche

matching.

Once we estimate the within-species variability, we can then use σ to study the link between

environmental and biological covariables and trophic diversity, with for instance an analysis of

variance. The theoretical isotope niche is also interesting in its own right, for example, to identify

outliers or to compare the trophic diversity of several different species. As we have seen, our

method provides a good description of the dispersion between measurements of the same species,

enabling us at the same time to describe the diversity of the diet of coral fish, thus reducing the

problem to one of surface estimation. It is also interesting to note that the penalized method

fulfills its role well, compensating for any overestimation of dispersion. To improve accuracy, it

would also be useful to develop a method to counter the underestimation of certain within-species

variability.
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5 Discussion

The article developed above presents several modeling approaches for inference in the context

of longitudinal data with the presence of heteroscedasticity between individuals. The asymptotic

normality properties demonstrated enable a comfortable inference framework to be set up, in-

cluding the calculation of confidence intervals on the parameters. There are, however, avenues

for theoretical improvement that would make this model more complete. For example, the sim-

ulations revealed a sensitivity to similarity between within-individual and between-individual

variabilities. If the parameter φ is too close to elements of the parameter σ, the estimation could

be compromised. This weakness of our model therefore calls for accurate and efficient estimation

of the φ parameter. Unlike the model developed by Geraci and Bottai (2014), whose asymptotic

properties were demonstrated in Weidenhammer (2017), we estimate this parameter separately

using empirical estimators. It would be interesting to develop a formal framework for estimating

this parameter jointly. Since the estimation of this parameter will depend on n and we don’t want

to make it tend towards infinity (see Section 2.1), a different model should be proposed to make

sense of the convergence of the φ estimator.

We have given only one example of the class of estimators defined by equation (7) in the

form of Ridge penalization of the optimization problem. However, other estimators with dif-

ferent properties could be imagined. We see in Section 4 that penalization has the effect of

contracting the surface of isotopic niches, which has the consequence of alleviating problems of

overestimation of variability between measurements. In the same way, we could think of a way

to overcome the problems of underestimation of dispersion. In general, it would be interesting to

study the effect of the choice of the f function in the equation (7) on the value of the θf estimator.

We could also have defined a lasso penalty in the same way. Although the asymptotic normality
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of the θf estimator is established in a fairly broad framework, the form of the f function chosen

can lead to difficulties in numerical optimization. In the case of Ridge penalization developed

in this article, our optimization method can run into local minima quite frequently (around 10%

of the time). To solve this problem, more efficient optimization algorithms can be implemented,

such as stochastic optimization algorithms (Schneider and Kirkpatrick (2007)).

An application is developed in Section 4 in which the objective is to correctly estimate a

surface through the notion of isotopic niches. As mentioned above, the models proposed in this

article could equally well be applied to volume estimation problems of any dimension greater

than 1, subject to the independence of the variables defining each dimension. This independence

assumption may be restrictive in some cases, and it would be interesting to develop a model sim-

ilar to those presented in this paper but taking into account the dependence between the variables

studied. This would require the implementation of multi-dimensional inference, which raises

several technical issues. To the best of our knowledge, the definition of asymmetric Laplace’s

distribution as used in this paper in higher dimensions has not yet been well developed, partic-

ularly in a dependency framework. Added to this difficulty is the multiplicity of distributions to

which the term multivariate asymmetric Laplace distribution may refer ( Kotz et al. (2001) ).

In an ecological framework, we have linked the notion of dispersion to that of diversity, but

these two notions are very distinct. There are several definitions of diversity which each describe

a different reality (Cucherousset and Villéger (2015)) and which it would be interesting to in-

vestigate mathematically. The advantage of our model is that it would be possible to control the

estimation of diversity according to several of these definitions using the θf estimators. One of

the conditions to achieve this would be to be able to express the newly defined diversity as a func-
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tion of the parameters θ of the model. The notion of diversity is linked to that of specialization

in ecology and the latter notion is linked to the adaptation of species to environmental changes

(Haaland et al. (2020)). In behavioral ecology, measuring the diversity of behaviors of a species

and comparing it to that of other species could be the key to a comparative study of the adaptive

capacity of different species sharing an ecosystem.
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SUPPLEMENTARY MATERIAL

Proofs

Computation of the second derivatives of the log-likelihood

It follows from assumption (A3)

l(η|Y ) = log

(∫
Rn
fY |ν (Y |v) fν(v)dv

)
with

fY |ν(Y |v) =
n∏
i=1

ni∏
j=1

τ(1− τ)

σi
exp

(
−ρτ

(
Yij −X t

ijβ − ztiv
σi

))
and

fν(v) =
1

(2πφ)
n
2

√
|Σ|

exp

(
−v

tΣ−1v

2φ

)
.

Consequently, we have for θ ∈ {β,σ}

∂l(η|Y )

∂θ
=

1

fY (Y )

∫
Rn

∂fY |ν(Y |v)

∂θ
fν(v)dv. (16)

First derivatives

We have :

∂fY |ν(Y |v)

∂σ
= τN(1− τ)N

n∑
i=1

∂

∂σ

(
1

σi
exp

(
− 1

σi

ni∑
j=1

ρτ
(
Yij −X t

ijβ − ztiv
)))

×
n∏

k=1,k 6=i

1

σk
exp

(
− 1

σk

nk∑
j=1

ρτ
(
Ykj −X t

kjβ − ztkv
))
.

Moreover,
∂

∂σ

(
1

σi
exp

(
− 1

σi

ni∑
j=1

ρτ
(
Yij −X t

ijβ − ztiv
)))

=

∂

∂σ

(
1

σi

)
exp

(
− 1

σi

ni∑
j=1

ρτ
(
Yij −X t

ijβ − ztiv
))

+
1

σi

∂

∂σ

(
exp

(
− 1

σi

ni∑
j=1

ρτ
(
Yij −X t

ijβ − ztiv
)))

.
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Consequently, it follows that

∂fY |ν(Y |v)

∂σ
=

n∑
i=1

ei
σ2
i

((
ni∑
j=1

ρτ
(
Yij −X t

ijβ − ztiv
))
− σi

)
fY |ν(Y |v),

with ei the i-th unit vector of Rn.

In the end, we have:

∂l(η|Y )

∂σ
= E

[
n∑
i=1

ei
σ2
i

ni∑
j=1

ρτ (εij)

∣∣∣∣∣Y
]
−

n∑
i=1

ei
σi

by definition of the linear model and Bayes formula.

We have :

∂fY |ν(Y |v)

∂β
= τN(1− τ)N

n∑
i=1

∂

∂β

(
1

σi
exp

(
− 1

σi

ni∑
j=1

ρτ
(
Yij −X t

ijβ − ztiv
)))

×
n∏

k=1,k 6=i

1

σk
exp

(
− 1

σk

nk∑
j=1

ρτ
(
Ykj −X t

kjβ − ztkv
))
.

Moreover,

∂

∂β

(
ρτ
(
Yij −X t

ijβ − ztiv
))

=
∂

∂β

(
τ − 1Yij≤Xt

ijβ+ztiv

) (
Yij −X t

ijβ − ztiv
)

+
(
τ − 1Yij≤Xt

ijβ+ztiv

) ∂

∂β

(
Yij −X t

ijβ − ztiv
)

=
(

1Yij≤Xt
ijβ+ztiv

− τ
)
Xij.

Therefore, we have:

∂fY |ν(Y |v)

∂β
=

n∑
i=1

1

σi

ni∑
j=1

(
τ − 1Yij≤Xt

ijβ+ztiv

)
XijfY |ν(Y |v).

Finally :

∂l(η|Y )

∂β
= τ

n∑
i=1

1

σi

ni∑
j=1

Xij − E

[
n∑
i=1

1

σi

ni∑
j=1

1εij≤0Xij

∣∣∣∣∣Y
]
.

For the rest of the calculations, it is useful to determine the various derivatives ∂fY (Y )
∂θ

for θ ∈

{β,σ}. Given the previous calculations, we have :

∂fY (Y )

∂σ
=

∫
Rn

n∑
i=1

ei
σ2
i

((
ni∑
j=1

ρτ (εij)

)
− σi

)
fY |ν(Y |v)fν(v)dv,
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and

∂fY (Y )

∂β
=

∫
Rn

n∑
i=1

1

σi

ni∑
j=1

(
τ − 1εij≤0

)
XijfY |ν(Y |v)fν(v)dv.

Derivative with respect to (σ, σ).

For i ∈ {1, ..., n}, the components of the vector ∂l(η|Y )
∂σ

are:∫
Rn

1

σ2
i

((
ni∑
j=1

ρτ
(
Yij −X t

ijβ − ztiv
))
− σi

)
fν|Y (v|Y )dv.

If we derive this vector by σ, we create a matrix whose elements are for i ∈ {1, . . . , n} and

k ∈ {1, . . . , n}:

∂

∂σk

(∫
Rn

1

σ2
i

((
ni∑
j=1

ρτ
(
Yij −X t

ijβ − ztiv
))
− σi

)
fν|Y (v|Y )dv

)
.

For all i, k ∈ {1, . . . , n}, this derivative can be written as:∫
Rn

1

fY (Y )

1

σ2
i

((
ni∑
j=1

ρτ
(
Yij −X t

ijβ − ztiv
))
− σi

)
∂

∂σk

(
fY |ν(Y |v)

)
fν(v)dv

+

∫
Rn

1

fY (Y )

∂

∂σk

(
1

σ2
i

((
ni∑
j=1

ρτ
(
Yij −X t

ijβ − ztiv
))
− σi

))
fY |ν(Y |v)fν(v)dv

−
∫

Rn

1

f 2
Y (Y )

1

σ2
i

((
ni∑
j=1

ρτ
(
Yij −X t

ijβ − ztiv
))
− σi

)
fY |ν(Y |v)fν(v)

∂

∂σk
(fY (Y )) dv.

(17)

We have:
∂

∂σk

(
1

σ2
i

((
ni∑
j=1

ρτ
(
Yij −X t

ijβ − ztiv
))
− σi

))

=
1

σ2
i

(
2

σi

ni∑
j=1

ρτ (εij) + 1

)
1k=i.

The second term of equation (17) becomes:

E

[
1

σ2
i

(
2

σi

ni∑
j=1

ρτ (εij) + 1

)
1k=i

∣∣∣∣∣Y
]
.

Subtracting the first and last terms of equation (17), we obtain:

Cov

(
1

σ2
i

ni∑
j=1

εij
(
τ − 1εij≤0

)
,

1

σ2
k

nk∑
l=1

εkl (τ − 1εkl≤0)

∣∣∣∣∣Y
)
.
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Finally, we have the following form:

∂

∂σ

∂l(η|Y )

∂σ
=

n∑
i=1

eie
t
i

σ2
i

+ E

[
n∑
i=1

2eie
t
i

σ3
i

ni∑
j=1

εij
(
τ − 1εij≤0

)∣∣∣∣∣Y
]

+
n∑
i=1

n∑
k=1

eie
t
i

σ2
i σ

2
k

Cov

(
ni∑
j=1

εij
(
τ − 1εij≤0

)
,

nk∑
l=1

εkl (τ − 1εkl≤0)

∣∣∣∣∣Y
)
.

Derivative with respect to (σ, β).

If we derive the vector ∂l(η|Y )
∂σ

by β, we create a matrix whose elements are for all i ∈ {1, . . . , n}

and for all k ∈ {1, . . . , p}∫
Rn

1

fY (Y )

1

σ2
i

((
ni∑
j=1

ρτ
(
Yij −X t

ijβ − ztiv
))
− σi

)
∂

∂βk

(
fY |ν(Y |v)

)
fν(v)dv

+

∫
Rn

1

fY (Y )

∂

∂βk

(
1

σ2
i

((
ni∑
j=1

ρτ
(
Yij −X t

ijβ − ztiv
))
− σi

))
fY |ν(Y |v)fν(v)dv

−
∫

Rn

1

f 2
Y (Y )

1

σ2
i

((
ni∑
j=1

ρτ (Yij −X t
ijβ − ztiv)

)
− σi

)
fY |ν(Y |v)fν(v)

∂

∂βk
(fY (Y )) dv.

(18)

We have:
∂

∂βk

(
1

σ2
i

((
ni∑
j=1

ρτ
(
Yij −X t

ijβ − ztiv
))
− σi

))

=
1

σ2
i

ni∑
j=1

(
1εij≤0 − τ

)
Xijk.

The second term of equation (18) therefore becomes:

E[
1

σ2
i

ni∑
j=1

(
1εij≤0 − τ

)
Xijk|Y ].

Subtracting the first and last terms, we obtain:

Cov

(
1

σ2
i

ni∑
j=1

εij
(
1εij≤0 − τ

)
,

n∑
p=1

1

σp

np∑
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1εpq≤0Xpqk

∣∣∣∣∣Y
)
.

Finally, we obtain:

∂

∂β

∂l(η|Y )

∂σ
= E

[
n∑
i=1

p∑
k=1

eie
t
i

σ2
i

ni∑
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)
Xijk
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]

+
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eie
t
iCov

(
1

σ2
i

ni∑
j=1

εij
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)
,
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1

σp
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)
.
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Derivative with respect to (β, β).

If we derive the vector ∂l(η|Y )
∂β

by β, we create a matrix whose elements are for all i ∈ {1, . . . , n},

and for all k ∈ {1, . . . , p}:∫
Rn

1

fY (Y )

n∑
i=1

1

σi

ni∑
j=1

(
τ − 1εij≤0

)
Xijk

∂

∂βl

(
fY |ν(Y |v)

)
fν(v)dv

+

∫
Rn

1

fY (Y )

∂

∂βl

(
n∑
i=1

1

σi

ni∑
j=1

(
τ − 1εij≤0

)
Xijk

)
fY |ν(Y |v)fν(v)dv

−
∫

Rn

1

f 2
Y (Y )

n∑
i=1

1

σi

ni∑
j=1

(
τ − 1εij≤0

)
XijkfY |ν(Y |v)fν(v)

∂

∂βl
(fY (Y )) dv.

(19)

We have :

∂

∂βl

(
n∑
i=1

1

σi

ni∑
j=1

(
τ − 1εij≤0

)
Xijk

)
= 0

so the second term of (19) is zero.

Subtracting the first and last terms, we have:

Var

(
n∑
i=1

1

σi

ni∑
j=1

(
τ − 1εij≤0

)
Xij

∣∣∣∣∣Y
)
.

Finally, simplifying the constant terms, we have :

∂

∂β

∂l(η|Y )

∂β
= Var

(
n∑
i=1

1

σi

ni∑
j=1

1εij≤0Xij

∣∣∣∣∣Y
)
.

Determination of the asymptotic variance-covariance matrix

Determination of Bσ,σ(θ0).

The second derivative of the likelihood with respect to the parameter σ is a matrix of size n× n

whose element (i, k) is:(
1

σ2
i

+
2

σ3
i

ni∑
j=1

E
[
εij(τ − 1εij≤0)

∣∣Y ]) 1i=k

+
1

σ2
i σ

2
k

ni∑
j=1

nk∑
l=1

Cov
(
εij(τ − 1εij≤0), εkl(τ − 1εkl≤0)

∣∣Y ) .
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We temporarily note W i
j = E

[
εij(τ − 1εij≤0)

∣∣Y ] for a fixed i ∈ {1, ..., n}. We have

E
[
W i
j

]
= τE [εij]− E

[
εij1εij≤0

]
=
σi(1− 2τ)

(1− τ)
+

τσi
1− τ

= σi.

Moreover,

Var
(
W i
j

)
= E

[
(W i

j )
2
]
− σ2

i ≤ 4E
[
ε2ij(τ − 1εij≤0)2

]
< +∞

because W i
j is a conditional expectation of a random variable with moments of order two. From

the law of large numbers, we have, for all i,

1

N

ni∑
j=1

W i
j =

ni
N

1

ni

ni∑
j=1

W i
j

P−→ σi

using assumption (A1).

We note this time for all i, k, W ik
jl = Cov

(
εij
(
τ − 1εij≤0

)
, εkl (τ − 1εkl≤0)

∣∣Y ). We have by

independence of the εij:

E
[
W ik
jl

]
= Cov

(
εij
(
τ − 1εij≤0

)
, εkl (τ − 1εkl≤0)

)
−Cov

(
E
[
εij
(
τ − 1εij≤0

)∣∣Y ] ,E [εkl (τ − 1εkl≤0)|Y ]
)

=
(
Var
(
εij
(
τ − 1εij≤0

))
− Var

(
E
[
εij
(
τ − 1εij≤0

)∣∣Y ])) 1k=i1j=l.

But we have:

Var
(
εij
(
τ − 1εij≤0

))
= σ2

i

and

Var
(
E
[
εij
(
τ − 1εij≤0

)∣∣Y ]) = E
[
E2
[
εij
(
τ − 1εij≤0

)∣∣Y ]]− σ2
i .

At the end, we have :

E
[
W ik
jl

]
=
(
2σ2

i − E
[
E2 [εi1 (τ − 1εi1≤0)|Y ]

])
1k=i1j=l

because of the identic distribution of (εij)j for a fixed i.

Using similar formulas, and using the fact that the asymmetric Laplace distribution admits mo-

ments of infinite order, we can see that Var(Wjl) ≤ M < +∞. This is well within the scope of
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the weak law of large numbers and we have:

Bσ,σ(θ0) = (bi,kσ,σ)i,k where :

bi,kσ,σ =
E [E2 [εi1 (τ − 1εi1≤0)|Y ]]|θ=θ0

(σ0
i )

4
1k=i. (20)

Determination of Bσ,β(θ0)

The matrix ∂
∂β

∂l(η|Y )
∂σ

of dimension n× p have its elements (i, k), i ∈ {1, . . . , n}, k ∈ {1, . . . , p}

written:

= E

[
1

σ2
i

ni∑
j=1

(
1εij≤0 − τ

)
Xijk

∣∣∣∣∣Y
]

+Cov

(
1

σ2
i

ni∑
j=1

εij
(
1εij≤0 − τ

)
,

n∑
p=1

1

σp

np∑
q=1

1εpq≤0Xpqk

∣∣∣∣∣Y
)
.

First, we set W i
j = E

[(
1εij≤0 − τ

)
Xijk

∣∣Y ]. We have :

E
[
W i
j

]
= (E

[
1εij≤0

]
− τ)Xijk = 0

as E
[
1εij≤0

]
= τ . Then, we have:

1

N

ni∑
j=1

E
[(

1εij≤0 − τ
)∣∣Y ]Xijk −→ 0

in probability when N → +∞.

The second term can be rewritten as follows:

1

σ2
i

n∑
p=1

1

σp

ni∑
j=1

np∑
q=1

Cov
(
εij
(
1εij≤0 − τ

)
, 1εpq≤0Xpqk

∣∣Y ) .
This time, let W ik

jq be Cov
(
εij
(
1εij≤0 − τ

)
, 1εpq≤0Xpqk

∣∣Y ). We have :

E
[
W ik
jq

]
= Cov

(
εij
(
1εij≤0 − τ

)
, 1εpq≤0Xpqk

)
−Cov

(
E
[
εij(1εij≤0 − τ)

∣∣Y ] ,E [1εpq≤0Xpqk

∣∣Y ])
= 0 + E

[
εij
(
1εij≤0 − τ

)]
E
[
1εij≤0

]
Xijk

−E
[
E
[
εij(1εij≤0 − τ)

∣∣Y ]E
[
1εij≤0Xijk

∣∣Y ]] 1p=i1j=q

= (−τσi − E [E [εi1(1εi1≤0 − τ)|Y ] E [1εi1≤0|Y ]])Xijk1p=i1j=q.
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Using assumption (A4), we have convergence of the series
(∑

j,q

E[W ik
jq ]

N

)
. As before, the vari-

ance is finite because we only deal with L2 random variables. We then have the result:

Bσ,β(θ0) = (bi,kσ,β)i,k of size n× p where :

bi,kσ,β =
cik

(σ0
i )

2

(
τ +

1

σ0
i

E [E [εi1 (1εi1≤0 − τ)|Y ] E [1εi1≤0|Y ]]|θ=θ0
)

(21)

with ci = (ci1, ..., cip) =
∑+∞

j
Xij
N

.

Determination of Bβ,β(θ0)

We have:

∂

∂β

∂l(η|Y )

∂β
=

n∑
i=1

n∑
k=1

1

σiσk

ni∑
j=1

nk∑
l=1

XijCov
(

1εij≤0, 1εkl≤0

∣∣Y )X t
kl.

Using W ik
jl = XijCov

(
1εij≤0, 1εkl≤0

∣∣Y )X t
kl, we have :

E
[
W ik
jl

]
= Xij

(
Cov

(
1εij≤0, 1εkl≤0

)
− Cov

(
E
[
1εij≤0

∣∣Y ] ,E [1εkl≤0|Y ]
))
X t
ij

= Xij

(
Var
(
1εij≤0)− E

[
E2
[
1εij≤0

∣∣Y ]]+ τ 2
))
X t
ij1k=i1j=l

= Xij

(
τ − E

[
E2
[
1εij≤0

∣∣Y ]])X t
ij1k=i1j=l

Since this expectation only depends on j or l at the level of the data Xi or Xk, we have conver-

gence of the
(∑

i,j

E[W ik
ij ]

N

)
series, using (A5) assumption.

Moreover, the variance ofW ik
jl is bounded for the same reasons as above. The result is as follows:

Bβ,β(θ0) =
n∑
i=1

E
[
E2
[
1εij≤0

∣∣Y ]]− τ
(σ0

i )
2

Ci (22)

with Ci a positive definite matrix of size p× p.
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Determination of Φk for k ∈ {1, . . . , 4}

Due to the similarity with the first case, the calculation for (σ, σ), the other parts of the demon-

stration is dealt with more briefly.

Determination for (σ, σ)

Φ1:

Φ1 is a matrix of size n× n whose elements i, k are:

sup
θ1∈Nn(θ0)

{
1

N2

(
1

(σ2
i )

2
− 1

(σ1
i )

2

)
+

21i=k
(σ2

i )
3

ni∑
j=1

Eθ2
[
εij
(
τ − 1εij≤0

)∣∣Y ]
−21i=k

(σ1
i )

3

ni∑
j=1

Eθ1
[
εij
(
τ − 1εij≤0

)∣∣Y ]
+

1

(σ2
i σ

2
k)

2

ni∑
j=1

nk∑
l=1

Covθ2
(
εij
(
τ − 1εij≤0

)
, εkl (τ − 1εkl≤0)

∣∣Y )
− 1

(σ1
i σ

1
k)

2

ni∑
j=1

nk∑
l=1

Covθ1
(
εij
(
τ − 1εij≤0

)
, εkl (τ − 1εkl≤0)

∣∣Y ))} .
We have :

1

(σ2
i )

2
− 1

(σ1
i )

2
=

(σ1
i − σ2

i )(σ
1
i + σ2

i )

(σ1
i )

2(σ2
i )

2
.

As θ1, θ2 ∈ NN(θ0), we have :

|σ1
i − σ0

i | ≤
M

N
et |σ2

i − σ0
i | ≤

M

N

and so:

sup
θ1∈Nn(θ0)

|σ2
i − σ1

i | ≤ 2
M

N
.

We then have:

1

(σ2
i )

2
− 1

(σ1
i )

2
≤ 2

M

N
C

with C an unknown constant.

We saw before that:

1

N2

ni∑
j=1

Eθ
[
εij
(
τ − 1εij≤0

)∣∣Y ] = o(
1

N
)
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for any θ and:

1

N2

ni∑
j=1

nk∑
l=1

Covθ
(
εij
(
τ − 1εij≤0

)
, εkl (τ − 1εkl≤0)

∣∣Y )
−→

N→+∞
σ2
i 1k=i + σiσk − E [E [εi1 (τ − 1εi1≤0)|Y ] E [εk1 (τ − 1εk1≤0)|Y ]]

The last difference defining Φ1 then tends to:(
1

(σ2
i )

2
− 1

(σ1
i )

2

)
1k=i +

1

σ2
i σ

2
k

− 1

σ1
i σ

1
k

+

(
1

(σ1
i )

2(σ1
k)

2
− 1

(σ2
i )

2(σ2
k)

2

)
Eθ0 [Eθ0 [εi1 (τ − 1εi1≤0)|Y ] Eθ0 [εk1 (τ − 1εk1≤0)|Y ]]

because as θ1, θ2 ∈ NN(θ0), we have Eθ1 [εi1 (τ − 1εi1≤0)|Y ] −→
N→+∞

Eθ0 [εi1 (τ − 1εi1≤0)|Y ]]

and the same goes for the others expectations.

We have:

1

σ2
i σ

2
k

− 1

σ1
i σ

1
k

=
σ1
i σ

1
k − σ2

i σ
2
k

σ2
i σ

2
kσ

1
i σ

1
k

=
σ1
i (σ

1
k − σ2

k) + (σ1
i − σ2

i )σ
2
k

σ2
i σ

2
kσ

1
i σ

1
k

=
σ1
k − σ2

k

σ2
i σ

2
kσ

1
k

+
σ1
i − σ2

i

σ2
i σ

1
i σ

1
k

and so:

1

σ2
i σ

2
k

− 1

σ1
i σ

1
k

≤ M

N
C.

In the same way, we have:

(
1

(σ1
i )

2(σ1
k)

2
− 1

(σ2
i )

2(σ2
k)

2

)
≤ M

N
C.

All these inequalities being true for all θ1 ∈ NN(θ0), we can move on to the sup. Consequently,

we have M2Φ1 = o(M
3

N3 ) which tends to 0 by construction of M .

Φ2:

We have Φ2 which is a matrix of size n× n whose elements i, k are:

1
N2

(
21i=k
(σ2
i )3

(∑ni
j=1 Eθ2

[
εij
(
τ − 1εij≤0

)∣∣Y ]− Eθ2 [εi1 (τ − 1εi1≤0)]
)

+
1

(σ2
i σ

2
k)

2

(
ni∑
j=1

nk∑
l=1

Covθ2
(
εij
(
τ − 1εij≤0

)
, εkl (τ − 1εkl≤0)

∣∣Y )
−nink

(
(σ2

i )
21k=i + σ2

i σ
2
k − Eθ2 [Eθ2 [εi1 (τ − 1εi1≤0)|Y ] Eθ2 [εk1 (τ − 1εk1≤0)|Y ]]

)))
.
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We set X ik
N = 1

N2

∑ni
j=1

∑nk
l=1 Covθ2

(
εij
(
τ − 1εij≤0

)
, εkl (τ − 1εkl≤0)

∣∣Y ).
We have :

Eθ2
[
X ik
N

]
=
nink
N2

(
(σ2

i )
21k=i + σ2

i σ
2
k − Eθ2 [Eθ2 [εi1 (τ − 1εi1≤0)|Y ] Eθ2 [εk1 (τ − 1εk1≤0)|Y ]]

)
.

The last two terms can therefore be written as a constant of N multiplied by the following value:

X ik
N − Eθ2

[
X ik
N

]
.

By Bienaymé-Tchebychev inequality, we have:

∀ε > 0,Pθ2
(∣∣X ik

N − Eθ2
[
X ik
N

]∣∣ ≥ ε
)
≤ Varθ2(X ik

N )

ε2
.

We have Eθ2
[
X ik
N

]
which asymptotically behaves like ((σ2

i )
21k=i + σ2

i σ
2
k

−Eθ2 [Eθ2 [εi1 (τ − 1εi1≤0)|Y ] Eθ2 [εk1 (τ − 1εk1≤0)|Y ]]) which is independent of N . Moreover,

by changing ε in ε
M2 , we have:

∀ε > 0,Pθ2
(
M2

∣∣X ik
N − Eθ2

[
X ik
N

]∣∣ ≥ ε
)
≤M4 Varθ2

(
X ik
N

)
ε2

.

Using assumption (A6), we have :

Varθ2
(
X ik
N

)
=

1

N4

ni∑
j=1

nk∑
l=1

Varθ2
(
Covθ2

(
εij
(
τ − 1εij≤0

)
, εkl (τ − 1εkl≤0)

∣∣Y ))
and, because the εij are identically distributed for a fixed i, we have :

Eθ2 [(X
ik
N )2] ≤ nink

N4
Eθ2
[
(Covθ2 (εi1 (τ − 1εi1≤0) , εk1 (τ − 1εk1≤0)|Y ))2]

Finally:

∀ε > 0,Pθ2
(∣∣X ik

N − Eθ2
[
X ik
N

]∣∣ ≥ ε
)
≤ M4C

N2ε2

with C an unknown constant of N so we have , by construction of M , the convergence to 0.

Moreover, we always have:

1

N2

ni∑
j=1

Eθ2
[
εij
(
τ − 1εij≤0

)∣∣Y ] −→
N→+∞

0.
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There is one last term left in the sum:

− 1

N2

2

(σ2
i )

3
Eθ2
[
εij
(
τ − 1εij≤0

)]
= − 2

N2(σ2
i )

2
.

Consequently, as M
N
−→

N→+∞
0, we have M2Φ2 −→

N→+∞
0.

Φ3:

We have Φ3 which is a matrix of size n× n whose elements i, k are:

1

N2

((
1

(σ2
i )

2
− 1

(σ0
i )

2

)
+

21k=i

(σ2
i )

3
Eθ2 [εi1 (τ − 1εi1≤0)]− 21k=i

(σ0
i )

3
Eθ2 [Eθ0 [εi1 (τ − 1εi1≤0)|Y ]]

+
nink
(σ2

k)
2
1k=i −

1

(σ0
i σ

0
k)

2

ni∑
j=1

nk∑
l=1

Eθ2
[
Covθ0

(
εij
(
τ − 1εij≤0

)
, εkl (τ − 1εkl≤0)

∣∣Y )]) .
As θ2 ∈ NN(θ0), we have :

Eθ2 [εi1 (τ − 1εi1≤0)] −→
N→+∞

Eθ0 [εi1 (τ − 1εi1≤0)] = σ0
i ,

Eθ2 [Eθ0 [εi1 (τ − 1εi1≤0)|Y ]] −→
N→+∞

Eθ0 [Eθ0 [εi1 (τ − 1εi1≤0)|Y ]] = Eθ0 [εi1 (τ − 1εi1≤0)] = σ0
i ,

Eθ2
[
Covθ0

(
εij
(
τ − 1εij≤0

)
, εkl (τ − 1εkl≤0)

∣∣Y )] −→
N→+∞

Eθ0
[
Covθ0

(
εij
(
τ − 1εij≤0

)
, εkl (τ − 1εkl≤0)

∣∣Y )]
and

Eθ0
[
Covθ0

(
εij
(
τ − 1εij≤0

)
, εkl (τ − 1εkl≤0)

∣∣Y )] = (σ0
i )

21k=i.

We finally obtain Φ3 which is equivalent to:

3 + nink
N2

(
1

(σ2
i )

2
− 1

(σ0
i )

2

)

We saw before that:

1

(σ2
i )

2
− 1

(σ0
i )

2
≤ M

N
C

with C an unknown constant as θ2 ∈ NN(θ0).

As a consequence, because M
N
−→

N→+∞
0 and M3

N
−→

N→+∞
0, we have M2Φ3 −→

N→+∞
0.
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Φ4:

We have Φ4 which is a matrix of size n× n whose elements i, k are:

1
N2

(
2

(σ0
i )3

(Eθ2 [Eθ0 [εi1 (τ − 1εi1≤0)|Y ]]− Eθ0 [εi1 (τ − 1εi1≤0)])

− nink
(σ0

k)
2
1k=i +

1

(σ0
i σ

0
k)

2

ni∑
j=1

nk∑
l=1

Eθ2
[
Covθ0

(
εij
(
τ − 1εij≤0

)
, εkl (τ − 1εkl≤0)

∣∣Y )]) .
We can see that the calculations and proofs of convergence are the same as for Φ3.

Finally, we’ve proved the hypothesis in the case (σ,σ).

Determination for (σ, β)

Φ1:

We have Φ1 which is a matrix of size n× p whose elements i, k are:

sup
θ1∈Nn(θ0)

{
1

N2

(
1

(σ1
i )

2

ni∑
j=1

Eθ1
[(

1εij≤0 − τ
)
Xijk

∣∣Y ]
− 1

(σ2
i )

2

ni∑
j=1

Eθ2
[(

1εij≤0 − τ
)
Xijk

∣∣Y ]
+

1

(σ1
i )

2

n∑
p=1

1

(σ1
p)

ni∑
j=1

np∑
q=1

Covθ1
(
εij
(
1εij≤0 − τ

)
, 1εpq≤0Xpqk

∣∣Y )
− 1

(σ2
i )

2

n∑
p=1

1

(σ2
p)

ni∑
j=1

np∑
q=1

Covθ2
(
εij
(
1εij≤0 − τ

)
, 1εpq≤0Xpqk

∣∣Y ))} .
We still have, for all θ and by definition of M :

M2

N

1

N

ni∑
j=1

Eθ
[(

1εij≤0 − τ
)
Xijk

∣∣Y ]
which converge to 0.

Moreover, the difference between the third and fourth terms defining Φ1 tends to :

n∑
p=1

(
1

σ1
i σ

1
p

− 1

σ2
i σ

2
p

)
τcpk

+
n∑
p=1

(
1

(σ1
i )

2σ1
p

− 1

(σ2
i )

2σ2
p

)
Eθ0
[
Eθ0
[
εij
(
1εij≤0 − τ

)∣∣Y ]Eθ0
[
1εpq≤0

∣∣Y ]] .
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As before, it can be shown that the terms:

1

σ1
i σ

1
p

− 1

σ2
i σ

2
p

and
1

(σ1
i )

2σ1
p

− 1

(σ2
i )

2σ2
p

can be written as the difference between one or more parameters of θ1 and θ2 multiplied by a

constant, so these terms are dominated by M
N

.

As this is true for all θ1 ∈ NN(θ0), we can proceed to the sup and we have M2Φ1 −→
N→+∞

0.

Φ2:

We have Φ2 which is a matrix of size n× p whose elements i, k are:

1

N2

(
1

(σ2
i )

2

ni∑
j=1

Eθ2
[(

1εij≤0 − τ
)
Xijk

∣∣Y ]
+

1

(σ2
i )

2

n∑
p=1

1

σ2
p

ni∑
j=1

np∑
q=1

Covθ2
(
εij
(
1εij≤0 − τ

)
, 1εpq≤0Xpqk

∣∣Y )
− ni

(σ2
i )

2

n∑
p=1

1

σ2
p

np∑
q=1

τσ2
iXpqk − Eθ2

[
Eθ2
[
εij
(
1εij≤0 − τ

)∣∣Y ]Eθ2
[
1εpq≤0

∣∣Y ]]Xpqk

)
.

We have, exactly like Φ1:

M2

N2

1

(σ2
i )

2

ni∑
j=1

Eθ
[(

1εij≤0 − τ
)
Xijk

∣∣Y ] −→
N→+∞

0.

The last term of the sum defining Φ2 tends to:

−2τ

σ2
i

n∑
p=1

cpk
σ2
p

which is exactly the opposite of the limit of the second term of the sum defining Φ2. In the

same way as in the calculation of Φ2 for the case (σ,σ), we can identify a difference between

a random variable and its expectation. We can then apply Bienaymé-Tchebychev and obtain the

same convergence result.

Φ3:

We have Φ3 which is a matrix of size n× p whose elements i, k are:

1

N2

(
− 1

(σ0
i )

2

ni∑
j=1

Eθ2
[
Eθ0
[(

1εij≤0 − τ
)
Xijk

∣∣Y ]]+
2τni
σ2
i

n∑
p=1

1

σ2
p

np∑
q=1

Xpqk

− 1

(σ0
i )

2

n∑
p=1

1

σ0
p

ni∑
j=1

np∑
q=1

Eθ2
[
Covθ0

(
εij
(
1εij≤0 − τ

)
, 1εpq≤0Xpqk

∣∣Y )]) .
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We have :

Eθ2
[
Eθ0
[(

1εij≤0 − τ
)
Xijk

∣∣Y ]] −→
N→+∞

Eθ0
[
Eθ0
[(

1εij≤0 − τ
)
Xijk

∣∣Y ]] = 0

et

Eθ2
[
Covθ0

(
εij
(
1εij≤0 − τ

)
, 1εpq≤0Xpqk

∣∣Y )] −→
N→+∞

2τσ0
iXpqk.

We then find that Φ3 is equivalent to:

2τ
n∑
p=1

cpk

(
1

σ2
i σ

2
p

− 1

σ0
i σ

0
p

)
.

We saw before that
∣∣∣ 1
σ2
i σ

2
p
− 1

σ0
i σ

0
p

∣∣∣ ≤ CM
N

, and so we have M2Φ3 −→
N→+∞

0.

Φ4:

We have Φ4 which is a matrix of size n× p whose elements i, k are:

1

N2

(
1

(σ0
i )

2

ni∑
j=1

Eθ2
[
Eθ0
[(

1εij≤0 − τ
)
Xijk

∣∣Y ]]− 2τni
σ0
i

n∑
p=1

1

σ0
p

np∑
q=1

Xpqk

+
1

(σ0
i )

2

n∑
p=1

1

σ0
p

ni∑
j=1

np∑
q=1

Eθ2
[
Covθ0

(
εij
(
1εij≤0 − τ

)
, 1εpq≤0Xpqk

∣∣Y )]) .
We have the convergence result using the continuity of the expectation in θ2 and the results used

for the case of Φ3.

Finally, we have shown the hypothesis in the (β,σ) case.

Determination for (β, β)

Φ1:

Φ1 can be expressed:

sup
θ1∈Nn(θ0)

{
1

N2

n∑
i=1

n∑
k=1

(
1

σ1
i σ

1
k

ni∑
j=1

nk∑
l=1

XijCovθ1
(

1εij≤0, 1εkl≤0

∣∣Y )X t
kl

− 1

σ2
i σ

2
k

ni∑
j=1

nk∑
l=1

XijCovθ2
(

1εij≤0, 1εkl≤0

∣∣Y )X t
kl

)}
.
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As θ1, θ2 ∈ NN(θ0), we have:

Covθ
(

1εij≤0, 1εkl≤0

∣∣Y ) −→
N→+∞

Covθ0
(

1εij≤0, 1εkl≤0

∣∣Y )
for θ ∈ {θ1, θ2}. Therefore, Φ1 is equivalent to:

n∑
i=1

n∑
k=1

(
1

σ1
i σ

1
k

− 1

σ2
i σ

2
k

)
C1
ikCovθ0

(
1εij≤0, 1εkl≤0

∣∣Y )X t
kl.

As before, we then have convergence by passing to the sup, the term majorization:

n∑
i=1

n∑
k=1

(
1

σ1
i σ

1
k

− 1

σ2
i σ

2
k

)
and the (A5) assumption.

Φ2:

Φ2 can be expressed:

1

N2

n∑
i=1

n∑
k=1

1

σ2
i σ

2
k

ni∑
j=1

nk∑
l=1

(
XijCovθ2

(
1εij≤0, 1εkl≤0

∣∣Y )X t
kl −Xij(τ − τ 2)X t

kl1k=i

)
.

As before, we identify the difference between a random variable and its expectation.

Φ3:

Φ3 is equal to:

1

N2

n∑
i=1

n∑
k=1

ni∑
j=1

nk∑
l=1

Xij

(
τ − τ 2

σ2
i σ

2
k

1k=i −
Eθ2
[
Covθ0

(
1εij≤0, 1εkl≤0

∣∣Y )]
σ0
i σ

0
k

)
X t
kl.

The following result of convergence

Eθ2
[
Covθ0

(
1εij≤0, 1εkl≤0

∣∣Y )] −→
N→+∞

(τ − τ 2)1k=i

and the inequality
n∑
i=1

n∑
k=1

(
1

σ2
i σ

2
k

− 1

σ0
i σ

0
k

)
≤ C

M

N

allow us to conclude on the good convergence behavior of M2Φ3.

Φ4:
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Φ4 is written:

1

N2

n∑
i=1

n∑
k=1

ni∑
j=1

nk∑
l=1

Xij

(
Eθ2
[
Covθ0

(
1εij≤0, 1εkl≤0

∣∣Y )]
σ0
i σ

0
k

− τ − τ 2

σ0
i σ

0
k

1k=i

)
X t
kl.

Arguments similar to the case of Φ3 allow us to conclude on the convergence properties of Φ4.

Finally, the conditions of the Theorem 3 of Weiss are satisfied.

Supplementary Figures : Asymptotic normality and conver-

gence
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Figure 5: QQ-plot of β̂ − β0 for a normal generation of co-variables following N (2, 2).
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Figure 6: Empirical distribution of σ̂ − σ for a normal generation of co-variables following

N (2, 2).
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Figure 7: Convergence plot of σ̂−σ0 for a normal generation of co-variables followingN (2, 2).
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Figure 8: Convergence plot of β̂−β0 for a normal generation of co-variables followingN (2, 2).
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Figure 9: Empirical distribution of β̂ − β for a Laplace generation of co-variables following

L(2, 3). For the estimator ψ̂, the empirical bias was removed.
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Figure 10: Empirical distribution of σ̂ − σ for a Laplace generation of co-variables following

L(2, 3).
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Figure 11: QQ-plot of β̂ − β0 for a Laplace generation of co-variables following L(2, 3).
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Figure 12: QQ-plot of σ̂ − σ0 for a Laplace generation of co-variables following L(2, 3).
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Figure 13: Convergence plot of β̂−β0 for a Laplace generation of co-variables followingL(2, 3).
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Figure 14: Empirical distribution of β̂ − β for a Bernoulli generation of co-variables following

B(0.33). For the estimator ψ̂, the empirical bias was removed.
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Figure 15: Empirical distribution of σ̂ − σ for a Bernoulli generation of co-variables following

B(0.33).
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Figure 16: QQ-plot of β̂ − β0 for a Bernoulli generation of co-variables following B(0.33).
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Figure 17: QQ-plot of σ̂ − σ0 for a Bernoulli generation of co-variables following B(0.33).
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Figure 18: Convergence plot of σ̂ − σ0 for a Bernoulli generation of co-variables following

B(0.33).
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Figure 19: Convergence plot of β̂ − β0 for a Bernoulli generation of co-variables following

B(0.33).
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