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Abstract Alcohol misuse during adolescence (AAM) has been associated with disruptive devel-
opment of adolescent brains. In this longitudinal machine learning (ML) study, we could predict 
AAM significantly from brain structure (T1-weighted imaging and DTI) with accuracies of 73 -78% 
in the IMAGEN dataset (n∼1182). Our results not only show that structural differences in brain can 
predict AAM, but also suggests that such differences might precede AAM behavior in the data. We 
predicted 10 phenotypes of AAM at age 22 using brain MRI features at ages 14, 19, and 22. Binge 
drinking was found to be the most predictable phenotype. The most informative brain features were 
located in the ventricular CSF, and in white matter tracts of the corpus callosum, internal capsule, 
and brain stem. In the cortex, they were spread across the occipital, frontal, and temporal lobes and 
in the cingulate cortex. We also experimented with four different ML models and several confound 
control techniques. Support Vector Machine (SVM) with rbf kernel and Gradient Boosting consis-
tently performed better than the linear models, linear SVM and Logistic Regression. Our study also 
demonstrates how the choice of the predicted phenotype, ML model, and confound correction 
technique are all crucial decisions in an explorative ML study analyzing psychiatric disorders with 
small effect sizes such as AAM.

Editor's evaluation
This study uses a large dataset on alcohol misuse in adolescents that have been followed up for 
several years. MRI data are used to test whether the structure and connectivity of the brains of 
adolescents can predict their alcohol misuse later in their early twenties. The results show that 
binge drinking can be predicted out of multiple brain phenotypes with good accuracy, even after 
controlling for many confounding variables. This study can be impactful as it suggests a re-evalua-
tion of studies of the effect of alcohol on the adolescent brain.

Introduction
Many adolescents participate in risky and excessive alcohol consumption behaviors (Crews et al., 
2007), especially in European and North American countries. Several studies have identified that such 
early and risky exposure to alcohol is a potential risk factor that can lead to the development of Alcohol 
Use Disorder (AUD) later in life (DeWit et al., 2000; Grant et al., 2006; Nixon and McClain, 2010). 
During adolescence and early adulthood (age 10–24), the human brain undergoes maturation charac-
terized by an increase in white matter (WM) (Lebel and Beaulieu, 2011) and an initial thickening and 
later thinning of grey matter (GM) regions (Giedd, 2004). Researchers have suggested that excessive 
alcohol use during this period might disrupt normal brain maturation, causing lifelong effects (Crews 
et  al., 2007; Monti et  al., 2005; Chambers et  al., 2003). Therefore, understanding how alcohol 
misuse during adolescence is related to the development of Alcohol Use Disorder (AUD) later in life is 
crucial to understanding alcohol addiction. Furthermore, uncovering how adolescent alcohol misuse 
(AAM) is associated with their brain at different stages of adolescent brain development can help to 
implement a more informed public health policy surrounding alcohol use during this age. Previous 
studies: Several studies in the last two decades have attempted to uncover how adolescent alcohol 
misuse (AAM) and their structural brain are related. These are summarised in Table 1. Earlier studies 
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collected data with small sample size of 30–100 subjects and compared specific brain regions (such as 
the hippocampus or the pre-frontal cortex (pFC)) between adolescent alcohol misusers (AAMs) and 
mild users or non-users (controls). They used structural features such as regional volume (De Bellis 
et al., 2000; Nagel et al., 2005; De Bellis et al., 2005), cortical thickness (Squeglia et al., 2012), 
or white matter tract volumes (McQueeny et  al., 2009; Jones and Nagel, 2019). These studies 
found differences between the groups in regions such as the hippocampus (De Bellis et al., 2000; 
Nagel et  al., 2005), cerebellum (De Bellis et  al., 2005), and the frontal cortex (De Bellis et  al., 
2005). However, these findings are not always consistent across studies (Jones et al., 2018). This 
inconsistency is also evident from the findings in the last column of Table 1. Another group of studies 
investigated into whether AAM disrupts the natural developmental trajectory of adolescent brains 
(Jacobus et  al., 2013; Luciana et  al., 2013; Pfefferbaum et al., 2018; Jones and Nagel, 2019; 
Sullivan et al., 2020; Robert et al., 2020). These studies reported that the brains of AAMs showed 
accelerated GM decline (Luciana et al., 2013; Pfefferbaum et al., 2018; Sullivan et al., 2020) and 
attenuated WM growth (Luciana et al., 2013; Sullivan et al., 2020) compared to controls. However, 
brain regions reported were not consistent between these studies either and do not tell a coherent 
story (Jones et al., 2018) (see Table 1). These differences in findings could be potentially due to the 
following reasons:

1.	 Heterogeneous disease with a weak effect size: Alcohol misuse has a heterogeneous expres-
sion in the brain (Zahr and Pfefferbaum, 2017). This heterogeneity might be driven by alcohol 
misuse affecting diverse brain regions in different sub-populations depending on demographic, 
environmental, or genetic differences (Grant et al., 2015). Furthermore, the effect of alcohol 
misuse on adolescent brain structure can be weak and hard to detect (especially with the mass-
univariate methods used in previous studies). The possibility of several disease subtypes exas-
perated by the small signal-to-noise ratio can generate incoherent findings regarding which 
brain regions are affected by alcohol.

2.	 Higher risk of false-positives: Most previous studies have small sample size that are prone to 
generate inflated effect size (Button et al., 2013). Furthermore, these studies employ mass-
univariate analysis techniques that are vulnerable to multiple comparisons problem (Lindquist 
and Mejia, 2015) and can produce false-positives if ignored. These factors coupled with the 
possibility of publication bias to produce positive results (Ioannidis, 2005) can have a high like-
lihood of generating false-positive findings (Scheel et al., 2021).

3.	 Several metrics to measure alcohol misuse: There is no consensus on what is the best phenotype 
to measure AAM. Many studies use binge drinking or heavy episodic drinking as a measure 
of AAM (Squeglia et al., 2012; Whelan et al., 2014; Jones and Nagel, 2019; Robert et al., 
2020), while few others use a combination of binge drinking, frequency of alcohol use, amount 
of alcohol consumed and the age of onset of alcohol misuse (Squeglia et al., 2015; Pfeffer-
baum et al., 2018; Kühn et al., 2019; Seo et al., 2019; Sullivan et al., 2020). These differences 
in analyses could potentially produce different findings.

Multivariate exploratory analysis: Over the last years, data collection drives such as IMAGEN 
(Mascarell Maričić et al., 2020), NCANDA (Brown et al., 2015), and UK Biobank (Sudlow et al., 
2015) made available large-sample multi-site data with ‍n > 1000‍ that are representative of the general 
population. This enabled researchers to use multivariate, data-driven, and exploratory analysis tools 
such as machine learning (ML) to detect effects of alcohol misuse on multiple brain regions (Whelan 
et  al., 2014; Squeglia et  al., 2017; Seo et  al., 2019; Filippi et  al., 2021; Jia et  al., 2021; Yip 
et al., 2022). Such whole-brain multivariate methods are preferable over the previous mass-univariate 
methods as they have a higher sensitivity to detect true positives (Hebart and Baker, 2018). Further-
more, ML can be easily used for clinical applications such as computer-aided diagnosis, predicting 
future development of AUD, and future relapse of patients into AUD (Shiraishi et al., 2011).

Due to these advantages, several exploratory studies using ML have been attempted in AUD 
research (Whelan et  al., 2014; Seo et  al., 2019; Squeglia et  al., 2017). We further extend this 
line of work by analyzing the newly available longitudinal data from IMAGEN (‍n ∼ 1182‍ at 4 time 
points of adolescence) (Mascarell Maričić et al., 2020) by designing a robust and reliable ML pipe-
line. The goal of this study is to explore the relationship between adolescent brain and AAM using 
ML and discover any brain features that can be associated with AAM. As shown in Figure  1, we 
predict AAM at age 22 using brain morphometrics derived from structural imaging captured at three 
stages of adolescence – ages 14, 19, and 22. The structural features of different brain regions are 
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Table 1. Literature review of studies that look into structural brain differences between adolescent 
alcohol misusers (AAMs) and control subjects.
The studies are sorted by the year of publication. For each study, the sample size ‘n’, the main 
analysis technique, and the main structural differences found in AAMs are listed.

Study (year) n Analysis / method Sructural differences in AAMs

De Bellis et al., 2000 36

Statistically compare (univariate)
regional brain volumes between 
groups Lower hippocampal volume.

Nagel et al., 2005 31

Statistically compare (univariate)
regional brain volumes between 
groups

Lower volume only in left 
hippocampus aftercontrolling 
for other psychiatric 
comorbidities.

De Bellis et al., 2005 42

Statistically compare (univariate)
regional brain volumes between 
groups

Lower pFC, cerebellum 
volumes in malesbut AAMs had 
comorbid mental disorders.

McQueeny et al., 2009 28
Mass-univariate analysis 
ofskeletonized FA voxels (DTI)

Binge drinkers had lower FA 
in18 white matter areas.

Squeglia et al., 2012 59

Statistically compare (univariate) 
regional brain volumes between 
groups

No effect of binge drinking 
oncortical thickness and sex-
specificdifferences among 
AAMs in left frontal cortex.

Jacobus et al., 2013 54
Mass-univariate analysis of 
skeletonized FA voxels (DTI)

No effect in AAM-only group, 
but lowerFA in AAM and 
comorbid marijuana users.

Luciana et al., 2013 55

Longitudinal mass-univariate 
analysis of cortical thickness, white 
matter extent, DTI-extracted FA 
and MD

Accelerated GM thinning in 
mid frontal gyrus, attenuated 
WM growth with lower FAin left 
caudate, thalamus.

Whelan et al., 2014 692

Exploratory analysis using ML 
to find best predictors of AAM 
amongdemographic, psychosocial, 
genetic, cortical volumes, and fMRI 
variables

Current AAMs have lower 
GMVs in parts of frontal 
lobe and higher GMV in 
right putamen. Future AAMs 
have lower GMV in right 
parahippocampal gyrus and 
higher in left postcentral gyrus.

Squeglia et al., 2015 137

Exploratory analysis using ML to 
find best predictors of AAM among 
demographic, neuropsychological, 
cortical thickness, and fMRI 
variables

Future AAM have thinner GM 
inprecuneus, lateral occipital, 
ACC, PCC, and frontal and 
temporal cortex.

Pfefferbaum et al., 2018 483
Longitudinal mass-univariate 
analysisof GMV development

Accelerated GMV reduction in 
frontal brain regions.

Jones and Nagel, 2019 113
Modeling the WM microstructure 
development (DTI) for each voxel

Altered frontostriatal WM 
microstructureis predictive of 
future AAM.

Kühn et al., 2019 ≈1500
Growth curve modeling ofGM 
volumes

Higher GMV in caudate nucleus 
and left cerebellum predicts 
future AAMs

Seo et al., 2019 ≈1000

ML analysis of cue-related brain 
region followed by mass-univariate 
analysis for identifying region 
importance

Current AAMs show reduced 
GMV inmedial-pFC, oFC, 
thalamus, bilateral ACC,left 
amygdala and anterior insular.

Sullivan et al., 2020 548 Longitudinal mass-univariate 
(GLM)analysis of cerebellar region 
volumes

Cerebellum: accelerated GM 
decline in 2 sub-regions and 
accelerated expansion ofWM in 
one sub-region and CSF.

Table 1 continued on next page

https://doi.org/10.7554/eLife.77545
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extracted from two modalities of structural MRI, that is, T1-weighted imaging (T1w) and Diffusion 
Tensor Imaging (DTI). The most informative structural features for the ML model prediction are discov-
ered using SHAP (Lundberg and Lee, 2017; Lundberg et  al., 2020) to reveal the most distinct 
structural brain differences between AAMs and controls. Furthermore, we use multiple phenotypes 
of alcohol misuse such as the frequency of alcohol consumption, amount of consumption, onset of 
misuse, binge drinking, the AUDIT score, and other combinations, and systematically compare them. 
We also compare four different ML models, and multiple methods of controlling for confounds in 
ML and derive important methodological insights which are beneficial for reliably applying ML to 
psychiatric disorders such as AUD. To promote reproducibility and open science, the entire codebase 
used in this study, including the initial data analysis performed on the IMAGEN dataset are made 
available at https://github.com/RoshanRane/ML_for_IMAGEN(​Rane and Kim, 2022; copy archived at 
swh:1:rev:6c493672ed700ded73c2b77e8976a5551921e634).

Results
The results are reported in the following four subsections: In subsection 1, different confound-control 
techniques are compared and the most suitable technique for this study is determined. Subsection 
2 shows the results of the ML exploration performed with ten AAM labels, four ML models, and 
using imaging data from three time points of adolescence. This stage helps to determine the best 
phenotype of AAM and the best ML model. Subsection 3 reports the final results on the independent 
data ‍holdout‍ for all three time point analyses and subsection 4 shows the most informative features 
found in each of the analyses. Subsection 5 reports the result from the additional leave-one-site-out 
experiment.

Study (year) n Analysis / method Sructural differences in AAMs

Robert et al., 2020 726

Mass-univariate analyses of voxels, 
followed by analysis of the direction 
of causality using causal bayesian 
networks

Accelerated GM atrophy in 
parts of the temporal cortex 
and left prefrontal cortex.

Filippi et al., 2021 671

ML analysis for predictors 
ofresilence towards polysubstance 
use

Adolescents resilient to PSU 
show larger GMV in the 
bilateral cingulate gyrus.

Acronyms::: GM:grey matter; WM:white matter; CSF-cerebrospinal fluid; GMV:grey matter volume; pFC:prefrontal 
Cortex; oFC:orbitofrontal cortex; ACC:anterior cingulate cortex; PCC:posterior cingulate cortex; GLM:generalized 
linear models; ML:machine learning; DTI:Diffusion Tensor Imaging; FA:Fractional Anisotropy; MD:mean diffusivity.

Table 1 continued
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Figure 1. An overview of the analysis performed. Morphometric features extracted from structural brain imaging are used to predict Adolescent Alcohol 
Misuse (AAM) developed by the age of 22 using machine learning. To understand the causal relationship between AAM and the brain, three separate 
analyses are performed by using imaging data collected at three stages of adolescence: age 14, age 19, and age 22.

https://doi.org/10.7554/eLife.77545
https://github.com/RoshanRane/ML_for_IMAGEN
https://archive.softwareheritage.org/swh:1:dir:087b3e0b49221fbf1e8e145e0b79ba5a856ab457;origin=https://github.com/RoshanRane/ML_for_IMAGEN;visit=swh:1:snp:f48b26d4ce0ce39ba38965697100f63132274db0;anchor=swh:1:rev:6c493672ed700ded73c2b77e8976a5551921e634


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Rane et al. eLife 2022;11:e77545. DOI: https://doi.org/10.7554/eLife.77545 � 6 of 33

Confound correction techniques
The sex ‍csex‍ and recruitment site ‍csite‍ of subjects confound this study (refer to subsection 5.1 in ‘Mate-
rials and methods’) and their influence on the study needs to be controlled. We test three confound 
correction techniques on data ‍explore‍ – (a) confound regression (b) counterbalancing with undersam-
pling and (c) counterbalancing with oversampling. To verify if these methods work as expected, the 
same analysis approach from Görgen et  al., 2018 and the approach by Snoek et  al., 2019 are 
employed. For the two confounds ‍csex‍ and ‍csite‍, this requires us to test five input-output combinations 
(‍X → y‍, ‍X → csex‍, ‍X → csite‍, ‍csex → y‍ and ‍csite → y‍) for a given ‍X → y‍ analysis.

Figure 2 shows the results of comparing different confound correction techniques for the ‘Binge’ 
phenotype. The following conclusions can be derived from this comparison:

1. Sex and site can confound the AAM analysis: As shown in subplot (a), all the input-output combi-
nations involving the confounds (‍X → csex‍, ‍X → csite‍, ‍csex → y‍ and ‍csite → y‍) produce significant predic-
tion accuracies before any confound correction is performed. This further adds to the evidence that 
both the confounds ‍csex‍, ‍csite‍ can strongly influence the accuracy of the main analysis ‍X → y‍ and 
confound the analysis. 2. Confound regression is not a good choice when followed by a non-linear 
ML method: Following confound regression, the results of ‍X → csex‍ and ‍X → csite‍ should become 
non-significant as the signal sc has been removed from ‍X ‍. However, it is seen that in some cases 

Figure 2. Comparing confound correction techniques. Five input-output settings are compared within each confound correction technique: ‍X → y‍, 

‍X → csex‍, ‍X → csite‍, ‍csex → y‍, and ‍csite → y‍. (a) shows the results before any correction is performed, (b) shows the results of performing confound 
regression, and (c) and (d) show the results from counterbalancing by undersampling the majority class and oversampling the minority class, respectively. 
Statistical significance is obtained from 1,000 permutation tests and is shown with ** if ‍p < 0.01‍, * if ‍p < 0.05‍, and ‘n.s’ if ‍p ≥ 0.05‍.

https://doi.org/10.7554/eLife.77545
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the non-linear models SVM-rbf and GB are capable of detecting the confounding signal sc from the 
imaging data. The red arrow in the subplot (b) points out one such case in the example shown. This 
is not surprising as the standard confound regression removes linear components of the signal sc but 
does not remove any non-linear components that might still be present in ‍X ‍ (Görgen et al., 2018; 
Dinga et al., 2020). Furthermore, confound regression carries an additional risk of also regressing-out 
the useful signal in ‍X ‍ that does not confound the analysis ‍X → y‍ but is a co-variate of both ‍c‍ and 

‍y‍ (Dinga et al., 2020). 3. Counterbalancing with oversampling is the best choice for this study: As 
expected, counterbalancing forces the ‍csex → y‍ and ‍csite → y‍ accuracies to chance-level by removing 
the correlation between ‍c ∼ y‍ (subplots c and d). It can be seen that after the undersampled counter-
balancing the results of the main analysis ‍X → y‍ also become non-significant as indicated by the red 
arrow in (c). This drastic reduction in performance is likely due to the reduction in the sample size of 
the training data by ‍n ∼ 100 − 250‍ from undersampling. Therefore, counterbalancing with oversam-
pling of the minority group is a better alternative compared to undersampling.

This comparison was also repeated for two other AAM phenotypes - ‘Combined-seo’ and ‘Binge-
growth’ and the above findings were found to be consistent across all of them. Hence, counter-
balancing with oversampling is used as the confound-control technique in the main analysis. When 
performing over-sampled counterbalancing, it is ensured that the oversampling is done only for the 
training data.

ML exploration
The results from the ML exploration experiments are summarised in Figure 3. For the different AAM 
phenotypes, the balanced accuracies range between 45 and 73%. It must be noted that the results 
across different phenotypes are not directly comparable as each AAM phenotype classification task 
has a different sample size varying between ‍≈ 620 − 780‍ (refer to ‘Materials and methods’ Table 2 and 
Appendix 1—table 2 for the list of phenotypes and their respective sample size). These differences 
in the number of samples in the two classes AAM and controls could add additional variance in the 
accuracy. Nevertheless, some useful observations can be made from the consistenties found across 
the three time point analyses, depicted in subplots (a), (b), and (c) of Figure 3:

1.	 The most predictable phenotype from structural brain features for all three time point analyses 
is ‘Binge’ which measures the total lifetime experiences of being drunk from binge drinking.

2.	 Other individual phenotypes such as the amount of alcohol consumption (Amount), frequency 
of alcohol use (Frequency) and the age of AAM onset (Onset) are harder to predict from brain 
features compared to the binge drinking phenotype. The results on ‘Combined-seo’ and 
‘Combined-ours’ shows that using phenotypes measuring amount and frequency of drinking in 
combination with binge drinking seems to also be detrimental to model performance.

3.	 All models perform poorly at predicting AAM phenotypes derived from AUDIT. This is surprising 
as AUDIT is considered a de facto screening test for measuring alcohol misuse (Kranzler and 
Soyka, 2018).

4.	 Among the four ML models, the SVM with non-linear kernel SVM-rbf, and the ensemble learning 
method GB perform better than the linear models LR and SVM-lin. This is further evident in the 
summary plot (d) in the figure.

In summary, the non-linear ML models SVM-rbf and GB coupled with the ‘Binge’ phenotype consis-
tently perform the best in all three time point analyses. This is more clearly visible in the summary 
figure (d) where the results from all three analyses are combined in a single plot. Similar general 
observations can be made when the AUC-ROC metric is used to measure model performance (see 
Figure 3—figure supplement 1).

Generalization
The generalization test is performed with ‘Binge’ phenotype as the label and the two non-linear ML 
models, SVM-rbf and GB. The final results are shown in Figure 4. For the three analyses using imaging 
data from age 22, age 19, and age 14, as input, an average balanced accuracy of 78%, 75.5%, and 
73.5% are achieved, respectively. Their average ROC-AUC scores are 83.93%, 83.1%, and 81.5% for 
the respective analyses. The accuracies for all three time point analyses are significant with ‍p < 0.01‍. To 
get a better intuition, please refer to Figure 4—figure supplement 1 that shows the model accuracies 
against the accuracies obtained from permutation tests.

https://doi.org/10.7554/eLife.77545
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Figure 3. Results of the ML exploration experiments: The ten phenotypes of AAM tested are listed on the y-axis and the four ML models are 
represented with different color coding as shown in the legend of figure (a). For a given AAM label and ML model, the point represents the mean 
balanced accuracy across the 7-fold CV and the bars represent its standard deviation. Figure (a) shows the results when the imaging data from age 22 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.77545
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To further assess the causality in the ‍MRIage14 → AAMage22‍ analysis, we repeated it by using only 
subjects who had no binge drinking experiences by age 14 (‍n = 477‍) and also with subjects who had a 
maximum of one binge drinking experience (‍n = 565‍) by age 14. The balanced accuracy obtained on 
the holdout set was ‍72.9 ± 2%‍ and ‍71.1 ± 2.3%‍, respectively.

Important brain regions
Following the generalization test, the most informative structural brain features are determined for 
the SVM-rbf model, as it performs relatively better among the two non-linear models tested on data 

‍holdout‍ (see Figure 4). Figure 5 shows the list of the most important features for all three time point 
analyses and illustrates where they are located in the brain. It also shows whether these features have 
lower-than-average or higher-than-average values when the ML model predicts the subjects as AAMs.

Several clusters of regions and feature values can be identified. Most of the important subcor-
tical features are located around the lateral ventricles and the third ventricle and include CSF-related 
features such as the CSF mean-intensity, volume of left choroid plexus, and left corticospinal tract in 
the brain stem. Several white matter tracts are found to be informative such as parts of the corpus 
callosum, internal capsule, and posterior corona radiata. Furthermore, all of these white matter tracts, 
along with the brain stem have lower-than-average intensities in AAM predictions. The prominent 
cortical features are spread across the occipital, temporal, and frontal lobes. In the ‍MRIage22 → AAMage22‍ 
analysis important cortical features appear in the occipital lobe. In contrast, for the future prediction 
analyses ‍MRIage19 → AAMage22‍ and ‍MRIage14 → AAMage22‍, clusters appear in the limbic system (parts 

(FU3) is used, figure (b) shows results for age 19 (FU2) and figure (c) for age 14. Figure (d) shows the results from all three time point analyses in a single 
plot along with the interval of the balanced accuracy that were non-significant (‍p ≤ 0.05‍) when tested with permutation tests.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. ML exploration results shown with AUC-ROC metric.

Figure 3 continued

Table 2. 10 phenotypes of Adolescent Alcohol Misuse (AAM) are derived and compared in this 
analysis.
A description of each phenotype is provided here along with the link to the IMAGEN questionnaires 
ID used to generate the phenotype.

No. Phenotype Description Questionnaire

1 Frequency
Number of occasions drinking alcohol in last 12 
months ESPAD 8b.

2 Amount
Number of alcohol drinks consumed on atypical 
drinking occasion ESPAD prev31,AUDIT q2.

3 Onset
Had one or more binge-drinking experiences by the 
age of 14 ESPAD 29d

4 Binge
Total drunk episodes from binge-drinking in lifetime 
(by age 22) ESPAD 19a,AUDIT q3.

5 Binge-growth
Longitudinal trajectory of binge-drinking experiences 
had per year

Growth curveof ESPAD 
19b.

6 AUDIT AUDIT screening test performed at the year of scan AUDIT-total (q1-10).

7 AUDIT-quick Only the first 3 questions of AUDIT screening test AUDIT-freq (q1-3).

8 AUDIT-growth
Longitudinal changes in the AUDIT score measured 
over the years

Growth curve ofAUDIT-
total.

9 Combined-seo

A combined risky-drinking phenotype from Seo et al., 
2019 generated using amount, frequency, and binge-
drinking data

ESPAD 8b, 17b, 19b,and 
TLFB alcohol2

10 Combined-ours

A combined risky-drinking phenotype developed 
by clusteringamount, frequency, and binge-drinking 
trajectory

AUDIT q1, q2,ESPAD 19a, 
growthcurve of ESPAD 
19b.

https://doi.org/10.7554/eLife.77545
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of the cingulate cortex and right parahippocampal gyrus), frontal lobe (left-pars orbitalis, left-frontal 
pole, right-precentral gyrus, and left-rostral middle frontal gyrus) as well as in the temporal lobe (left-
inferior temporal gyrus, left-temporal pole, and right-bank of the superior temporal sulcus). In the 
occipital lobe, AAMs predictions have lower grey matter thickness in the right-cuneus, lateral occip-
ital, and pericalcarine cortices, and higher curvature index in left-cuneus and left-pericalcarine cortex. 
The list of all the informative features are provided in Appendix 1—table 3 along with their feature 
type, modality, and respective SHAP values in each CV folds.

Cross-site experiment
The result from the leave-one-site-out CV experiment are shown in Figure 6. The ML models perform 
close-to-chance for all AAM labels in the ML exploration experiments and fail to produce a significant 
performance for any of the three time points in the generalization test. For the ‘Binge’ label in the ML 
exploration stage, the model accuracy displays very high variance, as compared to the main exper-
iment (compare Figure 6 with Figure 3 (d)). This suggests that the performance of the ML models 
varies greatly across sites in this study.

Discussion
For over two decades, researchers have tried to uncover the relationship that exist between adoles-
cent alcohol misuse (AAM) and brain development. Many previous studies found that such a relation-
ship exists (see Table 1) but with low-to-medium effect size (Nagel et al., 2005; Whelan et al., 2014; 
Squeglia et al., 2017; Seo et al., 2019; De Bellis et al., 2005; McQueeny et al., 2009; Luciana 
et al., 2013). The brain regions linked with AAM varied greatly across studies (see highlighted text 
in Table 1). This inconsistency in findings and effect sizes could be due to methodological limitations, 
small sample studies, unavailability of long-term longitudinal data like IMAGEN (Mascarell Maričić 
et al., 2020), or simply due to the heterogeneous expression of AAM in the brain. In our study, ML 
models predicted AAM with significantly above-chance accuracies in the range ‍73.1% − 78%‍ (ROC-
AUC in ‍81.5% − 83.9%‍) from adolescent brain structure captured at ages 14, 19, and 22. Thus, our 
results demonstrate that adolescent brain structure is indeed associated with alcohol misuse during 
this period.

The causality of the relationship between adolescent brain structure and AAM is not clear 
(Whelan et al., 2014; Robert et al., 2020). The relationship could arise from alcohol misuse inducing 

Figure 4. Final results for the three time point analyses on the ‘Binge’ drinking AAM phenotype obtained with the two non-linear ML models, kernel-
based support vector machine (SVM-rbf) and gradient boosting (GB). The figure shows the mean balanced accuracy achieved by each ML model within 
each analysis while the table lists the combined average scores for each analysis. The ML models are retrained seven times on data ‍explore‍ with different 
random seeds and evaluated on data ‍holdout‍ to obtain an estimate of the accuracy with a standard deviation. Statistical significance is obtained from 
1000 permutation tests and is shown with ** if ‍p < 0.01‍, * if ‍p < 0.05‍, and ‘n.s’ if ‍p ≥ 0.05‍.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Visualization of the permutation test results.

https://doi.org/10.7554/eLife.77545
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neurotoxicity (Zahr and Pfefferbaum, 2017) causing the observed changes in their brains. It could 
also be that these structural differences precede AAM and such adolescents are just more vulnerable 
towards alcohol misuse (Chambers et al., 2003; Sanchez-Roige et al., 2019). Such neuropsycholog-
ical predisposition could stem from genetic predispositions or from influencing environmental factors 
such as early stress or childhood trauma (Baker et al., 2013; Ross et al., 2021), misuse of other drugs 
such as cannabis (French et al., 2015) and tobacco, and parental drug misuse (Jones and Nagel, 
2019). There might also be an interaction effect between alcohol-induced neurotoxity and environ-
mental and genetic predispositions (Robert et al., 2020). While the direction of causality is still under 
active investigation (Robert et  al., 2020; Bourque et  al., 2016), the significantly high accuracies 
obtained in our study for ‍MRIage19 → AAMage22‍ and especially ‍MRIage14 → AAMage22‍ suggest that these 
structural differences might be preceding alcohol misuse behavior. Out of the 265 subjects that took 
the ESPAD survey at age 14 and belonged to the AAM category in ‍MRIage14 → AAMage22‍ analysis, 
83.3% of subjects reported having no or just one binge drinking experience until age 14. When we 
repeated the ‍MRIage14 → AAMage22‍ analysis with only the subjects who had no binge drinking experi-
ences (‍n = 477‍) or a maximum of one binge drinking experience (‍n = 565‍) by age 14, we obtained a 
balanced accuracy of ‍72.9 ± 2%‍ and ‍71.1 ± 2.3%‍ respectively, on the holdout data. This is comparable 
to the main result of ‍73.1 ± 2%‍. This result provides further evidence for the findings of Robert et al., 
2020 that certain cerebral predispositions might precede alcohol abuse in adolescents. Thus, like 
(Robert et al., 2020) we also advocate caution when interpreting the results from previous cross-
sectional studies suggesting alcohol-induced brain atrophy. We identified the most informative brain 
features for the ML predictions using SHAP that has been successfully applied to medical data (Lund-
berg and Lee, 2017; Lundberg et al., 2020; Molnar, 2022). The important features were found to be 
distributed across several subcortical and cortical regions of the brain, implying that the association 
between AAM and brain structure is widespread and heterogeneous. In accordance with previous 
studies, AAM was associated with lower DTI-FA intensities in several white matter tracts and the brain 
stem (McQueeny et al., 2009; Jacobus et al., 2013; Jones et al., 2018) and reduced GM thickness 
(Squeglia et al., 2017; Pfefferbaum et al., 2018), especially in the occipital lobe. Features of anterior 
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Figure 5. Most informative structural features for SVM-rbf model’s predictions on data ‍holdout‍. Most important features are listed and their locations 
are shown on a template brain for a better intuition for each of the three time point analyses. The features are color coded to also display whether 
these features have lower-than-average or higher-than-average values when the model predicts alcohol misusers. This figure is only illustrative and an 
exhaustive list of all informative features with their corresponding SHAP values are given in the Appendix 1—table 3. (Acronyms:: AAM: adolescence 
alcohol misuse, area: surface area, volume: gray matter volume, thickness: average thickness, thicknessstd: standard deviation of thickness, intensity: 
mean intensity, meancurv: integrated rectified mean curvature, gauscurv: integrated rectified gaussian curvature, curvind: intrinsic curvature index).
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cingulate cortex (Squeglia et al., 2017; Seo et al., 2019; Jones et al., 2018), middle frontal and 
precentral gyrus (Luciana et al., 2013), hippocampus (De Bellis et al., 2000; Nagel et al., 2005), and 
right parahippocampal gyrus (Whelan et al., 2014) were also found to be informative, although the 
type of feature and the average feature value in AAMs differed from previous studies. Features from 
the frontal lobe and cerebellum were informative only for future AAM (Jones and Nagel, 2019) but 
not for current AAM prediction, in contrast to findings of De Bellis et al., 2005; Whelan et al., 2014; 
Seo et al., 2019. This difference could be due to the meticulous confound control performed in this 
study for sex and site of the subjects. Additionally, our ML models also found CSF-related features in 
the third and lateral ventricles, and some regions of the temporal cortex as informative features for 
AAM prediction.

In the ML exploration stage, we found that the binge drinking phenotype, which is commonly 
used in previous studies (Nagel et al., 2005; Whelan et al., 2014; Robert et al., 2020), was the 
most predictable phenotype of AAM as compared to frequency, amount, or onset of alcohol misuse. 
Curiously, phenotypes derived from AUDIT, which is a gold standard of screening for alcohol misuse 
(Kranzler and Soyka, 2018), did not score significantly above-chance in any of the three time point 

Figure 6. Analysis repeated with leave-one-site-out cross validations (CV).

https://doi.org/10.7554/eLife.77545
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analyses. Other similar compound metrics that use measures of alcohol use frequency and amount 
along with binge drinking, such as ‘Combined-seo’ and ‘Combined-ours’, also perform worse than 
using just the binge drinking information. This suggests that using other phenotypes of alcohol misuse 
in combination with binge drinking was detrimental to the prediction task, as compared to using 
only binge drinking. Different phenotypes of AAM capture slightly different psychosocial character-
istics of adolescents (Castellanos-Ryan et al., 2013). For instance, ‘Amount’ correlates significantly 
with agreeableness and a life history of relocation valence (‍r = −0.14‍, ‍p < 0.001‍), accident valence 
(‍r = −0.16‍, ‍p < 0.001‍) and sexuality frequency (‍r = −0.17‍, ‍p < 0.001‍), whereas the other phenotypes 
do not (‍p > 0.01‍). ‘AUDIT’ and it’s derivatives significantly correlate with impulsivity trait (‍r = 0.23‍, 

‍p < 0.001‍) on SURPS, where as ‘Binge’ does not (‍r = 0.09‍, ‍p > 0.01‍) but they both correlate with sensa-
tion seeking trait (‍r > 0.29‍, ‍p < 0.001‍) as also found in previous studies (Castellanos-Ryan et al., 2011). 
Castellanos-Ryan et al., 2013 have found that these two traits manifest differently in the brain. There-
fore, one can hypothesize that the psychosocial differences and their associated neural correlates 
(Castellanos-Ryan et al., 2011) between ‘Binge’ and the other AAM phenotypes might explain the 
‍2 − 10%‍ higher accuracy obtained with ‘Binge’.

In contrast to the main results, the ML models failed to attain significantly high prediction accuracy 
in the leave-one-site-out experiment as the scores displayed high variance across the CV folds (refer 
to Figure 6). On further investigation, we found that the ML models performed especially poorly on 
test data from Dublin and Nottingham (‍≤ 60%‍ balanced accuracy) across all time points and metrics. 
On the contrary, models always performed better-than-chance on subjects from Dresden, Mannheim, 
and Hamburg. When we compared this with the main experiment, a similar pattern was found. The 
models least generalized to test subjects from the sites Dublin and Nottingham, across all 7 CV folds. 
Notably, the accuracy across sites did not correlate with the sample size of the sites, the ratio of AAMs 
to controls in the site, or their sex distribution. The results are shown in Appendix 1—figure 2 and 
Appendix 1—figure 3. Altogether, these results suggest that the relationship discovered in this study 
performs diversely on subjects from different sites and does not generalize equally across all sites of 
the IMAGEN dataset.

Methodological insights: To the best of our knowledge, this is the first study to analyze and reports 
results on the complete longitudinal data from IMAGEN, including the follow-up 3 data. Two previous 
studies, (Whelan et al., 2014; Seo et al., 2019) performed similar ML analysis on the IMAGEN data 
and unlike us, found only a weak association between structural imaging and AAM. The logistic 
regression model in Whelan et al., 2014 scored ‍58 ± 8%‍ ROC-AUC when predicting AAM at age 
14 from structural imaging features collected at age 14 (BL) and ‍63 ± 7%‍ ROC-AUC at predicting 
AAM at age 16 (FU1). This lower accuracy with high variance obtained in their experiments can be 
attributed to - (a) the relatively smaller sample size used in their study (‍n ∼ 265 − 271‍), (b) unavailability 
of long-term AAM information from IMAGEN’s FU2 and FU3 data, (c) using only a linear ML model, 
and (d) only using GM volume and thickness as structural features. On the other hand, Seo et al., 
2019’s models achieved accuracies in the range ‍56 − 58%‍ when predicting AAM at age 19 (FU2) 
using imaging features from age 19, and did not get a significant accuracy when they used imaging 
features from age 14. This lower performance can be attributed to the following experimental design 
decisions - (a) Seo et al., 2019 used GM volume and thickness features from just 24 regions of the 
brain associated to cue-reactivity, (b) their AAM phenotype is not the best phenotype of AAM as 
evident from the results of our ML exploration (see results for ‘Combined-seo’ in Figure 3), and (c) the 
confound-control technique used in their study, confound regression, can result in under-performance 
as demonstrated in Figure 2.

In contrast to these previous works, our study has the following advantages: First, we use 719 
structural features extracted from 2 MRI modalities, T1w and DTI, that include not only GM volume 
and thickness but also surface area, curvature, and WM and GM intensities from all cortical and 
sub-cortical regions in the brains. Second, we empirically derive the best AAM label for the task by 
comparing different phenotypes previously used in the literature. For the different AAM phenotypes, 
the balanced accuracies range between chance to significant performance (‍45% − 73%‍), emphasizing 
the importance of the choice of the label in such ML studies with low effect sizes. And finally, we test 
different confound correction techniques and use the one that effectively controls for the influence of 
confounds without also destroying the signal of interest. In summary, the higher accuracy in the current 

https://doi.org/10.7554/eLife.77545
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study can be attributed to not just the availability of long-term data on AAM but also to the rigorous 
comparison of different labels of AAM, different ML models and confound control techniques.

Among the four different ML models tested, the two non-linear models, SVM-rbf and GB, consis-
tently performed better than the two linear models. We also explicitly ensured that the confounding 
influence of sex and site were eliminated by combining suggestions from Görgen et al., 2018 and 
Snoek et al., 2019. We found evidence that the linear confound regression technique used often in 
previous ML-based neuroimaging studies (Seo et al., 2019; Robert et al., 2020; Snoek et al., 2019), 
might not be the best choice as it cannot be used with non-linear models such as SVM-rbf or Naive 
Bayes used in Seo et al., 2019 and distorts the signal of interest from the neuroimaging data (Dinga 
et al., 2020) as seen in Figure 2. In contrast, counterbalancing using oversampling is recommended 
as it successfully removed the influence of the confounds without reducing the sample size in the 
study.

Future work: An important follow-up work would involve further investigating the association we 
found between AAM and adolescent brain structure and its clinical implications. For instance, one 
can analyze if certain environmental risk factors such as childhood abuse, parental drug use, or life 
event stressors mediate the relationship we found between brain structure and AAM behavior in the 
IMAGEN cohort. Another direction would be to further investigate the brain features associated with 
AAM and understand the relative contributions of specific brain networks (for example, similar to 
Seo et al., 2019) and certain specific feature types such as thickness, or volumes. Specifically, since 
ML feature attribution methods such as SHAP can be misled by the presence of correlated features 
(Molnar, 2022; Lundberg and Lee, 2017), it would be necessary to before-hand determine which 
features might be correlated and either exclude them, or permute correlated features together in 
groups when computing SHAP values (Molnar, 2022). Another important future work would be to 
reproduce our findings on another data set such as NCANDA (Brown et al., 2015) comprising adoles-
cent subjects from a different geographic region. It would also be interesting to explore other modal-
ities such as functional connectivity (fMRI) to predict AAM (Ruan et al., 2019).

Conclusion
This study analyzed alcohol misuse in adolescents and their brain structure in the large, longitudinal 
IMAGEN dataset consisting of ‍n ∼ 1182‍ healthy adolescents (Schumann et  al., 2010; Mascarell 
Maričić et al., 2020). We found that alcohol misuse in adolescents can be predicted from their brain 
structure with a significant and high accuracy of ‍73% − 78%‍. More importantly, alcohol misuse at age 
22 could be predicted from the brains at age 14 and age 19 with significant accuracies of 73.1% and 
75.55%, respectively. This suggests that the structural differences in the brain might at least partly be 
preceding alcohol misuse behavior (Robert et al., 2020). Results of a leave-one-site-out experiment 
also revealed that the relationship discovered by the ML models may not generalize to all the sites in 
the IMAGEN dataset equally, particularly, to subjects from the sites Nottingham and Dublin. We exten-
sively compared different phenotypes of alcohol misuse such as frequency of alcohol use, amount of 
use, the onset of alcohol misuse, and binge drinking occasions and found that binge drinking is the 
most predictable phenotype of alcohol misuse. We also compared four different ML models and 
found that the two non-linear models - SVM-rbf and GB - perform better than the two linear models, 
SVM-lin and LR. We also evaluated different confound-control techniques and found that counter-
balancing with oversampling is most beneficial for the current task. To the best of our knowledge, this 
was the first study to analyze and report results on the follow-up 3 data from IMAGEN. The results of 
our exploratory study advocate that collecting long-term, large cohorts of data, representative of the 
population, followed by a systematic ML analysis can greatly benefit research on complex psychiatric 
disorders such as AUD.

Materials and methods
Data
The IMAGEN dataset (Mascarell Maričić et  al., 2020; Schumann et  al., 2010) is currently one 
of the best candidates for studying the effects of alcohol misuse on the adolescent brain. Most 
large-sample studies listed in Table 1 [27, 29 and 30] used the IMAGEN dataset for their analysis. 
It consists of data collected from over 2000 young people and includes information such as brain 
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neuroimaging, genomics, cognitive and behavioral assessments, and self-report questionnaires 
related to alcohol use and other drug use. The data was collected from 8 recruitment centers across 
Europe, at 4 successive time points of adolescence and youth. Figure  7 (a) shows the number 
of subjects at each time point and the number of participants that were scanned. Subjects were 
not scanned in FU1. More details regarding recruitment of subjects, acquisition of psychosocial 
measures, and ethics can be found on the IMAGEN project website (https://imagen-europe.com/
standard-operating-procedures). Written and informed consent was obtained from all participants 
by the IMAGEN group and the study was approved by the institutional ethics committee of King’s 
College London,University of Nottingham, Trinity College Dublin, University of Heidelberg, Tech-
nische Universität Dresden, Commissariat à l’Energie Atomique et aux Energies Alternatives, and 
University Medical Center at the University of Hamburg in accordance with the Declaration of 
Helsinki (Association, 2013).

Structural neuroimaging data
To investigate the effects of alcohol on brain structure, two MRI modalities have been used predom-
inantly in the literature - (a) T1-weighted imaging (T1w), and (b) Diffusion Tensor Imaging (DTI) (see 
Table 1). While T1w MRI can be used to derive general features of the brain structure such as cortical 
and sub-cortical volumes, areas, and gray-matter thicknesses, DTI captures white matter microstruc-
tures by probing water molecule motion. An axial slice (‍z = 80‍) of both of these MRI modalities of a 
control subject from the IMAGEN data are shown in Figure 8. Both modalities were recorded using 
3-Tesla scanners. The T1w images were collected using sequences based on the ADNI protocol (Wyman 
et al., 2013). The IMAGEN consortium used Freesurfer’s recon-all pipeline to process these images 
and extract structural features. This involves registering the T1w-images to the Talairach template 
brain, automatic extraction of gray matter, white matter and cerebrospinal fluid (CSF) sections, and 
then segmenting them into 34 cortical regions per hemisphere and 45 sub-cortical regions.The grey 
matter volume (in mm3), surface area (in mm2), thickness (in mm), and surface curvature, are extracted 
for each of the cortical regions using the Desikan-Killiany atlas, along with global features such as total 
intracranial, total grey matter, white matter and CSF volumes. For the subcortical regions, the mean 
intensity and volume are determined. This results in a total of 656 structural features per subject. DTI 
scans were acquired using the protocol described in Jones et al., 2002 and Fractional Anisotropy (FA) 
is derived from the DTI using FMRIB’s Diffusion Toolbox FDT. The DTI-FA images are then non-linearly 
registered to the MNI152 space (1 mm3) and the average FA intensity at 63 regions with white matter 
tracts are calculated using the TBSS toolbox (Smith et al., 2006) by the IMAGEN consortium (https://​
github.com/imagen2/imagen_processing/tree/master/fsl_dti). Subjects with FA intensity greater than 
3 standard deviations from the mean are excluded as outliers.

Figure 7. The IMAGEN dataset: (a) Data is collected longitudinally at 4 stages of adolescence - age 14 or baseline (BL), age 16 or follow-up 1 (FU1), age 
19 or follow-up 2 (FU2) and, finally age 22 or follow-up 3 (FU3). The blue bar shows the number of subjects with brain imaging data. (b) The distribution 
of subjects across sex and the site of recruitment, for the 1182 subjects that were scanned at FU3 (c) The same distribution across sex and site also 
showing the proportion of subjects that meet the AUDIT ’risky drinkers’ category at FU3.

https://doi.org/10.7554/eLife.77545
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Figure 8. A schematic representation of the experimental procedure followed for all 3 time point analyses. In the ML exploration stage, we experiment 
with four ML models and 10 phenotypes of AAM on 80% of the data (data ‍explore‍) using a sevenfold cross-validation scheme. Once the best ML model, 
the best phenotype of AAM, and the most appropriate confound-control technique are determined, the generalization test is performed on data 

‍infer‍ by using the data ‍holdout‍ subset as the test data. The result from the generalization test are reported as the final results and the informative brain 
features are determined at this stage using SHAP (Lundberg and Lee, 2017).
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Alcohol misuse phenotypes
Information related to alcohol use and misuse can be found in the AUDIT screening test (AUDIT 
questionnaire (link)) (Alcohol Use Disorder Identification Test), ESPAD questionnaire (European 
School Survey Project on Alcohol and other Drug), and the TLFB logs (Timeline-Followback Inter-
view). Previous studies used different metrics of alcohol misuse such as the number of binge drinking 
episodes (Squeglia et al., 2012; Whelan et al., 2014; Jones and Nagel, 2019; Robert et al., 2020), 
the frequency and amount of alcohol consumption (Squeglia et al., 2015; Pfefferbaum et al., 2018; 
Kühn et al., 2019; Seo et al., 2019; Sullivan et al., 2020), and even the age of onset of alcohol 
misuse (Ruan et al., 2019) to characterize AAM. There has not yet been a systematic comparison of 
these different phenotypes.

In this paper, we use four alcohol misuse metrics to derive ten phenotypes of AAM, (a) frequency 
of alcohol use, (b) amount of alcohol consumed per drinking occasion, (c) year of onset of alcohol 
misuse, and (d) the number of binge drinking episodes. These phenotypes are listed in Table 2 and 
include each of the individual metrics, their combinations, and their longitudinal trajectories from age 
14–22. The longitudinal phenotypes, ‘Binge-growth’ and ‘AUDIT-growth’, are generated using latent 
growth curve models (Deeken et al., 2020) to capture the alcohol misuse trajectory over the four time 
points - BL, FU1, FU2, and FU3. To derive the AAMs group and the controls from each alcohol misuse 
metric, a standard procedure is followed that is similar to Seo et al., 2019; Ruan et al., 2019. First, 
the phenotype is used to categorize the subjects into three stages of alcohol misuse severity - heavy 
AAMs, moderate misusers, and safe users. Moderate misusers are then excluded from the analysis 
(‍≈ 250 − 400‍ subjects) and ML classification is performed with heavy misusers as AAMs and safe users 
as controls. Appendix 1—figure 1 and Appendix 1—table 2 shows how the subjects are divided into 
these three sub-groups for each of the 10 phenotype. Appendix 1—table 2 also lists the final number 
of subjects in each sub-group in the FU3 analysis, as an example. The data analysis procedure can be 
found in the project code repository (https://github.com/RoshanRane/ML_for_IMAGEN; Rane and 
Kim, 2022) within the dataset-statistics notebook.

Confounds in the dataset
Diagram (c) in Figure 7 shows how the proportion of risky alcohol users varies across the 8 recruit-
ment sites and among the male and female subsets at each site within the dataset. For example, a 
greater portion of subjects from sites like Dublin, London, and Nottingham indulge in risky alcohol 
use compared to the sites from mainland Europe. Similarly, at most sites, a greater portion of males 
are risky alcohol users compared to females. These systematic differences can confound ML analyses 
since ML models can use the sex and site information present in the neuroimaging data to indirectly 
predict AAM, instead of identifying alcohol-related effects in the brain structure. This problem of 
confounds in multivariate analysis (Rao et al., 2017; Görgen et al., 2018; Snoek et al., 2019) and the 
methods used to control for its effects are explained in further detail in the next section.

Methods
Three time point analyses are performed in this study. Each time point analysis is divided into two 
stages called the ML exploration stage and the generalization test stage. The ML exploration is 
performed with 80% of data (randomly sampled). The remaining 20% (‍n = 147‍) serve as an inde-
pendent test data, called the data ‍holdout‍, which is only used once, in the end, to perform the final 
inference and report the results. This design allows us to first determine the best ML algorithm for 
the task and the best phenotype of AAM, and then test the results on an independent subset of the 
data. Pseudocode of this pipeline is provided at the end of Appendix (Algorithm 1) and was imple-
mented using python’s scikit-learn software package (https://scikit-learn.org/stable/about.html). The 
two-stage cross-validation (CV) with a inner n-fold cross-validation (CV) procedure is designed to 
prevent ‘double dipping’ (Vul et al., 2009; Kriegeskorte et al., 2009). All data preprocessing and 
analysis is executed only on the training data in data ‍explore‍, and only applied on the test data during 
validation. This ensures that there are no data leakage issues that were found in several previous ML 
neuroimaging studies (Wen et al., 2020). Since multi-site data is used, another additional experi-
ment is performed to test the ability of the ML models to generalize across recruitment sites. In this 
experiment, instead of randomly sampling 20% of the subjects for the data ‍holdout‍, all subjects from 

https://doi.org/10.7554/eLife.77545
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the Nottingham site (‍n = 176‍) are set aside as data ‍holdout‍. Then, subjects from each of the remaining 7 
recruitment sites are used as onefold in the sevenfold CV performed during the ML exploration phase. 
This method of CV is termed leave-one-site-out CV (Rozycki et al., 2018).

MRI features
The 656 morphometric features extracted from T1w sMRI modality and the 63 features extracted from 
the DTI-FA modality are used together as the input for the ML models at both stages. Each feature is 
standardized to have zero mean and unit variance across all subjects (mean and variance are estimated 
only on the training data, and then applied to the test data). Features with zero variance are dropped.

ML models
Four ML models are tested in this study. These include logistic regression (LR), linear SVM (SVM-lin) 
(Boser et al., 1992), kernel SVM with a radial basis function (KSVM-rbf) (Chapelle et al., 2002), and 
a gradient boosting (GB) classifier (Friedman, 2001). LR and SVM-lin are linear ML methods, whereas 
SVM-rbf and GB are capable of learning non-linear mappings. We use the liblinear (Fan et al., 2008) 
implementation of SVM-lin and XGBoost (Chen and Guestrin, 2016) implementation of GB. GB is 
an ensemble learning method. The hyperparameters of the models are tuned using an inner-CV and 
are listed in Appendix 1—table 1. Testing 4 different ML models helps to account for any modeling-
related bias (Wolpert and Macready, 1997) in the final results. Combining the 4 ML models and 
the ten different phenotypes of AAM, we end up with a total of 40 ML classification runs in the ML 
exploration stage.

Evaluation metrics
The model performance is evaluated using the balanced accuracy metric (Urbanowicz and Moore, 
2015). It is formulated as the mean of the model’s accuracies for each class (AAM and controls) in 
the classification. Therefore, it is insensitive to class imbalances in the data. Along with this, the 
area under the curve of the receiver-operator characteristic (AUC-ROC) is also calculated. In ML 
exploratory stage, seven measures are obtained for each metric from the outer sevenfold CV which 
helps to estimate mean of the model performance and get a sense of the variance (Bengio and 
Grandvalet, 2004). During generalization test, the ML models are retrained seven times on data 

‍explore‍ with different random seeds and reevaluated on data ‍holdout‍ to gain an estimate of the model 
performance on data ‍holdout‍. The statistical significance of the final generalization test accuracies is 
calculated using permutation testing (Ojala and Garriga, 2010). The permutation test is performed 
by running the entire ML pipeline with randomly shuffled labels in the training data, while keeping 
the labels in the test data fixed. This is repeated 1000 times to generate the null-hypothesis (H0) 
distribution and derive the p-value. Since three time point analyses are performed on the same 
subjects, Bonferroni correction is applied on the p-values to control for the false-positive rate from 
this multiple comparison.

Model interpretation
The associations learned by the ML models between structural brain features and AAM is extracted 
using a post-hoc feature importance attribution technique called SHAP (Lundberg and Lee, 2017). 
SHAP (SHapley Additive exPlanations) uses the concept of Shapley Values from cooperative game 
theory to fairly determine the marginal contribution of each input feature to model prediction 
(Lundberg and Lee, 2017). Among the several SHAP estimator types (Molnar, 2022), we use the 
permutation-based estimator as it is compatible with all 4 ML models used in this analysis.

Following the generalization test, a SHAP value (‍Ss,f ‍) is generated for each input feature ‍f ‍ of 
each subject ‍s‍ in data ‍holdout‍. The goal is to determine which of the 719 features were most infor-
mative for the model when classifying AAMs from controls. Feature importance can be determined 
by looking at the average absolute SHAP value of each feature across all subjects ‍Sf = 1

N
∑N

s=1|Ss,f|‍, 
where ‍N ‍ denotes the total subjects in data ‍holdout‍. The most significant features are chosen as those 
features that have ‍Sf ‍ value at least two times higher than the average SHAP value across all the 
features ‍S = 1

719
∑719

f=1|Sf|‍. Our feature importance estimation can be confounded by the presence of 
correlated features (Molnar, 2022). When several features are correlated, the ML models might use 

https://doi.org/10.7554/eLife.77545
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only some features for its prediction and ignore the rest and this preferential bias can be reflected in 
the SHAP values. Since the generalization test is repeated seven times with different random seeds, 
we have seven instances of ‍Sf ‍ available. Therefore, we repeat the SHAP estimation on each ‍Sf ‍ 
with different random permutations and check for consistency of feature importance scores across 
these seven trials. Only the features that consistently have ‍Sf ≥ 2 ∗ S‍ across at least six of the seven 
runs are listed as the most informative features. Following this, it is determined if these informa-
tive features have higher-than-average or lower-than-average values when predicted as AAM. This 
information is further relevant for deriving clinical insights about how AAM brain structure differs 
from controls.

Correcting for confounds
In ML, a confounding variable ‍c‍ is defined as a variable that correlate with the target ‍y‍ and is deduc-
ible from the input ‍X ‍, and this relationship ‍X → c → y‍ is not of primary interest to the research ques-
tion and hinders the analysis (Snoek et al., 2019). As demonstrated by the diagram on the right, a 
confounding variable ‍c‍ can form an alternative explanation for the relationship between ‍X ‍ and ‍y‍ and 
distract the ML models from detecting the signal of interest sy between ‍X → y‍. In this study, the sex 
of the subjects and their site of recruitment can confound the AAM analysis (Seo et al., 2019) since 
they correlate with the output AAM labels and are predictable from the input structural brain features. 
Instead of detecting the effects of alcohol misuse in the brain sy, the ML models could potentially use 
the information about the confounds sc to predict AAM along the alternative pathway (shown with 
the red dotted lines) and produce significant but confounding results (Seo et al., 2019; Snoek et al., 
2019; Dinga et al., 2020). In neuroimaging studies, two methods have been extensively employed for 
correcting the influence of confounds:

1.	 Confound regression: In this method, the influence of the confounding signal sc on ‍X ‍ is 
controlled by regressing out the signal from features in ‍X ‍(Rao et al., 2017). This can remove 
the alternative confounding explanation pathway by eliminating the link sc between ‍X → c‍.

2.	 Post hoc counterbalancing: The correlation between the confound and the output ‍c ∼ y‍ can be 
removed by resampling the data after the data collection. This method potentially removes the 
alternative confounding pathway by abolishing the relationship ‍c → y‍(Rao et al., 2017). The 
resampling is performed such that the distribution of the values of the confounding variable 
‍c‍ is similar across all classes of ‍y‍ (AAM and controls). So for example, after counterbalancing 
for sex in this study, the ratio of male-to-female subjects should be the same in AAMs and 
controls. One common technique of counterbalancing for categorical confounds (e.g. sex, site) 
involves randomly dropping some samples from the larger classes in ‍y‍ until they are equal. 
This is called counterbalancing with undersampling. However, this will result in a reduction in 
the sample size and hence the statistical power of the study. Another way to counterbalance 
without losing samples involves performing sampling-with-replacement on the smaller classes 
in ‍y‍. This is called counterbalancing with oversampling. One should take care that the sampling-
with-replacement is done only on the training data, after the train-test split is performed.

To assess whether confound regression worked and the confounding signal sc is removed success-
fully, a confound correction method recently proposed by Snoek et al., 2019 can be used. In this 
method, the ML algorithm used in the original analysis is reused to predict the confound ‍c‍ from 
the neuroimaging data ‍X ‍. Following a successful confound regression, the confound should not be 
predictable anymore from ‍X ‍ and ‍X → c‍ should produce insignificant or chance accuracy. Similarly, to 
determine if counterbalancing was successful and the correlation ‍c ∼ y‍ was removed, we used the 
Same Analysis Approach by Görgen et al., 2018. Here, the same ML algorithm is used to predict the 
confound ‍c‍ from the labels ‍y‍(Görgen et al., 2018). An above-chance significant prediction accuracy 
between ‍c → y‍ would indicate that the correlation ‍c ∼ y‍ still exists and the counterbalancing was not 
successful. Since the confounds ‍csex‍ and ‍csite‍ are categorical, they are first one-hot encoded to ensure 
no false ordinal relationship is implied. The confound correction methods are only performed on the 
training data as recommended by Snoek et al., 2019. The balanced accuracy metric used ensures 
that we account for any class imbalances in the test data. Before starting the ML exploration, we first 
compare these different confound correction methods and choose the most suitable method among 
them.

https://doi.org/10.7554/eLife.77545
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Algorithm 1. Pipeline pseudocode: Procedure followed for each of the 3 analyses. The ‘‍⊢‍’ operation represents 
fitting or training the ML model given on the left side of the operation on the data given on the right side:

‍{dataexplore, dataholdout} ⊂ datainfer‍                   �                      ‍▷‍ Keep aside 20% as dataholdout

Start exploratory analysis 
‍M ∈‍ {LR, SVM-lin, SVM-rbf, GB}

‍y ∈ {yfreq, yamount, ...ybinge}‍                     �                       ‍▷‍ select one of 10 AAM phenotypes
for ‍iouter ∈ {1, 2, ..., 7}‍ do                                         ‍▷‍ Split dataexplore into 7 equal outer folds
 � ‍trainouter ← {dataexplore[i] | i ̸= iouter}‍
 � ‍testouter ← {dataexplore[i] | i = iouter}‍
 � for ‍P ∈ P‍ do                                             ‍▷ P‍ is set of all hyperparameter combinations
  �  for ‍iinner ∈ {1, 2, ..., 5}‍ do                                        ‍▷‍ Split trainouter into 5 equal inner folds
   �   ‍traininner ← {trainouter[i] | i ̸= iinner}‍
   �   ‍testinner ← {trainouter[i] | i = iinner}‍
   �   ‍M(P) |= traininner‍
   �   ‍acci =‍ evaluate ‍(M(P), testinner)‍
  �  end for
  �  ‍accP =‍ mean ‍(acci | ∀iinner)‍                         ‍▷‍ average accuracy for hyperparameter combination P
 � end for
 � ‍̂P ← {P |‍ highest ‍(accP | P ∈ P)}‍
 � ‍M(P̂) |= trainouter‍
 � ‍accj =‍ evaluate ‍(M(P̂), testouter)‍
end for
‍acc(M,y) =‍ mean ‍(accj | ∀iouter)‍                                   ‍▷‍ average accuracy for model ‍M ‍ and 
label ‍y‍

‍M̂, ŷ ← {M |‍ highest ‍(acc(M,y) | ∀(M, y))‍                       ‍▷‍ select the best model ‍M̂ ‍ and AAM 
phenotype ‍̂y‍
Start generalization test 

‍M̂(P̂) |= dataexplore‍
‍acc =‍ evaluate ‍(M̂(P̂), dataholdout)‍
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Appendix 1

Appendix 1—table 1. Hyperparameters: Each machine learning (ML) model has a set of 
hyperparameters that are tuned using an inner 5-fold cross-validation during the ML exploration 
stage.
For both ‍C‍ and, ‍γ‍ higher values lead to overfitting and lower values can lead to underfitting. For 
gradient boosting, the maximum depth of the trees is set at, 5 the maximum numbers of estimators 
at, 100 and the subsampling of input features is disabled as counterbalancing is used. The remaining 
parameters are set at the default values as defined in the scikit-learn python package.

Model hyperparameter values tested

Logistic regression C: Inverse of L2 regularization strength 1000, 100, 1.0, 0.001

Linear support vector machine C: Inverse of L2 regularization strength 1000, 100, 1.0, 0.001

Kernel-basedsupport vector machine
C: Inverse of L2 regularization strengthγ: 
kernel coefficient of RBF kernel

1000, 100, 1.0, 
0.001’auto’, ’scale’

Gradient boosting learning_rate 0.05, 0.25

Appendix 1—table 2. AAM phenotype categorization: The table explains how the ten AAM 
phenotypes are derived from the respective IMAGEN questionnaire.
It lists the total values in that question and what range of values are used to categorize the subjects 
into safe users, moderate users and heavy users, respectively. For reference, the sample sizes (‍n‍) 
obtained at FU3 by using these value ranges are also shown in the brackets.

Phenotype
IMAGEN 
questionnaire Totalrange

Safe users 
range (n)

Moderate misusers
range (n) Heavy misusers range (n)

Frequency ESPAD 8b 0-6 0-4 (397) 5 (270) 6 (372)

Amount AUDIT q2 0-4 0 (413) 1 (403) 2-4 (219)

Onset ESPAD 29d 11-21 16-21 (531) 14-15 (288) 11-14 (216)

Binge ESPAD 19a 0-6 0-3 (299) 4-5 (336) 6 (400)

Binge-growth
Growth curveof 
ESPAD 19b 0-9 0-2 (379) 3-5 (420) 6-9 (236)

AUDIT AUDIT-total 0-40 0-4 (443) 5-7 (274) 8-40 (318)

AUDIT-quick AUDIT-freq 0-12 0-3 (402) 4-5 (359) 6-12 (274)

AUDIT-growth
Growth curveof 
AUDIT-total 0-6 0,3 (377) 4 (404) 2,5,6 (254)

Combined-seo

ESPAD 8b, 17b, 
19b,and TLFB 
alcohol2 0-2 0 (345) 1 (404) 2 (286)

Combined-ours

AUDIT q1, q2,ESPAD 
19a, growthcurve of 
ESPAD 19b 0-3 0 (429) 1 (403) 2 (203)

https://doi.org/10.7554/eLife.77545
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Appendix 1—figure 1. Visualizing AAM phenotype categorization: A qualitative comparison showing how the ten 
AAM phenotypes categorize the same subjects into the three alcohol user classes – risky alcohol users, moderate 
users, and safe or non-users. Each color-coded vertical line in the diagram represents one subject, out of the total 
1182 subjects. It can be observed that the Frequency, Onset, and Amount phenotypes categorize very differently 
from Binge, showing that they capture different factors of alcohol misuse. All AUDIT-derived phenotypes are 
similar to each other but are different from the Binge phenotype. Furthermore, sex and site-specific variations can 
be detected. For instance, more males appear on the ‘risky’ groups compared to females. Similarly, most subjects 
from Dublin are clustered on the risky side.

https://doi.org/10.7554/eLife.77545
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Appendix 1—figure 2. ML exploration results per site: Accuracy of the non-linear models per site in the main 
experiments. The sites are ordered from low to high accuracy.

https://doi.org/10.7554/eLife.77545
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Appendix 1—figure 3. ML exploration results per site in leave-one-site-out: Accuracy of the non-linear models 
per site in the leave-one-site-out. The sites are ordered from low to high accuracy.

https://doi.org/10.7554/eLife.77545
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