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Article

Coexistence of Thread and Sheet Chaotic Attractors for
Three-Dimensional Lozi Map
René Lozi

LJAD, CNRS, Université Côte d’Azur, F-06000 Nice, France; Rene.LOZI@univ-cotedazur.fr

Abstract: Since its original publication in 1978, Lozi’s chaotic map has been thoroughly explored
and continues to be. Hundreds of publications have analyzed its particular structure or applied
its properties in many fields (electronic devices such as memristors, A.I. with swarm intelligence,
etc.). Several generalizations have been proposed, transforming the initial two-dimensional map
into a multidimensional one. However, they do not respect the original constraint that allows this
map to be one of the few strictly hyperbolic: a constant Jacobian. In this paper, we introduce a
three-dimensional piece-wise linear extension respecting this constraint and we explore a special
property never highlighted for chaotic mappings: the coexistence of thread chaotic attractors (i.e.,
attractors that are formed by a collection of lines) and sheet chaotic attractors (i.e., attractors that are
formed by a collection of planes). This new three-dimensional mapping can generate a large variety
of chaotic and hyperchaotic attractors. We give five examples of such behavior in this article. In the
first three examples, there is the coexistence of thread and sheet chaotic attractors. However, their
shapes are different and they are constituted by a different number of pieces. In the last two examples,
the blow up of the attractors with respect to parameter a and b is highlighted.

Keywords: Lozi map; strange attractors; sheet hyperchaotic attractors; thread chaotic attractors; blow
up of attractor

1. Introduction

Since its original publication in 1978, Lozi’s chaotic map has been thoroughly explored
and continues to be. Hundreds of publications have analyzed its particular structure or
applied its properties in many fields (cryptography, optimization, secure communications,
electronic devices such as memristors, A.I. with swarm intelligence, etc.). Several kinds of
generalization have been proposed, transforming the initial two-dimensional map into a
multidimensional one. However, they do not respect the original constraint that allows
this map to be one of the few strictly hyperbolic: a constant Jacobian. In this paper, we
introduce a three-dimensional piece-wise linear extension respecting this constraint and
we explore a special property never highlighted for chaotic mappings: the coexistence of
thread chaotic attractors (i.e., attractors that are formed by a collection of lines) and sheet
hyperchaotic attractors (i.e., attractors that are formed by a collection of planes).

In Section 2, we recall the history and initial definition of the Lozi map, its chaotic prop-
erties in the dissipative case, and the dynamics features (fixed points, invariant manifolds,
basin of attraction, etc.). We also descrive the chaotic properties in the conservative case.
We conduct a rapid survey of the generalization of such a map: topological generalization
(Lozi-like map), geometrical generalization (Lozi-type map), generalization of the formula in
a dimension of three or more, fractal generalization, non-conventional generalization, and
networks of Lozi maps with chimera. In Section 3, we recall the definition of two Rössler
hyperchaotic attractors for comparison, and we introduce a new generalization for the
Lozi map in three dimensions. In Section 4, we give the basic properties of the thread and
sheet-attractors (fixed point, period-two orbit). This new three-dimensional mapping can
generate a large variety of chaotic and hyperchaotic attractors. We give five examples of
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such behavior in this section. In the first three examples, there is the coexistence of thread
and sheet chaotic attractors. However, their shapes are different and they are constituted by
a different number of pieces. In the two last examples, the blow up of the attractors with
respect to parameter a and b is highlighted. A brief conclusion is drawn in Section 5.

2. The Lozi Map
2.1. History

I discovered what is now called the Lozi map exactly on 15 June 1977 around 11
a.m. during the defense of the Ph.D. thesis of one of my colleague in the department of
mathematics of the University of Nice (France) [1] (p. xxv).

As I explained in [2], the week before, I attended the International Conference on
Mathematical Problems in Theoretical Physics in Roma. The opening talk was given by
David Ruelle on 6 June, who conjectured in his presentation that, for the Hénon attractor,
the theoretical entropy should be equal to the characteristic exponent [3]. This is how I
discovered the first example of chaotic and strange attractors (see Figure 1). Surprisingly, I
had never met Michel Hénon before, who worked a few kilometers apart from the math
department of the university at the Nice Observatory.

Figure 1. Hénon map (2) for the parameter value a = 1.4, b = 0.3, initial value x0 = 0, y0 = 0.

Hénon, who explored the Lorenz map [4] numerically using an IBM-7040, found it
difficult to highlight its inner nature due to its very strong dissipativity. Its rate of volume
contraction is given by the Lie derivative of the Lorenz equations, which can be solved.
For the parameters chosen by Lorenz, V(t) = V(0)e

−41
3 . Therefore, after one time unit,

volumes are reduced by a factor of 106. Inspired by his astronomer experience of Poincaré’s
map for the motion of planets, Hénon built the metaphoric model [5]{

xn+1 = 1− ax2
n + yn,

yn+1 = bxn,
(1)

also represented by the iterates of any initial point (x0, y0)
T by the mapHa,b : R2 −→ R2

Ha,b

(
x
y

)
=

(
1− ax2 + y,
bx.

)
(2)

For this map, the contracting properties are only determined by the parameter b.
With b = 0.3, the contraction in one iteration is mild enough that the sheaves of the attrac-
tors are visible. Eventually, he graphically observed the fractal structure of the attractor,
which astonished the research community.
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2.1.1. Initial Definition

At this time, I was working in numerical analysis, in the domain of bifurcation, which
was not very developed in France. My main interest was focused on the discretization
problem and finite element method in which nonlinear functions are approximated by
piecewise linear ones. During the Roma conference, I tried unsuccessfully to apply the
spirit of the method of finite elements to the Hénon attractor. Returning to Nice after this
conference, I eventually decided, using paper and pencil, to change the square function of
the Hénon attractor, which is U-shaped, into the absolute value function, which has a V
shape, implying a folding property (a folding property is important for a horseshoe, a main
ingredient of chaos, as highlighted by Stephen Smale [6]).

Right after the defense, I went back to my office and immediately tested this modifica-
tion in a few minutes on a small desktop computer HP 9820 linked to an HP 9862 plotter. I
found a similar attractor of the Hénon attractor, with straight lines instead of curves for the
map [7] (see Figure 2).

La,b

(
x
y

)
=

(
1− a|x|+ y,
bx.

)
(3)

 
 

 
 

 
Figure 2. Original Lozi map (3) in dimension 2 for the parameter value a = 1.7, b = 0.5, initial value
x0 = 0, y0 = 0.

2.1.2. Chaotic Properties of the Dissipative Map (|b| < 1)

When |b| < 1, the map is called “dissipative”, which means that the image of any sub-
set ∆ by f has a measure that is less than the measure of ∆: measure( f (∆)) < measure(∆).

Two years after the discovery of this new chaotic attractor and only one year after
its publication [7], at the end of 1979, during the International Conference on Nonlinear
Dynamics, patronized by the New York Academy of Sciences on 17–21 December 1979,
Michal Misiurewicz presented a rigorous proof that, for a set of parameters S , this map has
a strange attractor, coining at this occasion the name “Lozi map” [8]. This set in the plane
of parameters (a, b) is defined by

S =

{
(a, b)

∣∣∣∣b > 0, a
√

2 < b + 2, b <
a2 − 1
2a + 1

, 2a + b < 4
}

, (4)

(see Figure 3).
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Figure 3. The set S of the plane of parameters where Lozi map has a strange attractor in the first
proof of Misiurewicz [8]. Red lines b = 0 and b = 1, blue line b = a− 1, pink line b = −2a + 4, cyan
line b = a

√
2− 2, green curve b = a2−1

2a+1 .

This set of parameters S (defined only for b > 0) was later slighty enlarged (as S+ in
Figure 4) in the upper edge of the triangle by Misiurewicz and Stimac [9], removing the
condition b < a2−1

2a+1 ,

S+ =
{
(a, b)

∣∣∣b > 0, a
√

2 < b + 2, 2a + b < 4
}

. (5)

Recently, the case b < 0 was studied by Kucharski [10], who found a quasi-symmetric
set of parameters S− (Figure 4); however, it is not completely symmetric for the right-hand-
side boundary,

S− =

{
(a, b)

∣∣∣∣∣−1 < b < 0, a
√

2 > b + 2, b >
−8a + 3a2 +

√
−16a3 + 9a4

8

}
. (6)
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Figure 4. The sets S+ and S− of the plane of parameters where Lozi map has a strange attractor
in the second proof of Misiurewicz and Stimac [9] and the proof of Kucharski [10]. Blue lines
b = a− 1 and b = 1− a, cyan lines b = a

√
2− 2 and b = 2− a

√
2, green line b = 4− 2a, pink line

b = −8a+3a2+
√
−16a3+9a4

8 .

2.1.3. Fixed Points, Invariant Manifolds and Basin of Attraction

Due to the piecewise linearity of absolute value in La,b (3), one can explicitly compute
the fixed points and the periodic orbit of any order of it.
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When 1− a < b < a + 1 (for a > 0, both regions S− and S+ are in the cone defined by
theses inequalities), there exist two fixed points

A =

(
1

a + 1− b
,

b
a + 1− b

)
,

which belongs to the quadrant {x ≥ 0, y ≥ 0}, and

B =

(
1

1− a− b
,

b
1− a− b

)
,

which belongs to the quadrant {x < 0, y < 0}.
Furthermore, one can easily compute the local stability of these points by evaluating

the corresponding eigenvalues of the Jacobian matrix of La,b and conclude that, in the
domain of the parameter space where both A and B coexist—that is, for a > |b|+ 1—they
are saddle points.

Interestingly, the chaotic attractor of the Lozi map belongs to the unstable invariant
manifold of A. More exactly, from [8], it is known that the chaotic (and strange) attractor F̃
can be constructed from the successive forward iterations of a trapping region F,

F̃ =
∞⋂

n=0
Ln(F),

where F is the triangle with vertices at the points I, L(I), and L2(I), and I is the point given
by the intersection of the unstable manifold of the fixed point A with the horizontal axis

I =

(
2 + a +

√
a2 + 4b

2(1 + a− b)
, 0

)
.

Baptista et al. [11] found that the basin of attractor is modeled by some parts of the
stable manifold of the fixed point B. They considered the point X intersection of this stable
manifold with the vertical axis. A simple computation gives its expression as

X =

(
0,

b(2− a +
√

a2 + 4b
(a−

√
a2 + 4b)(a + b− 1)

)
,

and a certain point T belonging on the horizontal axis, first defined by Ishii [12], whose
expression is

X =

(
b(2− a +

√
a2 + 4b(a(1 + b) + (1− b)

√
a2 + 4b)

(1− a− b)(a−
√

a2 + 4b)(a−
√

a2 + 4b)(2b(b− 1) + a2(1 + 2b) + a(1− 2b)
√

a2 + 4b)
, 0

)
.

They showed that the basin of attraction is bounded by a polygonal line entirely
characterized by the points T and X and their successive preimages.

2.1.4. Other Dynamical Properties of the Dissipative Map (|b| < 1)

Boroński, Kucharski, and Ou [13] rigorously determined an open region in the param-
eter space for which the Lozi map exhibits periodic points of least period n for all n > 13:

Pstr = {(a, b)| b > 0, b < lstr(a) when a < a0, and b < ltan(a) when a > a0 }, (7)

and
P3(a, b) =

{
(a, b)| 0 ≤ b ≤ 1 , a > lhyp(b), and a > l3(b)

}
, (8)

where
a0 =

2
7

(
2 + 3

√
2
)
≈ 1.78, lstr(a) = −2 +

√
2a,
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ltan(a) =
1
8

(
8a− 3a2 −

√
9a4 − 16a3

)
, lhyp(b) = b + 1,

and

l3(b) =
1
2

[
1− b +

√
(1− b)2 + 4(1− b + b2)

]
.

Theorem 1 ([13]). For all (a, b) ∈ Pstr ∩P3, the Lozi map La,b has a periodic point of least period
n for n = 1, 2, 3 and all n > 13.

It is not in the scope of this article to provide a survey of all the papers describing the
other dynamical or statistical properties of the Lozi map because they are too numerous.
One may refer to [1] for a compendium of results published between 1997 and 2013. Below,
only some particular or more recent results are pointed out.

Many authors have published results on bifurcations of such a map, such as Botella-
Soler et al. [14] showing that it presents what they call bisecting bifurcations: those that are
mediated by an infinite set of neutrally stable periodic orbits.

Sushko et al. [15] investigated the bifurcation structure of the parameter plane in the
vicinity of the curve related to a center bifurcation of the fixed point. A distinguishing
property of the Lozi map is that it is conservative (see Section 2.1.5) at the parameter value
corresponding to this bifurcation. As a result, the bifurcation structure close to the center
bifurcation curve is quite complicated. In particular, an attracting fixed point (focus) can
coexist with various attracting cycles, as well as with chaotic attractors, and the number
of coexisting attractors increases as the parameter point approaches the center bifurcation
curve. Their study also contributes to the border collision bifurcation theory since the Lozi
map is a particular case of the 2D border collision normal form (2D-BCNF).

Glendinning and Simpson [16] used, as a canonical example, the following 2D-BCNF,
which is the family of difference equations (x, y) −→ f (x, y):

f (x, y) =


AL

[
x
y

]
+

[
µ
0

]
, x ≤ 0,

AR

[
x
y

]
+

[
µ
0

]
, x ≥ 0,

(9)

and with

AL =

[
τL 1
−δL 0

]
, AR =

[
τR 1
−δR 0

]
.

In their paper, they restricted their attention to the parameter values τR ∈ R, τL > 0,
δL > 0, δR > 0, µ = 1, for which f is invertible and orientation-preserving.

The role of µ is to control the border-collision bifurcation. In view of a linear rescaling,
it is only needed to be considered for the values {−1, 0, 1} (here, it is 1). The condition
τL > 0 is needed for the definition of the induced map. If τL = −τR and δL = δL, then the
2D BCNF reduces to the Lozi map.

In addition to bifurcation studies, Collet and Levy [17] considered ergodic properties
of such mapping, which they consider as an intermediate stage between the axiom A dy-
namical systems and more complicated systems, such as the Hénon map. They constructed
its Bowen–Ruelle measure and also derived some of its properties, which are similar to
those of an axiom A system.

Rychlik [18] gave a proof of the existence of Sinai–Bowen–Ruelle measures (SBR
measures) for this map. He also proved that the number of SBR measures is finite. Cao and
Liu [19] explored the geometric structure of its chaotic attractor and proof:
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Proposition 1. If the parameters (a, b) satisfy Misiurewicz conditions (4), then the strange attrac-
tor Λa,b possesses the following properties:

- The union of the transversal homoclinic points and weak transversal homoclinic points is dense
in Λa,b;

- All periodic points are hyperbolic;
- The set of periodic points forms a dense set in Λa,b;
- Any two hyperbolic points form a transversal heteroclinic cycle or a weak transversal hetero-

clinic cycle.

Other statistical (hyperbolic, ergodic, and topological) properties are described in the
study by Afraimovich et al. [20].

The symbolic dynamics of this map have also been greatly studied. In 1991, Zheng [21],
described some details of it. Two families of symbolic sequences were assigned for two
groups of lines in the phase plane, the order of symbolic sequences was defined, and the
ordering rules were derived. Misiurewicz and Stimac [9], in a more detailed study, in-
troduced the set of kneading sequences for this map and proved that it determines its
symbolic dynamics. They also introduced two other equivalent approaches. One can also
cite in this field of research the important works of Ishii [12,22], Sand [23], and de Carvalho
and Hall [24].

In [12], Ishii constructed a kneading theory à la Milnor–Thurston and showed that the
topological properties of the dynamics of the Lozi map are determined by its pruning front
and primary pruned region only. This gives a solution to the first tangency problem for
the Lozi family; moreover, the boundary of the set of all horseshoes in the parameter space
was shown to be algebraic. As an application of this result, in [22], the partial monotonicity
of the topological entropy and of bifurcations near horseshoes was proved. Upper and
lower bounds for the Hausdorff dimension of the Lozi attractor were also given in terms
of parameters. In [24], recent results on pruning theory were given, concentrated on
prunings of the horseshoe. In [23], the monotonicity of the Lozi family when the Jacobian
determinant is close to zero was shown. The main ingredients of the proof therein were
the “pruning pair method” and a detailed analysis of the parameter dependence of the
kneading invariant of the tent-map family.

2.1.5. Chaotic Properties of the Conservative Map (|b| = 1)

In the conservative case (also called area preserving) measure( f (∆)) = measure(∆),
there is no attractor.

Li et al. [25] studied this case and highlighted that it can generate initial-values-related
coexisting infinite orbits. Its moving orbits are extremely dependent on its initial values
and present periodic, quasi-periodic, and chaotic orbits, with different types and topologies.
In other words, the emergence of extreme multistability appears in the area-preserving
Lozi map. As an example, several of such orbits are plotted in (Figures 5 and 6). Li et al.
noted that the coexistence of double or multiple attractors has been found in the Hénon
map, the M-dimensional nonlinear hyperchaotic model [26], and the multistage DC/DC
switching converter [27], and that two types of simple 2D hyperchaotic maps with sine
trigonometric nonlinearity and constant controllers were shown to generate initial-boosted
infinite attractors along a phase line [28,29]. Recently, a simple two-dimensional sine
map was presented to obtain the initials-boosted infinitely many attractors along a phase
plane [30]. However, they emphasized that all these newly presented discrete maps only
exhibit the coexisting attractors with different positions. However, the coexisting infinite
attractors with different topologies and different positions in the discrete maps are rarely
reported like those in the area-preserving Lozi map.
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Figure 5. Periodic, quasi-periodic, and chaotic orbits of the area-preserving map (3) in the plane (x, y)
when a = 0.5 and b = −1. Initial values: red (most extended chaotic orbit) x0 = 1.3, y0 = 2.0, dark
blue (innermost chaotic orbit inside the red orbit) x0 = 1.3, y0 = −0.2, dark green (chaotic orbit inside
the red orbit x0 = 1.7, y0 = −0.2 (see magnified Figure 6). Initial values of the 4 brown periodic
ellipse-shaped orbits belonging to the 4 ellipsoids inside the red region x0 = 10.0, y0 = 2.3, x0 = 10.0,
y0 = 3.0, x0 = 10.0, y0 = 3.2, x0 = 10.0, y0 = 3.3. From origin to upper right corner: purple (chaotic
orbit) x0 = 10.0, y0 = 4.6, magenta (chaotic orbit) x0 = 10.0, y0 = 5.0, light green (chaotic orbit)
x0 = 10.0, y0 = 6.0, light blue (chaotic orbit) x0 = 10.0, y0 = 6.8, dark blue (quasiperiodic orbit)
x0 = 10.0, y0 = 8.5, blue (quasiperiodic orbit) x0 = 10., y0 = 9.6, dark blue (chaotic orbit) x0 = 10,
y0 = 13.0, pink (chaotic orbit) x0 = 10.0, y0 = 16.0, green (quasiperiodic orbit) x0 = 10.0, y0 = 17.0.

Figure 6. Magnification of the central part of Figure 5.
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In addition to the analysis of Sushko et al. [15] (see Section 2.1.4), this conservative
map was also studied by Lopesino et al. in [31], who proved, when a > 4, the existence of
a chaotic saddle in the square

Sq =
{
(x, y) ∈ R2| |x| ≤ R, |y| ≤ R

}
,

with
R = R(a) =

a
4(a− 2)

. (10)

2.2. Generalizations

A general trend in mathematics is to generalize any new mathematical object. Due to
the simplicity of the equations defining the Lozi map (3), the simplest way to generalize
it is to increase the dimension of the discrete dynamical system associated by adding
similar equations. The same was carried out for the Hénon map (2) (see [32] for a survey).
Another way is to generalize its topological or geometrical properties, and a recent third
way is to define this map in the new paradigm of fractional mappings. Besides these
ways, recently, a non-conventional generalization entangling this map with cosine and
exponential functions has been proposed. Additionally, the Lozi map can be used to
construct networks of chaotic attractors, either alone or with a Hénon map.

It is the second way that was first explored in 1985 by Lai-Sang Young [33], who defined
a generalized Lozi map (also called Lozi-like map), and later in 2018 by Misiurewicz and
Stimac [34], who defined another kind of Lozi-like map without any reference or relationship
with the definition of Young. Instead, Juang and Chang [35] defined in 2010 a geometrical
generalization called a Lozi-type map.

2.2.1. Topological Generalizations: Lozi-like Maps

Let R = [0, 1]× [0, 1] and let f : R −→ R be a continuous injective map. Suppose
that f (or some iterate of f ) takesR into its interior.

Definition 1 ([33]). A continuous injective map f : R −→ R of R = [0, 1] × [0, 1] is a
generalized Lozi map if it satisfies the following conditions.

(L.1) There exists 0 < a1 < · · · < an < 1 such that f is a C1-diffeomorphism on
R \

⋃n
i=1 Yi, where Yi = {ai} × [0, 1]. From now on, we set S =

⋃n
i=1 Yi.

(L.2) The norm of the derivative D f of f is uniformly bounded onR \ S , i.e.,

M f = sup{‖D fx‖; x ∈ R \ S} < ∞,

where ‖D fx‖= sup{‖D fx(v)‖} ; v ∈ Tx(R), ‖v‖ = 1.
(L.3) There exist constants |λs| < 1 < |λu| and continuous cone-fields Cs = {Cs

x}x∈R,
Cu = {Cu

x}x∈R, onR such that, for any x ∈ R \ S and any vectors v ∈ Cu
x , w ∈ Cs

f (x),
• D fx(Cu

x ) ⊂ Cu
f (x) and ‖D fx(v)‖ ≥ |λu|‖v‖,

• D fx

(
Cs

f (x)

)−1
⊂ Cs

f (x) and
∥∥∥D f−1

f (x)(w)
∥∥∥ ≥ ∣∣(λs)−1

∣∣‖w‖.
We say that Cs, Cu are stable and unstable cone-fields of f , respectively.

Figure 7 illustrates the image f (R) ofR using a generalized Lozi map f .
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Figure 7. Image f (R) ofR using a generalized Lozi map f in the sense of Young [33].

In [33], Lai-Sang Young proved that Lozi-like maps have invariant measures with
absolutely continuous conditional measures on unstable manifolds. As a consequence, they
have Bowen–Ruelle measures. More recently, Sakurai [36] showed that certain Lozi-like
maps have an orbit-shifted shadowing property.

Another kind of topological hlgeneralization also called a Lozi-like map, was recently
introduced by Misiurewicz and Stimac [34]. Its definition is not straightforward and needs
some preliminaries.

Definition 2 ([34]). Let F1, F2 : R2 −→ R2 be C1 diffeomorphisms. We say that F1 and F2 are
synchronously hyperbolic if they are either both order reversing, or both order preserving, and there
exist λ > 1, a universal pair of cones Ku and Ks, and cone fields Cu and Cs (consisting of cones Ku

P
and Ks

P, P ∈ R2, respectively) that satisfy the following properties:
(S1) For every point P ∈ R2, we have Ku

P ⊂ Ku, Ks
P ⊂ Ks, DFiP(Ku

P) ⊂ (Ku
Fi(P)

), and

DF−1
iP (Ks

P) ⊂ (Ks
F−1

i(P)
) for i = 1, 2.

(S2) For every point P ∈ R2 and i = 1, 2, we have ‖DFi(u)‖ ≥ λ‖u‖ for every u ∈ Ku
P

and
∥∥∥DF−1

i (w)
∥∥∥ ≥ λ‖w‖ for every hlw ∈ Ks

P.

(S3) There exists a smooth curve Γ ⊂ R2 such that, for every P ∈ Γm we have
F1(P) = F2(P), the vector tangent to Γ at P belongs to Ks

P, and the vector tangent to
Fi(Γ) at Fi(P) belongs to Ku

Fi(P)
. We require that Γ is infinite in both directions.

We call Γ the divider. It divides the plane into two parts, which we call the left half-plane and
the right half-plane. In addition, F1(Γ) = F2(Γ) divides the plane into two parts, which we call the
upper half-plane and the lower half-plane.

Definition 3 ([34]). Let F1, F2 : R2 −→ R2 be synchronously hyperbolic C1 diffeomorphisms with
the divider Γ. Let F : R2 −→ R2 be defined by the formula:

F(P) =
{

F1(P) if P is in the left half-plane;
F2(P) if P is in the right half-plane.

(11)

We call the map F Lozi-like if the following hold:
(L’.1) −1 < det DFi(P) < 0 for every point P ∈ R2 and i = 1, 2.
(L’.2) There exists a trapping region ∆ (for the map F) that is homeomorphic to an open disk

and whose closure is homeomorphic to a closed disk.

Using these new definitions of a Lozi-like map, Misiurewicz and Stimac [34] showed
strong numerical evidence that there exist Lozi-like maps that have kneading sequences
different to those of Lozi maps. The dynamics of such Lozi-like maps were modeled as an
inverse limit of densely branching trees by Boronski and Stimac [37].
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Kucharski again extended such a topological generalization, defining a general-
ized Lozi-like family [38] that encompasses in particular certain Lozi-like maps, orientation-
preserving or reversing Lozi maps, or large parameter regions of two-dimensional border
collision normal forms. He proved that this family possesses a strange attractor, arising as
a homoclinic class. He also built a model as an inverse limit of densely branching trees for
the mentioned families, extending the results of [37].

2.2.2. Geometrical Generalization: Lozi-Type Map

Juang and Chang [35] considered a map T of the form

T
(

x
y

)
=

(
y,
F(y)− b,

)
. (12)

If F(y) is a polynomial of degree n with a negative leading coefficient and distinct real
roots, this map T will henceforth be called an nth-degree Henon-type map. If F(y) is replaced
by n-piecewise affine terms, this map T is called an nth-degree Lozi-type map (here, the term
degree is given as analogous to polynomial by these authors; however it should be better to
use nth-piecewise).

This map is defined in relation to a discrete version of a reaction–diffusion system.
Juang and Chang considered several spatial entropies, particularly h(T), hD(T), hN(T),
(spatial entropy with respect to the Dirichlet and Neuman boundary conditions), and other
special spatial entropies that they defined, and compared them.

2.2.3. Formulas Generalization

There are several generalizations of the map La,b.
In [39], Aiewcharoen et al., motivated by (3), introduced the following system of

difference equations: {
xn+1 = |xn| − ayn − b,
yn+1 = xn − c|yn|+ d,

(13)

where b > 4.
They prove that:

(i) All solutions converge toward the equilibrium point (−1,−2). Moreover, for a large
value of x0 and y0, they prove that, if b = 5, then the solution converges toward the
equilibrium point (−1,−3);

(ii) If b = 6, then the solution converges toward the periodic solution of period 5.

A trivial three-dimensional generalization was proposed by Mammeri and Kina [40],
where the stability of its fixed points was investigated:

xn+1 = 1− bzn + a|xn|,
yn+1 = xn,
zn+1 = yn.

(14)

Another simple generalization was mentioned in the study by Joshi et al. [41] without
analysis. Only a figure in three dimensions is plotted in the case α = 1.7 and β = β = 0.08:

xn+1 = 1− α|xn|+ yn,
yn+1 = βyn,
zn+1 = 1− α|zn|+ βxn.

(15)

In the study by Bilal and Ramaswamy [42], the equation corresponding to the map (3)
was written as (note the parameter (1− ν) instead of b){

xn+1 = 1− a|xn| − (1− ν)yn,
yn+1 = xn.

(16)
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This equation was rewritten as a difference delay equation,

xn = 1− a|xn−1| − (1− ν)xn−2, (17)

which suggests a natural generalization to higher dimensions,

xn = 1− a|xn−k| − (1− ν)xn−d. (18)

Here, d and k are integers such that k < d and 0 ≤ ν ≤ 2. The mapping is conservative
when ν is 0 or 2 and is dissipative otherwise. For ν = 1, the map reduces to a k-dimensional
endomorphism, whereas, for ν 6= 1, the map is a d-dimensional diffeomorphism.

A bifurcation analysis and an investigation of the dynamics through both numerical
and analytical approaches were carried out in this article. Moreover, a smooth approxi-
mation of (18) was obtained by replacing the absolute value function |·| with a smooth
function Sε(·):

xn = 1− aSε(xn−k)− (1− ν)xn−d, (19)

Sε(xn−k) =

{
x2

n−k \ 2ε + ε \ 2 if|xn−k| ≤ ε,
|xn−k| if|xn−k| ≥ ε,

(20)

where 0 < ε < 1.
This smooth approximation of the map enables the analysis of the bifurcations vis-a-

vis the bifurcations to the generalized Hénon map. It shows that some of the bifurcations
observed persist on both the piecewise Lozi and Hénon map. This kind of smoothing was
previously introduced by Lozi [43] in 1979.

This generalized Lozi map (17) was also studied by Chutani et al. [44], who analyzed
the time series obtained from different dynamical regimes of evolving maps and flows
by constructing their equivalent time series networks using the visibility algorithm. They
focused on the three-dimensional Lozi map (with d = 3, k = 2) that displays hyperchaotic
dynamical behavior at certain parameter values, particularly at (a, ν) = (1.3, 0.6) (see
Section 3.1).

Another kind of generalization was carried out by Lopesino et al. [31], who defined a
non-autonomous Lozi map as the map.

Ln(x, y) = (1 + y− a(n)|x|,−x), (21)

where a(n) = a + ε(1 + cos(n)), a > 4. They proved the existence of a chaotic saddle in
the square

Sn =
{
(x, y) ∈ R2| |x| ≤ R, |y| ≤ R

}
,

with

R = sup
n∈N

a(n)
4(a(n)− 2)

(see (10) for comparison).

2.2.4. Fractal Mappings

The new paradigm of fractional mappings recently explored is a natural extension of
the theory of fractal ordinary differential equations.

In Khennaoui et al. [45], using the Caputo-like delta difference

c∆u
a X(t) = ∆−(n−ν)

a ∆nX(t),
= 1

Γ(n−ν) ∑
t−(n−ν)
s=a (t− s− 1)(n−ν−s)∆nX(t)
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the fractal Lozi map was defined as:{ c∆u
a x(t) = α|x(t− 1 + ν)|+ y(t− 1 + ν) + 1− x(t− 1 + ν),

c∆u
a y(t) = βx(t− 1 + ν)− y(t− 1 + ν),

(22)

for 0 < ν ≤ 1 and t ∈ Na+1−ν. One can note that the fractional order of both fractional
differences are identical, leading to what is commonly referred to as a commensurate
system. An equivalent discrete integral equation of such a map is obtained:{

x(t) = x(a) + 1
Γ(ν) ∑t−ν

s=a+1(t− s− 1)(ν−1)(−α|x(t− 1 + ν)|+ y(t− 1 + ν) + 1− x(t− 1 + ν)),

y(t) = y(a) + 1
Γ(ν) ∑t−ν

s=a−ν(t− s− 1)(ν−1)(βx(t− 1 + ν)− y(t− 1 + ν)),
(23)

where (t−s−1)(ν−1)

Γ(ν) is the discrete kernel function

(t− s− 1)(ν−1)

Γ(ν)
=

Γ(t− s)
Γ(ν)Γ(t− s− ν + 1)

,

and a = 0 yields the numerical formula x(n) = x(0) + 1
Γ(ν) ∑n

j=1
Γ(n−j+ν)
Γ(n−j+1) (−α|x(j− 1)|+ y(j− 1) + 1− x(j− 1)),

y(n) = y(0) + 1
Γ(ν) ∑n

j=1
Γ(n−j+ν)
Γ(n−j+1) (βx(j− 1)− y(j− 1)).

(24)

A complete numerical analysis of this fractional map shows that the value of the
fractional order ν affects the bifurcation diagram (of the non-fractional map) both in terms
of its general shape and the duration of the chaotic interval. For ν = 0.98, the bifurcation
diagram is similar to the corresponding integer diagram except for a small broadening in
the interval where the chaos is observed. As ν decreases further, it is found that, when
0 ≤ α ≤ 0.5, the orbit no longer goes to a fixed point. In fact, as n increases, one observes that
the trajectory becomes unbounded. A major difference between the bifurcation diagram of
the integer and fractional maps is in the interval over which chaos is observed. The interval
becomes slightly smaller as ν decreases.

A combined Hénon–Lozi fractional map was defined using a linear interpolation of
quadratic and absolute value functions and studied by Ibrahim and Baleanu [46].

2.2.5. Non-Conventional Generalization

A non-conventional generalization of (3) based on the cosine chaotic map has recently
been published [47]. The cosine chaotic map (CCM) is the chaotification method that
enhances the chaotic complexity of the existing chaotic maps. This method performs the
cosine function alongside a chaotic map that cascades in the used system. Thus, the results
provide a new chaotic map with a wide chaotic range within the closed interval [−1,+1].
Theoretically, the CCM has properties based on the properties of the underlying seed
maps. In the case of the Lozi map, Aliwi and Ajeena considered (3), changing 1 to 3 in the
first component

f
(

x
y

)
=

(
3− a|x|+ y,
bx,

)
(25)

with a = −1.8 and b = 0.25. Then, they inserted (25) into the CCM:

f
(

x
y

)
=

 cos
(

2(k+3−a|x|+y)
)

,

cos
(

2(k+bx)
)

,

 (26)

where k ∈ [10, 24].
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Starting with any initial point (x0, y0) belonging to the basin of attraction of the Lozi
map, the iterates randomly fulfill the square [−1,+1]2 (see Figure 8).

Figure 8. Image on the (x, y)-plane of 300,000 iterates of the cosine Lozi chaotic map (26). Initial
value (x0 = 0.1, y0 = 0.3).

This generalized map is built for cryptographic purposes. In [48], these authors, for the
same purpose, combined the Lozi map with the sine function instead:

f
(

x
y

)
=

 sin
(

2(k+3−a|x|+y)
)

,

sin
(

2(k+bx)
)

.

 (27)

2.2.6. Network of Chaotic Maps and Chimera

Besides the generalizations presented above, the Lozi map can be used to construct
networks of chaotic attractors, either alone or with the Hénon map.

Cano and Cosenza [49] considered the autonomous system of globally coupled Lozi
maps described by the equations{

xi
n+1 = (1− ε) f (xi

n, yi
n) + εhn,

yi
n+1 = bxi

n,
(28)

with f (xn, yn) = 1− a|xn|+ yn and hn = 1
N ∑N

j=1 f (xi
n, yi

n). The parameter ε represents the
strength of the global coupling of the maps.

Synchronization in this system of equations at the iterate n arises when (xi
n, yi

n) =

(xj
n, yj

n), ∀(i, j). Note that the synchronization of the x variable implies the synchronization
of the y variable. Besides synchronization, the following collective states can be defined in
this globally coupled system:

(i) Clustering. A dynamical cluster is defined as a subset of elements that are synchronized
among themselves. In a clustered state, the elements in the system segregate into K
distinct subsets that evolve in time, i.e., xi

n = xj
n = Xν

n, ∀(i, j) in the νth cluster with
ν = 1, . . . , K.

(ii) A chimera state consists of the coexistence of one or more clusters and a subset of
desynchronized elements.

(iii) A desynchronized or incoherent state occurs when xi
n 6= xj

n, ∀(i, j).
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They also considered the system of nonlocally coupled Lozi maps described by{
xi

n+1 = (1− ε) f (xi
n, yi

n) + εhn,
yi

n+1 = bxi
n,

(29)

with

hi
n =

1
2k

j=i+k

∑
j=i−k

[
f (xi

n, yi
n)− f (xj

n, yj
n)
]
, (30)

where the elements i = 1, . . . , N are located on a ring with periodic boundary conditions,
ε is the coupling parameter, k is the number of neighbors coupled on either side of site i,
and hi

n is the local field acting on element i.
The presence of chimera states in globally coupled networks of identical oscillators at

first seemed counterintuitive because of the perfect symmetry of such a system. However,
such networks are among the simplest extended systems that can exhibit chimera behavior.
Cano and Cosenza highlighted that the presence of global interactions can indeed allow
for the emergence of chimera states in networks of coupled elements possessing chaotic
hyperbolic attractors, such as Lozi maps, where such states do not form with local interac-
tions. Both chimeras and clusters can be interpreted as manifestations of the multistability
of the resulting drive-response dynamics at the local level in systems with global interac-
tions. Their results suggest that chimera states, as other collective behaviors, arise from
the interplay between the local dynamics and the network topology; either ingredient can
prevent or induce its occurrence.

Semenova et al. [50] studied a slight variant of (29):{
xi

n+1 = f (xi
n, yi

n) +
σ

2P ∑
j=i+P
j=i−P

[
f (xj

n, yj
n)− f (xi

n, yi
n)
]
,

yi
n+1 = bxi

n,
(31)

i = 1, 2, . . . , N , where N is the number of elements in the ensemble of coupled
equations. The nonlocal coupling is characterized by the coupling strength σ, the number
of neighbours 2P (P neighbors on either side of the ith element), and the coupling range
r = P/N.

They show that the ensemble of nonlocally coupled Lozi maps demonstrates the soli-
tary state for specific values of coupling parameters. The coupling changes the properties
of partial elements and leads to the bistability, though the Lozi map does not have this
property in the uncoupled form. The emergence of solitary states is accompanied by the
arising of the second attracting set for the ensemble element.

Other examples of chimera states were exhibited by Anishchenko et al. [51], who
numerically explored the dynamics of two coupled one-dimensional ensembles: an en-
semble of Hénon maps and an ensemble of Lozi maps. Both networks are considered
under conditions of non-local coupling. The ensemble of Lozi maps was characterized by a
hyperbolic attractor of the individual elements, whereas the ensemble of Henon maps was
characterized by a non-hyperbolic attractor. They revealed the features of realizing chimera
states in the coupled system, which are caused by the mutual influence of two ensembles
with fundamentally different dynamics without coupling.

3. Three-Dimensional Hyperchaotic Attractors

A hyperchaotic attractor of a discrete dynamical system is usually defined as a chaotic
behavior with at least two positive Lyapunov exponents. Combined with one negative
exponent to ensure the convergence of the iterates toward the attractor, the minimal di-
mension for a discrete hyperchaotic system is three. Therefore, for a continuous dynamical
system, four ordinary differential equations (ODEs) are required.
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3.1. Rössler Hyperchaotic Attractors

In 1979, Rössler proposed several examples of systems of four ODEs and 3D mappings
providing hyperchaos. Two of them are presented in this section.

3.1.1. The “Noodle” Attractor

First, in [52], 
xn+1 = −axn(1− x2

n)− yn − zn,
yn+1 = bxn,
zn+1 = c(z2

n − 0.33) + dzn,
(32)

with a = 2.7, b = 0.09, c = 0.09, and b = 0.4.
The projection of this attractor (see Figure 9) onto the (x, y)-plane looks like “folded

noodles” as said by Rössler himself, which indicates that this kind of attractor possesses
only ”one direction of lateral expansion”.
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Figure 9. Projection onto the (x, y)-plane of the 3D Rössler “noodle” hyperchaotic attractor (32).
Initial value (x0 = 0, y0 = 0.2, z0 = 0).

3.1.2. The Folded “Curtain” Attractor

Second, in [53], there is the following:
xn+1 = 3.4xn(1− xn)− 0.05(yn + 0.35)(1− 2zn),
yn+1 = 0.1[(yn + 0.35)(1− 2zn)− 1](1− 1.9xn),
zn+1 = 3.78zn(1− zn) + 0.01yn.

(33)

The projection of this attractor (see Figure 10) onto the (y, x)-plane looks like a
folded curtain.
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Figure 10. Projection onto the (y, x)-plane of the 3D Rössler “curtain” hyperchaotic attractor (33).
Initial value (x0 = 0.1, y0 = 0.1, z0 = 0.1).

3.2. Three-Dimensional Lozi Map with Coexistence of Thread and Sheet Hyperchaotic Attractor

The most important features of the classical Lozi map La,b (3) are its simplicity and
piecewise linearity, which make formal calculus easily tractable. The previous examples of
Rössler (32), (33), both with a third-order nonlinearity and with five and nine parameters,
cannot be analyzed analytically nor thoroughly by numerical computation. That is why,
in this section, one introduces a much simpler example of hyperchaos based on the use of
piecewise linearity. Moreover, one wants to conserve another essential feature of the Lozi
map: the determinant of the Jacobian matrix ought to be constant. This is a tough condition
that implies defining a non-continuous mapping. However, there are several advantages
for keeping such a determinant constant, such as assuming hyperbolicity.

As pointed out in [17], in two dimensions, the main advantage of the Lozi map over
the Hénon map is that one can prove hyperbolicity without much effort. This is the main
reason why so little is known for the Hénon map, where hyperbolicity is believed to occur
only on Cantor-like sets of parameters. The Lozi map is rather similar to Sinai’s billiards;
in particular, the discontinuity of the differential allows for the uniform hyperbolicity as in
the billiards case. The uniformly hyperbolic attractors were introduced in mathematical
theory on dynamical systems due to Smale, Anosov, Sinai, and other researchers in the
1960s–1970s [54]. Hyperbolic attractors are characterized by roughness or structural stability.
In the context of physical or technical objects, this implies an insensitivity of the dynamical
behavior to small variations in parameters, manufacturing imperfections, interferences,
etc. This may be significant for possible applications [55]. It turned out, however, that
hyperbolic chaos is not widespread in real-world systems, and its implementation requires
special efforts [56].

Hence, the proposed thread–sheet hyperchaotic attractor is
xn+1 = a|xn|+ yn sgn(zn) + 1,
yn+1 = b(xn + zn),
zn+1 = yn sgn(xn) + c|zn|+ 1,

(34)

also represented by the iterates of any initial point (x0, y0, z0)
T by the map

Ta,b,c : R3 −→ R3:

Ta,b,c

 x
y
z

 =

 a|x|+ y sgn(z) + 1,
b(x + z),
y sgn(x) + c|z|+ 1,

 (35)

with sgn(x) = 1 if x ≥ 0, and sgn(x) = −1 if x < 0.
The particularity of this map is that one can observe, for many values of the parameters

(when a = c), the coexistence of two chaotic attractors with a different dimensionality: a
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thread-strange attractor that belongs to the plane (x, z) and a sheet-strange attractor with a
three-dimensional structure. This thread chaotic attractor is a combination of straight lines;
instead, the sheet chaotic attractor seems to be made of many planes (see Figures 11 and 12).

One can find some analogy in dimensionality between the thread chaotic attractor and
the “noodle attractor”proposed by Rössler (32) on the one hand, and on the other hand,
between the sheet chaotic attractor and its folded “curtain” chaotic attractor (33).

-0.5 -0,4 -0,3 -0.2 

Figure 11. Projection onto the (x, y)-plane of the coexisting sheet and thread 3D Lozi map (35)
hyperchaotic attractors for the parameter value a = −1.25, b = 0.1, c = −1.25. Initial value of
the thread-attractor (in green) (x0 = 0.1, y0 = 0.2, z0 = 0.1). Initial value of the sheet-attractor (in
purple) (x0 = 0.11, y0 = 0.2, z0 = 0.1).

Figure 12. Projection onto the (x, z)-plane of the coexisting sheet and thread 3D Lozi map (35) hy-
perchaotic attractors for the parameter value a = −1.25, b = 0.1, c = −1.25. Initial value of the
thread-attractor (in green) (x0 = 0.1, y0 = 0.2, z0 = 0.1). Initial value of the sheet-attractor (in purple)
(x0 = 0.11, y0 = 0.2, z0 = 0.1).
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In this article, we keep the name sheet chaotic attractor even if its structure is more
complicated (see Figures 13 and 14).

Figure 13. Projection onto the (x, y)-plane of the coexisting sheet and thread 3D Lozi map (35)
hyperchaotic attractors for the parameter value a = −1.0, b = 0.2, c = −1.0. Initial value of the
thread-attractor (in red) (x0 = 0.1, y0 = 0.2, z0 = 0.1). Initial value of the sheet-attractor (in cyan)
(x0 = 0.11, y0 = 0.2, z0 = 0.1).
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Figure 14. Projection onto the (x, z)-plane of the coexisting sheet and thread 3D Lozi map (35) hy-
perchaotic attractors for the parameter value a = −1.0, b = 0.2, c = −1.0. Initial value of the
thread-attractor (in red) (x0 = 0.1, y0 = 0.2, z0 = 0.1). Initial value of the sheet-attractor (in cyan)
(x0 = 0.11, y0 = 0.2, z0 = 0.1).

4. Properties of Thread–Sheet Hyperchaotic Attractor

In this section, some properties of Ta,b,c are given. Even if the piecewise linear functions
composing this map allow us to perform explicit calculations, there is a need for a huge
amount of studies to completely understand its dynamics. One can compare this situation
with the studies on the Lozi map, for which, 46 years after its discovery, important features
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are still discovered (see, for example, the Ph. Thesis of Kilassa Kvaternik [57] in 2022 on the
tangential homoclinic points locus of La,b).

4.1. Basic Properties: Jacobian and Symmetry

The map Ta,b,c (35) is much simpler than the hyperchaotic maps proposed by
Rössler (32), (33). It is also different from generalizations of the Lozi map described
in Section 2.2.3. For convenience, henceforth, the following notation of Ta,b,c is used:

Ta,b,c

 x
y
z

 =

 aXx + 1Zy + 1,
b(x + z),
1Xy + cZz + 1,

, (36)

with aX = asgn(x), cZ = csgn(z) (because aXx = a|x| and cZz = c|z|), 1X = sgn(x), and
1Z = sgn(z).

If x 6= 0 and z 6= 0, the Jacobian matrix Ja,b,c of Ta,b,c is definite

Ja,b,c

 x
y
z

 =

 aX 1Z 0
b 0 b
0 1X cZ

, (37)

and, as 1XaX = a and 1ZcZ = c, its determinant is

Det Ja,b,c = −b(a + c).

Therefore, the map is dissipative and can have an attractor if and only if

−1 < −b(a + c) < 1. (38)

It is interesting to note that there is a symmetry conjugating parameters and variables

Ta,b,c(x, y, z) = Tc,b,a(z, y, x). (39)

4.2. The Thread-Attractor

If a = c, there is a special projection of (36) in the plane (x = z, y) that reduces the map
Ta,b,c to Ta,b:

Ta,b

(
x
y

)
=

(
aXx + 1Xy + 1,
2bx.

)
. (40)

This map is a 2D chaotic attractor, which is the thread-attractor observed in Figures 11–14.
Its structure is fractal as shown in Figure 15.
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Figure 15. Magnification of Figure 16 on the (x = z, y)-plane of the thread-attractor, showing its
fractal structure. Parameter value a = −1.0, b = 0.2, c = −1.0, initial value of the thread-attractor
(x0 = 0.1, y0 = 0.2, z0 = 0.1).

Figure 16. Projection onto the (x, y)-plane of the coexisting sheet and thread 3D Lozi map (35)
hyperchaotic attractor for the parameter value a = −1.25, b = 0.2, c = −1.25. Initial value of
the thread-attractor (in purple) (x0 = 0.1, y0 = 0.1, z0 = 0.1). Initial value of the sheet-attractor (in
green) (x0 = 0.1, y0 = 0.2, z0 = 0.1).

4.3. Fixed Points and Period-Two Orbits

As seen in Section 2.1.3, fixed points play an important role in shaping the chaotic
attractors and their basin of attraction. In the following, the plane (x, z) is divided into
four quadrants: Q1 = {x ≥ 0, z ≥ 0}, Q2 = {x < 0, z ≥ 0}, Q3 = {x < 0, z < 0}, Q4 =
{x ≥ 0, z < 0}.

The fixed points of Ta,b,c are obtained, solving the system

Ta,b,c

 x
y
z

 =

 x
y
z

, (41)

whose solutions are: 
xF =

1−cZF−bXF+bZF
∆ ,

yF =
b(2−aXF−cZF )

∆ ,

zF =
1−aXF−bZF+bXF

∆ ,

(42)

where
∆ = aXF cZF + b(a− 1ZF − 1XF + c) + 1− cZF − aXF ,
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with bXF = b1XF , bZF = b1ZF , provided the sign of xF and zF are in accordance with those
of the coefficients in the quadrant where the solution belongs (see example below and in
Section 4.4). This implies that there can exist at most (but not always) four fixed points (one
in each quadrant) instead of only two for the 2D Lozi map.
The related eigenvalues of the Jacobian are the roots of the characteristic polynomial

P(λ) = −λ3 + λ2(aX + cZ) + λ(b(1X + 1Z)aXcZ)− b(a + c). (43)

As an example, the fixed point in the quadrant Q1 is
xF1 = 1−c

∆ ,
yF1 = b(2−a−c)

∆ ,
zF1 = 1−a

∆ ,
(44)

with ∆ = ac + b(a + c− 2) + 1− c− a, because 1XF1
= 1 = 1ZF1

and bXF1
= b = bZF1

.
For some parameter values such as those of Figures 11–14, it seems that the chaotic

attractor is generated by the unstable invariant manifold of a period-two orbit belonging to
Q4 and Q2. The piecewise linear form of (36) allows us to compute the periodic orbit of any
period. In the case of period-two with (xPQ2 , zPQ2) ∈ Q2 and (xPQ4 , zPQ4) ∈ Q4, the value
of (xPQ4 , yPQ4 , zPQ4) is obtained solving the system

(−a2 + b− 1)xPQ4 + ayPQ4 + bzPQ4 = a− 1,
abxPQ4 − yPQ4 − bczPQ4 = −2b,
bxPQ4 − cyPQ4 + (b + c2 + 1)zPQ4 = c + 1,

(45)

which gives the solution
xPQ4 = a−2ab2−ab−2b+ac2−bc2−c2−2b2c+abc−bc−1

∆ ,
yPQ4 = −a2b2−2ab2−ab2−ab−2b+b2c2−abc2−bc2−2b2c+a2bc+bc

∆ ,
zPQ4 = −a2+2ab2+a2b−ab+2b−a2c+2bc2−abc−bc−c−1

∆ ,

(46)

with ∆ = b2(a + c)2 − (a2 + c2 + a2c2) − 1, provided that ∆ 6= 0 and the condition
(xPQ4 , zPQ4) ∈ Q4 depending on the parameter values is verified. Then,

xPQ2 = zPQ4 , yPQ2 = yPQ4 , zPQ2 = xPQ4 .

4.4. Numerical Examples

This new three-dimensional mapping can generate a large variety of chaotic and
hyperchaotic attractors. We give five examples of such behavior in this section. In the first
three examples, there is the coexistence of thread and sheet chaotic attractors. However, their
shapes are different and they are constituted by a different number of pieces. In the two last
examples, the blow up of the attractors with respect to parameter a and b is highlighted.

4.4.1. Case a = −1.25, b = 0.1, c = −1.25, One-Piece Chaotic Attractor, Two-Piece
Hyperchaotic Attractor

The value of the Jacobian is 0.25. In this case, there exist four fixed points: two of them
are in the plane (x = z, y) and are related to the thread-attractor.

In Q1, the fixed point belongs to the plane x = z (see Figures 11 and 12):

xF1 = zF1 = 20/41 ≈ 0.487804, yF1 = 4/41 ≈ 0.097560,

The corresponding eigenvalues of the Jacobian matrix are

λ1 ≈ −1.393521, λ2 = −1.25, λ3 ≈ +0.143521.
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Hence, the dimension of the unstable invariant manifold in R3 of this fixed point
(xF1 , yF1 , zF1) is two (and that of the stable invariant manifold is one). However, in the plane
(x = z, y), the map Ta,b (40) has only two eigenvalues:

λ1 ≈ −1.393521, λ2 = +0.143521.

Therefore, in this plane, the unstable invariant manifold of the fixed point (xF1 , yF1) is
only one-dimensional, like the stable invariant manifold. This unstable invariant manifold
nests the skeleton of the thread chaotic attractor (see Figure 11).

In Q3, the fixed point also belong to the plane x = z:

xF3 = zF3 = −20, yF3 = −4 .

The corresponding eigenvalues of the Jacobian matrix are

λ1 ≈ +1.06161, λ2 = +1.25, λ3 ≈ +0.188394.

Hence, the dimension of the unstable invariant manifold in R3 of this fixed point
(xF1 , yF1 , zF1) is two (and that of the stable invariant manifold is one). However, in the plane
(x = z, y), the map Ta,b (40) has only two eigenvalues:

λ1 ≈ +1.06161, λ2 = +0.188394.

Therefore, in this plane, the unstable invariant manifold of the fixed point (xF3 , yF3)
is only one-dimensional, like the stable invariant manifold. Analogous with the results
displayed in Section 2.1.3, it is reasonable to think that the invariant stable manifold of
(xF3 , yF3) allows us to define the boundary of the basin of attraction of the thread-attractor.
However, this point remains to be proven (see, for example, Figure 1.2 of [57] regarding the
complicated shape of the stable and unstable manifold of the unstable fixed point of La,b
for the values a = 1.46, b = 0.86).

The other two fixed points (xF2 , yF2) and (xF4 , yF4) belong to Q2 and Q4.

xF2 =
−2.45
0.8125

≈ −3.015385, yF2 =
−0.2

0.8125
≈ −0.246154, zF2 =

0.45
0.8125

≈ 0.553846,

and

xF4 =
0.45

0.8125
≈ 0.553846, yF4 =

−0.2
0.8125

≈ −0.246154, zF4 =
−2.45
0.8125

≈ −3.015385.

One can remark the symmetry:

xF2 = zF4 , yF2 = yF4 , zF2 = xF4 .

The corresponding eigenvalues of the Jacobian matrix of the fixed points (xF2 , yF2 , zF2),
and (xF4 , yF4 , zF4) are

λ1 ≈ +1.32341, λ2 = +0.162759, λ3 ≈ −1.16065.

There also exists a period-two orbit of the type discussed in the previous section:

xPQ4 =
196
225
≈ 0.87111, yPQ4 =

16
225
≈ 0.071111, zPQ4 =

−4
225

= −0.16;

xPQ2 = zPQ4 , yPQ2 = yPQ4 , zPQ2 = xPQ4 .

It seems that each piece of this sheet hyperchaotic attractor is linked to one component
of the period-two orbit (see Figures 11 and 12).

Moreover, there does not exist a period-two orbit going from Q1 to Q3 and vice-versa.
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4.4.2. Case a = −1.0, b = 0.2, c = −1.0, Multi-Pieces Chaotic and Hyperchaotic Attractor

The value of the Jacobian is 0.4. In this case, there exist only three fixed points; one
of them is in the plane (x = z, y) and is related to the thread-attractor (see Figures 13 and 14).

xF1 = zF1 = 5/8 = 0.625, yF1 = 1/4 = 0.25.

The eigenvalues of the Jacobian matrix are

λ1 ≈ −1.306226, λ2 = −1.0, λ3 ≈ +0.306226.

Hence, the dimension of the unstable invariant manifold of this fixed point is one (and
that of the stable invariant manifold is one). However, in the plane (x = z, y), the map (40)
has only two eigenvalues:

λ1 ≈ −1.306226, λ2 = +0.306226.

Therefore, in this plane, the unstable invariant manifold of this fixed point is only one-
dimensional like for the stable manifold. This unstable invariant manifold is the skeleton
of the thread-attractor (see Figure 13).

However, in Q3, there is no fixed point. Therefore, the boundary of the basin of
attraction of the thread chaotic attractor cannot be linked to a second fixed point in the plane.

The other two fixed points (xF2 , yF2) and (xF4 , yF4) belong to Q2 and Q4:

xF2 = −6, yF2 = −1, zF2 = 1,

and
xF4 = 1, yF4 = −1, zF4 = −6.

One can again remark the symmetry:

xF2 = zF4 , yF2 = yF4 , zF2 = xF4 .

There also exists a period-two orbit of the type discussed in the previous section:

xPQ4 = 1, yPQ4 = 1/6 ≈ 0.16666, zPQ4 = −1/6 ≈ −0.16666;

xPQ2 = zPQ4 , yPQ2 = yPQ4 , zPQ2 = xPQ4 .

In this case, the geometry of the multi-piece hypechaotic attractor is more com-
plicated that that of the previous case, even if the period-two orbit belongs to it (see
Figures 13 and 14).

4.4.3. Case a = −1.25, b = 0.2, c = −1.25, Connected Hyperchaotic Attractor

The value of the Jacobian is 0.5. In this case, there exist only three fixed points; one of
them is in the plane (x = z, y) and is related to the thread-attractor (see Figures 16 and 17).

xF = 20/37 ≈ 0.54054 = zF, yF = 8/37 ≈ 0.21622.

The eigenvalues of the Jacobian matrix are

λ1 ≈ −1.514171, λ2 = −1.25, λ3 ≈ +0.264171.
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Figure 17. Projection onto the (x, z)-plane of the coexisting sheet and thread 3D Lozi map (35) hy-
perchaotic attractor for the parameter value a = −1.25, b = 0.2, c = −1.25. Initial value of the
thread-attractor (in purple) (x0 = 0.125, y0 = 0.2, z0 = 0.125). Initial value of the sheet-attractor (green)
(x0 = 0.1, y0 = 0.2, z0 = 0.1).

Hence, the dimension of the unstable invariant manifold of this fixed point is two (and
that of the stable invariant manifold is one). However, in the plane (x = z, y), the map (40)
has only two eigenvalues:

λ1 ≈ −1.514171, λ2 = +0.264171.

Therefore, in this plane, the unstable invariant manifold of this fixed point is only
one-dimensional. This unstable invariant manifold is the skeleton of the thread-attractor.
However, in Q3, there is no fixed point.

The other two fixed points (xF2 , yF2) and (xF4 , yF4) belong to Q2 and Q4.

xF2 =
−2.65
1.0625

≈ −2.49412, yF2 =
−0.4

1.0625
≈ −0.376471, zF2 =

0.65
1.0625

≈ 0.611765,

and

xF4 =
0.65

1.0625
≈ 0.611765, yF4 =

−0.24
1.0625

≈ −0.376471, zF4 =
−2.65
1.0625

≈ −2.49412,

with, again, the symmetry

xF2 = zF4 , yF2 = yF4 , zF2 = xF4 .

There also exists a period-two orbit of the type discussed in the previous section:

xPQ4 =
212
245
≈ 0.86531, yPQ4 =

32
245
≈ 0.13061, zPQ4 =

−52
245

= −0.21224;

xPQ2 = zPQ4 , yPQ2 = yPQ4 , zPQ2 = xPQ4 .

This case is similar to the first case; however, the two components of the sheet hyper-
chaotic attractor have merged (see Figures 16 and 17).
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4.4.4. Case a = −1.365 and a = −1.369, b = 0.36, c = 0.6, Blow up of the Attractor versus
the Parameter a

In this example, the rich dynamics of (36) are highlighted using an example where a
very small change of 2‰ in the value of a leads to a blow up of the chaotic attractor (see
Figures 18 and 19). When a = −1.365 (resp. a = −1.369), the Jacobian value is 0.27576
(resp. 0.27684).

Figure 18. Projection onto the (x, y)-plane of two attractors of the 3D Lozi map (35) chaotic attractor
for the parameter values a = −1.365 and a = −1.369, b = 0.36, c = 0.6. Initial value of both attractors
(x0 = 0.2, y0 = 0.1, z0 = 0.0). When a = −1.365, the attractor consists of small red lines (in the three
oval regions surrounded by a red curve); instead, when a = −1.369, there is a blow up of the green
attractor, which is partially displayed in this magnification of the (x, y)-phase plane.

Figure 19. Projection onto the (x, z)-plane of two attractors of the 3D Lozi map (35) chaotic attractor
for the parameter values a = −1.365 and a = −1.369, b = 0.36, c = 0.6. Initial value of both of the
attractors (x0 = 0.2, y0 = 0.1, z0 = 0.0). When a = −1.365, the attractor consists of small cyan lines
(in the four oval regions surrounded by a red curve); instead, when a = −1.369, there is a blow up of
the purple attractor, which is partially displayed in this magnification of the (x, z)-phase plane.

4.4.5. Case a = −1.369, b = 0.02 to b = 0.36, c = 0.6, Blow up of the Attractor versus the
Parameter b

In this example, several values of the parameter b with the same value of a = −1.369
lead to a blowing up of the size of the chaotic attractor (see Figures 20 and 21). When
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b = 0.02, the Jacobian value is 0.01538; for b = 0.05, the Jacobian value is 0.03845; for
b = 0.09, the Jacobian value is 0.06921, and, for b = 0.16, the Jacobian value is 0.12304.

Figure 20. Projection onto the (x, y)-plane of two attractors of the 3D Lozi map (35) chaotic attractor
for the parameter values a = −1.369, c = 0.6, b = 0.02 (purple), b = 0.05 (green), b = 0.09 (magenta),
and b = 0.16 (cyan). Initial value for all attractors (x0 = 0.2, y0 = 0.1, z0 = 0.0). The attractors for
each value of b remain in a small bounded region of the (x, y)-plane. When b is increased (see next
figure), there is a blowing up of the size of the attractor, which however remains bounded.

Figure 21. Continuation of the previous figure. Projection onto the (x, y)-plane of two attractors of
the 3D Lozi map (35) chaotic attractor for the parameter values a = −1.369, c = 0.6, b = 0.16, (cyan),
and b = 0.36 (purple). Initial value of both attractors (x0 = 0.2, y0 = 0.1, z0 = 0.0). When b = −0.16,
the attractor has a small size; instead, when a = 0.36, there is a blow up of the purple attractor, which
is partially displayed in this magnification of the (x, y)-phase plane.
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5. Conclusions

In this article, a three-dimensional piece-wise linear extension of the two-dimensional
Lozi map was introduced that respects the constraint of a constant Jacobian. It displays a
special property never highlighted before for chaotic mappings: the coexistence of thread
chaotic attractors (i.e., attractors that are formed by a collection of lines) and sheet hy-
perchaotic attractors (i.e., attractors that are formed by collection of planes). This new
three-dimensional mapping can generate a large variety of chaotic and hyperchaotic attrac-
tors. Five prototypical examples of such behavior were given. In the first three examples,
there is the coexistence of thread and sheet chaotic attractors. However, their shapes are
different and they are constituted by a different number of pieces. In the last two examples,
the blow up of the attractors with respect to parameter a and b is highlighted.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author sincerely dedicates this manuscript to Michal Misiurewicz who first
studied the two-dimensional map, proved the existence of a strange attractor and coined the name
Lozi map.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Zeraoulia, E. Lozi Mappings—Theory and Applications; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA,

2013; 309p.
2. Letellier, C.; Abraham, R.; Shepelyansky, D.L.; Rössler, O.E.; Holmes, P.; Lozi, R.; Glass, L.; Pikovsky, A.; Olsen, L.F.; Tsuda, I.; et al.

Some elements for a history of the dynamical systems theory. Chaos 2021, 31, 053110. [CrossRef] [PubMed]
3. Ruelle, D. Dynamical systems with turbulent behavior. In Mathematical Problems in Theoretical Physics, Lecture Notes in Physics;

Dell’Antonio, G., Doplicher, S., Jona-Lasinio, G., Eds.; Springer: Berlin/Heidelberg, Germany, 1978; Volume 80, pp. 341–360;
International Mathematics Physics Conference, Roma, 1977. [CrossRef]

4. Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [CrossRef]
5. Hénon, M. A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 1976, 50, 69–77. [CrossRef]
6. Smale, S. Differentiable dynamical systems. I Diffeormorphisms. Bull. Am. Math. Soc. 1967, 73, 747–817. [CrossRef]
7. Lozi, R. Un attracteur étrange (?) du type attracteur de Hénon. J. Phys. 1978, 39, C5-9–C5-10. [CrossRef]
8. Misiurewicz, M. Strange attractors for the Lozi mappings. Ann. N. Y. Acad. Sci. 1980, 357, 348–358. [CrossRef]
9. Misiurewicz, M.; Stimac, S. Symbolic dynamics for Lozi maps. Nonlinearity 2016, 29, 3031–3046. [CrossRef]
10. Kucharski, P. Strange attractors for the family of orientation preserving Lozi Maps. arXiv 2022, arXiv:2211.10296v1.
11. Baptista, D.; Severino, R.; Vinagre, S. The basin of attraction of Lozi Mappings. Int. J. Bifurc. Chaos 2009, 19, 1043–1049. [CrossRef]
12. Ishii, Y. Towards a kneading theory for Lozi mappings I: A solution of the pruning front conjecture and the first tangency problem.

Nonlinearity 1997, 10, 731–747. [CrossRef]
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