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1. Introduction and notations

Let us consider a power series
∑

n∈N an xn with real or complex coefficients (an) such that the
convergence radius is R = 1. Its sum is denoted by f :]−1,1[→C. We define the quantities:

sn :=
n∑

k=0
ak , σn := 1

n +1

n∑
k=0

sk , vn := 1

n +1

n∑
k=0

k ak , ∀n ∈N,

for which some calculations provide the equalities:

vn = sn −σn , ∀n ∈N. (1)

and then also:

σn =
n∑

k=1

vk

k
, ∀n ≥ 1 (σ0 = s0 = a0). (2)

Thanks to usual Cauchy products, it is known that the sum f (x) of
∑

n∈N an xn reads in the
different forms below, for any |x| < 1:

f (x) :=
+∞∑
n=0

an xn = (1−x)
+∞∑
n=0

sn xn = (1−x)2
+∞∑
n=0

(n +1)σn xn . (3)

We recall that the sequence (sn) (or the series
∑

n∈N an) is said to be Abel summable (A0) to s ∈ C
if we have:

lim
x→1−

f (x) = lim
x→1−

(1−x)
+∞∑
n=0

sn xn = s ∈C. (4)

It is known from Tauber’s (1897) ’second theorem’ [18] that, if the sequence (sn) satisfies
(4), then the convergence sn → s holds true if and only if vn = (sn −σn) → 0 when n → +∞.
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Since the pioneering work of Tauber (1897), the Tauberian theory has produced many results in
mathematical analysis, Fourier analysis or analytic number theory, see e.g. the monographs by
Hardy (1949) [3] and Korevaar (2004) [7]. Among these, E. Landau (1913) proved in [9] that if the
two following conditions hold on the sequence (sn):

i ) (sn) is bounded,

i i ) (sn) is slowly oscillating (at infinite), i.e.

lim
n→+∞(sm − sn) = 0, as

m

n
−→

n→+∞ 1,

(5)

then, the convergence sn → s follows from its Abel summability (4) to s. The conditions (5) are
also clearly necessary for the convergence of (sn). Moreover, they can be relaxed in the case of real
coefficients to one-sided conditions, e.g. the ’slow decrease (at infinite)’ of Schmidt (1925) [14].
Hence, the unilateral Tauberian conditions that have been extensively studied for real-valued
sequences (see e.g. [3, 7]) will not be considered further in the sequel.

Next, the following W-VMO property of a sequence is introduced and shown in our previous
work [1][Proposition 2.1] to be weaker than the ’slow oscillation’ condition in (5).

Definition 1 (Weakly-Vanishing Mean Oscillation (W-VMO)).
Any sequence (un)n∈N of real or complex numbers is said to be of Weakly-Vanishing Mean

Oscillation, or shortly W-VMO, if its mean oscillation (ωn(λ)) satisfies the property:

inf
0<λ<1

(
limsup
n→+∞

|ωn(λ)|
)
= 0, where:

ωn(λ) := 1

n −⌊nλ⌋
n∑

k=⌊nλ⌋+1
(un −uk ), ∀n ≥ 1, ∀λ ∈]0,1[.

(6)

The general result below is proved in [1][Theorem 4.1] using the unified setting proposed for
both the Cesàro and Abel summabilities.

Theorem 1 (Tauberian converse of Abel’s theorem).
The assumptions i ) and i i ) below:{

i ) f (1−) := lim
x→1−

f (x) = s ∈C, i.e. (4) is satisfied,

i i ) the sequence (sn) is W-VMO,
(7)

are necessary and sufficient to get the convergence: sn → s when n →+∞.

It is clear that Theorem 1 includes Landau’s theorem in [9] since the ’slow oscillation’ of (sn)
implies its W-VMO property. Moreover, the boundedness assumption in (5) is now no more
explicitly required in Theorem 1. Considering also Theorem 3.1 in [1] where the boundedness
assumption is not explicitly necessary, a similar observation can be made for the inversion of
Cesàro summability. Hence, the objective of the present study is twofold: i ) explain how the
boundedness assumption facilitates the proof of Tauberian results and how to bypass it in the
general case of complex-valued sequences, and i i ) show the link with Tauber’s (1897) ’second
theorem’ [18].

2. Generalization of E. Landau’s (1913) Tauberian theorem

As pointed out above, the following Corollary 1 shows that the ’slow oscillation’ property of (sn)
alone (without its boundedness) is actually sufficient to ensure that the convergence of (sn)
to s follows from its Abel summability to s. This is new since, even with more sophisticated
proofs involving Laplace transforms or Wiener-type Tauberian theorems [19], the boundedness
hypothesis is still required for complex-valued sequences; see also [7][Chap. II and III]. However,
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we provide in Appendix A an independant proof of Landau’s (1913) theorem using elementary
arguments to measure how far the boundedness assumption simplifies and shortens the proof.

Corollary 1 (Generalized Landau’s Tauberian theorem).
The assumptions i ) and i i ) below:{

i ) f (1−) := lim
x→1−

f (x) = s ∈C, i.e. (4) is satisfied,

i i ) the sequence (sn) slowly oscillating (at infinite),
(8)

are necessary and sufficient to get the convergence of (sn) to s.

Proof. This is a direct consequence of Theorem 1.
First, the conditions (8) are necessary for the desired result. Indeed, if (sn ) converges to s, then (8.i ))

holds from the Abel (1826) theorem of radial limit on power series. Moreover, the condition (8.i i )) clearly
holds too since the convergence of (sn ) implies its slow oscillation.

Reciprocally, if (8) holds true, then the sequence (sn ) is slowly oscillating and thus necessarily also W-
VMO with [1][Proposition 2.1]. Hence, Theorem 1 does apply and shows that sn → s when n →+∞. ■

Now, Corollary 1 (and of course Theorem 1) does include the celebrated Tauberian theorem of
Littlewood (1911) [10] (see also [11]), where the ’big O ’ condition of Hardy–Littlewood: n |an | =
O (1) is assumed instead of (5); but, the original theorem of Landau (1913) does not. Indeed,
it is known that any series

∑
n∈N an satisfying the ’big O ’ condition has slowly oscillating sums

(sn) (e.g. see [1][Proposition 2.1]), but not necessarily bounded, e.g. with the harmonic series∑
n≥1 1/n that is not Abel summable, we have: sn ∼ lnn. Moreover, the condition: n |an | = O (1)

is not necessary for the convergence of the series
∑

n∈N an , e.g. the alternating Riemann series∑
n≥1(−1)n/

p
n does converge with Leibniz’s criterion but n |an | =

p
n.

Despite the bounded character of any convergent sequence, the fact that the boundedness of
(sn) can be explicitly relaxed for the sufficiency of (8) has an interest since there exist unbounded
sequences that are however slowly oscillating and thus also W-VMO, e.g. Example 1 below.

Example 1 (Bounded or unbounded W-VMO sequences).
Let us take un = lnn for all n ≥ 1, such that un −→

n→+∞+∞, but (un ) is slowly oscillating since:

um −un = ln
( m

n

)
−→

n→+∞ 0, as
m

n
−→

n→+∞ 1.

This implies from [1][Proposition 2.1] that (un ) is necessarily a W-VMO sequence. By taking un = (−1)n lnn,
now (un ) is neither slowly oscillating nor W-VMO.

It is also possible to find a bounded and slowly oscillating real-valued sequence that is still not a Cauchy

sequence, and thus which does not converge, e.g. un = cos(lnn) or un = sin(lnn), for all n ≥ 1.

Similarly, an example of bounded and slowly oscillating complex-valued sequence that does not converge is

given by un = ei lnn for all n ≥ 1.

3. Generalization of Tauberian theorems of O. Szász

3.1. Historical review

O. Szász (1951) proved in [16] that if the two following conditions hold: i ) vn := 1

n +1

n∑
k=0

k |ak | =O (1),

i i ) the sequence (vn) is slowly oscillating,

(9)
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then, the convergence of (sn) to s follows from its Abel summability (4) to s. O. Szász (1951)
also shows that the above result includes his previous theorem in Szász (1928) [15] where the
Tauberian condition (9) is replaced by:

n∑
k=1

kp |ak |p =O (n), for some p > 1. (10)

Indeed, using the Hölder inequality, the condition (10) clearly implies that the sequence (vn) is
bounded. Furthermore, Szász (1951) [16] shows that the slow oscillation of (vn) follows from (10).
It is also known from a counter-example in Rényi (1946) [13] that the condition (10) with p = 1 is
no more sufficient to get sn → s from the Abel summability (4). Moreover, it is clear that the above
result of Szász (1951) [16] also includes Rényi (1946)’s Theorem in [13] where the condition (9) is
replaced by:

vn := 1

n +1

n∑
k=0

k |ak | −→
n→+∞ v <+∞, (11)

since (11) implies (9). However, Szász (1928) [15] shows that if the sequence (vn), or stronger (vn),
is only bounded, then it is sufficient to get σn → s from (4). Hence, either if (vn) is bounded or if
(sn) is W-VMO with [1][Corollary 4.2], then the convergence of the Cesàro mean σn → s follows
from the Abel summability (4) of (sn). But none of these latter conditions is necessary as shown
by Example 1 given in Remark 3. In the sequel, we prove generalizations of the above results.

Furthermore, Szász (1951) [16] shows two other generalizations of his result that only hold in
the case of real coefficients (an), as for the extensions proposed by Rajagopal (1952) [12]. Later,
Jakimovski (1954) [5] proposed unilateral Tauberian conditions coming from the one-sided ’slow
decrease’ condition of Schmidt’s (1925) theorem [14], that are weaker than (9) and also necessary
and sufficient to get sn → s from the Abel summability (4), but they are valid only for the real case.

3.2. Generalized Tauberian theorems

We shall need the following technical result due to Zygmund (1926) [20] or Szász (1928) [15], of
which a proof is supplied in Appendix B for the sake of self-consistency of the present work.

Lemma 1 (Zygmund (1926) – Szász (1928)).
We have the following assertion:

f (1−) := lim
x→1−

f (x) = s ∈C =⇒ lim
x→1−

(1−x)
+∞∑
n=0

σn xn = s.

In other words, if the sequence (sn) is Abel summable to s ∈C, then its Cesàro mean (σn) is also Abel
summable to the same limit s.

The result below, that provides a Tauberian converse for the theorem of radial limit of Frobe-
nius (1880) [2], generalizes a theorem of Szász (1928) [15] where (vn) is supposed to be bounded.

Theorem 2 (Tauberian converse of Frobenius’ theorem).
The assumptions i ) and i i ) below:{

i ) f (1−) := lim
x→1−

f (x) = s ∈C, i.e. (4) is satisfied,

i i ) the sequence (σn) is W-VMO,
(12)

are necessary and sufficient to get the convergence of (σn) to s.

Proof. First, if σn → s when n → +∞, the Frobenius (1880) theorem shows that (12.i )) is satisfied.
Moreover, since (σn ) converges, it clearly implies that (σn ) is slowly oscillating and thus also W-VMO
with [1][Proposition 2.1], i.e (12.i i )) is verified.
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Conversely, if (12.i )) is satisfied, the Zygmund–Szász Lemma 1 ensures that the sequence (σn ) is also
Abel summable to s, i.e.

lim
x→1−

(1−x)
+∞∑
n=0

σn xn = s. (13)

Then, Theorem 1 shows that the convergence of (σn ) to s follows from (13) if and only if the sequence (σn )
is W-VMO, and thus if the condition (12.i i )) is satisfied. ■

Remark 1 (Generalization of Szász’s (1928) theorem).
Let us observe that, if (vn ) is bounded, then the sequence (σn ) is slowly oscillating (at infinite) and thus

W-VMO. Indeed, we have using (2) for integers m > n:

|σm −σn | ≤
m∑

k=n+1

|vk |
k

≤ 1

n +1

(
1+ n +1

n +2
+·· ·+ n +1

m

)
sup
n∈N

|vn |

≤ n

n +1

( m

n
−1

)
sup
n∈N

|vn | −→
n→+∞ 0, as

m

n
−→

n→+∞ 1.

This shows that Theorem 2 actually includes the theorem of Szász (1928) [15].

The result below includes the theorem of Szász (1951) in [16] assuming the Tauberian condi-
tions (9) and makes the connection with the ’second theorem’ of Tauber (1897) [18].

Theorem 3 (Tauberian converse for Abel summability).
The assumptions i ) and i i ) below:{

i ) f (1−) := lim
x→1−

f (x) = s ∈C, i.e. (4) is satisfied,

i i ) the sequence (vn) is W-VMO,
(14)

are necessary and sufficient to get the convergence of (sn) to s.

Proof. First, the assumptions i ) et i i ) are necessary to get the convergence of (sn ) to s. Indeed, if sn → s
when n → +∞, the Abel (1826) theorem shows that the condition i ) holds. Moreover, since sn → s, we
have also σn → s from the usual lemma of Cauchy–Cesàro’s arithmetic mean and then, Eq. (1) implies
that vn → 0. Thus, it clearly results that the sequence (vn ) is slowly oscillating and then also W-VMO
from [1][Proposition 2.1], i.e. the condition i i ) holds.

Conversely, if the hypothesis i ) is verified, this implies from the Zygmund–Szász Lemma 1 that:

lim
x→1−

g (x) = s, where g (x) := (1−x)
+∞∑
n=0

σn xn . (15)

Then, by taking the difference between Eqs (4) and (15) using (1), it comes:

lim
x→1−

(1−x)
+∞∑
n=0

vn xn = 0, (16)

which means that the sequence (vn ) is Abel summable to 0. Then, assuming also that the condition i i ) is
fullfilled, it results with (16) from Theorem 1 that: vn → 0 when n →+∞.

Now, it is known by the ’second theorem’ of Tauber (1897) [18] that the convergence of (sn ) to s follows
from the hypothesis i ) if and only if we have: vn = (sn −σn ) → 0 when n →+∞. The usual and original proof
of that result uses Tauber’s (1897) ’first theorem’ [18]. However, let us observe that Tauber’s ’second theorem’
now falls in a few lines using the present setting. Indeed, since (vn ) is bounded because it converges, then
Remark 1 shows that the sequence (σn ) is slowly oscillating (at infinite) and thus W-VMO. Then, Theorem 2
ensures with i ) that σn → s when n →+∞. Finally, using Eq. (1) with vn → 0, this implies the convergence
sn → s, which concludes the proof. ■

Remark 2 (Generalization of Szász’s (1951) theorem).
Let us observe that if the conditions (9) are fullfilled, then the sequence (vn ) is also bounded and slowly

oscillating, and thus W-VMO. Indeed, since the positive sequence (vn ) is bounded, we have:

limsup
n→+∞

|vn | ≤ limsup
n→+∞

vn <+∞, (17)
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and (vn ) is bounded too (the converse being clearly not true, see e.g. Example 3 in Remark 3). Besides, it
follows for integers m > n:

vm − vn = 1

m +1

n∑
k=0

k ak + 1

m +1

m∑
k=n+1

k ak − vn

=
(

n +1

m +1
−1

)
vn + 1

m +1

m∑
k=n+1

k ak .

Then, it follows the bound:

|vm − vn | ≤
∣∣∣∣ n +1

m +1
−1

∣∣∣∣ |vn |+ 1

m +1

(
m∑

k=0
k |ak |−

n∑
k=0

k |ak |
)

≤
∣∣∣∣ n +1

m +1
−1

∣∣∣∣ sup
n∈N

|vn |+
(

vm − n +1

m +1
vn

)
.

Now, since (vn ) is bounded and (vn ) is slowly oscillating, we get:

|vm − vn | −→
n→+∞ 0, as

m

n
−→

n→+∞ 1,

which means that (vn ) is also slowly oscillating. This shows that Theorem 3 actually includes the theorem of

Szász (1951) [16].

We now provide several examples in Remark 3 to show that Theorems 2 and 3 are actually far
more general than Szász’s results in [15, 16]. Indeed, the W-VMO Tauberian condition is not only
weaker but also necessary.

Remark 3 (Examples).

(1) Let us take the positive and unbounded sequence (sn )n≥1 defined by:

sn :=
{

lnn, if n = 2p , p ∈N,

0, otherwise,

which gives: liminfn→+∞ sn = 0 and limsupn→+∞ sn =+∞.
We get σn =σ2p for any integer n with 2p ≤ n < 2p+1 (p ∈N), where:

σ2p = ln2

2p (1+2+·· ·+p) = p(p +1)

2p+1
ln2 −→

p→+∞ 0.

Then, (sn ) is Cesàro summable withσn → 0, and thus Abel summable to 0 from the Frobenius (1880)
theorem. Since (σn ) converges, it has a slow oscillation and it is thus W-VMO. But since (sn ) is not
bounded, Eq. (1) with (σn ) bounded shows that (vn ) is unbounded too. Hence, Theorem 2 does
apply, whereas the theorem in Szász (1928) [15] cannot be applied. Moreover, (sn ) cannot be a W-
VMO (or slowly oscillating) sequence by contradiction with Theorem 3 using Eq. (1). Thus, the result
in [1][Corollary 4.2] cannot be applied too.
However, since (sn ) ≥ 0 in this case, Lemma 2.4 in [1] or the theorem of Hardy–Littlewood (1914) [4]
(or also Karamata’s (1930) lemma [6]) can still been applied. But, that will not be anymore the case
in the next Example 2.

(2) Let us take the unbounded sequence (sn )n≥1 defined by:

sn :=
{

(−1)p p ln2, if n = 2p , p ∈N,

0, otherwise,

where now, liminfn→+∞ sn =−∞ and limsupn→+∞ sn =+∞.
Hence in this case, only Theorem 2 does still apply from what preceeds in Example 1.

(3) Let us consider the case with an = (−1)n lnn

n
for all n ≥ 1, where the alternating series

∑
n≥1 an

converges to some s ∈R from the Leibniz criterion. Then, the Kronecker lemma [8] ensures that:

vn = 1

n

n∑
k=1

(−1)k lnk −→
n→+∞ 0,
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and (vn ) is slowly oscillating and thus also W-VMO. But we have:

vn = 1

n

n∑
k=1

lnk = ln(n!)

n
∼

n→+∞ lnn −→
n→+∞+∞.

Moreover, the theorem of Abel (1826) shows that the series
∑

n≥1 an is Abel summable to its sum s.
Hence in that case, Theorem 3 does apply as well as Theorem 1 or Corollary 1. But, the Tauberian
condition (9) of [16] does not hold, neither the ’big-O’ condition of Littlewood (1911) [10] because
n |an | = lnn is not bounded.
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Appendix A. Alternative proof of E. Landau’s (1913) Tauberian theorem

Here, we give an independant proof of Landau’s theorem, without using [1], that is simpler
than the original proof of Landau (1913) in [9] that used differentiation techniques of Hardy-
Littlewood. Moreover, it has the interest to make the connection with the inversion of Cesàro
summability. Indeed, we show that the boundedness of (sn) provides the Tauberian result in
Lemma 2. Next, the issue amounts to solve the inversion of Cesàro summability with both the
boundedness and ’slow oscillation’ Tauberian condition on (sn) that is supplied by Lemma 3.

Lemma 2 (Weak Tauberian converse of Frobenius’ theorem).
We assume both i ) and i i ) below:{

i ) f (1−) := lim
x→1−

f (x) = s ∈C, i.e. (4) is satisfied,

i i ) the sequence (sn) is bounded.
(18)

Then, we have the convergence: σn → s when n →+∞.
The assumption i i ) is not necessary to get the convergence of (σn).

Proof. With the assumption i i ) of boundedness of (sn ), it is clear that (σn ) is bounded. This implies with
Eq. (1) that the sequence (vn ) is also bounded.

Then, it amounts to show Szász’s (1928) theorem [15] that gives a Tauberian converse of Frobenius’
theorem. Indeed, the assumption i ) of Abel summability of (sn ) implies using Zygmund–Szász’s Lemma
1 that:

lim
x→1−

(1−x)
+∞∑
n=0

σn xn = s, (19)

which means that the sequence (σn ) is also Abel summable to s. Besides, Eq. (2) shows with a Cauchy
product that (19) also reads:

lim
x→1−

+∞∑
n=1

vn

n
xn = s. (20)

Now, we observe that the coefficients bn := vn /n (n ≥ 1) of the above power series verify: n |bn | = |vn | =O (1).
Hence, the Tauberian theorem of Littlewood (1911) [10] ensures finally with (2) that:

lim
n→+∞σn =

+∞∑
n=1

vn

n
= s. (21)

The present result also falls in a few lines by observing that the boundedness of (sn ) implies that its
Cesàro’s arithmetic mean (σn ) is slowly oscillating (and bounded too), thus also W-VMO; see Remark 1 since
(vn ) is then bounded with (1). Then, the convergence of (σn ) to s follows from Theorem 2.

Moreover, Example 1 in Remark 3 shows that the boundedness of (sn ) is not necessary to get the
convergence of (σn ). ■

Lemma 3 (Weak Tauberian converse of Cauchy–Cesàro’s lemma).
We assume that a real or complex sequence (sn) is Cesàro summable to some s ∈ C, i.e. σn → s

when n →+∞.
Then, we have the convergence of (sn) to s if and only if the sequence (sn) is bounded and slowly

oscillating.

Proof. First, the convergence of (sn ) implies both its boundedness and its slow oscillation. Thus, these
latter conditions are necessary.

Reciprocally, we assume that the sequence (sn ) is bounded, slowly oscillating and such thatσn → s when
n →+∞. Since (sn ) is bounded, it suffices using Bolzano–Weierstrass’ theorem to show that s is the single
subsequential limit of (sn ). Let us set:

C := sup
n∈N

|sn | < +∞,
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and consider any subsequential limit ℓ ∈C of (sn ), i.e. sϕ(n) → ℓ when n →+∞, where ϕ :N→N is a strictly
increasing extraction function of integers (ϕ(n) ≥ n). By considering the Cesàro arithmetic mean (σ̃n ) of
(sϕ(n)) defined by:

σ̃n := 1

n +1

n∑
k=0

sϕ(k), ∀n ∈N,

it is clear with Cauchy–Cesàro’s lemma that σ̃n → ℓ when n →+∞. Moreover, we have:

σ̃n −σn = 1

n +1

n∑
k=0

(
sϕ(k) − sk

)
.

Then, it follows for all p,n ∈N such that p < n:

|σ̃n −σn | ≤ 1

n +1

p∑
k=0

∣∣∣sϕ(k) − sk

∣∣∣+ 1

n +1

n∑
k=p+1

∣∣∣sϕ(k) − sk

∣∣∣
≤ 2(p +1)

n +1
C + n −p

n +1
sup
k≥p

∣∣∣sϕ(k) − sk

∣∣∣ .

Now, passing to the upper limit when n →+∞ for a fixed value of p, we get:

limsup
n→+∞

|σ̃n −σn | ≤ sup
k≥p

∣∣∣sϕ(k) − sk

∣∣∣ ,

and then taking the limit when p →+∞, it yields:

limsup
n→+∞

|σ̃n −σn | ≤ limsup
p→+∞

∣∣sϕ(p) − sp
∣∣ . (22)

Thus, for any ϕ satisfying ϕ(p)/p → 1 when p →+∞ (e.g. ϕ(p) = p +1), the ’slow oscillation’ of (sn ) reads:

limsup
p→+∞

∣∣sϕ(p) − sp
∣∣= 0, as 1 ≤ ϕ(p)

p
−→

p→+∞ 1.

This implies with (22) and the convergence of (σn ) to s that:

lim
n→+∞ σ̃n = lim

n→+∞σn = s, and thus: ℓ= s.

In particular, this conclusion holds if we chooseϕ(n) := n+1, which shows that sn+1 → s when n →+∞, i.e.
the convergence of (sn ) to s. ■

Appendix B. Proof of Lemma 1 of Zygmund (1926) and Szász (1928)

O. Szász (1952) claims in [17] that Lemma 1 in Szász (1928) [15] is also due to A. Zygmund
(1926) [20]. Here we give a proof, inspired from Szász (1952) [17].

Proof. We define:

g (x) := (1−x)
+∞∑
n=0

σn xn , |x| < 1.

By putting

Sn := (n +1)σn =
n∑

k=0
sk , ∀n ∈N,

such that: σn = Sn

n +1
, we observe that:

1

n +1
=

∫ 1

0
ρn dρ.

In these conditions and by using (3), we have for any |x| < 1:

+∞∑
n=0

σn xn =
+∞∑
n=0

Sn

(∫ 1

0
ρn dρ

)
xn =

∫ 1

0

(+∞∑
n=0

Sn (ρx)n

)
dρ

=
∫ 1

0

f (ρx)

(1−ρx)2
dρ.
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We then calculate for 0 < x < 1 by doing the change of variable: ρx = 1 − 1

t
, i.e. t = 1

1−ρx
such that:

x dρ = 1

t 2
d t = (1−ρx)2d t . It comes:

g (x)

(1−x)
:=

+∞∑
n=0

σn xn = 1

x

∫ 1/(1−x)

1
f

(
1− 1

t

)
d t , 0 < x < 1.

Now for X > 0, we put x = 1− 1

1+X
such that

1

1−x
= 1+X and

1

x
= 1+X

X
. Moreover, we have x → 1− when

X →+∞. Then it follows:

g

(
1− 1

1+X

)
= 1

X

∫ 1+X

1
f

(
1− 1

t

)
d t , ∀X > 0.

Finally, with the change of variable t = z +1, we get:

g

(
1− 1

1+X

)
= 1

X

∫ X

0
f

(
1− 1

z +1

)
d z, ∀X > 0. (23)

Thus, the right-hand side term appears to be the Cesàro mean of the continuous function φ : [0,+∞[→ C

defined by:

φ(z) := f

(
1− 1

z +1

)
, ∀z ≥ 0.

Moreover, since f (x) → s ∈ C when x → 1− by hypothesis, we have: φ(z) → s when z →+∞. Hence, we can
conclude with Eq. (23) and the lemma of Cesàro mean for a function that:

lim
x→1−

g (x) = lim
X→+∞g

(
1− 1

1+X

)
= s.

Indeed, an easy calculation shows the inequality:

limsup
x→+∞

|σ(x)− s| ≤ limsup
z→+∞

|φ(z)− s|, where σ(x) := 1

x

∫ x

0
φ(z)d z.

which implies the desired result if |φ(z)− s|→ 0 when z →+∞. ■
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