
HAL Id: hal-04542906
https://hal.science/hal-04542906

Submitted on 11 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Multi-Robot Path Planning based on Petri Net
Models and LTL Specifications

Sofia Hustiu, Cristian Mahulea, Marius Kloetzer, Jean-Jacques J Lesage

To cite this version:
Sofia Hustiu, Cristian Mahulea, Marius Kloetzer, Jean-Jacques J Lesage. On Multi-Robot Path Plan-
ning based on Petri Net Models and LTL Specifications. IEEE Transactions on Automatic Control,
2024, pp.1-8. �10.1109/TAC.2024.3386024�. �hal-04542906�

https://hal.science/hal-04542906
https://hal.archives-ouvertes.fr

1

On Multi-Robot Path Planning based on
Petri Net Models and LTL Specifications

Sofia Hustiu, Cristian Mahulea, Marius Kloetzer, and Jean-Jacques Lesage

Abstract—This paper proposes a method exploiting the advan-
tages of Petri net (PN) and Büchi automata models, by joining
them in a newly defined Composed Petri net representation. Based
on the latter model, collision-free trajectories are computed for
a team of robots. The path planning algorithm is divided into
two steps: computing a solution in a reduced PN model, and
projecting it to the PN assigned to the environment. The results,
given by a set of Mixed Integer Linear Programming (MILP)
problems, yield lower computational complexity when compared
with previous approaches.

Index Terms—High-level specifications, formal methods, Petri
nets, autonomous robots

I. INTRODUCTION

The significance of developing path planning methods for
a team of mobile robots (also known as agents) has inten-
sified in recent years. Different models are used for robots’
movements in a given environment, such as transition systems
(TS) [1], [2] or Petri net (PN) models [3], [4]. In multiple
scenarios, robots are required to fulfill a global goal. Known
formalisms expressing the mission for the team of robots are
based on high-level specifications, such as Linear Temporal
Logic (LTL) [5]. Motion planning should ensure the given
mission by computing collision-free trajectories. Certainly, the
association between the robots and the specification can be
computed in various ways to return a solution, e.g., use of
TS abstractions for heterogeneous robotic systems and model-
checking algorithms for the LTL mission, modeled by a Büchi
automaton (BA).

As far as we know, there is no method to decompose a
global LTL mission, without considering certain assumptions
or particular classes of the LTL formalism, a fact explored
through the current work. [1] proposes to distribute the specifi-
cation into individual tasks solved by only one robot, resulting
in a smaller number of states compared to the centralized
approach with an exponential increase of discrete state w.r.t.
the number of robots. Another planning strategy relies on PN
representations [6], which have the benefits of a graph-like
topology for the motion of the entire team, and an invariant
model w.r.t. number of robots. Work [6] aims to compute

S. Hustiu and M. Kloetzer are with the Dept. of Automatic Control
and Applied Informatics, Technical University “Gheorghe Asachi” of Iasi,
Romania {{hustiu.sofia,kmarius}@ac.tuiasi.ro}.

C. Mahulea is with the Aragón Institute of Engineering Research
(I3A), University of Zaragoza, Maria de Luna 1, 50018 Zaragoza, Spain
{cmahulea@unizar.es}.

J.J. Lesage is with Université Paris-Saclay, ENS Paris-Saclay, LURPA,
91190, Gif-sur-Yvette, France {jean-jacques.lesage@ens-paris-saclay.fr}

The work of C. Mahulea has been partially supported by the MINECO
“Salvador de Madariaga” program. This work was partially supported
by Grants PID2021-125514NB-I00 and TED2021-130449B-I00 funded by
MCIN/AEI/10.13039/501100011033 and by the “European Union NextGen-
erationEU/PRTR”.

robots’ trajectories in the PN model that follows a specific
run (path) in the BA associated with the LTL formula. The
algorithm considers a set of k runs in the form of prefix and
suffix in BA using the k shortest path algorithm, where k ∈ N
is a design parameter. One inconvenience that appears is the
reiteration of the procedure whenever a run in BA cannot be
followed due to the generation of different observations based
on robotic movement in the workspace.

This work considers a parallel approach compared to the se-
quential one of [6]. We propose a sound algorithm that ensures
the attainment of a correct solution (expressed as collision-free
robot trajectories). The contributions of the current work are
as follows:
• Defining the Composed Petri net, which joins the multi-

agent system with the given global LTL mission. A re-
duced model (Quotient PN) is computed w.r.t. the original
PN of the environment, which is further combined with a
Büchi PN model associated with the LTL specification’s
BA. The movement sequence for the team of robots is
returned by an algorithm that includes the solution of
two Mixed Integer Linear Programming problems;

• Providing a sound algorithm ensuring collision-free tra-
jectories that accomplish the LTL mission;

• Scalability of the model for the robotic system, with
the total number of places of the composed PN being
represented by a sum, rather than a product, e.g., as for
automaton product [7].

The paper captures the challenges in the field of robot
motion planning based on related work (Section II), asserts
the problem statement (Section III), seizes the mathematical
notation (Section IV), and defines the contributions of the new
proposed framework (Sections V, VI). The effectiveness of
the current work is assessed through numerical simulations
and comparisons (Section VII), while the last section contains
conclusions and further improvements.

II. RELATED WORK

Path planning for mobile robots started from point-to-
point trajectory for a single agent [8], being extended to
multiple agents (often assumed to be identical) to ensure
given mission(s). An intuitive high-level language is LTL,
which encodes human representation in a logical and temporal
formalism, e.g., “visit region A, then region B and always
avoid region C”, for which a Rabin automaton [9], or a Büchi
automaton [6] is associated.

This formalism is efficient in expressing both local (one
agent) [10] and global (the entire team) [11] missions, being
suitable to plan optimal motion trajectories [12]. Sampling-
based planning methods operate effectively for a single agent,

e.g., using the Rapidly Exploring Random Graph (RRG) al-
gorithm applied to an incremental transition system modeling
the robot [13], and for multi-agent systems, e.g., considering
stochastic optimization techniques and excluding synchroniza-
tions [14].

Multi-robot navigation field is directed towards concepts as
(1) types of approaches: centralized, decentralized, distributed;
(2) problem formulation with one global or a set of individual
missions. Some LTL formulae given as global missions can
be decomposed for PN-based [11] and automata-based [15]
approaches, while other works focus on cooperation of agents
ensuring local LTL tasks [10].

As mentioned in Section I, one mechanism to combine an
LTL formula with a representation of the robotic system is
based on TS associated for each agent, based on a partitioned
environment [2], [3]. A different approach is illustrated in
[16], where the nodes illustrate the kinematics of individual
agents and the edges capture the interagent constraints. These
approaches encounter the same problem of model complexity
due to TS products [7]. One solution to overcome this down-
side is to decompose the problem into multiple finite-horizon
planning issues and solve them iteratively [1]. Other works
consider a fixed topology w.r.t. the number of agents, based
on PN models, e.g., [17] proposed a PN path planning method
considering partially unknown environments. In [18], the PN
model is subject to three characteristics, representing (i) the
environment, (ii) the changes in the workspace, and (iii) the
task plan based on the compositions of different types of events
and actions towards the goal.

Work [19] proposes a PN-based method through a “high-
level” framework enforcing parallel execution of transitions
in the PN of the workspace and the BA of the LTL formula,
based on the construction of a new PN supervisor model, such
that a transition in the PN of the environment is fired only
if a transition in the Büchi automaton is satisfied. The main
idea in [6] computes an accepted run in the Büchi automaton,
and then searches the trajectories in the PN to follow the
imposed run of BA through generation of observations. This
sequential process may produce robot movements deviating
from the imposed run, the effect requiring the iteration of the
entire algorithm, which is based on solving MILP problems.
Compared to the latter work, the current one proposes a faster
computational time solution based on a parallel approach,
mentioned in the contributions from Section I.

III. PROBLEM STATEMENT

Let us consider a set of identical and omnidirectional point
robots denoted R = {r1, r2, . . . , r|R|}, initially placed in
the free space of a known and static 2D workspace. The
environment captures several convex polygonal shapes that
could overlap, be denoted as regions of interest (ROI) and
labeled with elements from the set Y = {y1, y2, . . . , y|Y|}.
Furthermore, we assume that the environment is partitioned
into a set of regions called cells, e.g., using a cell decompo-
sition method [3], [20]. Each cell belongs entirely to one or
more regions of interest, or it is included in the free space.
The partitioned workspace can be further handled by a Petri
net model, which is invariant w.r.t. the number of robots.

(a) The environment used in Example 3.2.

pM1

tM1

pM4

tM2

tM4

tM5

pM5

tM3

pM3

tM6

tM8

tM9

tM7

tM10

pM2

(b) Quotient Petri net of the RMPN

Fig. 1: Environment and the corresponding RMPN’s quotient

The set of cells is denoted by P = {p1, p2, . . . , p|P |} and
the set of labels assigned to a cell is given by a function
h : P → 2Y If the cell pi is included in the intersection of
ROIs yj and yk, then h(pi) = {yj , yk}, while if pl lies in the
free space, then h(pl) = ∅.

Problem 3.1: Assume that the movement of a robotic team
is abstracted to a Robot Motion Petri Net (RMPN) model to
be defined in Def. 4.1. Given a global LTL specification over
the set Y , automatically compute the robots’ trajectories to
fulfill the specification.

Example 3.2: Let us consider the environment in Fig. 1(a),
and the following mission:

ϕ = ♦ (y1 ∧ y2 ∧ y3) ∧ ¬ (y1 ∨ y2)U (y1 ∧ y2) (1)

This task means eventually visiting regions y1, y2 and y3,
while reaching y1 and y2 simultaneously. �

IV. NOTATIONS AND DEFINITIONS

Definition 4.1: [3] A Robot Motion Petri Net system
(RMPN) is a tuple Q = 〈N ,m0,Y, h〉, where: N =
〈P, T,Post,Pre〉 is a Petri net, m0 is the initial marking,
where m0[p] gives the number of robots initially deployed in
cell p ∈ P ; Y ∪ {∅} is the set containing the output symbols;
h : P → 2Y is the observation map, defined above. Thus, if
pi has at least one token (i.e., at least one robot is currently
in cell pi), then ROI(s) h(pi) is (are) visited. The tuple N
is composed from a set of places (one for each cell) P ; a
set of transitions T modeling the movement of the robots;
Post,Pre ∈ {0, 1}|P |×|T | is the post-incidence, respectively
pre-incidence matrix, defining the arcs from transitions to
places and vice-versa, e.g. Pre[p, t] = 1 if p ∈ P is connected
with place t ∈ T , otherwise Pre[p, t] = 0.

Example 4.2: Let us consider the environment in Fig. 1(a),
with three ROIs (Y = {y1, y2, y3}) and two robots, initially
located in p2 and p20. Therefore, h(p11) = h(p23) = y1,

h(p17) = h(p18) = h(p24) = h(p26) = y2, h(p4) = h(p10) =
y3, h(p13) = {y1, y2}, and h(pi) = ∅ otherwise.

The RMPN models the movement capabilities of this team
of 2 robots, including a set of 26 places and 74 transitions. The
set of outputs Y and the observation map h are given above.
The initial marking m0 is a vector of dimension 26 having
all elements equal to zero except m0[p2] = m0[p20] = 1. �

Each token in the RMPN models the current location (cell)
of a robot, thus the total number of tokens is equal to |R|.
Notice that the structure of the model (number of places,
transitions, and arcs) does not change if robots are added or
removed, only the marking (state) of the RMPN.

RMPN1 is captured by the token flow matrix C = Post−
Pre, the firing of a transition tj corresponds to the movement
of a robot from an input place towards an output place w.r.t.
to tj , by applying a control law that drives the robot from
associated input and output cells. There exist approaches to
designing such continuous laws in specific scenarios [21], [22].
We will be interested in finding sequences of transitions to
be fired such that the team fulfills a given specification. If a
RMPN marking m̃ can be reached from m through a finite
sequence of transitions σ, we denote by σ ∈ N|T |≥0 the firing
count vector, i.e., its jth element is the cumulative number of
firings of tj . The state (or fundamental) equation is satisfied:

m̃ = m+C · σ (2)

A firing vector σ can be found, having a minimum number
of transitions that drives the live2 RMPN to the desired mark-
ing m̃, i.e., by solving the optimization problem min1T · σ.
The details of transforming the firing vector into a sequence
of robot movements are captured in [3].

LTL formulae and Büchi automata. The global motion
task that the robot team should fulfill is specified as an
LTL−X formula [23] containing recursive formulae defined
over a set of atomic propositions Y , by using Boolean
operators (¬ - negation, ∧ - conjunction, ∨ - disjunction,
⇒ - implication, and ⇔ - equivalence) and some temporal
operators (U - until, ♦ - eventually, and � - always), while
excluding © - the next operator. For simplicity of notation,
we write LTL instead of LTL−X [23], [24], [25].

Any LTL formula can be automatically transformed into
a nondeterministic Büchi automaton using the available tools
[26], [27]. The property of LTL being close under stuttering
[27] is exploited in Section VI (any finite repetition of the same
input does not modify the truth value of the input string).

Definition 4.3: The Büchi automaton (BA) correspond-
ing to an LTL formula on the set Y has structure B =
(S, S0,ΣB ,→B , F), where: S is a finite set of states; S0 ⊆ S
is the set of initial states (assumed singleton); ΣB is the finite
set of inputs; →B⊆ S ×ΣB ×S is the transition relation and
F ⊆ S is the set of final states. �

We denote by π(si, sj) the set of all inputs that enable a
transition from si to sj , expressed as a Boolean formula over
the set Y , reduced to a Disjunctive Normal Form (DNF), where

1By definition, RMPN systems considered in this paper belongs to the class
of state-machine, i.e., each transition has one input and one output place.

2A Petri net is live if independently by the actually reachable marking, all
transitions can fire in the future.

(a) Büchi automaton for the LTL formula in Ex. 3.2.

(b) Büchi Petri net corresponding to the Büchi automaton

Fig. 2: Example of Büchi automaton and Büchi Petri net

a single conjunctive element is denoted by αk. Alternatively,
the input can be expressed as a combination of active obser-
vations from the set 2Y , where ∅ represents the free space.

An infinite accepted run in B drives the automaton towards
a final state from an initial state through (i) prefix and (ii) suffix
(path towards the same final state reached by the prefix). The
run can be written as prefix, suffix, suffix . . . [28].

Example 4.4: Let us recall Example 3.2. The BA corre-
sponding to this LTL task is given in Fig. 2(a), where symbol
> (True) means any observation from 2Y . On the other hand,
Fig. 2(b) illustrates the Büchi Petri net model, having the
Boolean formula of transitions represented with red color. This
model will be described in Section V. An accepted run that
satisfies the formula could be s1, s3, s3, . . . with the prefix
s1 and the suffix s3. Note that the unique final state s3 is
visited infinitely often. However, as may be observed in the
environment of Fig. 1(a), this run cannot be generated by the
two robots, because the two robots should evolve only through
cells belonging to free space until one enters p13, while the
other simultaneously enters p4 or p10. Clearly, entering p13
directly is not possible, since it would require first activating
y1 or y2 and would violate ϕ (1).

A possible run generated by the robots is: s1, s2, s3, s3, . . .
with prefix s1, s2 and suffix s3. For this, robots should first
enter y1 and y2 synchronously (generating π(s1, s2) = y1 ∧
y2), then one robot should go to p13 (the intersection of y1
and y2). Finally, a robot should enter y3 while crossing the
free space to enable the transition to s3 in BA. The solution
is not unique since the self-loop transition in s2 can be taken
with any possible input. �

Table I provides a summarized description of the following
notations throughout the paper, using < · > as a placeholder
for components of various representations.

V. SOLUTION STEP 1: COMPOSED PETRI NET MODEL

Fig. 3 provides a general overview of the entire proposed
solution of the Problem 3.1. The first phase is responsible

Notation Description

< ·M > Notation for Quotient RMPN (Sub-step 1.1)

< ·B > Notation for Büchi RMPN (Sub-step 1.2)

< ·C > Notation for Composed Petri net (Sub-step 1.3)

TABLE I: Notations for various PNs to be used

for computing the newly defined Composed Petri net model
based on a reduced representation of the environment (sub-
step 1.1) and the Büchi automaton associated with the LTL
specification (sub-step 1.2). The second phase focuses on an
iterative algorithm that requires two actions, expressed by sub-
steps 2.1 and 2.2.

Fig. 3: Diagram for the global algorithm

Sub-step 1.1. Quotient of the RMPN in Def. 4.1. Given
an RMPN system Q as in Def. 4.1, the idea of obtaining
the quotient QM is to iteratively combine any pi and pj
places of P that satisfy pj ∈ (pi

•)
• and h(pi) = h(pj). This

reduction technique is synthesized in [29], and the reduced PN
model QM has the property that its output is changed when a
transition is fired. Thus, after firing one transition in QM , one
transition in Büchi should also be fired. A transition of QM
corresponds to a set of trajectories in Q.

Example 5.1: Consider the RMPN of the environment
as in Fig. 1(a). By aggregating the states with the same
observation, the quotient PN QM in Fig. 1(b) is obtained,
also being an RMPN model according to Def. 4.1. The
correspondence between the reduced and the original RMPN
models of the environment is captured by a projection matrix
Pr with size 5 × 26, having all elements equal to zero
except adjacent places sharing the same observation, e.g.,
Pr[pM1 , p4] = Pr[pM1 , p10] = 1.

Sub-step 1.2. Büchi Petri net. Starting from the Büchi
automaton B = 〈S, S0,ΣB ,→B , F 〉 as in Def. 4.3, Alg. 1
obtains the corresponding Büchi Petri net system QB. For each
state si ∈ S, a new place pBi is added to the PN (line 1). The
first loop (lines 3 - 7) is executed for each transition from si
to sj in the Büchi automaton. The second loop (lines 4 - 7) is
executed for each conjunctive element αk from π(si, sj) and
adds a new transition tτk to the Büchi PN from pBi to pBj . Note
that all transitions corresponding to the conjunctive elements
in π(si, sj) have the same input, respectively, output place of
the Büchi PN. In line 8, the marking vector is initialized, with
pB0 associated with s ∈ S0. Observe that one token in Büchi

Algorithm 1: Büchi Petri net
Input: B = 〈S, S0,ΣB ,→B , F 〉
Output: QB = 〈〈PB , TB ∪ TV , [PreB PreV],

[PostB PostV]〉,mB
0 ,Y, h〉

1 Let PB = {pB1 , pB2 , . . . , pB|S|} be the set of |S| places;
2 Let TB = TV = ∅,PreB = PostB = ∅,PreV =
PostV = ∅;

3 forall (si, τ, sj) ∈→B do
4 forall conjuctive element αk of π(si, sj) do
5 TB = TB ∪ tτk ;
6 Add a new column to PreB and to PostB

corresponding to tτk ;
7 PreB [pBi , tτk] = PostB [pBj , tτk] = 1;

8 Let mB
0 = 0|S|×1;

9 mB
0 [pB0] = 1;

10 forall sf ∈ F do
11 TV = TV ∪ tsf ;
12 Add a new column to PreV and to PostV

corresponding to tsf ;
13 PreV [pBf , tsf] = PostV [pBf , tsf] = 1;

PN is sufficient to mark the current state of the automaton B,
since |S0| = 1. Alg. 1 returns also virtual transitions TV , by
adding on tVi ∈ TV to each final state Büchi PN, expressed
in PreV and PostV . These transitions will have zero firing
cost when the solution of MILP (3) is computed, to maintain
the Büchi PN in the final state when possible.

Example 5.2: Consider the Büchi automaton in Fig. 2(a).
Applying Alg. 1, the Büchi PN in Fig. 2(b) is obtained. In this
example, the places pB2 and pB3 are connected with a single
transition corresponding to input π(s2, s3) = y1 ∧ y2 ∧ y3,
visualized in red. Fig. 2(b) illustrates the addition of the virtual
transition tV1 connected to the final state s3 by a reading
(bidirectional) arc. �

Sub-step 1.3. Composition of Quotient RMPN and Büchi
Petri net systems. Alg. 2 includes the full strategy to return
the Composed PN system QC , by the composition of the
robotic team model QM with the one of the specification QB .
For this, a number of 2× |Y| places are needed, from which
half models the active observations, given by the set PO, while
the other |Y| places model inactive observations P¬O. Initially,
places pOi have zero tokens, while places p¬Oi have the number
of tokens equal with |R|, denoting no active observation in the
initial marking line (3). The sum of the tokens in p¬Oi and pOi
is always equal to |R|. The lines 1 - 2 define the sets of places,
respectively, transitions for the Composed PN QC .

Matrices PreC and PostC are initialized in lines 4 - 5.
Lines 6 - 10 are executing for each observation yi. Input
arcs are added to place pOi for each pk ∈ PM , yi ∈ h(pk).
Additionally, arcs from pOi to all output transitions of pk are
added. In this way, when a robot enters a region pk with output
yi, one token is added to pOi . If m[pOi] > 0 then observation
yi is active. The place p¬Oi is the complementary place of
pOi , therefore is connected with the same transitions as pOi but
with arcs oriented in the other sense. If m[p¬Oi] = |R| then

observation yi is not active. Finally, loop in lines 11 to 17
connects the places pOi , respectively p¬Oi with the transitions
tBτ by a reading arc, according to the assigned Boolean formula
(conjunction), considering weights 1, respectively |R|.

Algorithm 2: Composed Petri net system

Input: PO, P¬O, QM =
〈〈PM , TM ,PreM ,PostM 〉,mM

0 ,Y, h〉,
QB = 〈〈PB , TB ∪ TV ,
[PreB PreV], [PostB PostV]〉,mB

0 ,Y, h〉,
Output: QC = 〈〈PC , TC ,PreC ,PostC〉,mC

0 ,Y, h〉
1 Let PC = PM ∪ PB ∪ PO ∪ P¬O;
2 Let TC = TM ∪ TB ∪ TV ;
3 mC

0 =
[
mM

0 , m
B
0 ,m

O
0

]
;

4 Let PreC =
PreM 0|P

M |×|TB | 0|P
M |×|TV |

0|P
B |×|TM | PreB PreV

0|P
O|×|TM | 0|P

O|×|TB | 0|P
O|×|TV |

0|P
¬O|×|TM | 0|P

¬O|×|TB | 0|P
B |×|TV |

;

5 Let PostC =
PostM 0|P

M |×|TB | 0|P
M |×|TV |

0|P
B |×|TM | PostB PostV

0|P
O|×|TM | 0|P

O|×|TB | 0|P
O|×|TV |

0|P
¬O|×|TM | 0|P

¬O|×|TB | 0|P
O|×|TV |

;

6 forall yi ∈ Y do
7 Let P ′ = {p ∈ PM |yi ∈ h(p)};
8 forall pk ∈ P ′ do
9 PostC [pOi ,

•pk] = PreC [pOi , pk
•] = 1;

10 PreC [p¬Oi , •pk] = PostC [p¬Oi , pk
•] = 1;

11 forall tBτ ∈ TB do
12 Let πi be the DNF formula assigned to tBτ ;
13 if πi 6= > then
14 forall atomic propositions yi appearing not

negated in πi do
15 PreC [pOi , t

B
τ] = PostC [pOi , t

B
τ] = 1;

16 forall atomic propositions yi appearing
negated in πi do

17 PreC [p¬Oi , tBτ] = PostC [p¬Oi , tBτ] = |R|;

Fig. 4 depicts a part of Composed Petri net with its initial
marking, returned by Alg. 2. For the sake of clarity, Fig. 4
considers only the arcs for one region on interest (y3). When
a transition in QM fires and the observation changes, the QM
deposits one token to the respective active observation, e.g.,
tM2 is enabled when y3 is not active (the robots being in the
free space initially), and if it fires, a token is produced to
both pM1 and pO3 . In QB , the transitions are fired based on the
assigned Boolean formula, being triggered by the reading arcs
of PO, P¬O, e.g., tB5 and tB2 depend on active observation y3.
The transitions in Büchi PN from Fig. 4 are colored according
to the required active observations, i.e., red - y1, blue - y2,
green - y3. This rationale is maintained towards the rest of
active and inactive intersection y1 ∧ y2.

Remark. Quotient PN is polynomial in (O(|P |2)), subject

Fig. 4: Part of the Composed Petri net, based on active and
inactive observations of y3

to the partitioned environment. Alg. 1 is polynomial w.r.t. the
inputs →B of the Büchi automaton B and the number of
atomic propositions over set Y . In general, the LTL formulae
have a reduced number of atomic propositions, the exponential
upper-bound of 2|Y| being seldom achieved. Lastly, Alg. 2 is
polynomial over cardinality of sets Y and TB .

VI. SOLUTION STEP 2: ALGORITHM

The robot navigation algorithm requires two actions to be
achieved: (i) compute a solution on the reduced model QC ,
(ii) project the searched solution in the original PN of the
environment, outputting the multi-robot system trajectories.
The proposed algorithm rules out solutions that cannot be
projected into the PN of the environment, by imposing in the
first step to obtain a different solution in the reduced model.
This idea is similar to the one in [30], being here applied to
a PN-based approach, rather than a graph-based approach.

Global algorithm. Alg. 3 computes robots’ movements
while ensuring the mission ϕ. The algorithm stops when a
set of trajectories is returned for a place pBfi ∈ Setf , with
Setf modeling the final states in B (line 15). The main idea
is to first search for a feasible run in QC (lines 3 - 12) based
on MILP (3), which is individually called for prefix and suffix,
with different initial marking. The suffix is computed through
MILP (3) only when the last active observation of a final place
pBfi is included in its self-loop (pOj for observation yj has at
least one token). A feasible Run is obtained when both prefix
and suffix are not empty (lines 11 - 15), for which a projection
of this solution is explored based on MILP (4).

If Run cannot be projected into the original RMPN, then
we memorize the previous solutions returned by MILP (3) for
both prefix and suffix considering only the transitions in QM .
Line 17 appends these solutions

∑k
i=1 σ

M
i of prefix (subscript

p), respectively for suffix (subscript s) to sets of bad solutions
CEp|s. These sets will be considered counterexamples in
MILP (3), imposing to compute a different Run. When no
overall solution is outputted for any pfi , the entire process is
iterated by increasing the number of steps k.

Sub-step 2.1. Solution on the reduced model. The main
idea of MILP (3) is to drive the PN to a state corresponding
to a final state in Büchi (marking mC

2k). The MILP is solved

Algorithm 3: Global solution for robot’s trajectories

Input: RMPN Q, Composed Petri net QC , set Y , |R|,
set of active observations PO, set of final
places Setf , finite horizon k

Output: Traj = Sequence of firing transitions
1 Let CEp|s = ∅ and flag = False;
2 while (k ≤ U) OR (k > U AND flag = True) do
3 forall pBfi ∈ Setf do
4 Compute prefix for pBfi with MILP (3);
5 if prefix 6= ∅ then
6 Let POf be last active observation for pBfi ;
7 if POf ��|=π(sf , sf) then
8 Compute suffix with MILP (3), where

mC
0 = mC

k ;
9 else

10 suffix = sf ;

11 if (prefix 6= ∅ AND suffix 6= ∅) then
12 Run = prefix suffix suffix . . . ;
13 Project Traj with MILP (4);
14 if Traj 6= ∅ then
15 Return Traj;

16 flag = True;
17 CEp|s = CEp|s ∪

∑k
i=1 σ

M
i

18 Increase k;

individually for prefix and suffix, each for k steps, with k ≥ 1
being a design parameter. For each odd, respectively even step,
a transition in Quotient PN, respectively in Büchi PN is fired.
The upper-bound of k is U =

(
|PM | − 1

)
×
(
|PB | − 1

)
, as

it may be necessary to move a token through all places PM

to produce a token in the next place Büchi PN.
Parameters: |R| - number of robots; pBf - place modeling

a final state in Büchi; CC - token flow matrix of QC ; PreC

- pre-incidence matrix of QC ; CEp|s - set of bad solutions
for both prefix and suffix.

Variables:
• mC

i =
[
mM
i mB

i m
O
i m

¬O
i

]T
- marking column vec-

tor at step i of QC composed by the marking of Quotient
PN (mM

i), Büchi PN (mB
i), active observation places

(mO
i) and inactive observation places (m¬Oi);

• σCi =

 σMi
σBi
σVi

 - firing vector at step i of the Composed

PN, composed by the firing vector of Quotient PN (σMi),
Büchi PN (σBi) and of virtual transitions (σVi);

• z1, z2 ∈ {0, 1}|TM | - binary vectors with z1[j] = 1 if
ζ−

∑k
i=1 σ

M
i ≥ 1, and z1[j] = 0 otherwise, respectively

z2[j] = 1 if ζ −
∑k
i=1 σ

M
i ≤ 1, otherwise z2[j] = 0,

with ζ ∈ CEp|s.
Objective:

min

2·k∑
i=1

i ·
(
1T · σMi + 1T · σBi

)
(3a)

Constraints:

mC
i −mC

i−1 −CC · σCi = 0, i=1,2·k (3b)
mC
i − PreC · σCi

1T · σMi
1T · σBi + 1T · σVi

≥ 0,
≤ |R|,
= 0,

 i=2·j+1

j=0,k−1

(3c)
1T · σMi
1T · σBi
1T · σVi

= 0,
= 1,
= 0,

 i=2 (3d)

1T · σMi
1T · σBi + 1T · σVi

= 0,
= 1,

}
i=2·j

j=2,k

(3e)

mC
i [pBf] = 1, i=2·k (3f)

ζ −
∑k
i=1 σ

M
i

−ζ +
∑k
i=1 σ

M
i

≤ N · (1− zj),
≤ 1 +N · zj ,

}
∀ζ∈CEp|s

i=1,2·k,j=1,2

(3g)

1T · (z1 + z2) ≥ 1 (3h)

Explanations on MILP (3) are as follows: (3a) the cost func-
tion minimizes the number of fired transitions of sets TM , TB ,
enforcing to reach a solution during the first steps of k steps,
when it is possible; (3b) correspond to the state equation (2);
(3c) allow robots to advance at most one place in Quotient
PN, which lead to a change in observation (h(pMi) 6= ∅) such
that, in the following step (when i is even) one transition in
Büchi should be fired; (3d) imposes firing a transition of set
TB , forcing the leave from the initial state; (3e) allows firing
of one transition in Büchi PN; (3f) ensures the marking after k
steps is the final state in Büchi, denoted as pBf ; (3g) and (3h)
guarantee that the current solution is different than any other
previous bad solution ζ from set CEp|s, using a big number
(N) method [31].

Sub-step 2.2. Projecting the solution. Let M =
〈mM

1 ,m
M
2 , . . . ,m

M
2k〉 be the sequence of markings returned

by MILP (3). Successive identical markings are removed.
Let us add mM

0 as the first element in M . Furthermore,
let G = 〈g1, g2, . . . , g2k〉 be a sequence of 2k vectors s.t.
gi ∈ {0, 1}|P

M | with gi[j] = 1 if mM
i [j] = 0, and gi[j] = 0

otherwise. This vector will be used in MILP (4) to not allow
activation of other observations between two steps.

The following MILP extends every marking from the Quo-
tient RMPN into a string of markings in the original RMPN.
The string has the same active observations, to ensure the
validity of the LTL formula when exist finite repetitions. To
avoid collisions, |R| intermediate markings are additionally
introduced between two successive markings, to ensure that a
maximum one robot crosses each region.

Parameters: M - sequence of markings returned by (3);
Pr - projection matrix between QB and RMPN; C - token
flow matrix of the RMPN; Pre,Post - pre/post-incidence
matrices of RMPN; mM

i - marking at step i of QM .
Variables: mi,j - marking at step i of RMPN, considering

the intermediate marking j; σi,j - firing vector at step i of
RMPN, for the intermediate marking j with i = 0, |M |, j =
1, |R|+ 1.

Objective:

min1T ·
∑
i,j

σi,j (4a)

Constraints:

mi,j −mi,j−1 −C · σi = 0, i=0,|M |,j=1,|R|+1 (4b)
mi,0 −mi−1,|R|+1 = 0, i=1,|M | (4c)

Pr ·mi,j −mM
i = 0, i=0,|M |,j=1,|R| (4d)

Post[gi · Pr, ·] · σi,j = 0, i=0,|M |,j=1,|R|+1 (4e)
Post · σi,j +mi,j−1 ≤ 1, i=0,|M |,j=1,|R|+1 (4f)

mi,|R|+1 − Pre · σi,|R|+1 ≥ 0, i=0,|M | (4g)

The constraints in MILP (4) are as follows: (4b) is the state
equation (2); (4c) ensures that the last intermediate marking
is the same as the initial marking in the next step; (4d) keeps
the same observations during the mi,1 to mi,|R|, since the
|R| intermediate markings are introduced to avoid collisions
between mM

i and mM
i+1; (4e) ensure that the corresponding

firing vectors of the intermediate markings from mi,1 to
mi,|R| should not activate other observations; (4f) ensures
the collision avoidance between successive markings of the
original RMPN by imposing each region to be crossed by a
maximum one agent between two intermediate markings; (4g)
impose that the movements of robots from substep mi,|R|
to substep mi,|R|+1 is done synchronously by all robots
(each robot fires only one transition) such that the generated
observation of QM changes according to the transitions fired
in Büchi.

Complexity. The algorithm is NP-hard, justified by the use
of MILP problems. The total number of unknown variables in
both MILPs is given by the number of markings and transitions
in both QC and Q, and a set of binary variables of size 2 ·
|TM |·|CEp|s|, bounded by U . The total number of constraints
depends on the design parameter k for MILP (3), while for
MILP (4) it depends on the previous solution.

Remark. Alg. 3 is not complete due to the possibility of
spurious transitions as a result of MILP (3) and the collision
avoidance restrictions of MILP (4), but it is sound, as the
returned solution satisfies the LTL formula.

VII. SIMULATION RESULTS AND COMPARISONS

The proposed solution is implemented and integrated into
RMTool - MATLAB [32], using the CPLEX Optimizer solver
for both MILPs, while herein the results were obtained on a
laptop with i7 - 8th gen. CPU @ 2.20GHz and 8GB RAM.

Example 7.1: Let us recall the environment from Fig. 1
(a) and the LTL mission from (1). The robots need to reach
all three regions of interest at the same time, ensuring y1
and y2 are reached simultaneously. Figure 1(a) illustrates the
robot trajectories returned by Alg. 3. It can be observed that
both robots move toward regions y1 and y2 to complete the
concurrent requirement. Afterwards, r1 advances and enters
the last region of interest y3, while the second robot enters
p13 = {y1, y2}. For this result, the Quotient PN model with 5
places and 10 transitions was computed in 0.02 seconds, and
the Composed PN model with 14 places and 16 transitions

(out of which one is a virtual one) was computed in 0.02
seconds. MILP (3) reaches the final state in Büchi in 0.05
seconds, using 180 unknown variables (for k = 6). MILP (3)
returns the prefix s1s2, without the necessity of being called
to compute the suffix, because the final state s3 was True >
for its self-loop. The run time to project the solution is 0.05
seconds for 900 unknown variables, having the cost function
equal to 11 (number of cells crossed by the robots). �

Example 7.2: We now consider the LTL formula
ϕ = � (♦y1 ∧ ♦y3 ∧ ♦y5 ∧ ♦y6 ∧ ♦y7 ∧ ♦y8) ∧
¬ (y5 ∨ y6)U (y5 ∧ y6) ∧ ¬ (y4 ∨ y7)U (y4 ∧ y7) . This
specification imposes the visit of several ROIs in an
environment with 8 regions of interest, while the regions y5
and y6 are simultaneously reached, respectively y4 and y7.
Fig. 5 exemplifies robot’s trajectories for 6 robots, with black
stars being represented the synchronization points of the team
necessary when fulfilling ϕ. �

TABLE II: Comparison between current approach with Büchi
and following Büchi captured in [6] for Example 7.2

Number
of robots

Run time to return a
solution [sec] Cost function value

following
Büchi

with Büchi
MILP (3)

following
Büchi with Büchi

4 9.56 0.75 37 39
5 2.22 0.26 23 28
6 0.77 0.11 20 21
10 1.2 0.78 13 13

Table II contains a result analysis of the current approach
of Alg. 3 in contrast with our previous work [6], focused
on running time and value of the cost function (number of
crossed cells of all robots) computed for k = 10 intermediate
markings. Let us recall that [6] examines a transition sequence
in the PN model of the environment while following an entire
run computed in Büchi automaton. One can refer to the present
work having a parallel approach (denoted here as with Büchi),
while the previous one can be considered as a sequential
approach (denoted as following Büchi). It should be noted
that the collision avoidance strategy is ensured through the
current work (restrictions (4f) of MILP (4)), contrary to the
previous work out of which collision-free trajectories cannot
be guaranteed.

Discussion. Based on the run simulations, this work yields
lower computational time and model size w.r.t. previous works.
The procedure with Büchi returns a scalable PN model w.r.t.
the number of robots, having maximum number of places
|PM |+ |PB |+ 2 · |Y|. On the other hand, the model returned
by the procedure following Büchi contains the number of
places given by the RMPN Q, while approaches based on
transition systems [7] are highly dependent on the size of the
team. For example, the size of models in Example 7.2 are as
follows: 37 places (with Büchi), 62 places (following Büchi),
11|R| × 10 (quotient transition systems), as 11, respectively
10, represent the number of states in the reduced transition
system, respectively in BA.

Fig. 5: Returned trajectories for Example 7.2 (red - r1; green - r2, blue - r3, magenta - r4, black - r5, yellow - r6)

VIII. CONCLUSION

This paper proposes a framework under Petri net formalism,
for which an algorithm provides a collision-free planning
strategy for multi-robot systems. The team of agents receives
a global LTL specification requiring to reach and/or avoid
several regions of interest in the environment. The newly
defined Composed Petri net model values the advantages of
two models: (1) Robot Motion Petri net (RMPN) model for
the environment, and (2) Büchi automaton of the LTL formula.
The numerical evaluation of the proposed method demon-
strates a computationally attractive solution (slower decrease
of run time and smaller overall model) when compared with
both the transition system and Petri net previous approaches.

REFERENCES

[1] J. Tumova and D. V. Dimarogonas, “Multi-agent planning under lo-
cal LTL specifications and event-based synchronization,” Automatica,
vol. 70, pp. 239–248, 2016.

[2] P. Yu and D. V. Dimarogonas, “Distributed motion coordination for
multi-robot systems under LTL specifications,” IEEE Trans. on Robotics,
vol. 38, no. 2, pp. 1047–1062, 2021.

[3] C. Mahulea, M. Kloetzer, and R. González, Path Planning of Coopera-
tive Mobile Robots Using Discrete Event Models. Wiley-IEEE Press,
2020.

[4] B. Lacerda and P. U. Lima, “Petri net based multi-robot task coordination
from temporal logic specifications,” Robotics and Autonomous Systems,
vol. 122, pp. 343–352, 2019.

[5] M. H. Cohen and C. Belta, “Model-based reinforcement learning for
approximate optimal control with temporal logic specifications,” in
Proceedings of the 24th International Conference on Hybrid Systems:
Computation and Control, 2021, pp. 1–11.

[6] M. Kloetzer and C. Mahulea, “Path planning for robotic teams based
on LTL specifications and Petri net models,” Discrete Event Dynamic
Systems, vol. 30, no. 1, pp. 55–79, 2020.

[7] X. C. Ding, M. Kloetzer, Y. Chen, and C. Belta, “Automatic deployment
of robotic teams,” IEEE Robotics & Automation Magazine, vol. 18, no. 3,
pp. 75–86, 2011.

[8] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.
[9] J. Esparza, J. Křetı́nskỳ, and S. Sickert, “One theorem to rule them all: A

unified translation of LTL into ω-automata,” in 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, 2018, pp. 384–393.

[10] M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration
under local LTL specifications,” The International Journal of Robotics
Research, vol. 34, no. 2, pp. 218–235, 2015.

[11] I. Hustiu, M. Kloetzer, and C. Mahulea, “Distributed path planning of
mobile robots with LTL specifications,” in 24th Int. Conf. on System
Theory, Control and Computing (ICSTCC), 2020, pp. 60–65.

[12] E. M. Wolff, U. Topcu, and R. M. Murray, “Optimization-based trajec-
tory generation with linear temporal logic specifications,” in IEEE Int.
Conf. on Robotics and Automation (ICRA), 2014, pp. 5319–5325.

[13] C. I. Vasile and C. Belta, “Sampling-based temporal logic path plan-
ning,” in 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE, 2013, pp. 4817–4822.

[14] C. Banks, S. Wilson, S. Coogan, and M. Egerstedt, “Multi-agent task
allocation using cross-entropy temporal logic optimization,” in 2020
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2020, pp. 7712–7718.

[15] P. Schillinger, M. Bürger, and D. V. Dimarogonas, “Decomposition of
finite LTL specifications for efficient multi-agent planning,” in Dis-
tributed Autonomous Robotic Systems: The 13th International Sympo-
sium. Springer, 2018, pp. 253–267.

[16] P. Tabuada, G. J. Pappas, and P. Lima, “Motion feasibility of multi-agent
formations,” IEEE Trans. on Robotics, vol. 21, no. 3, pp. 387–392, 2005.

[17] E. Montijano and C. Mahulea, “Probabilistic Multi-Robot Path Planning
with High-Level Specifications using Petri Net Models,” in 2021 IEEE
17th International Conference on Automation Science and Engineering
(CASE). IEEE, 2021, pp. 2188–2193.

[18] H. Costelha and P. Lima, “Robot task plan representation by Petri nets:
modelling, identification, analysis and execution,” Autonomous Robots,
vol. 33, no. 4, pp. 337–360, 2012.

[19] B. Lacerda and P. U. Lima, “Petri net based multi-robot task coordination
from temporal logic specifications,” Robotics and Autonomous Systems,
vol. 122, p. 103289, 2019.

[20] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun, Principles of Robot Motion: Theory, Algorithms,
and Implementations. Boston: MIT Press, 2005.

[21] L. C. G. J. M. Habets, P. J. Collins, and J. H. van Schuppen, “Reach-
ability and control synthesis for piecewise-affine hybrid systems on
simplices,” IEEE Transactions on Automatic Control, vol. 51, pp. 938–
948, 2006.

[22] C. Belta and L. Habets, “Controlling a class of nonlinear systems on
rectangles,” IEEE Transactions on Automatic Control, vol. 51, no. 11,
pp. 1749–1759, 2006.

[23] C. Baier and J.-P. Katoen, Principles of model checking. MIT Press,
2008.

[24] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. Pappas,
“Symbolic planning and control of robot motion,” IEEE Robotics and
Automation Magazine, vol. 14, no. 1, pp. 61–71, 2007.

[25] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2,
pp. 343–352, 2009.

[26] G. Holzmann, The Spin Model Checker, Primer and Reference Manual.
Reading, Massachusetts: Addison-Wesley, 2004.

[27] P. Gastin and D. Oddoux, “Fast LTL to Büchi automata translation,”
in 13th Conference on Computer Aided Verification (CAV’01), H. C.
G. Berry and A. Finkel, Eds., no. 2102, 2001, pp. 53–65.

[28] P. Wolper, M. Vardi, and A. Sistla, “Reasoning about infinite computa-
tion paths,” in Proceedings of the 24th IEEE Symposium on Foundations
of Computer Science, E. N. et al., Ed., Tucson, AZ, 1983, pp. 185–194.

[29] E. Vitolo, C. Mahulea, and M. Kloetzer, “A computationally efficient
solution for path planning of mobile robots with boolean specifications,”
in ICSTCC’2017: 21st International Conference on System Theory,
Control and Computing, Sinaia, Romania, 2017, pp. 63–69.

[30] S. F. Roselli, P.-L. Götvall, M. Fabian, and K. Åkesson, “A compositional
algorithm for the conflict-free electric vehicle routing problem,” IEEE
Transactions on Automation Science and Engineering, vol. 19, no. 3,
pp. 1405–1421, 2022.

[31] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear programming and
network flows. John Wiley & Sons, 2011.

[32] R. González, C. Mahulea, and M. Kloetzer, “A matlab-based interactive
simulator for mobile robotics,” in IEEE CASE’2015: Int. Conf. on
Autom. Science and Engineering, 2015.

