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Machine-learning prediction studies have shown potential to inform treatment stratification, but recent efforts to predict
psychotherapy outcomes with clinical routine data have only resulted in moderate prediction accuracies. Neuroimaging data
showed promise to predict treatment outcome, but previous prediction attempts have been exploratory and reported small clinical
sample sizes. Herein, we aimed to examine the incremental predictive value of neuroimaging data in contrast to clinical and
demographic data alone (for which results were previously published), using a two-level multimodal ensemble machine-learning
strategy. We used pretreatment structural and task-based fMRI data to predict virtual reality exposure therapy outcome in a
bicentric sample of N = 190 patients with spider phobia. First, eight 1st-level random forest classifications were conducted using
separate data modalities (clinical questionnaire scores and sociodemographic data, cortical thickness and gray matter volumes,
functional activation, connectivity, connectivity-derived graph metrics, and BOLD signal variance). Then, the resulting predictions
were used to train a 2nd-level classifier that produced a final prediction. No 1st-level or 2nd-level classifier performed above
chance level except BOLD signal variance, which showed potential as a contributor to higher-level prediction from multiple
regions across the brain (1st-level balanced accuracy = 0:63). Overall, neuroimaging data did not provide any incremental accuracy
for treatment outcome prediction in patients with spider phobia with respect to clinical and sociodemographic data alone. Thus,
we advise caution in the interpretation of prediction performances from small-scale, single-site patient samples. Larger multimodal
datasets are needed to further investigate individual-level neuroimaging predictors of therapy response in anxiety disorders.
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1. Introduction

Anxiety disorders are amongst the most prevalent mental
disorders [1] with a considerable burden of disease [2]. Cur-
rent response rates to cognitive-behavioural therapy (CBT)
as a first-line treatment average at 50% or lower for most
anxiety disorders [3, 4]. Prospectively distinguishing
treatment-responding from nonresponding patients could
help guide clinical decisions and improve prognosis [5].
Machine-learning approaches can predict at the individual
level on unseen samples and are well-suited for predicting
individual therapeutic outcomes, particularly with the
high-dimensional data collected in clinical research and
practice [6]. A promising literature on machine-learning
outcome prediction has emerged across mental disorders
(see [7] for a general review), including a rapidly increasing
number of psychotherapy outcome prediction studies [8].

However, recent large-scale efforts to predict individual-
level psychotherapy treatment outcomes for patients with
anxiety disorders based on routine clinical data alone
resulted only in moderate prediction accuracies [9–11]. Neu-
roimaging data has shown promise to predict treatment out-
comes for patients with anxiety disorders in previous
attempts, but those have been exploratory and reported
small clinical sample sizes [7].

To our knowledge, two studies conducted individual
CBT outcome prediction using task-based fMRI in patients
with panic disorder [12, 13], four in patients with social anx-
iety disorder [14–16], and one in a mixed sample of patients
with panic disorder or generalized anxiety disorder [17] (see
[8] for a recent review). However, no study had a sample
with N > 60. It has been reported that studies using small
sample sizes present a considerable risk of overestimating
prediction performance in part because they are limited to
much less robust cross-validation schemes [18–20]. A recent
review encouraged the use of larger sample sizes to disentan-
gle the contribution of neuroimaging data to psychotherapy
response prediction from the effect of small sample sizes on
reported prediction performance [8].

In all but one of the above CBT outcome prediction
studies, predictive features were extracted from symptom-
related fMRI tasks. Indeed, symptom-related task-based
functional activation and connectivity are commonly used
in anxiety disorder studies, and they, along with structural
MRI, have been associated with the prospective treatment
response of patients with anxiety disorders at the group level
(see [21] for a review). Graph-theoretical measures derived
from functional connectivity, reported to have overall good
reproducibility [22], have also been used in recent years for
fine-tuned investigation of functional network dysfunctions
in anxiety disorders [23, 24]. Additionally, BOLD signal var-
iability measures have recently been reported as promising
individual-level predictors for therapeutic outcomes in anx-
iety disorders [14, 16].

Therefore, the aim of the present study was to build
upon previous literature using a fairly large, bicentric, and
clinically well-characterized sample of patients with spider
phobia to investigate the incremental performance of struc-
tural MRI and symptom-related task-based fMRI measures

over routine clinical data in predicting psychotherapy out-
come with a state-of-the-art ensemble machine-learning
pipeline. We hypothesized that structural and task-based (f
)MRI measures would predict posttreatment and 6-month
follow-up psychotherapy outcomes significantly beyond the
chance level and that an ensemble approach using clinical,
sociodemographic, and neuroimaging modalities would pro-
duce higher predictive performance than clinical and socio-
demographic data alone.

2. Methods

2.1. Dataset and Sample Description. The bicentric clinical
study SPIDER-VRwas part of the Transregional Collaborative
Research Centre 58 “Fear, Anxiety, Anxiety Disorders” (clini-
cal trial registration at clinicaltrials.gov: NCT03208400). It
includes a sample of untreated patients with spider phobia
according to DSM-IV criteria [25] aged 18-65 without major
comorbidities (low to moderate depression was tolerated
unless currently treated, as well as other animal phobias) and
with a total Spider Phobia Questionnaire (SPQ) [26] score >
19 (clinical cut-off). See [27] for a complete study description
and [10, 28–31] for other studies using the SPIDER-VR data.
Bicentric recruitment was conducted in Würzburg (WÜ)
andMünster (MS), Germany. The SPIDER-VR study protocol
has been reviewed by the Ethics Committees of the Medical
Faculties of Münster University (proposal 216-212-b-S) and
Würzburg University (proposal 330/15), and written
informed consent was obtained from all participants.

Clinical and neuroimaging data were acquired before
treatment. Patients were then invited for a one-session vir-
tual reality exposure therapy (VRET), and the primary out-
come (responder/nonresponder status at posttreatment and
at 6-month follow-up [FU]) was based on a 30% SPQ score
reduction between pretreatment and posttreatment or FU,
respectively.

Of note, clinical effects of VRET and prediction results
based only on sociodemographic and clinical data using
the original sample of SPIDER-VR patients (N = 171 for
the prediction) have been previously published [10]. Herein,
we investigate the incremental value of neuroimaging data
using an extended sample of SPIDER-VR patients (due to
the continuation of patient recruitment in MS). In this
extended sample, N = 211 patients had complete posttreat-
ment data, but twelve did not have available functional
MRI data, three were excluded for structural MRI artefacts
or abnormalities, five were excluded due to substantial move-
ment during the task, and one was excluded due to absent
visual activation (see the feature extraction section below
for quality control details). Thus, N = 190 patients in total
(81.6% overlap with the sample in [10]) were included for
analysis at posttreatment (see Table 1 for sample descrip-
tion). Primary treatment response (30% SPQ score reduction
between pretreatment and posttreatment) was observed in
54% of patients. A sample description of follow-up
responders and nonresponders is presented in Supplemen-
tary Table 1, and prediction analyses on the primary
outcome at follow-up are presented in Supplementary
results.

2 Depression and Anxiety
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2.2. MRI Data Acquisition. The full acquisition procedure is
described in [27]. Briefly, all scans were obtained with 3 T
MRI scanners (WÜ: Siemens Skyra, MS: Siemens Prisma).
A structural T1 dataset was collected using an MPRAGE
acquisition sequence (256 × 256 × 176 matrix, FOV = 256,
voxel size = 1 × 1 × 1mm, TE = 2:26ms [WÜ], TE = 2:28
ms [MS], TR = 1:9 s [WÜ], TR = 2:13 s [MS], flip angle = 9
° [WÜ], flip angle = 8° [MS]). Functional images were col-
lected with a T2∗ weighted EPI sequence in ascending order
(64 × 64 × 33 matrix, FOV = 210, voxel size = 3:3 × 3:3 × 3:8
mm, slice thickness = 3:8mm, 10% slice gap, TE = 30ms
[WÜ], TE = 29ms [MS], TR = 2:0 s, flip angle = 90°). Slices
covered the whole brain and were positioned transaxially
parallel to the anterior–posterior commissural line with a
tilted angle of 20°. Stimuli were presented via MR-
compatible LCD goggles (WÜ) or via a back-projection
monitor (MS).

2.3. Sustained and Phasic Fear (SPF) Task. The SPF task is a
suitable paradigm to measure activation in relevant net-
works for fear processing and has been used in previous lit-
erature to detect significant differences in functional
activation in patients with spider phobia compared to non-

anxious controls during both phasic fear and sustained fear
conditions [32]. Of note, analyses of the activation patterns
during sustained and phasic fear in patients with spider pho-
bia revealed increased anterior cingulate cortex activation
during sustained rather than phasic fear, whereas amygdala
and insula activation were of particular relevance for phasic
fear processing (see Breede et al., in prep.). Though lacking a
healthy control group, these results can be seen in line with
the results in [32].

The task employed a block design including 15 active
and 14 inactive blocks. During inactive blocks, a fixed dot
was displayed in the middle of the screen for 15 s. Active
blocks included 10 successive trials in which a picture was
shown for 1.7 s and followed by 300ms of fixation dot. Each
active block was followed by an inactive block. Active blocks
were split between three fear conditions in pseudorando-
mized order: (1) a sustained fear condition, during which
participants were informed that a spider could appear; pic-
tures of empty rooms were shown, and in three of the five
sustained fear blocks, a spider was shown instead of an
empty room in the last quarter of the block; (2) a phasic fear
condition in which participants were told they would see
spiders and were shown spider pictures; and (3) a no fear

Table 1: Pretreatment sample description of posttreatment responders and nonresponders.

Variables
Posttreatment responders Posttreatment non-responders

p value
N = 103 N = 87

Demographic characteristics at pretreatment

Gender (m/f) 13/90 12/75 n.s.

Site distribution WÜ:54 WÜ:29 1.3e-2∗

MS:49 MS: 58

Age (SD) 26.6 (7.5) 30.4 (9.9) 3.6e-3∗

Years of education (SD) 14.6 (3.0) 14.5 (3.0) n.s.

Clinical characteristics at pretreatment

Age of onset spider phobia (SD) 7.2 (4.6) 6.4 (4.6) n.s.

Comorbid depression, n (%) 3 (2.9) 3 (3.4) n.s.

SPQ (SD) 20.8 (3.5) 19.9 (4.2) n.s.

LSAS (SD) 22.4 (16.0) 26.1 (18.6) n.s.

ASI-3 (SD) 14.6 (7.0) 16.2 (8.1) n.s.

STAI trait (SD) 34.7 (8.4) 35.8 (8.2) n.s.

BDI-II total (SD) 3.0 (3.6) 3.3 (3.9) n.s.

UI-18 (SD) 37.5 (12.4) 39.9 (13.3) n.s.

Promis-specific phobia (SD) 11.3 (8.4) 11.0 (8.9) n.s.

FEAS anxiety (SD) 102.3 (13.5) 100.6 (10.8) n.s.

FAS (SD) 83.6 (12.7) 83.3 (11.7) n.s.

Final BAT distance (cm) (SD) 175.7 (61.4) 158.1 (69.2) n.s.

Posttreatment

SPQ (SD) 13.2 (2.4) 17.8 (2.0) <2.2e-16∗

Follow-up

SPQ (SD) 12.2 (2.8) 15.3 (3.2) 1.5e-10∗

Statistical tests were two-sided t-test for continuous variables and chi-squared tests for categorical variables. WÜ: Würzburg; MS: Münster; SPQ: spider fear
questionnaire; LSAS: Liebowitz Social Anxiety Scale; ASI-3: Anxiety Sensitivity Scale 3; STAI: State-Trait Anxiety Inventory; BDI-II: Beck Depression
Inventory II; UI-18: Unsicherheitsintoleranz (intolerance of uncertainty) 18 scale; PROMIS: Patient-Reported Outcomes Measurement Information System
(PROMISPHO: specific phobia); FEAS: Fragebogen zur Ekel und Angst vor Spinnen (questionnaire regarding disgust and fear of spiders); FAS:
Fragebogen zur Angst von Spinnen (questionnaire regarding the fear of spiders); BAT: behavioural avoidance test.

3Depression and Anxiety
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(safety) condition, during which participants were shown
pictures of empty rooms. After each active block, partici-
pants had to rate their experience from very pleasant to very
unpleasant. The total task duration was 9:45min.

2.4. Feature Extraction. Sociodemographic, clinical, and
structural MRI and fMRI data were used as features, and
each is described in detail below. The fMRI data providedpha-
sic and sustained fear activation, BOLD variance, and func-
tional connectivity features, and graph-theoretical features
were then derived from functional connectivity matrices.

2.4.1. Sociodemographic Data and Clinical Questionnaires.
The pretreatment sociodemographic and clinical features
included in the prediction analysis were previously described
in [10]. Briefly, they included age; gender; years of education;
age at phobia onset; family history of mental health condi-
tions; comorbidities; lifetime suicidal intent; smoking; con-
sumption of alcohol, cannabis, and coffee; distance; and
salience of a standardized behavioural avoidance test (a live
bird spider was placed in a closed box that patients had to
drag as close as possible to themselves), as well as sum scores
and subscales of a battery of anxiety-relevant questionnaires
such as the SPQ, State-Trait Anxiety Inventory [33],
questionnaire regarding the fear of spiders [34], and a
questionnaire regarding the disgust and fear of spiders [35]
(see Supplementary methods for a complete list of the ques-
tionnaires used).

2.4.2. Structural MRI Data. Structural data processing and
quality control were conducted with Freesurfer [36] in
accordance with ENIGMA protocols (https://enigma.ini.usc
.edu/protocols/imaging-protocols/). Total intracranial volume
was extracted, cortical surface area and cortical thickness were
extracted for 68 cortical ROIs of the Desikan-Killiany atlas
[37], and volume was extracted for 16 subcortical ROIs from
the Freesurfer automatic segmentation [36]. A visual control
was conducted for segmentation failure or substantial over-
or underestimation, and the data from the affected regions
were excluded.

2.4.3. Task-Based fMRI Data. The data preprocessing and
processing steps described below were conducted for each
subject individually. Initial visual quality control was con-
ducted for structural and functional data, and subjects with
excessive noise, motion artefacts, or abnormal brain anat-
omy were excluded (as mentioned above, N = 3 were
excluded for structural MRI artefacts or abnormalities, and
N = 5 were excluded due to substantial movement during
the task).

Task fMRI data were preprocessed with SPM12 and the
associated toolbox CONN [38]. Functional volumes were
realigned and unwarped, and potential outlier scans were
detected in CONN with conservative parameters (i.e., flag-
ging scans with within-subject global BOLD signal change
≥ 3 standard deviations or framewise displacement of
0.5mm). Volumes were then segmented and normalized
onto MNI template space, then smoothed with 8mm full
width at the half-maximum Gaussian kernel. Subjects with
movement-correction realignment parameters ≥ 3:3mm

(initial voxel size) in any direction were excluded. The
absence of occipital visual activation in the active vs. inactive
block contrast was also an exclusion criterion. Functional
measures described below were extracted for a set of 30 bilat-
eral anxiety-relevant ROIs derived from recent meta-
analyses and reviews [21, 39] to restrict the dimensionality
of features for the main prediction analysis (see Supplemen-
tary methods for the complete list of ROIs).

Given that some of the previous literature reported wide-
spread brain regions to have predictive value in psychother-
apy outcome prediction [12], an exploratory prediction
analysis was also conducted in which functional measures
were extracted for every ROI in the CONN default atlas,
covering the whole brain (combining cortical and subcorti-
cal areas from the FSL Harvard-Oxford atlas and the AAL
cerebellar areas for a total of 132 ROIs).

(1) Activation Features. Condition effects were modeled
using the general linear model in SPM with separate condi-
tions for phasic fear, sustained fear, no fear, instructions, rat-
ing, and inactive blocks separately to map the entire
experimental space. The six movement-correction parame-
ters from the realignment procedure were used as regressors
of no interest. Default 1st-level SPM analysis parameters
were used. Three contrasts of interest were computed per
subject (phasic fear vs. no fear, sustained fear vs. no fear,
and active blocks vs. inactive blocks). For each contrast per
subject, the Marsbar toolbox [40] was then used to extract
median effect sizes in every ROI, which were included as
features.

(2) BOLD Variance Features. All the preprocessing described
above was kept identical apart from smoothing, which was
absent. According to [41], realigned unwarped normalized
unsmoothed volumes, as well as the 1st-level SPM model
described above, were used as input in VarTbx (https://
github.com/LNDG/vartbx), and a boxcar model was used
to model the task design. To correct block offsets from the
concatenated blocks, all blocks were normalized to have a
four-dimensional mean of 100. The block mean was then
substracted from each voxel, and the detrended variance of
each condition was extracted voxelwise, producing whole-
brain BOLD variance maps. For the phasic fear, sustained
fear, and no fear conditions, the Marsbar toolbox was then
used to extract the average variance in every ROI, which
were included as features.

(3) Functional Connectivity Features. Preprocessed func-
tional volumes were denoised with the standard CONN
pipeline (linear regression of potential confounding effects
including noise components from cerebrospinal fluid and
white matter and temporal band-pass filtering [0.008-
0.09Hz]). ROI-to-ROI task-modulated effective connectivity
matrices were computed with generalized psychophysiologi-
cal interaction (gPPI) for all ROIS both in the phasic fear
and sustained fear conditions and were included as features.

(4) Graph-Theoretic Connectivity Features. The abovemen-
tioned gPPI matrices were used in the BCT toolbox [42].

4 Depression and Anxiety
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The gPPI matrices for phasic and sustained fear (i.e.,
weighted directed graphs) were thresholded with r = 0:3 to
avoid spurious edges. All global and ROI-specific metrics
available in the toolbox for directed graphs were extracted
(degree, strength, density, clustering coefficient, transitivity,
global and local efficiency, assortativity, characteristic path
length, betweenness centrality, K-coreness centrality, flow
coefficient, as well as the fingerprint, intensity, and coher-
ence of structural and functional motifs), with the exception
of community-related metrics (due to the varying number of
communities detected among subjects preventing their use
as comparable predictive features), and included as features.

2.5. Ensemble Machine-Learning Prediction. All prediction
analyses were conducted with scikit-learn (version 1.1.1) in
Python. A binary classification prediction between
responders (N = 103) and nonresponders (N = 87) at post-

treatment was conducted using an ensemble learning
approach, with eight 1st-level classifiers each using different
feature modalities (demographic and clinical questionnaires,
functional activation, gPPI connectivity for both phasic and
sustained fear, gPPI-derived graph-theoretic metrics, and
BOLD variance; see Figure 1) from which the output (i.e.,
predictions) was used as a feature by a 2nd-level classifier,
the latter producing the final prediction. Random shuffle
cross-validation was repeated 100 times with an 80-20
train-test split used in every iteration and included scaling,
median imputation, and feature selection using a logistic
regression stochastic gradient descent learning classifier with
mean feature importance as selection threshold (log-loss,
elastic net penalisation, grid search tuning of l1 ratio
between 0 and 1 with default 5-fold nested cross-
validation; all other default classifier parameters were kept
identical). All classifiers used were random forests (1000

Train set
(80%)

Test set
(20%)

SPIDER-VR
patient data
(N = 190)

Scaling and
median imputation

Application of scaling
and imputation

Feature selection Application of
feature selection

1. Training 2. Testing

a. 1st- level classifiers training

b. 2nd- level classifier training

RF9: Use predictions from 1st-level classifiers (RF1-8) as
features

RF1

RF2

RF3

RF4

RF5

RF6

RF7

RF8

RF9

Post-treatment
response prediction
performance from
1st- and 2nd- level

classifiers

a. 1st- level classifiers prediction

b. 2nd- level classifier prediction

Cross-validation

RF1: Sustained fear and phasic fear activation
RF2: Demographics + questionnaires

RF3: Sustained fear ROI-to-ROI connectivity (gPPI)

RF4: Phasic fear ROI-to-ROI connectivity (gPPI)

RF5: Sustained fear ROI-to-ROI: graph measures

RF6: Phasic fear ROI-to-ROI graph measures

RF7: Structural MRI measures
RF8: BOLD variance for sustained fear, phasic fear and no fear

Post-treatment response prediction performance from
1st- and 2nd- level classifiers across all iterations

Figure 1: Ensemble machine-learning classification pipeline. RF: random forest; ROI: region of interest; gPPI: generalized
psychophysiological interaction; MRI: magnetic resonance imaging; BOLD: blood-oxygen-level-dependent.
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estimators, out-of-bag score true, class weight balanced, all
other default parameters kept identical). An alternative
2nd-level classifier (soft voting with the sum of 1st-level pre-
dictions) was also examined for completeness.

The mean performance metrics across the 100 cross-
validation folds are reported in the results section. A cor-
rected resampled t-test [43, 44] between the balanced accu-
racy of classifiers of interest and the one of a dummy
classifier always predicting the majority class was used to
investigate above-chance classification accuracies.

To explore individual feature contribution to predic-
tions, the Shapley additive explanation (SHAP) module
was used [45]. SHAP uses a game-theoretic approach to
assign an importance value to each feature for an individual
prediction.

3. Results

3.1. 1st-Level Posttreatment Outcome Prediction Results. The
main prediction analysis of posttreatment outcome based on
demographic and clinical questionnaires resulted in a bal-
anced accuracy = 0:60 (SD = 0:07) and AUROC = 0:64
(SD = 0:08) (Table 2, Figure 2(a)). No significant difference
emerged between the sociodemographic and clinical classi-
fier and the dummy classifier using the corrected resampled
t-test.

The main prediction analysis based on structural MRI
measures, functional activation, gPPI connectivity, gPPI-
derived graph metrics for both phasic and sustained fear
conditions, and BOLD signal variance did not perform
above chance level (balanced accuracy ranging from 0.48
to 0.55, AUROC ranging from 0.48 to 0.59).

The exploratory prediction analysis, in which functional
features were derived from ROIs across the whole brain
instead of an a priori selected set, produced similar results
except for the 1st-level BOLD signal variance classifier,
which resulted in a balanced accuracy = 0:63 (SD = 0:07)
and AUROC = 0:67 (SD = 0:08) (Table 2, Supplementary
Figure 1A). A significant performance difference was found
between the BOLD variance classifier and the dummy
classifier using the corrected resampled t-test (p = 0:041).

Features that contributed most to this variance classifier
prediction varied across conditions and brain regions,
including, for instance, BOLD variance in the right supra-
marginal gyrus, left parahippocampal and angular gyri, and
left intracalcarine cortex (Figure 3).

3.2. 2nd-Level Posttreatment Outcome Ensemble Prediction
Results. The 2nd-level classifiers using the prediction proba-
bilities of all 1st-level classifiers as input features failed to
predict treatment outcome above the chance level in the
main prediction analysis (Figure 2(b)). The 2nd-level voting
classifier prediction resulted in a balanced accuracy = 0:55
(SD = 0:06) and AUROC = 0:61 (SD = 0:07). The 2nd-level
random forest classifier resulted in a balanced accuracy =
0:54 (SD = 0:07) and AUROC = 0:58 (SD = 0:08).

Comparable results were obtained with the exploratory
analysis in which functional features were derived from
ROIS across the whole brain instead of an a priori selected
set, with the voting classifier resulting in a balanced
accuracy = 0:54 (SD = 0:06) and AUROC = 0:62 (SD = 0:08
) and the random forest classifier resulting in a balanced
accuracy = 0:52 (SD = 0:06) and AUROC = 0:58 (SD = 0:08
) (Supplementary Figure 1B).

Table 2: Prediction results of the 1st-level classifiers of posttreatment response (N = 103 responders vs. N = 87 nonresponders).

1st-level classifier Balanced accuracy (SD) AUROC (SD)

Functional features extracted from a priori selected 30 ROIs

Demographic and questionnaire data 0.60 (0.07) 0.64 (0.08)

Structural MRI 0.51 (0.07) 0.51 (0.08)

Functional activation 0.48 (0.08) 0.48 (0.09)

Phasic fear gPPI 0.52 (0.06) 0.53 (0.08)

Sustained fear gPPI 0.51 (0.06) 0.55 (0.08)

Phasic fear graph measures 0.52 (0.07) 0.54 (0.08)

Sustained fear graph measures 0.54 (0.07) 0.56 (0.09)

BOLD variance 0.55 (0.07) 0.59 (0.08)

Functional features extracted from ROIs across the whole brain (exploratory)

Demographic and questionnaire data 0.60 (0.07) 0.64 (0.08)

Structural MRI 0.51 (0.07) 0.51 (0.08)

Functional activation 0.51 (0.06) 0.52 (0.08)

Phasic fear gPPI 0.49 (0.05) 0.49 (0.10)

Sustained fear gPPI 0.49 (0.05) 0.49 (0.09)

Phasic fear graph measures 0.48 (0.06) 0.50 (0.07)

Sustained fear graph measures 0.47 (0.06) 0.49 (0.08)

BOLD variance 0.63∗ (0.07) 0.67 (0.08)

ROI: region of interest; AUROC: area under the receiving operator curve; gPPI: generalized psychophysiological interaction. ∗p < 0:05, corrected resampled
t-test against the accuracy of a dummy classifier, two-tailed.
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4. Discussion

The present study investigated the incremental predictive
value of neuroimaging data with respect to clinical data
alone for individual-level psychotherapy outcome prediction
in patients with spider phobia. Contrary to expectations,
prediction performance did not go beyond chance level for
all distinct data modalities except BOLD variance, and the
contribution of (f)MRI measures to the prediction did not
outperform clinical and sociodemographic data alone. At
posttreatment, clinical questionnaires and BOLD signal var-
iance derived from ROIs across the whole brain showed the
potential to contribute to higher-level ensemble prediction
with a balanced accuracy of 0.60 and 0.63, respectively. No
predictive contribution was found for any data modality at
follow-up (see Supplementary results).

4.1. Perspective on Prediction Performance. Overall, our find-
ings challenge the existing literature reporting above-chance
predictive accuracies for machine-learning psychotherapy
outcome prediction using neuroimaging data in patients
with anxiety disorders [12–17, 46]. However, they echo a
more recent body of methodological work underlining that,
despite initial promise in the field, prediction accuracies for

patient classification based on medical imaging features
appear to be decreasing as sample sizes increase, perhaps
reflecting unwitting biases in performance evaluation, over-
hyping, and cross-validation error bars in the neuroimaging
literature [19, 47–49]. The importance of general sample size
and the size of test sets in particular to guard against mises-
timation of prediction accuracy was underlined in a study
using a very large sample of patients with depression to
mimic small-scale sampling results in machine-learning
classification using structural neuroimaging [18]. In line
with this, another recent prospective prediction of pharma-
cotherapy outcome in a relatively large sample of patients
with depression using baseline cross-sectional functional
MRI connectivity yielded no prediction above chance level,
although using changes in connectivity from baseline to
week two as predictive features instead yielded accuracies
up to 0.696 [50]. This study pointed out that many previous
studies reporting high classification or prediction accuracies
were based on single-site, small samples of patients that do
not generalize well, and that although more heterogeneous
and larger multisite datasets may yield lower prediction per-
formances, they were more representative of the target pop-
ulation. While our sample was bicentric and fairly larger
than previously published studies, it is not large per
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Figure 2: Area under the receiving operating curves for treatment outcome classification. (a) 1st-level classification results. (b) 2nd-level
classification results. gPPI: generalized psychophysiological interaction.
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machine-learning standards. Efforts to collaboratively build
multisite samples with very large sizes, such as the ENIGMA
consortium initiative [51], should be bolstered to address
this recurring concern. The performance of machine-
learning models can also vary depending on the initial
choice of various prediction pipeline elements and can also
be affected by the incorporation of distinct data modalities
in the prediction.

The clinical demographic classifier showed close perfor-
mance to a previous prediction study using the original
SPIDER-VR sample [10]; however, it was not significantly
above the chance level in our study (possible causes include
distinct balancing and cross-validation strategies between
the two studies and the use of an extended sample herein).
The BOLD variance classifier did reach above-chance pre-
dictive performance on its own at posttreatment in our
exploratory analysis with features extracted from ROIs
across the whole brain but with moderate performance. It
could be a promising contributor to 2nd-level prediction
alongside other feature modalities. Indeed, in the field of
neuroimaging, interest in BOLD signal variability has been
increasing with mounting evidence that it could be a prom-
ising correlate of cognitive performance with good measure-
ment reliability and a more flexible brain state allowing
more accurate processing, complementary to the traditional
BOLD signal mean [52–54]. BOLD signal variability has also
been reported to differ significantly between patients with
generalized anxiety disorder and healthy controls in wide-
spread brain regions, with a nonlinear relationship between
anxiety level and variability, showing promise as a potential
clinical biomarker [55]. Critically, given the recent and
sparse literature on the predictive value of BOLD variability

both in resting-state and task-based fMRI in anxiety disor-
ders [14, 16], our study supports further investigation of
BOLD variability as a predictive feature of clinical outcome.

Additionally, other psychological, neuroimaging, and
biological measures could also be explored for individual-
level predictive purposes. For instance, early response to
psychotherapy is a well-established group-level predictor of
posttreatment response in patients with internalizing disor-
ders [56–60], and early functional connectivity variation
during psychotherapy was also reported to be predictive of
individual-level clinical outcome [50]. The promise of eco-
logical momentary assessments to measure symptom
dynamics and inform clinical decisions in patients with anx-
iety disorders has been recently underlined [61]. Epigenetic
markers have also been noticed as promising group-level
prospective biomarkers for psychotherapy response in
patients with stress-related and anxiety disorders in the
recent literature [62].

Based on our results as well as the previously mentioned
literature, we encourage caution in the interpretation of
promising neuroimaging prediction results with small
patient sample sizes. Further investigation with large and
multisite samples is still needed to elucidate the potential
contribution of (f)MRI measures to the prediction of anxiety
disorder therapy response.

4.2. Strengths. The clinical outcome prediction was based on
targeted, anxiety-specific standardized questionnaires and
on multimodal MRI data, including both structural and sev-
eral functional neuroimaging measures. Additionally, our
investigation included a state-of-the-art machine-learning
pipeline designed to incorporate the respective predictive
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Figure 3: The Shapley (SHAP) values and feature importance of the 1st-level variance classifier in the responder (N = 103) vs. nonresponder
(N = 87) prediction using functional features across ROIs covering the whole brain. Positive SHAP values indicate a contribution of feature
value in favour of the positive class prediction (future responder); negative Shapley values are in favour of the negative class prediction
(future nonresponder). Larger absolute Shapley values indicate a larger impact on the model output. The 20 most contributing features are
shown and ranked in decreasing order of mean absolute SHAP value. Horizontal violin plots on the left represent the distribution of all
individuals in the test set across all cross-validation iterations. For each feature, relative values are represented on the left by a color gradient.
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contributions of distinct data modalities and to maximize
feature interpretability.

4.3. Limitations. Limitations to our study include the ROI-
based approach, which induced a loss of information in
comparison to more fine-tuned, voxel-wise approaches, par-
ticularly for variability-based measures. However, this
approach was necessary to keep a more reasonable feature
dimensionality and reduce overfitting.

Our sample also included quite homogeneous spider-
phobic patients without major comorbidities and might
not be fully representative of a diverse clinical population
of patients with anxiety disorders. It was, however, crucial
for internal validity to investigate the clinical effects of VRET
in previous SPIDER-VR publications.

5. Conclusion

The present study found no evidence of an incremental con-
tribution of structural MRI and symptom-relevant task-
based fMRI measures to psychotherapy outcome prediction
in a fairly large and bicentric sample of patients with spider
phobia, with the exception of BOLD signal variance which
performed moderately above chance. As such, our findings
invite further investigation of BOLD signal variability as a
contributor to higher-level prediction. However, even the
BOLD signal variability prediction performance was lower
than in previous single-site, small-sample literature. Thus,
the present study also warrants caution in interpreting previ-
ous small-scale psychotherapy outcome prediction studies
and underlines the need for larger, multisite, and multi-
modal datasets to further examine the predictive contribu-
tion of neuroimaging measures to psychotherapy response
in anxiety disorders.
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