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This paper presents a comprehensive framework for addressing the challenges associated with
turbulence linear forcing in incompressible single-phase and two-phase flows. By examining existing
literature on linear forcing techniques for single-phase flows, which typically yield constant turbulent
production, kinetic energy, or dissipation rates, we derive a general method based on constant
energetics. This method ensures that any constant power of kinetic energy multiplied by any
constant power of dissipation rate remains unchanged over time. A linear stability analysis of
this forcing method is performed, demonstrating its relevance and suitability in practical scenarios.
Then, a novel solution is proposed for addressing numerical dissipation by measuring and including
it in the linear forcing term. This methodology is adapted to the general method proposed for
constant energetics and validated on a single-phase flow. Finally, we investigate the linear forcing
of turbulence in two-phase flows. Removing the mean contribution of the capillary forces prevents
the exponential growth of kinetic energy. The paper also explores the impact of capillary forces
on the energetics budgets and their implications for turbulent forcing. The framework is validated
through turbulent emulsion and mono-disperse droplet-laden turbulence scenarios, demonstrating
its feasibility across various two-phase flow applications.

I. INTRODUCTION

Turbulent multiphase flows are of great interest for numerous applications ranging from environmental processes,
such as atmospheric cloud formation [1] and sediment transport [2], to industrial applications like multiphase reactors
[3] and fuel injection systems [4]. The numerical simulation of these processes requires properly generating and
controlling turbulence in the presence of dispersed phases.

To generate and maintain single-phase turbulence, different approaches have been proposed. The linear forcing
method [5] has shown a noticeable gain in interest in the past two decades because, in contrast to spectral methods, it
does not require a domain with periodic boundary conditions and may be readily used in variable density simulations
[6]. Moreover, it does not require working in the spectral space, avoiding the burden of Fourier transforms, which may
lead to additional computational cost when using a non-spectral code [7]. This gain of versatility led to numerous
adaptations of the method for rectangular domains or partial forcing in only a portion of the domain with reasonable
control of global turbulence quantities in the context of turbulent combustion [8, 9]. In the linear forcing method, a
source term linearly proportional to the fluid velocity is introduced into the momentum transport equation, which
reads Au. A is the forcing coefficient and u the fluid velocity. This forcing acts in the physical space as a production
term that injects energy at all scales [10] in opposition to spectral methods that may select the wave numbers where
turbulence is injected [11]. The pioneering work of Lundgren [5] has been analyzed by Rosales and Meneveau [6], who
concluded that the original form suffers from two main limitations:

• The slow convergence to a statistically stationary state and large temporal oscillations around the prescribed
values related to turbulence.

• The integral length imposed by the domain size, i.e., at a scale ℓ ≈ 0.19L with L the periodic box length [6].

The issue of statistical convergence can be cured by adjusting the coefficient A that multiplies the velocity. In
Carroll and Blanquart [10], the unsteady measure of the turbulent kinetic energy in the box is included in the
forcing amplitude. This small addition allows it to converge faster to the prescribed turbulent intensity, even if large
oscillations around the expected value are still observed. In Bassenne et al. [12], new forms are proposed that can
converge rapidly to nearly constant kinetic energy k or dissipation rate ϵ. A hybrid form is also proposed to minimize
the oscillation amplitude of k and ϵ. This last approach leads to an excellent trade-off between the control of k and
ϵ. Similar forms of A were used in different works to control k [9, 13, 14]. Regarding the control of integral length,
several studies propose to filter the velocity present in the force with a diffusion equation [15], a Gaussian kernel [9],
a top hat filter [16] or the Raymond & Garder’s implicit sine filter [17]. Finally, specific flows have been treated with
extensions of Lundgren’s linear forcing to anisotropic turbulence [15] and inhomogeneous turbulence [16]. Note that
the control of integral length and inhomogeneous anisotropic turbulence is beyond the scope of the paper.
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We must investigate several aspects to adapt Lundgren’s linear forcing to two-phase flows. The original method relies
on a framework where the kinetic energy budget can be easily derived. Its extension to interfacial flows with surface
tension must be written and the linear forcing modified accordingly [18]. Moreover, the numerical approximation
of Navier-Stokes equations does not always conserve kinetic energy due to the additional challenges of numerically
capturing interfaces. The discrete conservation of kinetic energy is not a trivial feature for the numerical approximation
of a single-phase flow [19] and is even more challenging to obtain for a two-phase flow employing an interface capturing
method [20]. Indeed, most of the two-phase flow solvers of the literature do not fulfill this conservation property [21–
25]. Despite its practical importance, a detailed analysis of conservation loss and its consequences on the linear forcing
is lacking.

Moreover, while employing Lundgren’s forcing, some issues have been observed by Chouippe and Uhlmann [7]
for particle-laden flows. In their simulations, the additional forces due to the two-way coupling modify the kinetic
energy balance and lead to unbounded growth of the kinetic energy. This issue can be minimized by removing the
mean flow in the computation of the forcing term. Other authors argued that the velocity used to force turbulence
should not be correlated to the velocity of the flow [7, 13]. Then, an external stochastic process based on velocities
randomly generated in the spectral space [11] was used to avoid such exponential growth of kinetic energy. Other
external processes based on inherently chaotic velocity fields, such as ABC flows [26] have been successfully employed
by Crialesi-Esposito et al. [27] to simulate turbulent emulsions. More recently, Yao and Capecelatro [28] propose to
remove the mean part of the two-way coupling force while using Lundgren’s forcing to retrieve bounded kinetic energy.

Finally, Lundgren’s forcing has been revisited by Duret et al. [29] to simulate homogeneous isotropic turbulence
(HIT) of two-phase flows with phase change using a direct measure of the kinetic energy budget in the periodic box.
This approach indirectly considers the additional contributions to the energy budget by a simple measure of kinetic
energy change in time. Such a method avoids computing an energy budget, which can be tedious in the context of
two-phase flows with phase change.

Following the work of Bassenne et al. [12] and Duret et al. [29], this paper tackles the issue of forcing homogeneous
isotropic turbulence in single-phase and two-phase flows where capillary forces are captured. The reexamination of the
state-of-the-art allows us to propose a general form of linear forcing that imposes any constant power of kinetic energy
multiplied by any constant power of dissipation rate. We also extend the linear forcing to numerical solvers suffering
from numerical dissipation thanks to an indirect measure of the energy budget as proposed by Duret et al. [29]. The
different numerical experiments performed with the Basilisk solver [21] give general best practices to force turbulence
in a two-phase flow, which can also extend to other flow types. The paper is presented as follows. First, the numerical
setup used for numerical experiments is presented in section II. Then, the general methodology of Lundgren’s linear
forcing is described for an incompressible single-phase flow in section III. In section IV, the control of energetics in
single-phase flows is introduced with the issue of numerical dissipation evidenced by numerical experiments. This
issue is further studied in section V, along with a solution to overcome it. Finally, the linear forcing for two-phase
flows is treated by addressing the additional numerical issues in section VI. Section VII presents conclusions and
perspectives of this work.

II. NUMERICAL METHODOLOGY

Before delving into the specifics of turbulence forcing, this section introduces the numerical setup employed in
this work. For two-phase flows, the incompressible Navier-Stokes equations can be written following the single-field
formalism [30]

∂α

∂t
+∇ · (αu) = 0, (1)

∇ · u = 0, (2)

ρ

(
∂u

∂t
+∇ · (u⊗ u)

)
= −∇p+∇ · (µ∇u) + ρfT + fσ, (3)

where α is the volume fraction of the dispersed phase, u is the fluid velocity, t is the time, p is the fluid pressure, fT is
the turbulent forcing term which sustains turbulence in the flow. Following the single-field formalism, fσ is the local
density of the capillary force per unit volume, ρ the average density and µ the average viscosity defined as

fσ = σκ∇α, ρ = αρ1 + (1− α)ρ2, µ = αµ1 + (1− α)µ2, (4)

with σ the surface tension and κ the mean curvature of the interface. The subscripts refer to phases 1 and 2.
The numerical simulations are performed with the Basilisk solver [21]. The solver uses a second-order order projection
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(a) Single-phase HIT (SP) (b) Turbulent emulsion (TPE) (c) Droplet-laden HIT (TPD)

FIG. 1: Illustration of three configurations of interest for the linear forcing of turbulence. (a) : the isocontour
λ2 = −5 appears in white [35]. (b) and (c) : the interface isocontour α = 0.5 appears in white. The vorticity field in

x-direction is displayed on the planes.

method in space and time [31] for equations (2) and (3) and an interface capturing method based on the geometric
Volume-of-Fluid [32] with a PLIC reconstruction [33]. The interface and the momentum equation are coupled through
the capillary force modeled by a well-balanced continuum-surface-force formulation [34] with the curvature estimated
from height functions [21].

The numerical setup comprises a triple periodic box with length L = 2π, accommodating both single-phase and
two-phase flows. Three test cases are considered to encompass relevant applications. They are illustrated in fig. 1
and the main physical and numerical parameters are summed up in table I.

Case ρ µ Reλ We d/η ⟨α⟩Ω
SP 1 0.005 40 – – –
TPE 1 0.005 40 25 – 0.1
TPD 1 0.005 40 0.5 20 0.1

TABLE I: Physical and numerical setup for the three different cases

First, a single-phase (SP) test case is studied, which aligns with a classic HIT as pictured in fig. 1a. We define the
Taylor-microscale Reynolds number as

Reλ =
ρλu0

µ
, (5)

where u2
0 is the variance of the velocity field (u2

0 =< uiui >Ω /3) and λ is the Taylor-microscale defined as λ =√
15νu2

0/ϵ0 with ν = µ/ρ the kinematic viscosity. ⟨ · ⟩Ω denotes spatial averaging over the whole domain and
ϵ0 = ⟨ν∇u : ∇u⟩Ω is the average dissipation rate. The SP test case is initialized with a solution obtained from
a prescribed energy spectrum E0(κ) given by eq. (A2), which already has the target kinetic energy k0 [10]. An
important aspect of the linear forcing is worth emphasizing: the initial velocity field should not influence the long-
term statistically converged state. We have tested two different ways of initializing the velocity field in Appendix A.
Both lead to the same results after a short transient whose duration depends on the prescribed methodology.

A second test case involves an emulsion (TPE) where a wide range of scales is generated through turbulence (see
fig. 1b). The TPE test case can be related to various works of the literature from liquid-gas with phase-change [29, 36]
to liquid-liquid systems [27, 37]. The density and dynamic viscosity are equal in both phases, and the hold-up is taken
as ⟨α⟩Ω = 0.1. The initial solution consists of the steady state of the SP test case for the velocity field and a single
spherical droplet of diameter d such that the Weber number We = 0.5ρu2

0L/σ = 25 as in [38].
Finally, a third test case is considered corresponding to a droplet-laden HIT (TPD) with a monodisperse distribution

as illustrated in fig. 1c. The TPD test case is analogous to the study of finite-size particles interacting with turbulence
[28, 39, 40]. As for the TPE test case, the density and dynamic viscosity are taken equal in both phases, and the

volume fraction is taken as ϕ = 0.1. The Weber number We = 2ρϵ
2/3
0 d5/3/σ = 0.5 with the droplet diameter d = 20η

ensures that the droplet cannot break up according to the Hinze-Kolmogorov theory [41]. An additional treatment
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is used for the TPD case to avoid coalescence, which ensures that the droplet population remains monodisperse.
This method relies on a multi-VOF representation of the interface [42, 43], which transports different VOF fields for
droplets when they are too close to each other. Then, no coalescence occurs due to the presence of two interfaces in
the same cell, as it happens using a standard VOF-PLIC method. However, this method can be quite expensive as it
requires solving a transport equation for each VOF field. To avoid this issue, an algorithm called no-coalescence.h
is implemented. More details on this algorithm can be found in a manuscript in preparation [43]. The choice of a
small Weber number and the use of the multi-VOF method allows for keeping a single-size droplet population in the
presence of turbulence.

If not specified, all simulations are conducted with Nx = 256 cells per direction and a prescribed Reλ = 40. This
choice for the grid resolution leads to κmaxη > 9 with κmax = 2π/∆x the highest captured wavenumber. This
Reynolds number is relevant to the intended applications involving two-phase flows and minimizes the influence of
numerical dissipation discussed in section V. The calculations are performed during an extended period of T = 100τℓ,
with τℓ = ℓ/u0 the integral timescale, to ensure statistical convergence.

III. GENERAL PHILOSOPHY OF LUNDGREN’S LINEAR FORCING

First, we present the pioneering work of Lundgren [5] in the context of incompressible flows. In the case of a
single-phase incompressible flow, eqs. (2) and (3) yield

∇ · u = 0, (6)

ρ

(
∂u

∂t
+∇ · (u⊗ u)

)
= −∇p+ µ∇2u+ ρfT , (7)

In the generic framework of HIT, where the domain consists of a triple-periodic box, the total kinetic energy budget
can be established by taking the scalar product of eq. (7) by u and spatial averaging ⟨ · ⟩Ω over the whole domain
[44]. This yields,

∂k

∂t
= −ϵ+ PT , (8)

where k(t) is the volume averaged kinetic energy, ϵ(t) is the volume averaged dissipation rate, PT (t) the volume
averaged turbulent production through forcing. k, ϵ and PT may be expressed as

k =
1

2
⟨u · u⟩Ω , ϵ = ⟨ν∇u : ∇u⟩Ω , PT = ⟨fT · u⟩Ω . (9)

The linear turbulent forcing term may be defined as

fT = A(x, t)u. (10)

In Lundgren [5] original work, A is kept constant in space and time such that A(x, t) ≡ A0. At steady state eq. (8)
reduces to

ϵ0 = 2A0k0, (11)

which leads to A0 = ϵ0/(2k0) where the subscript 0 refers to the steady state (target) turbulent quantities. The
knowledge of the integral length scale ℓ = (u2

0)
3/2/ϵ0 and the variance of the velocity field u2

0 lead to all other
turbulent quantities:

Reλ =

(
15u0ℓ

ν

) 1
2

, k0 =
3

2
u2
0, ϵ0 =

u3
0

ℓ
, τℓ =

3ℓ

2u0
, A0 =

u0

3ℓ
. (12)

Using eq. (11), Carroll and Blanquart [10] define the turbulent quantities in terms of ℓ and A0

Reλ =

(
45A0ℓ

2

ν

) 1
2

, k0 =
27

2
A2

0ℓ
2, ϵ0 = 27A3

0ℓ
2, τℓ =

1

2A0
, u0 = 3A0ℓ. (13)
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FIG. 2: Time evolution of various quantities using different forcing methods for SP test case. (a): evolution of the
forcing coefficient A, (b): evolution of the turbulent production PT , (c): evolution of the kinetic energy k, (d):

evolution of the dissipation rate ϵ. The constant-A forcing refers to the original method of Lundgren [5] defined by
eq. (10) with A = A0, the constant-PT refers to the method of Carroll and Blanquart [10] defined by eq. (14), the

constant-k and constant-ϵ refer to the methods of Bassenne et al. [12] defined by eqs. (19) and (23) respectively with
τk = τϵ = τℓ/67.

IV. MODIFICATION OF THE ORIGINAL LINEAR FORCING APPROACH

The study conducted by Rosales and Meneveau [6] revealed that the pioneering work of Lundgren converges slowly
to the prescribed turbulent kinetic energy. Moreover, the solution exhibits large temporal oscillations around the
prescribed values (as shown by the blue line in fig. 2). This feature of the constant-A forcing prevents the acquisition
of statistically converged turbulence data when additional physics is considered, such as particle-laden flows [12]. In
the following, we present some solutions proposed in the literature to overcome this limitation and better control the
energetics in the turbulent flow. The evolution of the forcing amplitude A, forcing power PT , kinetic energy k, and
dissipation rate ϵ are displayed in fig. 2 for the four main methods presented in this section as an illustration of their
behavior on the single-phase test case SP. We also propose a general formulation encompassing constant-energetics
methods and compare it to the hybrid approach of Bassenne et al. [12].
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A. Constant turbulent production PT

In [10], a first attempt to monitor the turbulent kinetic energy k has been proposed where the measure of k(t) in
the domain at time t is included in the forcing amplitude

A(t) = A0
k0
k(t)

, (14)

where k0 is the desired kinetic energy and A0 is the amplitude computed from the prescribed turbulence. Palmore Jr
and Desjardins [17] noticed that such a forcing prescribes a constant turbulent production over time matching exactly
the target dissipation rate ϵ0:

PT =

〈
A0

k0
k
u · u

〉
Ω

= 2A0k0 = ϵ0. (15)

This slight modification of Lundgren’s initial form allows the solution to converge faster to the prescribed turbulent
intensity, even if oscillations around the expected value are still observed. In fig. 2b, it is clear that the turbulent
production of this method exactly matches the target dissipation rate ϵ0 while the kinetic energy and dissipation rate
are oscillating around the target values in fig. 2c and fig. 2d respectively.

B. Constant kinetic energy k

In the literature, some authors define a coefficient of the form

A(t) = max

[
k0 − k(t)

∆t k0
, 0

]
(16)

with ∆t the computational timestep. The coefficient A acts as a bang-bang controller, stopping the forcing when the
target kinetic energy is reached. The kinetic energy is then dissipated, and the forcing starts again to retrieve the
target kinetic energy. More sophisticated forms based on a PID controller [14, 45] can also be used to improve the
abrupt changes in forcing amplitude displayed by eq. (16).

Another strategy is presented by Bassenne et al. [12] to properly derive a constant-k forcing coefficient from the
kinetic energy budget. By noticing that Lundgren’s form of turbulent production writes 2Ak, eq. (8) becomes:

∂k

∂t
= −ϵ+ 2Ak. (17)

In the original work of Lundgren [5], the strong hypothesis of instantaneous steady state ∂k/∂t = 0 was invoked and
can be softened by a relaxation of the form:

∂k

∂t
= −k − k0

τk
, (18)

with τk the timescale of relaxation to the prescribed kinetic energy k0 from the actual kinetic energy k. Combining
eqs. (17) and (18) and rearranging the terms lead to the new forcing coefficient:

A(t) =
k0 − k(t)

2τkk(t)
+

ϵ(t)

2k(t)
. (19)

It was found by Bassenne et al. [12] that the relaxation time τk should be smaller than τℓ to ensure small temporal
oscillations around the target turbulence. In this work, this relaxation time is set to τk = τℓ/67 as proposed in [12].
It is clear from fig. 2c that this method is able to prescribe the target kinetic energy k0, which remains constant in
time. However, the dissipation rate experiences oscillations around the prescribed value as demonstrated in fig. 2d.

C. Constant dissipation rate ϵ

A forcing coefficient was also derived by Bassenne et al. [12] to impose a constant dissipation rate ϵ. First, the
transport of ϵ is obtained by differentiating eq. (7) with respect to x and multiplying it by 2ν∇u:

∂ϵ

∂t
= −ϑ+ 2Aϵ, (20)
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where ϑ is the term of production and dissipation of ϵ which may be expressed as (with Einstein notation):

ϑ = 2

〈
ν
∂ui

∂xk

∂uj

∂xk

∂ui

∂xj

〉
+ 2

〈
ν2

∂

∂xj

(
∂ui

∂xk

)
∂

∂xj

(
∂ui

∂xk

)〉
. (21)

By allowing ϵ to relax to the prescribed value ϵ0:

∂ϵ

∂t
= −ϵ− ϵ0

τϵ
, (22)

the constant-ϵ form is derived:

A(t) =
ϵ0 − ϵ(t)

2τϵϵ(t)
+

ϑ(t)

2ϵ(t)
. (23)

As for the constant-k form, τϵ must be small compared to τℓ and is set to τϵ = τk = τℓ/67 in this work. As depicted
in fig. 2d, the method is able to prescribe the target dissipation rate ϵ0 while k is oscillating around the target value
k0 in fig. 2c. The turbulent production shows oscillations with the highest frequency in fig. 2b, which reflects stronger
temporal variations of the higher-order energetics ϵ compared to k.

D. A general framework for constant-energetics linear forcing

While k and ϵ are the usual quantities of interest to characterize a turbulent flow, other turbulent quantities can
be written in terms of k and ϵ:

ℓ ∼ k
3
2

ϵ
, τℓ ∼

k

ϵ
, Reλ ∼ k

ϵ
1
2

. (24)

Let us define a general turbulent quantity Φ ∼ kaϵb and write its time derivative:

1

Φ

∂Φ

∂t
=

a

k

∂k

∂t
+

b

ϵ

∂ϵ

∂t
. (25)

By using eqs. (17) and (20), eq. (25) becomes:

a

k

∂k

∂t
+

b

ϵ

∂ϵ

∂t
=

a

k
(−ϵ+ 2Ak) +

b

ϵ
(−ϑ+ 2Aϵ) . (26)

Finally, by substituting eqs. (18) and (22) in eq. (26) and rearranging the terms, a general forcing coefficient can be
written as:

A(t) = χ

(
k0 − k(t)

2τkk(t)
+

ϵ(t)

2k(t)

)
+ (1− χ)

(
ϵ0 − ϵ(t)

2τϵϵ(t)
+

ϑ(t)

2ϵ(t)

)
, (27)

with the control weight χ = a/(a+ b).
This final form eq. (27) is a generalization of the hybrid approach proposed by Bassenne et al. [12] which minimizes

the error of eqs. (19) and (23) by a least-square regression. Their formula reads

A(t) =
4k2(t)

4k2(t) + 9τ2ℓ,0ϵ
2(t)

(
k0 − k(t)

2τkk(t)
+

ϵ(t)

2k(t)

)
+

9τ2ℓ,0ϵ
2(t)

4k2(t) + 9τ2ℓ,0ϵ
2(t)

(
ϵ0 − ϵ(t)

2τϵϵ(t)
+

ϑ(t)

2ϵ(t)

)
.

(28)

By identification in eqs. (27) and (28), it yields:

χ(t) =
4k2(t)

4k2(t) + 9τ2ℓ,0ϵ
2(t)

. (29)

Hence, the hybrid approach proposed by Bassenne et al. [12] is an alternative form of the general forcing coefficient
with χ varying in time to adjust the forcing coming from an error on k or on ϵ. At the steady state k(t) = k0 and
ϵ(t) = ϵ0, then eq. (29) gives χ = 1/2 which corresponds to the general forcing coefficient with [a, b] = [1, 1].
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FIG. 3: Evolution of the control weight χ (a), the kinetic energy multiplied by the dissipation rate kϵ (b), the
kinetic energy k (c) and the dissipation rate ϵ (d) using different forcing methods for SP test case. The constant-k
and ϵ refers to the method of Bassenne et al. [12] defined by eqs. (19) and (23) respectively, constant-kϵ refers to

eq. (27) and hybrid to eq. (28) with τk = τϵ = τℓ/67.

In fig. 3, the evolution of χ, kϵ, k and ϵ is provided for constant-k, constant-ϵ, constant-kϵ method and the hybrid
method of Bassenne et al. [12]. All constant-energetics can be related to eq. (27) with different choices of χ. In fig. 3a,
constant-k and constant-ϵ methods correspond to χ = 1 and χ = 0 respectively, while constant-kϵ corresponds to
χ = 0.5 and finally, the value of χ in the hybrid method oscillates around 0.5. There is a short transition regime from
the initial solution where the control weight χ is close to zero because the error is the largest for the dissipation rate.
The modulation of χ helps the hybrid method to converge faster to the prescribed ϵ0 compared to the constant-kϵ
method as depicted in fig. 3d. After this small, unsteady regime, both methods are substantially equivalent. The
quantity kϵ is shown in fig. 3b to demonstrate the capacity of the proposed general method to prescribe any turbulent
quantity by modifying a and b. The hybrid method shows approximately the same behavior as the control weight χ
oscillates around the value 0.5 corresponding to a constant kϵ. Finally, the evolution of k and ϵ, given in figs. 3c and 3d
respectively, show that a general approach that combines constant-k and ϵ methods is able to mitigate oscillation
amplitudes around both quantities.

This numerical experiment then assesses the proposed general framework, which encompasses all methods of the
literature and has the same benefits as the hybrid approach proposed by Bassenne et al. [12]. We have also demon-
strated that the derivation was consistent with the numerical results: given a couple a and b, the quantity kaϵb is
controlled and remains constant during the whole simulation. In the present study, a = b = 1 leads to χ = 0.5 and a
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constant-kϵ method. Note that the choice of χ is constrained by the linear stability of the method which is described
in the next section.

E. Stability analysis of the methods

In Carroll and Blanquart [10], the linear stability of the constant-A and constant-PT methods are performed to
provide an explanation for the improvement of the forcing using their modified form. Here, we propose to apply
the same procedure to the general constant-energetics forcing method proposed in this paper. This linear stability
analysis is based on the hypothesis that the term ϑ in the dissipation rate transport equation can be expressed as in
the standard k − ϵ model

ϑ = ξ
ϵ2

k
, (30)

with ξ a positive constant which is close to one [46]. Then, k and ϵ are defined in terms of their asymptotic value k0
and ϵ0 and a small perturbation around this value k′ and ϵ′ such that k = k0 + k′ and ϵ = ϵ0 + ϵ′. By inserting these
perturbed forms in eq. (17), the ODE for k′ and ϵ′ can be found:

∂k′

∂t
= − k′

τk
, (31a)

∂ϵ′

∂t
= k′

(
ξ

τ2ℓ
− 1

τ2ℓ
− 1

τℓτk

)
+ ϵ′

(
2

τℓ
− 2ξ

τℓ

)
, (31b)

Note that the Taylor expansions 1/(k0 + k′) = 1/k0 − k′/k20 and 1/(ϵ0 + ϵ′) = 1/ϵ0 − ϵ′/ϵ20 have been used to derive
these expressions. The same procedure can be applied to eq. (20) and gives

∂k′

∂t
= ϵ′

(
ξ
ϵ0
τℓ

− ϵ0
τ0

)
, (32a)

∂ϵ′

∂t
= ϵ′

(
2ξ

τℓ
− 2

τℓ
− 1

τϵ

)
. (32b)

By assuming that ξ = 1, we can find an asymptotic state. The implications of this choice are discussed by Carroll
and Blanquart [10], which states that the following analysis cannot be universal for all initial conditions. However, it
allows to prove an asymptotic state if the initial solution is close to k0 and ϵ0. The final systems for eqs. (31) and (32)
can then be written as

∂

∂t

[
k′

ϵ′

]
=

1

τk

[−1 0
− 1

τℓ
0

] [
k′

ϵ′

]
(33)

∂

∂t

[
k′

ϵ′

]
=

1

τϵ

[
0 −τℓ
0 −1

] [
k′

ϵ′

]
. (34)

The first eigenvalue of eqs. (33) and (34) is λ1 = −1/τk and −1/τϵ respectively while λ2 = 0. The only non-zero
eigenvalues from stability analysis are negative, leading to stable systems. The same conclusion was obtained by
Carroll and Blanquart [10] for the constant-PT with λ1 = −1/τℓ and λ2 = 0 while the original Lundgren’s form had
two zero eigenvalues leading to undamped oscillations. The new feature brought by the constant-k and constant-ϵ
methods is controlling the time to dampen the perturbation by τk and τϵ. In the case of constant-PT , this time
is inherently set to τℓ. The effect of the choice of τk or τϵ has been studied by Bassenne et al. [12] leading to the
conclusion that the damp time should be smaller than τℓ to obtain a reasonable control of the turbulent quantities.
Now we consider the stability of the general form eq. (27). It can be written as a linear combination of the two

above systems eqs. (33) and (34):

∂

∂t

[
k′

ϵ′

]
=

[
− χ

τk
− (1−χ)τℓ

τϵ

− χ
τkτℓ

− 1−χ
τϵ

] [
k′

ϵ′

]
. (35)

The eigenvalues of this system are then λ1 = −χ/τk − (1− χ)/τϵ and λ2 = 0. Regardless of the values of τk and τϵ,
the first eigenvalue λ1 is negative as long as χ > 0. If χ < 0, λ1 can become positive depending on the amplitude of
τk and τϵ. In practice, a and b are taken positive to ensure χ > 0 and τk = τϵ. These choices do not allow to force
turbulent quantities such as Reλ or τℓ as they usually imply a negative a or b coefficient as presented in eq. (24).
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V. IMPACT OF NUMERICAL APPROXIMATION ON THE LINEAR FORCING

The previous section’s main focus was on reducing oscillations around the target quantities. However, the mean
value of the turbulent quantities at the steady state has yet to be discussed.

Method kmean/k0 kstd/k0 ∆kmax/ϵ0 ϵmean/ϵ0 ϵstd/ϵ0 ∆ϵmax/ϵ0
constant-A from eq. (10) 0.897 0.1245 0.3560 0.831 0.1349 0.4402
constant-PT from eq. (14) 0.912 0.0487 0.1882 0.927 0.0439 0.1627
constant-k from eq. (19) 0.999 0.0001 0.0012 1.055 0.0877 0.2787
constant-ϵ from eq. (23) 0.962 0.0614 0.2087 0.994 0.0002 0.0063
constant-kϵ from eq. (27) 0.971 0.0374 0.0962 1.027 0.0406 0.1096

TABLE II: Mean, standard deviation and maximum oscillation amplitude of k and ϵ with respect to the linear
forcing method for SP test case taken from t/τℓ = 50 to t/τℓ = 100.

In table II, the mean and standard deviation of k and ϵ are reported for t/τℓ ranging from 50 to 100 to remove the
transient part. It shows that the only method to prescribe the target kinetic energy k0 is the constant-k forcing while it
oscillates around a lower value for other linear forcing. While Lundgren’s forcing underpredicts k and ϵ with 10% error,
Carroll’s forcing drastically improves the control of k and ϵ with an error below 10% and lower oscillation amplitudes.
Finally, the constant-ϵ improves further the control of k even if it is still underpredicted by 4%. These observations
were not made in the corresponding references[5, 10, 12] where the kinetic energy and dissipation rate were oscillating
around the target values as expected. All these works are based on Numerical Gradient Adaptative (NGA) [19], a
solver where the numerical approximation of the Navier-Stokes equations has been constructed to conserve kinetic
energy discretely. As detailed in section II, this work relies on the Basilisk solver [21], which employs a second-order
finite-volume method that showcases numerical dissipation as presented later. Hence, it will be demonstrated in this
section that the discrepancy between the expected results of the literature and the results shown in fig. 2 are caused
by the properties of the numerical scheme employed to solve the Navier-Stokes equations.

To the authors’ knowledge, the impact of numerical approximation of the Navier-Stokes equations has never been
discussed in the context of turbulence forcing. While kinetic energy conservation has been obtained for two-phase
flows [20], it is not generally the case in the two-phase flow community [47]. When a contrast in density appears,
the conservation of momentum is not trivial to obtain for a two-phase flow solver coupled with Level-Set or VOF
methods because of the lack of consistency between the transport of the mass and the momentum [48, 49]. Hence,
the conservation of kinetic energy is also lost. Then, the numerical dissipation appears as an additional energy sink
in the kinetic energy budget eq. (17):

∂k

∂t
= −ϵ− ϵnum + 2Ak, (36)

with ϵnum the energy dissipation due to the numerical approximation.

A. An indirect measure of numerical dissipation

The evaluation of ϵnum can be done by quantifying the loss of kinetic energy with time in the simulation and
comparing it to the original RHS of eq. (17). For a second-order approximation of the time derivative ∂k/∂t, the
central difference could be used as proposed by Schranner et al. [50] to measure a posteriori the numerical dissipation
on a wide range of simulations. Unfortunately, this discretization cannot be used when numerical dissipation needs
to be evaluated on the fly during a simulation because it invokes k at the next time step. In this work, the numerical
dissipation is evaluated as follows

ϵnum = −kn − kn−1

∆t
− ϵn + 2An−1kn−1. (37)

Following this procedure, it is then possible to quantify the numerical dissipation of the simulations performed
above. In fig. 4a, the kinetic energy budget is provided for the SP test case using the constant-k method. It can be
observed that the turbulent production PT is always higher than the dissipation rate ϵ to compensate the numerical
dissipation ϵnum which maintains dk/dt to zero. In fig. 4b, the evolution of ϵnum for different mesh sizes is also
reported to ensure that it correctly decreases with increasing resolution.
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FIG. 4: Kinetic energy budget for the mesh Nx = 256 (a) and numerical dissipation for different mesh sizes (b) for
SP test case with constant-k method defined by eq. (19).

Following the same path, eq. (20), the budget for ϵ can also include an additional term to account for numerical
dissipation:

∂ϵ

∂t
= −ϑ− ϑnum + 2Aϵ, (38)

with ϑnum a contribution due to numerical dissipation which is measured as

ϑnum = −ϵn − ϵn−1

∆t
− ϑn + 2An−1ϵn−1. (39)

This expression will be useful to incorporate numerical dissipation in the constant-ϵ method.

B. Incorporating numerical dissipation into linear forcing techniques

In Large-Eddy Simulations (LES) an additional source term, in the form of a dissipation term, is added to the
momentum transport equation to model the effect of turbulence at unresolved subgrid scales. The turbulent forcing
then needs to account for this additional dissipation in the kinetic energy budget [12]:

∂k

∂t
= −ϵ− ϵSGS + 2Ak, (40)

with ϵSGS the subgrid-scale dissipation due to unresolved turbulence. The numerical dissipation is analogous to a
subgrid-scale dissipation and can be treated in the same way as long as it can be computed a priori by replacing ϵSGS

by ϵnum. Following the work of Bassenne et al. [12], the constant-k forcing eq. (19) can be re-expressed as:

A(t) =
k0 − k(t)

2τkk(t)
+

Ck(t)

2k(t)
, (41)

with Ck(t) = ϵ(t)+ ϵnum(t) corresponding to the RHS of eq. (36) without forcing. The term Ck(t) is a direct measure
of the total dissipation rate ϵT (t) = ϵ(t) + ϵnum(t) approximated by:

Cn−1
k = 2An−1kn−1 − kn − kn−1

∆t
. (42)

The effect of this small modification of the original constant-k forcing eq. (19) is presented in fig. 5a. Including the
numerical dissipation in the forcing gives a better control of k, which exactly matches the target value k0. In table III,
it can also be stated that this modification slightly decreases the error of the mean value of ϵ from 5.5% to 4.9%.
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FIG. 5: Evolution of k for the original and modified constant-k methods eqs. (19) and (41) respectively (a).
Evolution of ϵ for the original and modified constant-ϵ methods eqs. (23) and (46) respectively (b). Evolution of k

(c) and ϵ (d) for the the original and modified constant-kϵ methods eqs. (27) and (48) respectively.

For a constant-ϵ method, a new budget needs to be written for the total dissipation rate ϵT instead of ϵ to follow
the work in [12]. The budget for the total dissipation rate is:

∂ϵT
∂t

= −ϑT + 2AϵT , (43)

with ϑT = ϑ+ ϑnum the dissipation rate of ϵT . As for ϵnum, ϑnum needs to be measured at tn−1 from

ϑn−1
T = 2An−1ϵn−1

T − ϵnT − ϵn−1
T

∆t
. (44)

The corresponding constant-ϵ forcing is then:

A(t) =
ϵ0 − ϵT (t)

2τϵϵT (t)
+

ϑT (t)

2ϵT (t)
. (45)

The form eq. (45) has led to unstable results in our numerical experiments. This might be due to the undefined
nature of ϵnum, which is not bounded in the case of very strong velocity gradients. Also, it was noted by [12] that the
constant-ϵ was not as stable in the LES framework and could depend on initial conditions.
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Instead, a stable form is proposed here based on ϵ and Cϵ the measure of ϑ+ ϑnum:

A(t) =
ϵ0 − ϵ(t)

2τϵϵ(t)
+

Cϵ

2ϵ(t)
, (46)

with Cϵ computed as:

Cn−1
ϵ = 2An−1ϵn−1 − ϵn − ϵn−1

∆t
. (47)

In fig. 5b, the benefits of including the numerical dissipation contribution in the forcing coefficient are exposed. The
modified form eq. (46) improves the control of ϵ compared to the original form eq. (23). This is also reported in
table III, where the mean value of ϵ matches exactly ϵ0. At the same time, the mean value of k is also improved with
an error of 1.1% compared to 3.8% with the original form. This is at the cost of increasing the standard deviation of
k. However, the statistical convergence of both k and ϵ is improved using this method.

Finally, the general forcing method incorporating the numerical dissipation can be retrieved by a linear combination
of eqs. (41) and (46):

A(t) = χ

(
k0 − k(t)

2τkk(t)
+

Ck

2k(t)

)
+ (1− χ)

(
ϵ0 − ϵ(t)

2τϵϵ(t)
+

Cϵ

2ϵ(t)

)
, (48)

The consequence of modifying the original constant-kϵ method to include numerical dissipation is not so obvious
by looking at figs. 5c and 5d. Indeed, both k and ϵ oscillate around the target values by using either the original
form eq. (27) or the modified form eq. (48). The outcome of this modification can be showcased by the statistical
convergence given in table III. A better statistical convergence of k is observed where the mean value of k obtained
from the modified form is 0.2% lower than k0 compared to 2.9% lower for the original form. The same observation can
be done for ϵ which is 0.5% larger than ϵ0 for the modified form compared to 2.7% for the original form. However, the
maximum amplitude and standard deviation are increasing with the modified form. To conclude, the main advantage
of using the modified form along with the constant-kϵ method is to statistically converge to the prescribed value of k
and ϵ simultaneously at the cost of increasing the standard deviation and largest amplitude of the oscillation around
k0 and ϵ0.

Method kmean/k0 kstd/k0 ∆kmax/ϵ0 ϵmean/ϵ0 ϵstd/ϵ0 ∆ϵmax/ϵ0
Original constant-k from eq. (19) 0.999 0.0001 0.0012 1.055 0.0877 0.2787
Modified constant-k from eq. (41) 1.000 0.0000 0.0000 1.049 0.1471 0.3577
Original constant-ϵ from eq. (23) 0.962 0.0614 0.2087 0.994 0.0002 0.0063
Modified constant-ϵ from eq. (46) 0.989 0.0854 0.1924 1.000 0.0000 0.0001
Original constant-kϵ from eq. (27) 0.971 0.0374 0.0962 1.027 0.0406 0.1096
Modified constant-kϵ from eq. (48) 0.998 0.0408 0.1418 1.005 0.0403 0.1105

TABLE III: Mean, standard deviation and maximum oscillation amplitude of k and ϵ with respect to the linear
forcing method for SP test case taken from t/τℓ = 50 to t/τℓ = 100.

C. Link with the two-phase forcing of Duret et al.

The new form of the constant-k forcing eq. (41) comprising numerical dissipation can be closely related to the
form proposed by Duret et al. [29] to account for two-phase flow contributions in the kinetic energy budget. Their
method avoids computing complex terms related to surface tension and phase change in the kinetic energy budget by
indirectly measuring the discrete kinetic energy budget. The term enclosing all other contributions than the turbulent
forcing was computed by eq. (42) and the forcing coefficient was retrieved using:

A(t) =
k0 − k(t)

6∆tk(t)
+

Ck(t)

2k(t)
, (49)

which corresponds to eq. (41) with τk = 3∆t. In this work, τk = τϵ = τℓ/67 is preferred as it is physically grounded
and does not depend on the numerical setup or the mesh.

While the motivation to derive this new form was different in [29], the final idea is the same: additional contributions
in the kinetic energy budget are measured when they cannot be computed directly. The new form of the constant-
ϵ forcing eq. (46) and the general form given by eq. (48) are then extensions of Duret’s method to more general
constant-energetics forcings. The next section will show that this strategy is also well-suited for constant-energetics
forcing in two-phase flows.
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VI. LINEAR FORCING FOR TWO-PHASE FLOWS

In this section, we start by considering the main outcomes encountered when using the schemes derived previously in
two-phase flow configurations. Then, using the single-field formalism, we consider the energetic budgets and propose
a simple remedy to fix the outcome found in two-phase flow configurations.

A. Exponential growth of kinetic energy

Lundgren’s forcing eq. (10) was used by Naso and Prosperetti [51] to study the interaction of a solid particle with
turbulence. It was observed that introducing a two-way coupling force in the flow led to a symmetry breaking from
numerical sources, leading to ⟨u⟩ ≠ 0. It was also stated that any mean flow was amplified using the standard linear
forcing approach. The same behavior has been observed by Chouippe and Uhlmann [7] in their simulations where the
two-way coupling was causing stability issues. In [51, 52], a simple modification of the linear forcing is proposed to
minimize this phenomenon:

fT = A(u− ⟨u⟩). (50)

By explicitly removing the mean flow, only the fluctuating velocity can be amplified, and the mean flow is no longer
affected by the forcing. However, this does not avoid a constant (but not exponential) growth of the mean flow in time,
as shown later. In [7, 13], the forcing velocity is randomly generated in the spectral space based on the methodology
of Eswaran and Pope [11]. However, it requires working in the spectral space to construct the velocity field, which
cancels the main advantage of the linear forcing of working only in the physical space. Other external processes based
on inherently chaotic velocity fields such as ABC flows [26] have been successfully employed for the simulation of
turbulent emulsions by Crialesi-Esposito et al. [27].

Finally, a simple cure to this problem is to remove the mean part of the two-way coupling force. The main argument
for this fix is that there is no constraint for the integrated two-way coupling force to be numerically zero in the triply-
periodic domain [7]. Then, this force gradually deviates the mean flow to a non-zero value. In [28], the mean part of
the two-way coupling force is removed without modifying the philosophy of linear forcing

fT = Au− ⟨fσ⟩ . (51)

For the case of interface capturing methods, the capillary force should sum to zero as it is applied on a set of closed
surfaces. However, it is not true at the discrete level using the standard well-balanced discretization for fσ employed
in this work [53]. The discretization of fσ could make use of the integral formulation instead. In this case, the force
can be expressed in a divergence form, which is conservative by nature. A 2D version adapted to the Level-Set method
has been proposed by Abu-Al-Saud et al. [54], but it remains to be extended to 3D flows and VOF methods and is
out of the scope of this paper. Then the linear forcing eq. (51) can be used to prevent the mean flow from taking
non-zero values for the present study.

To illustrate this behavior, the mean velocity and the kinetic energy of test cases TPE and TPD are displayed in
fig. 6 for the original form eq. (10), the form without mean velocity eq. (50) and the form without mean capillary
force eq. (51). The modified constant-k method introduced in section V is used to show that the form of A has no
impact on the exponential growth of kinetic energy. The single-phase initialization stage (referred to as SP in fig. 6)
illustrates the effect of introducing the dispersed phase on the mean velocity and kinetic energy. For both test cases,
the original form of Lundgren leads to an exponential growth of the kinetic energy illustrated here by the growth of
the mean x-component of velocity. Removing the mean part of the velocity prevents the exponential growth of the
velocity with only a linear growth due to the mean contribution of the capillary force. This is even more clear by
comparing the increase of mean velocity for TPE in fig. 6a and for TPD in fig. 6b. Indeed, the magnitude of the
growth is higher in the TPE case because of the higher mean capillary force promoted by break-up and coalescence
events. The TPD case involves only small deformations of the interface, which are less prone to numerical errors on
the capillary force. Finally, when the mean part of the capillary force is removed at each time step, the mean velocity
remains bounded close to zero, validating the forcing form of eq. (51) in the scenario of turbulent two-phase flows.
This form provides the best results and is employed in the last result section involving two-phase flows.

B. Constant-energetics linear forcing for two-phase flows

The kinetic energy budget for the single-field formulation of Navier-Stokes equations including surface tension reads

∂k

∂t
= −ϵ+ PT +Ψσ, (52)
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FIG. 6: Mean x-component of velocity in TPE (a) and TPD (b) test cases for the original forcing eq. (10) and the
two corrected forms eqs. (50) and (51). Droplets are injected at t = 50τℓ.

with Ψσ the capillary contribution:

Ψσ = ⟨fσ · u⟩ . (53)

In eq. (52), Ψσ appears as a sink/source term. Another definition of Ψσ is derived from the transport equation of
surface tension σ [18]:

Ψσ = − σ

V1ρ1

dA

dt
, (54)

with A the total surface of the interface. A third definition can be obtained by summing the kinetic energy budget
of each phase [18]. In the following, eq. (53) is used as it is less prone to discrete errors compared to computing
numerically the interface area. For the dissipation rate transport, an additional term Φσ due to capillary forces arises:

∂ϵ

∂t
= −ϑ− Φσ + 2Aϵ, (55)

with Φσ defined with Einstein summation:

Φσ = 2

〈
ν
∂ui

∂xj

∂fσ,i
∂xj

〉
. (56)

In the previous section, the mean value of the capillary force was discussed with an expected higher deviation to zero
for the TPE test case. The capillary contribution in the energy budgets is now studied to provide a complete view
of the impact of the two-phase flow on linear forcing. By following the same methodology presented in section IV,
the forcing coefficient needs an adjustment to incorporate this additional contribution. Using eq. (52) the constant-k
forcing eq. (19) then becomes

A(t) =
k0 − k(t)

2τkk(t)
+

ϵ(t)

2k(t)
− Ψσ(t)

2k(t)
. (57)

Thanks to eq. (55) constant-ϵ forcing eq. (23) reads

A(t) =
ϵ0 − ϵ(t)

2τϵϵ(t)
+

ϑ(t)

2ϵ(t)
− Φσ(t)

2ϵ(t)
. (58)

Using the two previous formulations, the general constant-energetics forcing eq. (27) reads

A(t) = χ

(
k0 − k(t)

2τkk(t)
+

ϵ(t)

2k(t)
− Ψσ(t)

2k(t)

)
+ (1− χ)

(
ϵ0 − ϵ(t)

2τϵϵ(t)
+

ϑ(t)

2ϵ(t)
− Φσ(t)

2ϵ(t)

)
. (59)



16

0 20 40 60 80
t/τ`

0.990

0.995

1.000

1.005

1.010
k
/k

0

SP TPE

original SP

original TP

modified

(a) TPE test case

0 20 40 60 80 100
t/τ`

0.990

0.995

1.000

1.005

1.010

k
/k

0

SP TPD

original SP

original TP

modified

(b) TPD test case

FIG. 7: Evolution of k for the constant-k methods based on original form developed for single-phase flows (original
SP) eq. (19), original form extended to two-phase flows (original TP) eq. (57) and modified form eq. (41) with the

corrected form of the forcing eq. (51) in TPE (a) and TPD (b) test cases. Droplets are inject at t = 50τℓ.

While these forms come from the direct extension of the strategy of Bassenne et al. [12], the modified form introduced
in section V is expected to also work in the context of two-phase flow without any adjustment. Indeed, the measure
of Ck and Cϵ from eqs. (42) and (47) naturally includes the additional contributions Ψσ and Φσ.

In fig. 7, the evolution of k for the different forms of constant-k is given in TPE and TPD test cases. The single-
phase form eq. (19) remains close to the prescribed value k0, though it exhibits spurious oscillations around the value.
These oscillations are smoothed by employing the two-phase extension eq. (57) even if the kinetic energy is still lower
than the target value. Using the form eq. (41) where all terms are comprised in Ck, the kinetic energy is maintained
at the target value without any differences with the SP test case. This result shows that the two-phase contribution
has little impact on the forcing compared to the numerical dissipation. For the TPE test case, the effect of Ψσ is only
significant in the transient period where initial break-up occurs [14]. After several eddy-turnover times, a steady state
is reached in which break-up and coalescence processes compensate to produce a small quantity Ψσ oscillating around
zero. Hence, the impact of capillary forces is expected to be negligible in the k budget in most of the cases of interest
for capillary-driven flows. For the TPD test case (low Weber number), Ψσ is not expected to play a significant role as
only small interface deformations will occur. In [18], the magnitude of Ψσ is compared to ϵ0 in decaying turbulence
of a droplet-laden flow. It is found that Ψσ can only reach a high portion of ϵ0 (almost 20%) when coalescence occurs
while no break-up is observed. In the TPD case, coalescence is prevented numerically, which avoids the situation
described in [18]. For other applications, it was found that the two-way coupling contribution was negligible for
particles of sizes between 5 and 11 Kolmogorov lengths [40]. The statistical convergence is also provided in tables IV
and V where it is clear that the modified form improves the converged state for both k and ϵ. Surprisingly, including
the two-phase contribution in the original form leads to a higher difference between ϵ and ϵ0 with about 10% errors
while the original form developed for single-phase flows provides a better convergence for ϵ with less than 1% error.
This is not observed in the TPD case where the two-phase contribution is not as predominant.

The extension of the constant-ϵ method to two-phase flow and Duret’s forcing is also tested for TPE and TPD
test cases. The same observations can be made for the results presented in fig. 8: the single-phase form eq. (23)
and two-phase form eq. (58) provide substantially the same results while the form eq. (46) maintains the dissipation
rate at the prescribed value ϵ0. Contrary to the constant-k forcing, the constant-ϵ forcing is more impacted by the
two-phase contribution Φσ. Indeed, the gap between the target value and the measured value of ϵ is higher when the
second phase is injected at t = 50τℓ. For the TPE test case, where break-up and coalescence events occur, this gap is
above 5%. The two-phase contribution Φσ in the ϵ budget has yet to be studied and cannot be compared to previous
works. This first result is of great interest from a theoretical perspective and should be continued in future work. By
looking at the statistical convergence in tables I and V, the modified form improves the converged state for both k
and ϵ.

Finally, the same test cases are performed using the general constant-energetics method. With this approach k and
ϵ never fit exactly and oscillate around k0 and ϵ0 respectively for the three different RHS computations. Results for
TPE and TPD cases are provided in fig. 9. The benefit of the form eq. (48) is less evident than for constant-k and
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FIG. 8: Evolution of ϵ for the constant-ϵ methods based on the original form developed for single-phase flows
(original SP) eq. (23), the original form extended to two-phase flows (original TP) eq. (58) and the modified form
eq. (46) with the corrected form of the forcing eq. (51) in TPE (a) and TPD (b) test cases. Droplets are inject at

t = 50τℓ.

Method kmean/k0 kstd/k0 ∆kmax/ϵ0 ϵmean/ϵ0 ϵstd/ϵ0 ∆ϵmax/ϵ0
Original SP constant-k from eq. (19) 0.998 0.0002 0.0020 0.993 0.0924 0.1924
Original TP constant-k from eq. (41) 0.999 0.0002 0.0014 0.893 0.1022 0.3578
Modified constant-k from eq. (57) 1.000 0.0000 0.0000 0.998 0.1050 0.2258
Original SP constant-ϵ from eq. (23) 1.117 0.1071 0.3805 1.058 0.0020 0.0637
Original TP constant-ϵ from eq. (46) 1.089 0.0444 0.1859 1.058 0.0019 0.0631
Modified constant-ϵ from eq. (58) 1.015 0.0812 0.2675 1.000 0.0001 0.0002
Original SP constant-kϵ from eq. (27) 1.070 0.0583 0.1771 0.994 0.0523 0.1206
Original TP constant-kϵ from eq. (48) 1.040 0.0558 0.1304 1.021 0.0564 0.1445
Modified constant-kϵ from eq. (59) 1.033 0.0437 0.1288 0.972 0.0386 0.1025

TABLE IV: Mean, standard deviation and maximum oscillation amplitude of k and ϵ with respect to the linear
forcing method for TPE test case taken from t/τℓ = 75 to t/τℓ = 100.

constant-ϵ by only looking at the figures. However, the statistical convergence shows improvement for both k and ϵ
for the TPD case in table IV while it only improves the converged state for the TPE case in table V. In general, the
modified form allows reducing the amplitude of oscillations and standard deviation, which demonstrates the capability
of the proposed modification of the original forcing methods.

Method kmean/k0 kstd/k0 ∆kmax/ϵ0 ϵmean/ϵ0 ϵstd/ϵ0 ∆ϵmax/ϵ0
Original SP constant-k from eq. (19) 0.999 0.0002 0.0014 0.978 0.0932 0.2472
Original TP constant-k from eq. (41) 0.999 0.0001 0.0011 1.027 0.0972 0.3066
Modified constant-k from eq. (57) 1.000 0.0000 0.0000 0.987 0.1147 0.2700
Original SP constant-ϵ from eq. (23) 1.032 0.0533 0.1754 1.009 0.0012 0.0133
Original TP constant-ϵ from eq. (46) 1.038 0.0787 0.2174 1.009 0.0011 0.0120
Modified constant-ϵ from eq. (58) 0.961 0.0891 0.2331 1.000 0.0000 0.0001
Original SP constant-kϵ from eq. (27) 1.026 0.0546 0.1346 0.988 0.0492 0.0989
Original TP constant-kϵ from eq. (48) 1.032 0.0460 0.1199 0.982 0.0435 0.0905
Modified constant-kϵ from eq. (59) 1.002 0.0453 0.1060 1.002 0.0454 0.0921

TABLE V: Mean, standard deviation and maximum oscillation amplitude of k and ϵ with respect to the linear
forcing method for TPD test case taken from t/τℓ = 75 to t/τℓ = 100.
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(b) Kinetic energy for TPD test case
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(c) Dissipation rate for TPE test case
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(d) Dissipation rate for TPD test case

FIG. 9: Evolution of k for TPE (a) and TPD (b) test cases and ϵ for TPE (c) and TPD (d) test cases using the
general constant-energetics methods based on the original form developed for single-phase flows (original SP)
eq. (27), the original form extended to two-phase flows (original TP) eq. (59) and the modified form eq. (48).

C. Modulation of turbulence

With the growing interest in turbulent two-phase flows, our framework provides valuable insights and solutions to
the control of turbulence, opening avenues for further exploration and refinement in understanding turbulent flows
within the realm of two-phase processes. However, for the study of the modulation of turbulence by particles [44, 55],
droplets [18] or bubbles [56], the forcing of turbulence in the physical space modifies the kinetic energy spectrum at all
wavenumbers [57, 58]. The issue of forcing is then at the interpretation level: how can the contributions of turbulence
forcing and particle forcing be discriminated in the energy transfer function? A solution has been proposed in [13]
where turbulence is injected in a selected range of wavenumbers, making a clear separation between the energy transfer
modulation due to the two-way coupling and the turbulence forcing. The main drawback of this approach is that it
requires computing the forcing term in the spectral space, removing the benefits of using a linear forcing method.
Another solution that only requires work in the spatial space is to apply an ABC flow which only injects turbulence
at a given length scale [26]. This strategy has been applied successfully for the study of turbulent emulsions by [27].
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VII. CONCLUSIONS AND FUTURE WORK

This paper introduces a general framework to address the challenges of forcing turbulence within single-phase and
two-phase flows. Following a thorough examination of single-phase linear forcing techniques, we have established a
constant-energetics forcing method that generalizes the constant-k, constant-ϵ and hybrid approach of Bassenne et al.
[12]. A linear stability analysis allowed us to demonstrate the stability of this novel general constant-energetics forcing
method for 0 < χ < 1. Our findings reveal an under-prescription of kinetic energy for all forcing methods except
for constant-k forcing, which is related to numerical dissipation. Hence, we have tackled the unexplored challenge of
numerical dissipation in two-phase flows, highlighting its origin and proposing modifications to constant-energetics
forcing methods. This adaptation bridges the work of Duret et al. [29] and Bassenne et al. [12] to improve the constant-
energetics methods in the presence of numerical dissipation. Finally, we validated a solution to prevent exponential
kinetic energy growth due to capillary forces. The general constant-energetic forcing was then extended to two-phase
flows using the same strategy as single-phase flows. It was also demonstrated that the modified approach introduced
in this work was the most suited to control energetics when forcing turbulence in two-phase flows as proposed by
Duret et al. [29].
Finally, the strategy developed here can also be extended to consider more complex flows such as magneto-

hydrodynamics [59] or reactive flows [9]. Future research efforts should prioritize the refinement of techniques for
controlling length scales, a crucial aspect constraining the development of numerical setups. Additionally, the de-
velopment of anisotropic and inhomogeneous forcing will significantly expand the range of applicability of the linear
forcing.

Appendix A: Impact of initial solution on statistics convergence

In this section, two initialization methodologies are compared to showcase the ability of the solver to converge to
the prescribed turbulent flow. The first initialization takes a simple ABC [26] flow of the form:

uABC =

A[cos(κfy) + sin(κfz)]
A[cos(κfz) + sin(κfx)]
A[cos(κfx) + sin(κfy)]

 , (A1)

with A = 1 and κf = 1 by default.
The second initialization is based on a prescribed energy spectrum (PES) E0(κ) defined as in [10]:

E0(κ) =
32

3
k0

√
2

π

κ4

κ5
0

exp

(
−2

κ2

κ2
0

)
, (A2)

with κ0 = 2π/ℓ. Note that other energy spectrum forms can be prescribed which holds the same properties [18].
Then the spectral velocity û(κ) is obtained by choosing random phases with the methodology described in [11] and
is corrected to be divergence-free:

û(κ) = û(κ)− κ
û(κ) · κ
κ · κ . (A3)

Finally, the initial velocity field uPES is obtained from an inversed Fourier transform.
In fig. 10, the energy spectrum of both initializations is depicted to illustrate their differences. While the ABC flow

contains all the energy at the prescribed wavenumber κf , the PES initialization already exhibits an energy cascade
with the maximum energy at κ0. It’s worth noting that the ABC flow can be parameterized [26] to yield the correct
initial kinetic energy k0 and to drift the energy peak at the integral scale ℓ. An additional ABC flow uPABC meeting
these criteria has been added to the study with A = u0 and κf = κ0.

From the evolution of k and ϵ given in fig. 11, it is clear that all simulations lead to the same statistical convergence
after a transient period of 30τℓ. The ABC initialization first shows a great rise of kinetic energy followed by a large
dissipation rate to finally collapse and converge to the target turbulence. This numerical experiment proves that the
linear forcing is not dependent of the initial solution at the steady state while the transient part is largely affected
with a significant increase of the period length. A good practice is then to initialize with a good guess of the turbulent
flow even if a simple prescribed ABC flow is enough to obtain quick convergence to the steady state. It is interesting
for ease of implementation compared to the prescribed spectrum method which requires the use of an FFT library
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FIG. 10: Energy spectrum of the three initial velocity fields tested in this study.
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FIG. 11: Evolution of k and ϵ for three initial solutions using the constant-PT forcing. The y-axis is in log to better
show the oscillations around the target values of k and ϵ.

which was initially undesired when using the linear forcing approach.
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