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Abstract

The mechanical behaviour of 316L stainless steel single crystal is characterised at room temperature and 300 ◦C.

Elasticity moduli at room temperature are obtained with resonant ultrasound spectroscopy. Their dependence

on temperature is calibrated with molecular dynamics simulations. The plastic behaviour is characterised by

tensile tests on millimetre-sized single crystal specimens and compression tests on micrometre-sized single crystal

specimens. A constitutive model of crystal plasticity based on dislocation density hardening at finite strains is

developed and implemented in an open-source material subroutine compatible with several finite element (FE) and

fast Fourier transform (FFT) solvers. Tensile curves at room temperature and 300 ◦C are used to calibrate the

interaction coefficients for self and coplanar dislocation interactions. The dislocation mean free path for obstacle

dislocations and the annihilation distance are also calibrated. The calibrated model predicts tensile curves in

excellent agreement with experimental data. In addition, the predicted plastic strain fields are in good agreement

with the experimental fields obtained by digital image correlation. Semi-quantitative agreement between simulation

and experimental data is obtained for micro-compression tests without further calibration of the model. Finally,

an extension to polycrystals with grain size effects is finally proposed. The predicted strain hardening behaviour

is compared with experimental data on stainless steel polycrystals.

Keywords: 316L stainless steel, single crystal plasticity, constitutive model, micro-mechanics, size effects

1. Introduction

Because of their excellent chemical and mechanical properties at relatively low cost, austenitic stainless steels

are widely used as structural materials in engineering applications (Marshall, 1984). For example, their behaviour

in the range of temperatures and pressures encountered in nuclear pressure vessels makes them suitable for in-

ternal structural use. The properties of these materials have led to an extensive literature aimed at measuring,5

understanding, modelling and improving their properties (Song et al., 2011; Trelewicz et al., 2016; Mukherjee and

DebRoy, 2019; Dumas et al., 2021). In most studies, the microstuctural characterisation of steels is carried out

at the crystalline level. Mechanical tests, on the other hand, are carried out on polycrystalline millimetre-sized

specimens, averaging the behaviour of many grains. The reason for this striking gap between the scales of mi-

crostructural observation and mechanical characterisation is twofold. Firstly, most applications of steels involve10

components composed of a large number of grains and therefore do not necessarily require measurement of the

mechanical behaviour of individual grains. Second, mechanical testing of individual grains is challenging for steels

due to the relatively small grain size obtained during processing, typically a few tens of microns.
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Nevertheless filling this gap could have significant benefits. Indeed, fundamental mechanisms of plasticity

and fracture often occur at sub-grain size scales (Pineau, 2006). Furthermore, models of material behaviour have15

become increasingly sophisticated. For example, the continuum theory of crystal plasticity (Roters et al., 2011) is a

modelling tool of paramount importance for bridging sub-grain features to the macroscopic mechanical behaviour.

However, when applied to austenitic stainless steels (Monnet and Mai, 2019), crystal plasticity models rely on

material parameters, some of which remain imprecisely known due to the lack of experimental work at this scale.

To some extent, the evaluation of these parameters can be carried out by inverse identification on conventional20

experiments on polycrystals (Han, 2012). In addition, discrete dislocation dynamics (DDD) numerical simulations

allow the study of the interactions between dislocations and have been used to inform and calibrate continuum

crystal plasticity models (Madec et al., 2003; Kubin et al., 2008; Madec and Kubin, 2017). However, an experimental

investigation of the mechanical behaviour of austenitic stainless steel single crystals would help to validate, or if not

modify, the numerical values of the material parameters used in the literature. The present work aims to perform25

this task.

Two approaches can be used to characterise stainless steel single crystals. Millimetre-sized single crystal samples

can be tested using conventional methods, or micro-sized samples can be characterised using small-scale experi-

mental platforms. Several techniques exist in order to grow millimetre-sized (or even larger) metallic single crystals

such as the Bridgman–Stockbarger (Bridgman, 2013; Stockbarger, 1936) method or the Czochralski (Czochralski,30

1918) method. They can therefore be used in order to produce ingots from which single crystal samples can be

machined while controlling the orientation of the crystal lattice within the sample geometry. Experiments on pure

metallic single crystals have been carried out, for example, on aluminium (Taylor and Elam, 1925), copper (Demir

and Raabe, 2010), magnesium (Syed et al., 2012) and α−iron (Keh and Nakada, 1967). Experiments on single

crystals of metallic alloys are more scarce, as their preparation is often more sophisticated. The available studies35

mainly focus on nickel-based superalloys (Hanriot et al., 1991; Raffaitin et al., 2007) or Hadfield steels (Karaman

et al., 2000; Canadinc et al., 2005). To the authors’ knowledge a single study performed by Karaman et al. (2001)

reports tensile test results on millimeter-sized single crystals of 316L stainless steel. Their tensile experiments were

performed on nitrogen-free and nitrogen-strengthened steels at room temperature with a strain rate of 5×10−5 s−1

and with the tensile directions oriented along <111>, <001> and <123> crystal directions. On the other hand,40

some experimental techniques do not require large grains, such as for instance micropillar compression or nanoin-

dentation. However, small scale experimental techniques are often associated with the difficulty of assessing the

size effects that arise as the size of the sample becomes of the same order of magnitude as the length scale of the

deformation processes. In addition, temperature control of small scale experiments is challenging (Wheeler et al.,

2013; Viat et al., 2017).45

If experiments on metallic single crystals are rare in the literature, in contrast, many models of crystal elasto-

viscoplasticity are available and used in numerical simulations. A common feature of most models is the consid-

eration of a set of yield criteria to account for several inelastic mechanisms, such as plastic slip on different slip

systems. Some differences between the available models are due to their either phenomenological or more physical

basis. For instance, (Méric et al., 1991) consider a phenomenological theory of crystal plasticity. On the other50

hand a variety of dislocation-based crystal plasticity theories have been formulated (Kuhlmann-Wilsdorf, 1999).

Some models take into account the edge or screw nature of dislocations (Gurtin, 2006), while others introduce size

dependencies by accounting for the presence of geometrically necessary dislocations (Gurtin, 2008). In addition,

formulations with a critical stress (threshold) to activate plastic slip (Méric et al., 1991) and formulations with-

out a critical stress (threshold-free) (Kothari and Anand, 1998) are available. Rate-independent settings (Anand55

and Kothari, 1996; Schmidt-Baldassari, 2003; Forest and Rubin, 2016) and viscoplastic frameworks (Rashid and

Nemat-Nasser, 1992; Méric et al., 1991) have also been proposed.

The main objective of this study is to characterise the mechanical behaviour of austenitic stainless steel (316L)

single crystals at 20 ◦C and 300 ◦C in order to calibrate a continuum crystal plasticity model based on dislocation

densities. Millimeter-sized specimens are loaded in tension along different directions of the face-centered cubic60
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(FCC) crystal lattice. Micropillars are also subjected to compression in order to investigate the hardening behaviour

along other crystallographic directions. A crystal plasticity model based on the evolution of dislocation densities

is presented and calibrated by inverse identification. The numerical implementation of the constitutive behaviour

is done with MFront (Helfer et al.), a code generator tool compatible with several FEM and FFT solvers1. The

numerical implementation of the crystal plasticity model is shared as an open-source code (Hure and Scherer,65

2023). Finally, numerical tensile and micro-compression experiments on single and polycrystalline samples are

finally performed in order to further assess the validity of the model.

The paper is organised as follows. In Section 2, the material, methods and experimental results are presented,

together with numerical results aimed at characterising the elastic behaviour. A crystal plasticity model and its

calibration to experimental data are described in Section 3. Numerical finite element simulations of the plastic70

behaviour of single and polycrystals are presented in Section 4. The results presented in the previous sections are

discussed in Section 5. Concluding remarks and prospects are given in Section 6.

2. Mechanical behaviour of 316L single crystals at room temperature and 300 ◦C

2.1. Material

This study investigates the mechanical behaviour of single crystals of AISI 316L stainless steel. This austenitic75

steel has a face-centered cubic lattice, with lattice parameter a0 = 0.362 nm (Borgioli et al., 2006) at room temper-

ature. A single crystal plate (25.134 × 25.131 × 2.163 mm, mass 10.9855 g and calculated density 8.041 g cm−3)

was purchased from Princeton Scientific Corporation for mechanical characterisation. The chemical composition

of this material is given in Tab. 1. Experimental data on the mechanical behaviour of 316L single crystals is scarce

in the literature. To the authors’ knowledge, only one study by Karaman et al. (2001) reports the characterisation80

of millimeter-scale 316L single crystal specimens at room temperature. The tensile curves obtained by Karaman

et al. (2001) along the <111>, <001> and <123> crystal directions are digitized and plotted in Section 2.3.

Table 1: Chemical composition (weight %) of the AISI 316L single crystal austenitic stainless steel plate provided by the supplier.

C Mn P S Si Cr Ni Mo N Fe

≤ 0.060 2.00 0.045 0.030 0.75 17.0 12.0 2.5 0.10 balance

2.2. Determination of elasticity moduli using Resonant Ultrasound Spectroscopy and Molecular Dynamics simula-

tions

The aim of this section is to determine the elastic constants of the material used in this study. First, the85

methodology is described.

• Methodology

Resonant Ultrasound Spectroscopy (RUS, Migliori et al. (1993)) is used to accurately measure the elastic constants

under the hypothesis of linear elasticity. This method is based on the measurement of a spectrum of resonance

frequencies of the single crystal sample described in section 2.1 using an ultrasound apparatus. A simplified model

proposed by Rossin et al. (2021) relates the resonance frequencies to the elastic properties as follows

fn =
n

2L

√
C∗

ρ
, (1)

1A list of available MFront interfaces can be found here https://thelfer.github.io/tfel/web/index.html
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where n is the mode index, L is the characteristic length of the single crystal sample, ρ is the sample density and

C∗ is the effective elastic stiffness along a given direction (i.e. a linear combination of elastic constants of the

material). The most important insight given by Eq. (1) is that the resonance frequencies contain the information90

about the full elastic tensor once the geometry of the sample and its density are known. As will be explained in

the following paragraphs, the methodology used, aims to find the unknown elastic constants in order to recover

the measured resonance frequencies.

RUS requires (1) solving the elastic wave equation and (2) adjusting the elastic constants to predict the correct

resonant frequencies. The equations describing the elastic vibrations of the single crystal are as follows (Bernard,

2014)

ρ (2πf)
2
ui + Cijkl

∂2uk

∂xl∂xj
= 0 in the volume

Cijkl
∂uk

∂xl
nj = 0 on boundary of normal n,

(2)

where ui is the displacement field and the Einstein summation convention is used. Eq. (2) depends on the fourth

order stiffness tensor Cijkl which relates the second order stress and elastic strain tensors σij = Cijklεkl. According95

to Ledbetter (1984), austenitic stainless steel crystals exhibit cubic anisotropy. The stiffness tensor can therefore

be parametrised with three coefficients: C11, C12 and C44. Three additional parameters – so-called Bunge-Euler

angles denoted ϕ1,Φ, ϕ2 in the following – are also required to describe the orientation of the crystal in the sample

frame in which Eqs. (2) are solved. Details of the dependence of Cijkl on these parameters are given in Appendix A.

Eqs. (2) are solved in variational form using a numerically efficient Rayleigh-Ritz method for computing resonant100

frequencies of rectangular parallelepipeds following Visscher et al. (1991).

Let us now turn to the inverse problem of finding the elastic constants (and the orientation of the crystal)

from the measured resonance frequencies. There are several approaches to solving this inverse problem in the

literature, starting with gradient-based optimisation (Migliori et al. (1993)) and more recently based on a Bayesian

formulation solved with Monte-Carlo Markov chain algorithms. According to Bales et al. (2018) and Goodlet et al.105

(2018), the Bayesian method is able to provide a robust estimate of the elastic constants. This is the motivation

for using this method in the present study. In addition, the Bayesian approach provides a built-in estimation of

the error in the estimated constants.

Solving the inverse problem using RUS then consists of finding the point in parameter space that maximises

the posterior conditional probability obtained from Bayes’ rule as110

P (θ|M) ∝ P (M |θ)P (θ), (3)

where P (M |θ) is the likelihood of a set of frequencies computed using our model with the parameter set θ =

(C11, C12, C44, φ1,Φ, φ2, σ), and P (θ) is the a priori on the values of these parameters.

The likelihood of a set of frequencies (computed from parameters θ) and measured frequencies M is

P (M |θ) =
N∏

k=1

1√
2πσ

exp

{
−1

2

(
f exp
k − fmodel

k (C11, C12, C44, φ1,Φ, φ2)

σ

)2
}

(4)

where the subscript k is used to denote the matched experimental f exp
k and computed frequencies fmodel

k . As

explained earlier, we assume that in Eq. (4) that the dimensions and density of the sample are known. In this

work, we use a Python implementation, called emcee, of the affine-invariant ensemble sampler for Markov chain115

Monte Carlo (MCMC), first proposed by Goodman & Weare (Foreman-Mackey et al., 2013) to obtain samples

following the probability distribution of Eq. (3). Details about the a priori distributions P (θ) used are given in

Appendix A.

• Results and analysis

Measurements were made at room temperature. The sample spectrum was measured four times with a frequency120

4



spacing of 17 Hz between each point between the lower and upper limits of 8 and 208 kHz. 50 resonance frequencies

were extracted from each spectrum and averaged to give the experimental frequencies that were used for Bayesian

inversion. The standard deviation was equal to 30 Hz on average for the 50 frequencies. Three fits were made,

varying the number of frequencies N used in the likelihood in Eq. 4. Each fit converged to a low value for the σ

noise parameter below 1 kHz, indicating a meaningful solution to the inverse problem.125

The values obtained are shown in the following Tab. 2.

Table 2: Bayesian inversion results obtained by successive inclusion of resonance frequencies.

parameter N=30 inversion N=40 inversion N=50 inversion

C11 (GPa) 207.36 ± 14.53 218.32 ±11.08 200.25 ±8.91

C12 (GPa) 134.06 ± 13.96 144.77 ±10.57 128.52 ±8.81

C44 (GPa) 128.30 ± 4.10 125.38 ± 3.29 131.53 ±3.54

φ1 (◦) -0.05 ± 4.07 -0.45 ± 3.82 6.77 ±3.64

Φ (◦) 35.60 ± 1.10 35.09 ± 0.56 36.30 ±0.85

φ2 (◦) 44.65 ± 4.36 45.13 ± 3.72 38.70 ±2.89

σ (kHz) 0.59 ± 0.15 0.59 ± 0.09 0.80 ±0.09

The σ parameter represents the cumulative effect of unknown sources of uncertainty and thus qualifies the

goodness of the fit obtained. Previous authors have found values for σ in the range of those obtained here (see for

example Bales et al. (2018) and Goodlet et al. (2018)). Note that the fits for N = 30 and N = 40 converge to a

similar σ value of 0.6 kHz, while the error is higher for the N = 50 fit. Careful analysis of the posterior plots of130

each frequency shows that this is due to an increase in the number of frequencies that do not fit well after frequency

40. We therefore select the N = 40 as the best model and report the following diagnostic plots.

Figure 1: Experimental and best-fit model (N = 40) spectra obtained by resonant ultrasound spectroscopy (RUS).

As can be seen in Fig. 1, the model frequencies agree well with the measured data. To go one step further,

we can plot the predictive posterior plots, which show where 95% of the representative model frequencies lie with

respect to each experimental frequency (see Goodlet et al. (2018) for details on these plots).135
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Figure 2: Difference of model and experimental frequencies for the best-fit model with N = 40. The relative mean square error of the
median is 2.99%.

As can be seen in Fig. 2, 5 out of 40 frequencies have distributions that leave the measured frequency outside

of the 95 % interval. This is surprising as we would expect at most 2 frequencies to be outside of this interval. It

is difficult to be certain about the cause of this discrepancy, especially since the other frequencies do not exhibit

any discernible trend as discussed in Goodlet et al. (2018). Possible reasons could be modelling errors, e.g., small

deviations from the parallelepiped shape of the sample that were not taken into account in our forward model. In140

addition, the literature suggests that it is not uncommon for the first resonance frequency to be difficult to fit (see

Bales et al. (2018)).

We can also compare the elastic constants we have found with existing work from Ledbetter (1985b). Our

estimates include, in their lower bounds, the values of C11 = 207 GPa, C12 = 133 GPa, C44 = 117 GPa found by

extrapolation from experimental data. In addition, the orientation of the crystal (Tab. 2) is in good agreement145

with that given by the manufacturer [φ1 = 0.0°,Φ = 35.26°, φ2 = 45.0°]. This result seems to confirm the validity

of our approach and the confidence we can have in the results presented in this section.

The dependence of Young’s modulus and mean Poisson’s ratio on loading direction can be computed using

the elastic constants obtained in this section. Fig. 3 shows the 3D representation of these two elastic parameters

as a function of the direction. For any direction d, one can compute E(ddd) = 1/Sijkldidjdkdl and ⟨ν(ddd,nnn)⟩nnn =150

⟨−Sijkldidjnknl/Sijkldidjdkdl⟩nnn, where S = C−1. The surface plots are then obtained by scaling the distance

between a point on the surface and the origin with E(ddd) (resp. ν(ddd)). As already reported in the literature, the

316 austenitic stainless steel exhibits a strong anisotropy and an auxetic behaviour (negative Poisson’s ratio) for

some directions.
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Figure 3: (a) 3D plot of Young’s modulus E(ddd) = 1/Sijkldidjdkdl, where S = C−1. The softest directions (the six wells) coincide with
<100> axes, while the stiffest directions (the eight peaks) coincide with <111> axes. Values are expressed in GPa. (b) 3D plot of
the mean Poisson’s ratio ⟨ν(ddd,nnn)⟩nnn =

〈
−Sijkldidjnknl/Sijkldidjdkdl

〉
nnn
. The mean value is computed over all transverse directions nnn

orthogonal to ddd. The Poisson ratio ν(ddd,nnn) varies in the range [−0.189, 0.788].

Since the purpose of this study is also to investigate the mechanical behaviour at 300 ◦C, we evaluate the155

evolution of the elastic constant as a function of temperature. Experimental measurements of these properties in

the literature are shallow and do not allow a complete description of the elastic constants with temperature. We have

therefore carried out molecular dynamics (MD) simulations using empirical potentials to assess these properties.

This method allows us firstly to control the structure configuration and secondly to control the temperature.

However, the results of this technique are highly dependent on the reliability of the empirical potential.160

For this study we have chosen the embedded atom model (EAM) interatomic potential proposed by Bonny

et al. (2011), which provides accurate structural and mechanical properties at room temperature compared to

experimental data (Ledbetter, 1985a). The system size used for this evaluation is 5.7×5.7×5.7 nm3 with 16 384

atoms. The atoms are randomly arranged in an FCC crystal structure to form a solid solution with composition close

to the 316L alloy, namely Fe0.71Cr0.17Ni0.12. For statistical purposes, 10 different configurations are constructed165

and investigated independently. The results for the elastic constants are then averaged over these 10 configurations

for each temperature, which ranges from room temperature to 727 ◦C (300 ◦C is approximately in the middle of

this range).

The elastic properties are evaluated by computing the stiffness matrix at fixed temperature in a stepwise manner.

First, a small deformation (< 0.1%) is imposed on the relaxed system for all the six Voigt components of the strain170

tensor. This step is followed by a relaxation at constant temperature and volume for 2 ps. At each time step,

the six components of the stress tensor are computed with the virial stress and the kinetic energy contribution.

This virial stress is shown to be equivalent to the Cauchy stress at the continuum level (Shen and Atluri, 2004;

Subramaniyan and Sun, 2008) and is expressed as

σij =
1

Ω


1

2

N∑

k

N−1∑

ℓ ̸=k

rkℓi fkℓ
j

N∑

k

mkvki v
k
j


 (5)

where Ω is the volume of the box containing the N atoms. For each atom k, mk and vki represent the mass and175

the ith component of the velocity vector, respectively. For the virial contribution, rkℓi represents the ith component

of the interatomic distance vector, rkℓ = rℓ − rk, and, fkℓ
j represents the jth component of the force fkℓ, acting

on atom k due to its interaction with atom ℓ. Elastic moduli are then calculated from the slopes of the resulting

stress-strain curves obtained using appropriate components of the stress and strain tensors.

Based on our simulations, the temperature dependence of the three Cij is nearly linear. Therefore, we compute
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linear fits such that the experimental values obtained at 20 ◦C are retrieved. In other words, the molecular dynamics

simulations are used to compute the slopes of the temperature dependence, while the experimental data are used

to determine the intercepts of the linear fits. The best fits obtained are

C11(GPa) = 233.36− 0.0513T (K) (6)

C12(GPa) = 152.88− 0.0277T (K) (7)

C44(GPa) = 134.43− 0.0308T (K) (8)

where T (K) denotes the temperature expressed in Kelvin. The values at 300 ◦C are respectively equal to C11 = 204180

GPa, C12 = 137 GPa and C44 = 117 GPa.

2.3. Plastic behaviour in tension

Tensile experiments were then carried out on single crystals at 300 ◦C to determine the plastic behavior for

different orientations. Tensile experiments were not conducted at 20 ◦C due to a limited number of available

specimens and because experimental data are already available at this temperature in the literature (Karaman185

et al., 2001).

• Methodology

The geometry of the specimens used for these experiments is shown in Figure 4.

Figure 4: Sketch of the geometry and dimensions of the tensile specimens. Horizontal and vertical dashed profile lines correspond to
the principal axes of the rectangular region of interest used for digital image correlation analysis.

Electron backscatter diffraction (EBSD) maps were measured on the surface of the specimens in order to obtain

the local crystallographic misorientations. Figure 5 shows the measured misorientations for <111> and <011>190

specimens along with the corresponding inverse pole figures (IPF). The misorientation angle measures the difference

between the crystallographic direction selected for tensile characterisation and the local orientation. The <111>

specimen shows a 14° grain boundary located in one of the specimen heads. The second grain is characterised by a

secondary spot in the IPFs. The main part of the specimen is a single crystal with less than 5° misorientation with

respect to the [1̄11] tensile direction. The <011> specimen has a total misorientation of 12° with respect to the195

[011] axis. The smaller secondary spots observed in the IPF are due to the small grains observed in the lower right

corner and upper left corners of the specimen. The misorientation angle is only plotted for the austenitic phase

within the specimens. However the material also contains ferrite inclusions. These inclusions correspond to the

white, elongated regions seen in Figures 5a and 5c. The influence of these inclusions on the mechanical response

and local strain fields will be discussed later on.200

For the tensile tests conducted in this study at 300 ◦C, ∆L denotes the variation in the length of the digital

image correlation zone which has an initial length of L0 = 7.7mm. The engineering stress Pxx is defined by the

applied load F normalised by the area of the minimum cross-section S0. The true strain ϵxx is then computed as

8



misorientation angle (°)

(a) [1̄11] misorientation (b) <111> IPF

(c) [011] misorientation (d) <011> IPF

Figure 5: (a) and (c) EBSD measured misorientation angle of crystal orientation in <111> and <011> specimens with respect to
theoretical orientation (b) and (d) inverse pole figure for X 1, X 2 and X 3 directions in both specimens.

ln(1 + ∆L/L0), while the true stress σxx is computed as Pxx(1 + ∆L/L0). Displacement fields are measured on

the surface of the specimens using digital image correlation (DIC). A random speckle pattern of black and white205

heat-resistant paint is applied using an airbrush. This technique results in a mean speckle diameter size of 20 µm.

The DIC software Ncorr (Blaber et al., 2015) is used to compute the evolution of the in-plane displacements

fields over time. These fields are then post-processed in order to extract the in-plane Green-Lagrange strain

measure EEEGL = 1
2

(
FFFT ·FFF − 111

)
, where FFF = ∂xxx/∂XXX is the deformation gradient. In practice, the three independent

components of the 2D Green-Lagrange strain are computed from the displacement gradient HHH = ∇u as follows:210

EGL
11 = 0.5(2H11 +H2

11 +H2
21), E

GL
12 = 0.5(H12 +H21 +H11H12 +H21H22), E

GL
22 = 0.5(2H22 +H2

12 +H2
22).

• Results and analysis

The true stress vs true strain curves at room temperature available in the literature (Karaman et al., 2001) and

obtained in this study at 300 ◦C are plotted in Figure 6a and 6b respectively. At both temperatures, the yield stress

and the strain hardening behaviour depend strongly on the tensile direction. The yield stress is significantly lower215

at high temperature. However, the strain hardening rate at the yield point for the <111> orientation is similar for

both temperatures. At 20 ◦C, the <111> and <123> orientations show two stages in the hardening regime. First

a stage of intense, almost linear, strain hardening, followed by a second stage of less intense linear hardening. The

<001> specimen displays only one stage of almost linear hardening. At 300 ◦C, a close-up view of the stress-strain

curve near the yield point (see the inset in Figure 6b) shows a short range of low strain hardening followed by an220

almost linear hardening for both orientations <111>, <011> (in the range of applied strains). Looking back at

Figure 6a, a small region of low strain hardening after the yield point appears to be present (Karaman et al., 2001).

This feature of the stress-strain curves can be attributed to an easy-glide regime (stage I) during which the crystal

deforms by single slip. This regime can exist for the highly symmetric orientations considered in this study due

to small initial misalignments between the tensile and crystallographic directions. The non-symmetric orientation225

[123] shows a broader stage I regime.

Figures 7 and 8 show the three in-plane components of EEEGL at two different macroscopic tensile strains ∆L/L0

9
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Figure 6: Tensile curves of true stress vs true strain at (a) 20 ◦C and (b) 300 ◦C. The Miller indices corresponding to the directions
coinciding with the tensile direction are indicated. A close-up view at the yield point is shown in the inset of figure (b).

for the <111> and <011> specimens respectively. At ∆L/L0 = 0.05, the strain fields are already very hetero-

geneous. For each orientation, narrow bands appear in the whole correlation region and are not restricted to the

region located in the centre of the specimen, which has a smaller cross section. Overall, the width of localised230

strain bands is less than about 200µm. These bands are collectively oriented along preferential directions. For

each specimen, essentially two directions can be observed and several parallel bands are visible for each of them.

In the <111> specimen, the bands are approximately symmetrically inclined at ±15◦ with respect to the tensile

direction. In the <011> specimen, the bands are approximately inclined at −58◦ and 30◦ with respect to the

tensile direction. The local maximum of the EGL
11 strain reaches up to 0.2 in almost all bands, while outside of235

the bands a strain lower than 0.05 is always observed. In the <111> specimen, all bands have almost the same

intensity. On the contrary, in the <011> specimen, a band located in the centre of the specimen is twice as intense

as all the others. At a macroscopic strain level of 0.1, the strain heterogeneity persists for both specimens and

the same narrow bands remain visible. No new bands are formed between 0.05 and 0.1 macroscopic strain. To

accommodate the total strain, the intensity of each band increases. Indeed, most bands show a maximum of the240

EGL
11 strain close to 0.3 at ∆L/L0 = 0.10. These maxima are often located at the intersection of non-parallel bands.

The orientation of the bands with respect to the tensile direction does not appear to have evolved significantly.

Recently, several methods (Heaviside DIC, Relative Displacement Ratio (RDR) and slip systems based local

identification of plasticity (SSLIP)) have been developed to extract the intensity of plastic slip on each slip system

from DIC displacement data (Chen and Daly, 2017; Bourdin et al., 2018; Vermeij et al., 2023). Here, we use the

SSLIP approach (Vermeij et al., 2023) and the associated open-source code (https://github.com/Tijmenvermeij/

SSLIP) in order to evaluate the slip amplitude γα on each slip system. The SSLIP approach assumes that all the

deformation is plastic, thereby neglecting elastic strains, and uses a small deformation framework for crystal

plasticity. It is formulated as a local optimisation problem at each point of the material as follows

inf
γα, α=1,...,12

12∑

α=1

|γα| (9)

s.t. ||HHHexp −HHHtheor||2D < Hthresh (10)

where HHHexp is the experimentally measured displacement gradient and HHHtheor =
∑12

α=1 γ
αmmmα ⊗ nnnα. The vectors

mmmα and nnnα correspond to the slip directions and slip plane normals of the FCC {111}<110> family of slip systems.

Since only the in-plane part of HHHexp is known from DIC fields, the L2-norm of the in-plane displacement gradient245

10
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Figure 7: In-plane Green-Lagrange strain fields post-processed from DIC measurements at 300 ◦C for the <111> specimen at macro-
scopic strains ∆L/L0 = 0.05 and 0.10.

Figure 8: In-plane Green-Lagrange strain fields post-processed from DIC measurements at 300 ◦C for the <011> specimen at macro-
scopic strains ∆L/L0 = 0.05 and 0.10.
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difference is used in Eq. (10). Vermeij et al. (2023) have shown that Eq. (9) and (10) generally define a well-posed

problem and have been able to obtain very accurate results on virtual (HCP) experiments (with known solutions) as

well as on real experiments (FCC and BCC). The main idea of this approach is to find locally a set of slip amplitudes

that are consistent with the in-plane kinematics measured by DIC and for which the accumulated plastic slip is

minimal. Instead of minimising the accumulated plastic slip, one could minimise the plastically dissipated energy.250

However, in the case of FCC crystals with 12 equivalent slip systems, both approaches are expected to give similar

results (at least in the early stages of plastic yielding). An important aspect of the SSLIP method is that it treats

each pixel independently. It therefore has no intrinsic notion of slip bands.

Figure 9a shows the 4 in-plane components of the displacement gradient (H11, H12, H21 and H22) obtained

from the DIC data of the <111> specimen at ∆L/L0 = 0.05. These fields correspond to the inputs of the SSLIP255

approach described above. The outputs of the SSLIP method are shown in Figure 9b. Each field corresponds to a

different slip system and the associated Schmid factor (SF) is computed. A red line and a red arrow are drawn on

top of each field to denote the slip plane trace and the slip direction of the corresponding slip system respectively.

In total, 8 out of 12 slip systems have plastic slip amplitude fields not equal to zero. The 6 slip systems with the

highest Schmid factors clearly show the highest amplitude of plastic slip. Note that the 6 highest Schmid factors260

are not strictly equal because the tensile direction is not perfectly aligned with a <111> crystallographic direction

(see Figure 5b). The apparent activation of two additional slip systems with low Schmid factors (systems #2 and

#7) could be attributed to a stress state that is locally different from uniaxial tension (e.g. due to ferrite inclusions)

or to crystal lattice rotation, which is not accounted for in the SSLIP approach. It may also be an artefact of

the optimisation approach chosen. Nevertheless, this method provides relevant distributions of slip amplitudes265

across the slip systems. The two types of localised bands observed in Figure 7 are perfectly consistent with the

(1̄11) and (11̄1) slip plane traces. Two slip directions are active for each of these planes. In addition, the SSLIP

method predicts the activation of two slip directions in the (111) plane. The activation of this plane is difficult

to detect by looking only at the DIC fields. However, the post-mortem analysis of the specimen surface in Figure

9c clearly shows the presence of many slip lines almost perpendicular to the tensile direction. The inclination270

of all the observed slip line bundles agrees remarkably well with the slip plane traces predicted by the Schmid

criterion. Indeed, many slip lines can be observed as straight parallel lines crossing the entire image. It is worth

noting that two of these directions are almost symmetrically inclined with angles of about ±18◦ with respect to the

tensile direction represented by the white vertical arrow. These two directions coincide remarkably well with the

directions of the more macroscopic bands observed in the DIC strain fields. In fact, the narrow bands described275

in the previous section are caused by the formation of slip line bundles as shown in Figure 9c. For reference, the

FCC slip systems and their corresponding indices used throughout this study are listed in Figure 9d.

It is well known that deformation occurs at the lowest energy cost. However, from an energetic point of view,

the most penalising dislocation interaction is the collinear interaction, in which two dislocations with collinear

Burgers vectors glide in intersecting planes (Madec et al., 2003). In the <111> specimen, three pairs of active slip280

systems form a collinear interaction (#1, #3), (#4, #5) and (#8, #11). The SSLIP analysis shows that plastic

slip on slip systems #8 and #11 occurs in complementary regions of the specimen. Similar trends can also be

observed for the other two pairs of slip systems forming a collinear interaction. This observation is consistent with

the higher strength of the collinear interaction and has already been noted by Dequiedt et al. (2015).

The same SSLIP analysis is performed on the <011> specimen, using the displacement gradient field shown in285

Figure 10a used as input and the computed slip amplitudes in Figure 10b obtained as output. For this orientation,

there are mainly five slip systems with non-zero slip amplitude. The four systems with higher Schmid factors

concentrate most of the slip activity. Again, the maximum Schmid factors are not perfectly equal due to a slight

misorientation between the tensile axis and the <011> direction (see Figure 5d). The decomposition of the plastic

activity is also relevant in this case. For slip systems #1 and #2 the slip plane trace is almost parallel to the290

localised deformation bands. For systems #3 and #11 the alignment between the slip plane trace and the localised

deformation band is less perfect. This may be an artefact of the SSLIP method, but can also be due to lattice
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(a)

(b)

(c)

Slip systems # Slip directions mmmα Slip planes nnnα

1 [011̄] (111)

2 [11̄0] (111̄)

3 [011̄] (1̄11)

4 [1̄01] (11̄1)

5 [1̄01] (111)

6 [101] (111̄)

7 [101] (1̄11)

8 [110] (11̄1)

9 [11̄0] (111)

10 [011] (111̄)

11 [110] (1̄11)

12 [011] (11̄1)

(d)

Figure 9: (a) Components of the in-plane displacement gradient in the the <111> specimen at ∆L/L0 = 0.05 used for the SSLIP
analysis (Vermeij et al., 2023). (b) Slip system activity on each slip system obtained by post-processing the DIC field with the SSLIP
analysis. The Schmid factor (SF) is computed for each slip system. The colour scale represents the absolute plastic slip magnitude. (c)
Slip lines observed post-mortem on the specimen surface by SEM. Red arrows (resp. blue arrows) indicate the slip plane trace (resp.
slip direction) of the six slip systems with the highest Schmid factors. (d) Nomenclature of the 12 FCC slip systems of the {111}<11̄0
family.
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rotation to some extent. A scanning electron microscopy (SEM) analysis carried out post-mortem on the surface

of the specimen, within a localised deformation band, shows in Figure 10c how the slip lines are almost aligned

with the slip traces predicted by the Schmid criterion. It can be seen that the slip lines are slightly more oriented295

towards the tensile direction than what is predicted by the Schmid criterion. This effect may be due to the lattice

rotation during loading.

In the <011> specimen the four active slip systems have different Burgers vectors, so there are no collinear

interactions. The second strongest dislocation interaction is the Lomer junction. This junction occurs for the slip

systems pairs (#10,#11) and (#2,#3). From the SSLIP analysis it can observed that for slips systems #10 and300

#11 the plastic slip occurs predominantly in complementary regions. This mutual exclusion is emphasized for this

pair, because #11 is the most activated slip system.

2.4. Plastic behaviour in micro-compression

Micro-compression tests were then carried out on singles crystals at 20 ◦C and 300 ◦C. First, the methodology

is described305

• Methodology

It is well known that size effects become significant as the specimen characteristic size approaches the characteristic

size of the plastic mechanism (Nix and Gao, 1998). Micropillar compression is widely used in the literature to

characterise the behaviour of single crystals (Dehm et al., 2018). However, due to the size of micropillars, typically

between 1 and 10 µm, size effects can contribute to the mechanical behaviour measured in this type of experiment310

(Greer and De Hosson, 2011). The contribution of size effects can be assessed by comparing the behaviour of

micropillars of different diameters. We perform the compression of micropillar specimens of diameters ϕ ≃ 3, 6.5

and 12 µm at room temperature and at 300 ◦C. Two crystallographic directions <112> and <111> are tested.

Micropillar specimens were machined on the mirror-polished surface of the same stainless steel single crystal

as used for the tensile tests presented in Section 2.3. The micropillars were machined by Focus Ion Beam (FIB)315

machining using a Thermo Scientific Helios NanoLab DualBeam microscope. The micropillar specimens have the

shape of a truncated cone with a cone angle of ∼5◦. The micropillar diameters are measured at the top of the

specimens and range from 2.9 µm to 12.8 µm. The aspect ratio of pillar height to diameter ranges from 1.67:1 to

3.02:1. Figure 11 shows representative specimens for the three diameters considered in this study. The thickness

of the material beneath a micropillar specimen is always at least 60 times greater than the maximum height of a320

specimen. The neighbourhood of a micropillar specimen always has the same crystallographic orientation as the

micropillar itself, because the specimens are machined within a single crystal plate.

Micropillar compression tests were performed using an ALEMNIS in-situ nanoindenter apparatus in a Zeiss

Gemini supra 55VP scanning electron microscope (SEM). Micro-compression tests were conducted at 20 ◦C and

300 ◦C. For high temperature tests, the temperature of the specimen and the indenter is controlled to ensure a325

homogeneous and steady temperature throughout the specimen. The flat punch is moved at a constant speed of

50 µms−1 in a direction coaxial with the micropillar specimen. The offset between the cone axis and the flat punch

axis is less than 1◦. The flat punch diameter is 15 µm. A more detailed description of this type of equipment can

be found in Wheeler and Michler (2013).

• Results and analysis330

Figure 12 and 13 show the stress-strain curves of micropillar specimens with the cone axis close to a <112>

crystallographic axis at 20 ◦C and 300 ◦C respectively. The exact Bunge-Euler angles of this set of specimens are

ϕ1 = 98◦, Φ = 35.0◦ and ϕ2 = 38.0◦. Stress is defined as the compressive load (counted positively) normalised

by the surface area of the cross section at the top of the specimen S0. The strain is defined as the compressive

displacement (counted positively) normalized by the initial specimen height H0. Several specimens are tested for335
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(a)

(b)

(c)

Figure 10: (a) Components of the in-plane displacement gradient in the <011> specimen at ∆L/L0 = 0.05 used for the SSLIP analysis
(Vermeij et al., 2023). (b) Slip system activity on each slip system obtained by post-processing the DIC field with the SSLIP analysis.
The Schmid factor (SF) is computed for each slip system. The colour scale represents the absolute plastic slip magnitude. (c) Slip
lines observed post-mortem on the specimen surface by SEM. Red arrows (resp. blue arrows) indicate the slip plane trace (resp. slip
direction) of the four slip systems with the highest Schmid factors.
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(a) ϕ = 2.9 µm (b) ϕ = 6.5 µm (c) ϕ = 11.1 µm

Figure 11: Representative micropillar specimens with diameter ϕ ∈ [2.9, 11.1] µm. The diameter is measured at the top of the conical
micropillars. The cone angle is 5◦.

each micropillar diameter. The FIB machining process introduces some variability in the shape of specimens, which

are therefore not completely geometrically identical.

At both temperatures, the stress-strain curves can be divided into four distinct phases. First, the macroscopic

mechanical behaviour is essentially elastic. The second phase is characterised by an apparent hardening with

saturation to a plateau value. This is followed by a steep linear increase in load. Finally, the elastic unloading340

returns the specimen linearly to zero load.

With the exception of one specimen (ϕ = 3.0 µm at 300 ◦C), the linear increase of the load during phase 1 is

steeper for smaller micropillar specimens. As we plot the load against the indenter displacement, this elastic slope

also includes the intrinsic compliance of the machine. In Figures 12 to 15 the contribution of the machine compliance

is not subtracted from experimental results. In section 4.2, this correction is made to compare experimental and345

numerical results.

It can then be seen that the stress at the apparent yield point, which marks the transition from phase 1 to

phase 2, decreases as the specimen diameter ϕ increases. This is in qualitative agreement with the expected size

effect of the type smaller is stronger. The yield stress decreases more between ϕ = 3µm and ϕ = 6.5 µm than

between ϕ = 6.5 µm and ϕ = 12µm, thus indicating a possible elimination of size effects at ϕ = 12µm.350

The range of strains over which the phase 2 extends decreases as ϕ increases. Furthermore, the smaller micropil-

lar specimens show a steeper strain hardening slope than the larger specimens. This observation is also consistent

with the expected type of size effects. Interestingly, the larger specimens show a complete absence of apparent

strain hardening during phase 2. A brief softening regime can even be observed at 20 ◦C in Figure 12c and for one

of the specimens after the yield point at 300 ◦C in Figure 13c.355

Despite some level of variability between different specimens, the strain hardening slope observed during phase

3 is similar across the two temperatures and the three diameters considered in this study. The origin of this

secondary hardening phase could be due to the formation of a kink band. This mechanism is discussed in more

detail in Section 4.2. The elastic unloading phase follows the same observation as the elastic loading phase. A

steeper elastic slope is observed for the smaller specimens.360

Figure 14 and 15 show the stress-strain curves of micropillar specimens with the cone axis close to a <111>

crystallographic axis. The exact Bunge-Euler angles of this set of specimens are ϕ1 = 125◦, Φ = 85◦ and ϕ2 = 135◦.

Several specimens are tested for the three diameters considered in this study. With quantitative differences to

be discussed below, the same four stages described for the <112> orientation are also observed for the <111>

orientation.365

Although the <111> orientation is the stiffest crystallographic direction for a crystal with a Zener ratio greater

than 1 (El Shawish et al., 2021), the apparent elastic stage has a lower slope than the <112> orientation. As the
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Figure 12: Load normalised by micropillar cross-section at the base vs displacement normalised by the micropillar height at 20 ◦C.
The micropillar compression axis coincides with a <112> crystal axis. Micropillar diameter ϕ equal to (a) ∼3 µm, (b) ∼6.5 µm and (c)
∼12 µm.
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Figure 13: Load normalised by micropillar cross-section at the base vs displacement normalised by the micropillar height at 300 ◦C.
The micropillar compression axis coincides with a <112> crystal axis. Micropillar diameter ϕ equal to (a) ∼3 µm, (b) ∼6.5 µm and (c)
∼12 µm.
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elastic phase has a lower slope for the <111> orientation, the transition between phase 1 and phase 2 is more

difficult to define accurately. Nevertheless, it appears that plastic yielding occurs at a lower stress for the <111>

orientation than for the <112> orientation. This is particularly interesting as the Schmid factor for the <111>370

orientation under uniaxial loading (equal to 2/3
√
6) is 1.5 times lower than the Schmid factor for the <112>

orientation (equal to 1/
√
6). This may indicate that the shape of the specimens contributes significantly to the

apparent behaviour. Alternatively, despite having a lower maximum Schmid factor, the <111> orientation has

three times more equivalent slip systems with high Schmid factors than the <112> orientation. In small micropillar

specimens, with a low dislocation density, a larger number of available slip planes could also explain why the <111>375

orientation shows a lower stress at plastic yield. Early and localised yielding could explain why the slope during

phase 1 is lower for the <111> orientation.

At 20 ◦C (see Figure 14), the stress-strain behaviour of micropillar specimens with ϕ = 3µm shows significant

variability. This could be due to a combination of effects such as variations in specimen geometry and size effects.

With the exception of one specimen (ϕ = 3.3 µm in Figure 14a), the post-yielding behaviour is characterised by a380

stress plateau followed by a sudden increase of the stress. Specimens with ϕ = 6.5 µm in Figure 14b show a reduced

variability. However, a clear transition from phase 2 to phase 3 is more difficult to define for these specimens. This

is due to the fact that the post-yielding behaviour is not characterised by a plateau, but by a linear increase in

stress. For sufficiently large strains, the apparent hardening becomes greater, suggesting a transition between a

phase 2 and a phase 3. Specimens with ϕ = 12 µm show a low apparent hardening after the yield point, followed385

by an increased hardening slope.

At 300 ◦C (see Figure 15), micropillar specimens with ϕ = 3µm and ϕ = 6.5 µm show a phase 2 with a quasi-

linear strain hardening behaviour without saturation. At this temperature, the transient hardening saturation

observed for the <112> orientation is not observed for the <111> orientation for the smaller micropillar diameters.

However, specimens with ϕ = 12µm show an almost flat stress level during phase 2. The specimen with ϕ = 6.2µm390

was subjected to a cyclic loading, hence the multiple elastic unloading and reloading slopes observed in Figure 15b.

For the smaller specimens, the transition between phase 2 and phase 3 at high temperature is smoother for the

<111> orientation than for the <112> orientation. This is due to the lack of saturation of the apparent hardening

during phase 2. A sharp transition is observed for the larger specimens. Similar to the <112> orientation, the

apparent hardening slope during phase 3 appears to be size independent.395

At both temperatures, the elastic unloading shows a much steeper slope than that observed during phase 1.

This supports the existence of early and localised yielding during phase 1 for the <111> orientation. It is also

interesting to observe that, at 20 ◦C and 300 ◦C, all the stress-strain curves show an inflection at the end of the

elastic phase, between 2 and 3 % macroscopic strain.

The micro-compression tests were filmed throughout the whole loading history. In Figure 16 we show the slip400

lines appearing on the surface of <112> micropillar specimens at the onset of plasticity (a) and (c) and at the

end of the test (b) and (d) for small and a large diameter specimens. In Figure 16a the specimen diameter (at the

top) is ϕ = 2.9 µm, while in Figure 16c the specimen diameter is ϕ = 11.1 µm. Red and blue arrows indicate the

location of visible slip lines. The colour of the arrow corresponds to the colour of the slip plane in Figure 16e which

shows the inclination of the four {111} planes within the specimens. For both specimens, the first slip system to405

become active is the one with the highest Schmid factor, namely the (1̄11)[1̄01̄] system, with a Schmid factor of

-0.44. The predicted angle of 32◦ between the specimen axis and the slip plane trace agrees very well with the

observed orientation of the slip lines at the onset of plastic slip. The specimen with the smallest diameter only

shows only one type of parallel slip lines from the onset of plastic slip till the end of the test. The plastic activity

is very localised in a few apparent slip lines. In Supplementary Video 1, it can be clearly seen that the onset of two410

intense slip lines is associated with sudden load drops. Throughout the load history, the slip lines show a significant

amount of clockwise rotation around an axis almost perpendicular to the image. The same type of slip line rotation

is observed in the specimen with the largest diameter. In addition, a secondary type of slip line is observed on the

surface of this specimen at the very end of the test. One such a slip line is indicated by blue arrows in Figure 16d.
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Figure 14: Load normalised by micropillar cross-section at the base vs displacement normalised by the micropillar height at 20 ◦C.
The micropillar compression axis coincides with a <111> crystal axis. Micropillar diameter ϕ equal to (a) ∼3 µm, (b) ∼6.5 µm and (c)
∼12 µm.
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Figure 15: Load normalised by micropillar cross-section at the base vs displacement normalised by the micropillar height at 300 ◦C.
The micropillar compression axis coincides with a <111> crystal axis. Micropillar diameter ϕ equal to (a) ∼3 µm, (b) ∼6.5 µm and (c)
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21



Figure 16: Slip lines observed (a) at the onset of plastic slip and (b) at the end of a micro-compression test at 300 ◦C on a <112>
axis and a specimen diameter of ϕ = 2.9 µm (dashed orange line in Figure 13a). Arrows indicate the position of visible slip lines. Slip
lines observed (c) at the onset of plastic slip and (d) at the end of a micro-compression test at 300 ◦C on a <112> axis and a specimen
diameter ϕ = 11.1µm (dashed purple line in Figure 13c). Red and blue arrows indicate the position of visible slip lines. (e) Schematic
of slip planes within the <112> micropillar. The colours of the arrows in (a) to (d) correspond to the colours of the planes in (e).

The sequence of lattice rotation and secondary slip activation is clearly observed in Supplementary Video 2. The415

angle formed by the secondary slip lines with the specimen axis does not correspond to any of the slip planes in the

initial configuration shown in Figure 16e. However, from the rotation of the first type of slip lines, we can confirm

that a significant amount of lattice rotation has occurred. This rotation has probably reduced the angle between

the (111) slip plane and the specimen axis. The Schmid factor (-0.31) of the (111)[101̄] slip system, ranked 3rd in

the initial configuration, has probably increased significantly due to the load-induced lattice rotation. In contrast,420

the Schmid factor (-0.37) of the (11̄1)[01̄1̄] slip system, ranked 2nd in the initial configuration, has decreased upon

loading because the angle between the (11̄1) plane and the cone axis has decreased due to the lattice rotation. This

explains why the second type of slip line, which appears at the very end of the test, coincides with the (rotated)

(111) plane.

Lattice rotation often occurs in kink bands, i.e. bands where the deformation is localised in a direction perpen-425

dicular to the slip direction. The formation of such bands could be the origin of the transition between the phase

2 with limited apparent hardening and phase 3 with strong apparent hardening. This mechanism is discussed in

more detail in Section 4.2.

In Figure 17 we plot the resolved shear at onset of plastic yielding τ c0 in micro-compression and tensile tests.

We define the threshold τ c0 as the applied stress at onset of plastic yielding (Rp0.2) multiplied by the maximum430

Schmid factor. τ c0 depends on temperature because of the temperature-dependent friction stress (later denoted τ0),

but also because of the temperature-dependence of the elasticity moduli, which affects the forest hardening. Figure

17 clearly shows a size effect in the micropillar specimens with the smallest diameter. As the micropillar diameter

increases, τ c0 measured in the micro-compression tests approaches the value measured in millimetre-scale tensile

tests. For the <111> micropillar specimen orientation, the size-effect seems to have completely vanished between435

ϕ = 6.5 µm and ϕ = 12 µm. However, for the <112> orientation, although τ c0 has decreased significantly between

ϕ = 3µm and ϕ = 12µm, it is still higher than the value measured in the tensile tests. This suggests that the size

effects depend on the crystallographic orientation. In addition, the <112> orientation has 2 available equivalent

slip planes with high Schmid factors, while the <111> has 6 of them. Assuming that all slip systems are equally

active for both orientations, the effective deformation rate for the <112> orientation is greater than for the <111>440

orientation. Due to the viscosity of the material, this can in principle lead to a harder apparent response of the

<112> orientation.
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Figure 17: Resolved shear stress at onset of plastic yielding at (a) 20 ◦C and (b) 300 ◦C as a function of micropillar diameter ϕ. Values
measured from tensile tests are shown as horizontal grey lines.

3. Calibration of a crystal plasticity model based on dislocation densities

In this section, a set of constitutive equations is described and calibrated in order to reproduce the experimental

results that were presented in the previous section. The numerical implementation of the constitutive behaviour445

is available as an open-source code (Hure and Scherer, 2023) using the MFront generator compatible with several

FEM and FFT solvers. The details of the FEM and FFT implementations can be found in Scherer and Besson

(2022) and Gélébart (2020) respectively.

3.1. A dislocation densities-based model

The crystal-scale constitutive equations for austenitic stainless steels for finite strains are described below.450

The set of equations is basically the same as that proposed in Monnet and Mai (2019), but incorporates the

latest developments available in the literature regarding the interactions between dislocations. The numerical

implementation is briefly described.

• Kinematics

The deformation gradient FFF is decomposed into elastic and plastic contributions using a multiplicative split (Man-

del, 1973)

FFF = EEE ·PPP (11)

where EEE and PPP are the elastic and plastic parts respectively. In the framework of continuum crystal plasticity,455

the rate of plastic deformation is governed by the rate of plastic slip on the slip planes. This is discussed in detail

below.

• Elasticity

Hooke’s law is used to account for the cubic anisotropy of austenitic stainless steels (Ledbetter, 1984). In the finite

strain framework used here, we use the elastic Green-Lagrange strain defined as

EEEGL =
1

2

(
EEET ·EEE − 111

)
(12)

The relevant stress measure associated with EEEGL is the Piola (or second Piola-Kirchhoff) stress tensor ΠΠΠe. This

stress tensor is related to the usual Cauchy stress σσσ by ΠΠΠe = det(EEE)EEE−1 ·σσσ ·EEE−T . Given these measures of strain
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and stress, Hooke’s law takes the following form

ΠΠΠe = C : EEEGL (13)

• Plastic flow

Austenitic stainless steel crystals have a face-centered cubic (FCC) crystal lattice. The FCC lattice has 12 main

slip systems, which are composed of slip plane normals n {111} and slip directions m <110>. Plasticity is assumed

to depend solely on dislocation glide along these slip systems (Roters et al., 2011). The rate of plastic deformation

is then expressed in terms of the rate of plastic slip γ̇α on each system as follows

ṖPP ·PPP−1 =

12∑

α=1

γ̇αmmmα ⊗nnnα (14)

γ̇α =

〈 |τα| − ταc
K

〉n

sign(τα), with ⟨x⟩ =
{

x if x > 0

0 if x ≤ 0
(15)

where τα = ΠM : mα⊗nα is the resolved shear stress on the slip system α, where ΠM is the Mandel stress tensor460

defined as ΠΠΠM = EEET ·EEE ·ΠΠΠe. The viscoplastic Norton-like law is used to resolve the slip indeterminacy (Forest and

Rubin, 2016). For [K,n] → [0,+∞] the rate-independence is recovered.

• Hardening

According to (Franciosi et al., 1980), the critical resolved shear stress (CRSS) is a function of the dimensionless

dislocation densities per system rβD = ρβDb2

ταc = τ0 + µ

√√√√
12∑

β=1

aαβrβD (16)

where b is the norm of the Burgers vector, τ0 is the temperature-dependent friction stress. The shear modulus µ

is computed using the Bacon-Scattergood approximation (Bacon et al., 1980; Madec and Kubin, 2017) to have the

correct anisotropic energy of screw dislocations (a Poisson ratio ν is also calibrated to have the correct anisotropic

energy of edge dislocations). µ is computed using the dislocation energies computed with DisDi (Douin, 2023).

These energies are computed from the stiffness constants Cij , the lattice parameter a0 and their variation with

temperature obtained in Section 2. aαβ is a 12 × 12 matrix describing the strength of the interactions between

dislocations for each pair of slip planes (α, β). Note that this matrix is not symmetric (Madec and Kubin, 2017). In

FCC materials, due to the crystallographic symmetry, only seven different interactions exist: the self and coplanar

interactions, the Hirth lock, the Lomer junction, the collinear interaction and the 0° and 60° glissile junctions.

The latter are responsible for the matrix asymmetry (the angle given refers to the character of a α dislocation

lying at the intersection of the α and β slip planes). DDD simulations have shown that the strengths of these

interactions evolve with the dislocation densities (Devincre et al., 2006). Given a reference total dislocation density

ρref = 1012m−2, the interaction coefficients evolve according to the approximate form proposed by Kubin et al.

(2008).

aαβ = aαβref


0.145 + 0.855



ln

(√∑12
β=1 a

αβ
refr

β

)

ln

(√
aαβrefrref

)







2

(17)

Its numerical parameters are obtained by fitting this form of the deviation to DDD results (Madec and Kubin,

2017).465

It should be emphasized that Eq. (16) does not account for size effects. Since the scope of this work is to capture

the behaviour of large specimens, we have not used size-dependent models available in the literature at the single
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crystal scale (Von Blanckenhagen et al., 2001; von Blanckenhagen et al., 2003; Xiao et al., 2015b). However, to

capture the Hall-Petch effect which arises in polycrystals, the phenomenological model proposed in Haouala et al.

(2020) is used to validate the model in Section 4.3.470

• Evolution laws

The CRSS depends on the dislocation densities (Eq. (16)) which evolve under mechanical loading. The evolution of

dimensionless dislocation densities is adapted from the storage-recovery model (Kocks, 1976; Kocks and Mecking,

2003) in its generalised form (Teodosiu et al., 1993; Kubin, 2013) and is given by

ṙαD =


 1

Kcop

√ ∑

β∈coplanar(α)

aαβrβD +
1

Kobs

√ ∑

β/∈coplanar(α)

aαβrβD − yrαD


 |γ̇α| (18)

The first two terms correspond to dislocation trapping due to dislocation interactions between coplanar and non-

coplanar slip systems, respectively. In the first case dipolar interactions induce large mean free paths, while in

the second case dislocation contact reactions such as junctions are associated with short mean free paths and

consequently a stronger storage rate. The last term models dislocation annihilation under the effect of screw475

dislocation cross-slip and y is the critical distance for annihilation (here normalised by b). There is no direct

relationship between the value of y in the models and the few experimental results (where available) because the

dislocation densities considered in the models include non-screw dislocations. As a consequence, y is smaller in

the models and may also change with loading orientation in relation to the effect of the loading on the cross-slip

propensity (Kubin et al., 2009).480

In (18) the material parameters are chosen independent of temperature. However, Beyerlein and Tomé (2008);

Xiao et al. (2015a) have proposed extensions of the Kocks-Mecking evolution of dislocations densities accounting

for the effect of temperature. This effect was neglected in our study because it would increase the number of

parameters to be calibrated. Furthermore, measures of dislocations densities at different applied strains and

temperatures would be required to calibrate these coefficients.485

A fully implicit scheme is used to perform the numerical integration, either in the Z-set finite element code

(Besson and Foerch, 1998) or in the MFront code generator (Helfer et al., 2015). Both implementations give the

same results and are not distinguished in the following. Details of the numerical implementation can be found in

Hure et al. (2016).

3.2. Calibration of the model490

The constitutive equations described in Section 3.1 involve a large number of parameters. The elastic moduli

(Eq. 13) are taken from the results obtained in Section 2 (Eqs. 8). The Norton parameters involved in the

viscoplastic flow rule (Eq. 15) are set to K = 1 and n = 15, resulting in a limited rate-dependent behaviour for the

simulations reported below. The following procedure is used to determine the thermal part of the critical resolved

shear stress τ0. Feaugas and Haddou (2003) investigated the effect of grain size on the tensile behaviour of AISI495

316L stainless steel at room temperature. All the materials presented in their paper had initial dislocation densities

below 1010 m−2. The forest dislocation hardening term is of the order of 0.5 MPa or less and can therefore be

neglected in Eq. 16 in order to evaluate τ0. From their data (see Figure 3.(b) in Feaugas and Haddou (2003)), we can

extrapolate the yield stress at infinite grain size σ∞
0 as the vertical intercept of the curve corresponding to 5×10−3

total deformation. We find σ∞
0 (293K) = 117.28 MPa, which gives us τ0(293K) = σ∞

0 (293K)/M = 38.33 MPa,500

where M = 3.06 is the Taylor factor for FCC materials. Pawel et al. (1996) studied the temperature dependence

of the yield stress of 316 stainless steels. From their data (see Figure 1 in Pawel et al. (1996)), we approximate

the temperature dependence with the following linear fit: σ0(T ) = −0.2345T + 361.80 (in MPa and T in K). We

then assume, to a first approximation, that the parameter k is constant with the temperature in the Hall-Petch

relation: σ0(T ) = σ∞
0 (T ) + k/

√
d where d is the grain size. We can then conclude that σ0 and σ∞

0 have the same505
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Table 3: Model parameters and retained ranges of variation. Ranges of variation are selected based on values and hierarchies commonly
used in the literature (Devincre et al., 2006; Kubin et al., 2008; Madec and Kubin, 2017; Monnet and Mai, 2019).

Parameter Kobs Kcop y aselfref acoplanarref aHirth
ref aLomer

ref acollinearref aglissile 0◦

ref aglissile 60◦

ref

Min. Value 4 50 1 0.06 0.01 0.01 0.12 0.5 0.09 0.06

Max. Value 25 200 10 0.16 0.12 0.06 0.25 1.0 0.16 0.12
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Figure 18: (a) Numerical tensile curves predicted by the model using the mean value of the parameters from Tab. 3 (b) Results of the
Morris screening analysis for [001] load axis at 0.2%, using p = 10 intervals to discretise the range of variations in the parameters and
r = 10 trajectories (URANIE, 2020).

linear dependence on temperature and we find: σ∞
0 (T ) = −0.2345(T − 293.15)+ 117.28 (in MPa and T in K). The

thermal part of the critical resolved shear stress is therefore τ0(T ) = σ∞
0 (T )/M = −0.07662(T −293.15)+38.33 (in

MPa and T in K). The magnitude of the Burgers vector is b = 0.254 nm. Tab. 3 shows the remaining parameters

to be set as well as the variations considered here in the light of the values and ranges reported in the literature.

The influence of these parameters on the tensile curves, and in particular on the hardening modulus, differs510

depending on the loading axis as a consequence of Eq. (18). For the [001] (resp. [111]) axis, 8 (resp. 6) slip systems

are expected to be activated according to Schmid’s law, leading to a strong hardening in particular due to collinear

interactions. Therefore, Kobs and acollinearref are expected to have a dominant effect on the tensile curves. For the

[011] (respectively [123]) axis, 4 (respectively 1) slip systems are activated and the self-interaction coefficient aselfref

is expected to play a key role in the hardening modulus. In all cases, the parameter y is expected to have an515

influence only for large dislocation densities, e.g. for large strains.

In order to gain more quantitative insights, a sensitivity analysis is performed to evaluate the parameters that

influence the tensile curves. From this analysis we identify which parameters can be calibrated with the available

experimental results. For each crystallographic orientation from the experimental database, i.e. [001], [011], [111],

[123], material point numerical simulations are performed under tensile loading up to 10% strain, for T = 300◦C520

and an initial total dislocation density ρtot0 = 1012m−2. Fig. 18 shows the numerical tensile curves predicted by

the model using the mean value of the parameters from Tab. 3. The hardening modulus at 0.2% and 10% strain

(corresponding to the dotted lines in Fig. 18) are chosen as the output of these simulations for the sensitivity

analysis.

Note that for the [001] and [111] orientations, slope breaks are observed due to the deactivation of half of525

the slip systems. For the [111] orientation, due to the strong collinear interaction, for each pair of slip systems

sharing the same Burgers vector, only one slip system remains active after the break in the hardening slope. This

phenomenon, which has already been reported in the literature, is a numerical instability that can be triggered

depending on various parameters such as the method used for the numerical integration and / or the values of
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Figure 19: Results of the Morris screening analysis for the different crystallographic orientations, using p = 10 intervals to discretise
the range of variations of the parameters and r = 10 trajectories (URANIE, 2020), for (a) 0.2% and (b) 10% strain.

the viscosity parameters. The Morris method (Morris, 1991) is used to evluate the sensitivity of these hardening530

moduli to the parameters shown in Tab. 3. This method is based on the calculation of elementary effects, hereafter

referred to as EE, which correspond to the first order derivative, when only one factor is varied at a time. The

elementary effects are computed at different locations of the hyperspace defined by the parameters. Finally, for

each parameter, the mean of the elementary effects and the corresponding standard deviation are computed.

This method allows parameters to be ranked in terms of their influence on the results. More details about this535

method can be found in Saltelli et al. (2004). In practice, the URANIE platform (Blanchard et al., 2019) is used

to perform the Morris screening analysis. Roughly speaking, three different cases can be found (URANIE, 2020).

High mean / low standard deviation corresponds to a parameter that has an influence on the result regardless of

the values of the other parameters, while a high standard deviation indicates interactions with other parameters.

Low average corresponds to parameters having little influence. A typical output is shown in Fig. 18b, which shows540

that the standard deviations are similar for all parameters, i.e., all parameters interact with each other. Therefore,

only the mean values of the elementary effects are reported below. The results are shown in Fig. 19 for each

crystallographic orientation of the experimental database. At low strain (Fig. 19a), for all loading directions, Kobs

is the main parameter influencing the hardening slope. Regarding the interaction coefficients, acollinearref dominates

for [001] and [111] directions, while aLomer
ref (respectively aselfref ) dominates for [011] (respectively [123]). In essence,545

for each orientation and its corresponding set of active dislocation interactions, the dominant coefficient of the

interaction matrix in the Morris analysis corresponds to the coefficient with the largest value (i.e. strongest

interaction). At higher strains (Fig. 19b), the picture is different as self and weaker interaction coefficients have a

strong influence on the hardening slope (as a result for the [001] and [111] directions of the deactivation of half the

slip systems). The annihilation distance y also plays an important role.550

Based on the available experimental database, the sensitivity analysis leads to the conclusion that Kobs, a
self
ref ,

acoplref and y may be calibrated effectively due to their important global effect (Kobs, a
self
ref and y) or major effect

along a specific orientation (acoplref ). These four parameters have been calibrated using material point simulations

under tensile loading. For the other coefficients related to dislocation reactions (junctions and collinear interac-

tion/annihilation), DDD results are available for several FCC metals in Madec and Kubin (2017) as a function of555

their Poisson coefficient. Values for 316L are obtained by interpolation of these results.

The value of Kcop is not well known from the literature, but since its effect in the Morris analysis is rather

weak, it was decided not to calibrate it with our experimental data. The values of Kcop reported in the literature

vary in the range [26;180] (Kubin et al., 2008; Monnet and Mai, 2019). Furthermore, Kobs, Kcop and y can in

principle be considered as functions of the orientation (Kubin et al., 2008). Different values of these parameters560
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Table 4: Parameters of the constitutive equations for 316L austenitic stainless steel. Calibrated parameters are highlighted in red.

C11 (MPa) C12 (MPa) C44 (MPa) µ (MPa)

233360 - 51.3T (K) 152880 - 27.7T (K) 134430 - 30.8T (K) 0.02478T (K)2 − 56.01T (K) + 86070

τ0 (MPa) K (MPa) n (-) ρβD0
(m−2) at 20 ◦C ρβD0

(m−2) at 300 ◦C

−0.07662T (K) + 60.79 1 15 3.817× 1012 2.224× 1011

Kcop (-) Kobs (-) y (-) aselfref (-) acoplanarref (-)

100 3.74 6.68 0.0534 0.0438

aHirth
ref (-) aLomer

ref (-) acollinearref (-) aglissile 0◦

ref (-) aglissile 60◦

ref (-)

0.0484 0.1722 0.6972 0.1156 0.0885

could have been sought for each orientation. However, for the sake of simplicity and future applicability of the

model to complex load paths in polycrystal simulations, the same value of the these parameters is used for each

orientation.

In addition, the initial dislocation densities are unknown. Therefore, ρβD0
is also calibrated within the procedure.

As different batches of material are used in the tests at 20 ◦C carried out by Karaman et al. (2001) and the tests565

done at 300 ◦C in this study, a different value of ρβD0
is calibrated for each temperature. An objective function

measuring the distance between the experimental tensile curves at 20 ◦C and 300 ◦C and the simulated curves was

minimised until convergence. The set of material parameter values is given in Tab. 4. The coefficients calibrated

by the optimisation procedure are highlighted in red. The initial dislocation densities calibrated to fit the yield

stress are consistent with a single crystal material that has been allowed to cool down slowly. The obstacle mean570

free path coefficient Kobs takes a value close but lower than the typical values reported in the literature which are

typically in the range [4;12] (Kubin et al., 2008; Monnet and Mai, 2019). The value of y found in the calibration is

close to the value of 3.9 used by Monnet and Mai (2019)2. The self-interaction coefficient aselfref is not well known in

the literature and cannot be accurately estimated by DDD (Kubin et al., 2008). The values typically used for aselfref

are close to 0.122 (Devincre et al., 2007; Kubin et al., 2008; Monnet and Mai, 2019). Our calibration suggests that575

the strength of the self-interaction is more than twice lower than what is typically considered. Kubin et al. (2008)

discussed how coplanar and self-interactions share the formation of small collinear density via screw dislocation

cross-slip and thus justified using the same coefficient for both types of interactions. Interestingly, our calibration

resulted in similar values of aselfref and acoplanarref , consistent with the hypothesis of interactions of similar strength,

but both took values lower than those typically used in the literature. The following ranking results from our580

identification of self and coplanar interaction coefficients: acoplanarref < aHirth
ref < aselfref < aglissile 60◦

ref < aglissile 0◦

ref <

aLomer
ref < acollinearref .

4. Numerical experiments on single- and polycrystal specimens

4.1. Single crystal specimens in tension

The material parameters were calibrated using material point simulations as described in the previous section.585

The calibrated model is then used to simulate the real geometry of the specimen used in tensile tests at 300 ◦C.

The numerical simulations are based on the finite element mesh shown in Figure 20. Only the central part of

the specimen, corresponding to the DIC region, is modelled. The displacement boundary conditions used in the

simulations are extracted from the DIC measurements. As the material contains many small inclusions of ferrite,

2Note that Monnet and Mai (2019) use a non-normalised version of the model with an annihilation distance y = 1 nm. After
normalisation by the norm of the Burgers vector b = 2.54× 10−10 nm, we find a nondimensional annihilation distance y = 3.9.
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Figure 20: Finite element mesh of the single crystal tensile specimen consisting of 27000 quadratic hexahedral elements with reduced
integration using 8 Gauss points. Randomly distributed stiff elastic inclusions representing %1 of the total volume are highlighted in
red. The dashed blue line represents the central axis of the specimen along which the strain profiles are plotted in Fig. 24.
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Figure 21: Experimental and numerical true stress vs true strain tensile curves at 300 ◦C.

we introduce a secondary phase of inclusions representing 1% of the specimen volume. Abe and Watanabe (2008)590

showed that the hardness of the ferrite phase is between 1 and 2 times greater than that of the austenite at 335 ◦C.

In a first approximation the inclusions are therefore considered to be purely elastic with identical crystallographic

orientation and elasticity parameters as the single crystal phase. They are randomly distributed as individual finite

elements throughout the finite element mesh and are shown in red in Figure 20.

Figure 21 shows the comparison of experimental and numerical true stress-strain curves at 300 ◦C. Yield stresses595

and hardening slopes are well captured by the numerical model. The yield stress of the <011> orientation is slightly

overestimated and the hardening slope is slightly underestimated in the simulation. Despite the fact that the

calibration of the model was carried out with material point simulations – and thus did not take the geometry into

account – the agreement between experimental results and numerical simulations on the true specimen geometry

is satisfactory.600

The in-plane Green-Lagrange strain components post-processed from the numerical simulations are shown in

Figures 22 and 23. These fields are the numerical twins of the experimental strain fields post-processed from DIC

measurements shown in Figure 7 and 8. In Figure 22, the strain fields are very heterogeneous. Bands of intense
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Figure 22: In-plane Green-Lagrange strain fields post-processed from finite element simulations for the <111> specimen at macroscopic
strains ∆L/L0 = 0.05 and 0.10.

Figure 23: In-plane Green-Lagrange strain fields post-processed from finite element simulations for the <011> specimen at macroscopic
strains ∆L/L0 = 0.05 and 0.10.

plastic strain are formed in the central part of the specimen. At ∆L/L0 = 0.05, unlike the experimental field in

Figure 7, which showed two types of bands, only a single type of band is observed here. However, at ∆L/L0 = 0.10,605

a second type of band appears in the EGL
12 field. The magnitude of the deformation within the bands, as well as

the band spacing and orientation, are analogous in the numerical and experimental fields. In Figure 23, bands of

intense plastic slip are also observed. The nature of the bands observed in the simulation is in very good agreement

with the DIC results in Figure 8. The numerical counterparts of the plastic slip fields shown in Figure 9b and 10b

are plotted in Figure C.32 in Appendix C. Overall, a satisfactory agreement between experimental and numerical610

plastic slip fields is observed.

In Figure 24 we compare the experimental and numerical profiles of the horizontal Green-Lagrange tensile strain

along the horizontal central axis of the specimen. The profiles are plotted at the macroscopic strain ∆L/L0 = 0.05.

In Figures 24a and 24c we can see that the local strain is very heterogeneous in both cases. The amplitude of

the oscillations around the mean value is comparable between the experiments and the simulations. In order to615

compare the frequencies of oscillations, we compute the fast Fourier transforms of the different profiles. Figures 24b

and 24d show the FFT amplitudes (or weights) associated with the corresponding frequencies. A good agreement

between the experimental and numerical distribution of the FFT amplitudes is obtained for both crystallographic

orientations.
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Figure 24: Experimental vs numerical Green-Lagrange strain EGL
xx along the horizontal central axis of the specimen for the (a) <111>

and (c) <011> specimens at ∆L/L0 = 0.05. Fast Fourier transforms (FFT) weights computed from the profiles are shown in (b) and
(d).
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(a) α = 0◦ (b) α = 5◦

Figure 25: Finite element meshes of micropillar specimens with taper angles α equal to (a) 0◦ and (b) 5◦.

4.2. Single crystal specimens in micro-compression620

The compression experiments at 300 ◦C on micropillar specimens presented in Section 2.4 are simulated with the

calibrated model in order to test its predictive capability for a more complex experiment. There is some variability

in the experimental results due to the slight differences in specimen geometry introduced by the FIB machining

technique. In addition, the simulation of these experiments is subject to some uncertainties in measuring the

exact shape of the specimens. For simplicity, we simulate the compression experiments on two different micropillar625

geometries with taper angles α = 0◦ and 5◦. As the crystal plasticity model does not include size effects, the size

of the micropillar geometry does not play a role in the numerical predictions. The 3D finite element meshes of

the corresponding geometries are shown in Figure 25. Each mesh consists of 3741 quadratic hexahedral elements

with reduced integration using 8 Gauss points. A Coulomb contact behaviour with a friction coefficient of 0.1 is

used to model the interaction between the indenter and the specimen. The indenter axis is assumed to be perfectly630

aligned with the specimen axis. A constant speed of 50µms−1 is applied to the indenter, while the underside of

the specimen is clamped. The radius of the base is taken sufficiently large to avoid any influence on the behaviour

of the micropillar specimen. Since we are trying to predict the size-independent behaviour of the single crystal,

we will compare our predictions with the experimental results obtained on micropillars with the largest diameter

(∼12 µm).635

Figure 26 shows the comparison between the experimental results and the numerical simulations. The following

procedure is used to construct the mean and standard deviation of the experimental and numerical results. First,

a linear interpolation operator is used in order to resample the experimental (respectively numerical) results to

equally spaced displacement intervals. Then, for each displacement interval, the mean value and standard deviation

of the experimental (respectively numerical) load applied is computed. Finally, the solid lines correspond to the640

collection of mean loads computed at each displacement interval, while the padding regions are bounded by the

collection of mean loads plus or minus twice the collection of standard deviations.

Note that the experimentally measured displacements include the unknown compliance of both the indenter

and the entire crosshead. Therefore, the measured displacements have been corrected in order to match the elastic

slope predicted by the numerical simulations.645

For the<112> orientation, comparing the means, the apparent yield point predicted by the numerical simulation

is about 20% lower than the experimentally measured value. This can be partly explained by residual size effects,

even for micropillar specimens of 12µm diameter. In addition, the numerical simulation with a taper angle of

α = 0.0◦ shows a closer agreement with the experimental yield point. The numerical predictions beyond the yield

point are characterised by a slightly non-linear hardening behaviour with an inflection point at about 11% strain.650

For the <111> orientation, the numerically predicted yield point agrees very well with the experimental value.

For the first 1% strain after yielding, the experimental curve shows a convex strain hardening which is not ob-
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Figure 26: Comparison of numerical and experimental stress-strain curves for (a) <112> and (b) <111> micropillar specimens in
compression. The solid lines correspond to the mean of several realisations while the shaded areas represent the 2σ deviation from the
mean value observed in the data.

served numerically. However, the almost linear hardening rate predicted numerically agrees well with the concave

hardening rate measured experimentally for the remaining part of the curve.

The steep increase in stress (referred to as phase 3 in Section 2.4) measured at about 7% strain for the <112>655

orientation and 9% strain for the <111> orientation is not observed in the numerical simulations. Although the

simulations for the <112> show an inflection point at about 11% strain, the predicted hardening rate after the

inflection remains twice lower than the experimental measurement.

Figure 27 shows the plastic slip field at a macroscopic strain of 5%. The Figure 27a corresponds to a taper angle

of α = 0◦ while Figure 27b corresponds to α = 5◦. The figures show the plastic slip for the slip system (1̄11)[1̄01̄]660

(indexed as #7 in 9d) which corresponds to the active slip system shown in Figure 16 and Supplementary Videos

1 and 2. The range of plastic slip is quite similar between both taper angles. However, the slip distribution inside

the micropillar is very different. When the taper angle is large, the cross section at the top of the pillar is reduced,

therefore plastic slip remains localised in this region. For α = 0◦, there are two orthogonal bands of intense plastic.

Note that the field of view in Figure 27 is the same as the one in Figure 16. One band is a slip band, i.e. a band665

parallel to the slip direction. The other is a kink band, i.e. a band perpendicular to the slip direction. Kink bands

are associated with large lattice rotations. The slip band is clearly visible in the experiments, but the kink band is

not. This could be a possible explanation for the strong apparent hardening in Figure 26a. The curvature of the

crystal lattice is indeed related to the density of geometrically necessary dislocations (GND). There is therefore

an energetic cost associated with the formation of a kink band, which in turn can be translated into an apparent670

hardening. The model used in this study neglects the effect of GND, so both slip and kink bands are possible.

4.3. Polycrystal specimens in tension

The calibrated constitutive equations have been shown to give quantitative predictions with respect to ex-

perimental results as a function of temperature, crystallographic orientation and loading conditions. Up-scaling

is considered in this section by looking at the behaviour of polycrystalline aggregates through homogenisation

(Fig. 28a). It is well known that the use of crystal plasticity constitutive equations calibrated at the single crys-

tal scale to perform homogenisation - either analytically or numerically - does not lead to results in quantitative

agreement with experiments. The main reason for this discrepancy is the effect of grain boundaries leading to

the Hall-Petch effect. Increasing the value of τ0 (Han, 2012) or adding a grain size dependent term to the CRSS

(Monnet and Mai, 2019) allows to recover numerical predictions in agreement with experimental data. However,

this modelling implies a rather diffuse effect of grain boundaries within the polycrystalline aggregate, which may

not be relevant for some applications, i.e., regarding the prediction of stress-strain fields close to grain boundaries.
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(a) α = 0◦ (b) α = 5◦

Figure 27: Comparison of numerical plastic slip fields for <112> micropillar specimens in compression with taper angles (a) α = 0◦

and (b) α = 5◦. Only the plastic slip field corresponding to the slip system activated in the experiment is shown. It also corresponds
to the dominant slip system in the simulations. The fields are plotted for a macroscopic strain of 5%.

A simple model has recently been proposed based on the consideration of an additional term for the multiplication

of dislocations near grain boundaries (Haouala et al., 2020) as follows

ṙαD =


max


 1

Kcop

√ ∑

β∈coplanar(α)

aαβrβD +
1

Kobs

√ ∑

β/∈coplanar(α)

aαβrβD ,
Kα

s

d̄αgb


− yrαD


 |γ̇α| (19)

where d̄αgb = dαgb/b is the dimensionless distance to the grain boundary along the slip direction α, and Kα
s is a

dimensionless modulus of dislocation storage. The value of Kα
s depends on the possibility of slip transmission, e.g.,

by considering the Luster-Morris criterion as in (Haouala et al., 2020). Close to grain boundaries, Eq. (19) leads to675

a strong hardening, while far from grain boundaries Eq. (18) is recovered. This modelling, though simple, allows

to recover the Hall-Petch effect (Nieto-Valeiras et al., 2022). However, to calibrate Kα
s , it requires experimental

evidences regarding slip transmissions at grain boundaries. As these data are lacking for austenitic stainless steels,

a simpler model is considered here where Kα
s = Ks is constant, i.e. no slip transmission at all grain boundaries.

In addition, another simplification is made, mostly for practical purposes, that the distance dαgb is taken as the680

minimum distance to the nearest grain boundary (Fig. 28b). Finally, the value of the parameter Ks needs finally

to be calibrated, which is done below.

The Neper software (Quey et al., 2011) is used to generate a fully periodic polycrystalline aggregate containing

ng = 100 grains by a Voronoi tesselation of a unit cube (Fig. 28a). Random crystallographic orientations are

assigned to the different grains. The aggregate is discretised into 50 x 50 x 50 voxels. For each voxel the distance685

to the nearest grain boundary is computed and normalised by the average grain size ϕ computed as ϕ = n
−1/3
g

(Fig. 28b): dϕgb = dgb/ϕ. Thus, the additional term introduced in Eq. (19) can be written as follows

Ks

d̄gb
=

bKs

dϕgbϕ
=

K ′
s

dϕgb
⇒ K ′

s =
bKs

ϕ
(20)

In the following, values of K ′
s are considered in the range [10−6 : 10−4], corresponding to grain sizes between

10µm - the typical grain size in 304 / 316 austenitic stainless steels - and 1mm - single crystal specimens tested in

this study - for the typical value of Ks ∼ 5 (Haouala et al., 2020) reported in the literature.690

Numerical simulations are performed using AMITEX FFTP FFT-based solver (Gélébart, 2023). The aggregate

shown on Fig. 28a is used together with the calibrated constitutive equations described in Section 3.2 for three

different values of the initial total dislocation density ρtot0 = [1; 10; 33] 1012m−2 and a temperature of T = 573K.

A volume-average uniaxial tensile load is applied to the unit-cell. Stress-strain curves are computed up to 1%

34



(a) (b)

Figure 28: (a) Periodic Voronoi-based polycrystalline aggregate with 100 grains. (b) Minimum distance to the nearest grain boundary.

strain for different values of K ′
s ∈ [10−6 : 10−4]. The results are shown on Fig. 29a for ρtot0 = 1012m−2. Increasing695

the value of the parameter K ′
s leads to a strong hardening at low strain values, consistent with the increase in

dislocation densities near grain boundaries modelled in Eq. (19). Additional simulations (not shown here) with

finer discretisation lead to the same quantitative results. The conventional yield stress (YS) - for an offset plastic

strain of 0.2% - is extracted and plotted in Fig. 29b for different values of K ′
s and ρtot0 . For low initial dislocation

density, a Hall-Petch effect is obtained, with the yield stress depending on the inverse of the square root of the700

grain size. For higher initial dislocation density, the Hall-Petch law is recovered only for small grain size. This

effect was expected: in the limit of very high initial dislocation density, the modelling of grain boundary effect

- based on the multiplication of dislocations - would not be effective. The final step is to check whether such

an approach can quantitatively reproduce the stress-strain curves of 300 series polycrystalline austenitic stainless

steels. Fig. 30 shows the comparison between the tensile curves obtained at 25◦C and 340◦C for a 304L austenitic705

stainless steel with a grain size of 21µm and an initial dislocation density of 1013m−2 (Paccou, 2019; Azihari,

2023) to the numerical simulations of polycrystalline aggregates with the calibrated constitutive equations using

Ks = 3.3. A good agreement is obtained for both temperatures, except for low strain values where the model

underestimates the stress. Interestingly, the value of Ks is close to that used in Haouala et al. (2020); Nieto-

Valeiras et al. (2022) and predicted by 3D dislocation dynamics simulations. A linear fit of the linear part of the710

curves in Figure 29b provides an estimate of the Hall-Petch parameter K which relates the yield stress to the grain

size as follows Y S = K/
√
ϕ. With Ks = 3.3 we obtain K = 0.17MPa.

√
m which is in the range [0.11;0.19] of

the experimental values and agrees remarkably well with the DDD predicted value of 0.16MPa.
√
m reported by

Jiang et al. (2019). Remembering that the term related to Ks in Eq. (19) has no effect on single crystals, the set

of constitutive equations proposed in this study allows to predict the mechanical behaviour of austenitic stainless715

steels for single crystal and polycrystalline samples as a function of temperature.

5. Discussion

This section discusses potential improvements and future research avenues for the modelling of the mechanical

behaviour of austenitic stainless steel single crystals.

• Experimental720

Dislocation-based constitutive equations for single crystals use the dislocation densities in each slip system

as state variables. Thus, the initial dislocation density is a parameter of the model, which is then expected
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to accurately predict the evolution as a function of strain. In this study, the initial dislocation density -

assumed to be the same in all slip systems - has been obtained indirectly to recover the experimentally

measured initial resolved shear stresses due to the lack of experimental measurements at the initial state.725

More importantly, the accuracy of the dislocation density evolution with strain needs to be assessed. Both

destructive - TEM observations (Pesicka et al., 2003) - and non-destructive techniques - X-ray (Pesicka et al.,

2003) or neutron diffraction (Christien et al., 2013) - are available to assess dislocation densities. Such

techniques should be used in future studies to measure the evolution of dislocation densities as a function of

strain and crystallographic orientations to further validate the constitutive equations.730

This study focuses on the hardening behaviour of stainless steel single crystals prior to failure. An important

avenue for future research is to consider the finite strain behaviour of notched specimens. Notched and

compact tensile specimens are commonly used to quantify and evaluate the mechanisms governing the fracture

of materials. In particular, notches act as stress triaxiality risers and therefore promote the typical mechanisms

of ductile fracture (nucleation, growth and coalescence of voids). Despite the wealth of studies on the fracture735

of stainless steels (Mills, 1997), experimental data on their fracture at the single crystal scale are still lacking

in the literature. Such studies are needed to evaluate and calibrate ductile fracture models that take into

account the anisotropy induced by crystal plasticity (Han et al., 2013; Paux et al., 2015; Ling et al., 2016;

Paux et al., 2018; Scherer et al., 2021; Paux et al., 2022). In addition, the effects of grain boundaries were not

experimentally analysed in this work, as only single crystal specimens were tested. However, grain boundaries740

are known to play a critical role in the overall behaviour of stainless steels. Now that the bulk behaviour

of stainless steel single crystals is well captured by the calibrated model presented in this study, further

experimental work will be carried out on oligo-crystal specimens composed of a few grains (Delaire et al.,

2000; Lim et al., 2015). Measurements in the vicinity of grain boundaries coupled with numerical simulations

will be used to challenge the grain boundary model proposed by Haouala et al. (2020).745

• Numerical

The plasticity behaviour of austenitic stainless steels is determined by different microscopic phenomena de-

pending on the applied conditions, the chemical composition of the alloy and the material state (hardened,

irradiated) (Meric de Bellefon and van Duysen, 2016). At high temperatures and / or low strains, slip is

the dominant mechanism as modelled in this study. However, twinning is also observed for example at room750

temperature in addition to slip (Karaman et al., 2001). Twin formation is also observed in highly irradiated

austenitic stainless steels deformed at high temperature (Renault-Laborne et al., 2018). A complete set of

crystal-scale constitutive equations for austenitic stainless steels therefore requires the inclusion of mechanical

twinning as a potential microscopic plastic behaviour. Models have been proposed in the literature for other

materials (Roters et al., 2010), which remain to be incorporated and calibrated to the model used in this755

study.

As observed in the micro-compression experiments in this study on 316L steel and other studies on 304L

steel (Paccou et al., 2019), size effects arise when the specimen size becomes comparable to the intrinsic

length scale of plasticity. In a future study, we will introduce the role of GND through a strain gradient

plasticity approach (Gurtin, 2002). Marano et al. (2021) has already used this approach to eliminate kink760

bands in favour of slip bands by introducing a kinematic strain gradient hardening term proportional to the

curl of Nye’s tensor. Alternatively, a Cosserat theory could be adopted to efficiently penalise lattice rotation

gradients (Forest et al., 1997). Such higher-order theories will naturally introduce a material length scale and

predict a harder response of the micropillar specimens. Since a direct measurement of this material length is

still an open question, it could, in principle, be calibrated with the micro-compression curves measured in this765

work for several micropillar sizes. In polycrystals, the grain size effect is also significant. In addition, strain

localisation phenomena occur in irradiated materials (Renault-Laborne et al., 2018) or at incipient fracture

(Morin et al., 2018). Material length scales must be included in the model formulation in order to capture
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size effects or to regularise strain localisation. Strain gradient crystal plasticity models naturally introduce

such length scales (Cordero et al., 2012). Calibration of the material length scales involved in strain gradient770

plasticity remains a challenge which needs to be addressed in future studies.

In this work we have used a viscoplastic model of crystal plasticity. However, the viscosity parameters K

and n were chosen in order to enforce a very weak rate sensitivity of the material behaviour over a wide

range of strain rates. The main purpose of the viscoplastic approach was to regularise corners and edges of

the crystal plasticity yield surface where the flow direction is not uniquely defined. It is known that this775

approach can lead to a poor conditioning of the system of governing equations when n tends to infinity and

K tends to 0 (Wulfinghoff and Böhlke, 2013). Thus, a trade-off must be made between approximate rate-

independence and numerical performance. Alternative approaches of (approximate) rate-independent crystal

plasticity implementations are still being proposed in the literature in order to reduce the computational cost

of crystal plasticity simulations (Miehe and Schröder, 2001; Schmidt-Baldassari, 2003; Busso and Cailletaud,780

2005; Wulfinghoff and Böhlke, 2013; Forest and Rubin, 2016; Scheunemann et al., 2020; Petryk and Kursa,

2022; Mánik et al., 2022).

6. Conclusion

In this paper we propose, for the first time, a comprehensive calibration of a crystal plasticity model for AISI

316L stainless steel at room temperature and 300 ◦C based on experimental data obtained on a single crystal of785

this material. Resonant ultrasound spectroscopy, tensile and micro-compression tests were carried out on single

crystal specimens. RUS data were used to calibrate the three cubic elasticity parameters C11, C12 and C44 at room

temperature. Molecular dynamics simulations were performed to calibrate the temperature dependence of these

parameters. Screw and edge dislocation energies calculations were used to compute the temperature dependence of

the isotropic equivalent shear modulus µ commonly used in the strain hardening law. Tensile test results at room790

temperature and 300 ◦C for different crystal orientations were used as a calibration database for the identification of

strain hardening parameters. The identification was carried out on a number of material parameters that have an

influence on the macroscopic stress-strain behaviour as revealed by sensitivity analysis. Some of these parameters

are difficult to calibrate from DDD simulations alone. In particular, two coefficients of the interaction matrix

relating to self and coplanar dislocation interactions were calibrated. In addition, the mean free path parameter795

relative to non-coplanar obstacles Kobs and the dislocation annealing parameter y were also calibrated. The

constitutive behaviour calibrated on a material point was then tested on the real geometry of tensile specimens and

on micro-compression specimens at 300 ◦C. The macroscopic tensile stress-strain behaviour is in good agreement

with the experimental data and the in-plane Green-Lagrange strain fields obtained in the simulations are similar

to the DIC strain fields. The agreement with micro-compression tests is more qualitative as these tests are tainted800

with more uncertainties. An effort has been made to test specimens of different sizes (diameter ranging between

2.93 and 12.83 µm), but it is not excluded that some size effects remain even in the largest specimens. Furthermore,

the exact geometry (taper angle) and boundary conditions (friction coefficient, indenter misalignment) are less well

known. Nevertheless, taking into account these uncertainties in the experimental conditions and the scatter in the

experimental data, we show that the crystal plasticity model predicts behaviour in agreement with experiment.805

Finally we extend the model to the polycrystal scale. A Hall-Petch grain size effect is added into the model by

introducing a phenomenological term into the dislocation evolution equations that depends on the distance of a

material point to the nearest grain boundary. In this way, grain boundaries act as strong barriers, accumulating

high dislocation densities and thus introducing the desired size effect.

Future work will be devoted to the experimental and numerical characterisation of the behaviour of oligocrys-810

talline specimens. The role of grain boundaries and associated size effects can be modelled using the most advanced

strain gradient plasticity models. Furthermore, the mechanisms of ductile fracture of stainless steels at the single

crystal scale (Scherer et al., 2021; Sénac et al., 2023b,a) will be investigated in future work. Combining these two
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aspects with the crystal plasticity model calibrated in this work will allow for reliable simulations of the strain

hardening and ductile fracture of stainless steel polycrystals. The calibrated crystal plasticity model will also serve815

as a basis for future work on the mechanical behaviour of irradiated stainless steels (Ling et al., 2017; Scherer et al.,

2019). Experiments on irradiated stainless steel single crystals will be required to calibrate the material parameters

in relation to the evolution of irradiation defect densities.

7. Data availability

The numerical implementation of the crystal plasticity constitutive behaviour is available to download from820

https://doi.org/10.57745/KAFO01. Other data will be made available on request.
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Appendix A. RUS measurements

The RUS method presented in Section 2.2 requires the fourth-order stiffness tensor C. In the crystal frame and

using Voigt notation

CVoigt =




C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44




(A.1)

However, since the crystal frame is not aligned with the axes of the sample at our disposal, we still have to apply a

change of coordinate system to the matrix shown in Eq. A.1. This change of coordinate system is done directly on

the Voigt representation of the elastic tensor using the so-called Bond matrix (Bond, 1943) and a Bunge convention

representation of the Euler angles [φ1,Φ, φ2] describing the rotation around the ZXZ coordinate axes, applied from

left to right (Rowenhorst et al., 2015). The elastic constants are then expressed as

C ′
kl = MkiCijMlj (A.2)

where C ′
kl are the elastic constants expressed in the rotated coordinate system, Cij are the original constants and

M is the following matrix

M =




a211 a212 a213 2a12a13 2a13a11 2a11a12

a221 a222 a223 2a22a23 2a23a21 2a21a22

a231 a232 a233 2a32a33 2a33a31 2a31a32

a21a31 a22a32 a23a33 a22a33 + a23a32 a21a33 + a23a31 a22a31 + a21a32

a31a11 a32a12 a33a13 a12a33 + a13a32 a13a31 + a11a33 a11a32 + a12a31

a11a21 a12a22 a13a23 a12a23 + a13a22 a13a21 + a11a23 a11a22 + a12a21




(A.3)

The aij terms appearing in eq. A.3 are those of the rotation matrix in the Bunge convention. The matrix can

be computed as follows825
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R(φ1,Φ, φ2) = (aij) =


− sin (φ1) sin (φ2) cos (Φ) + cos (φ1) cos (φ2) − sin (φ1) cos (Φ) cos (φ2)− sin (φ2) cos (φ1) sin (Φ) sin (φ1)

sin (φ1) cos (φ2) + sin (φ2) cos (Φ) cos (φ1) − sin (φ1) sin (φ2) + cos (Φ) cos (φ1) cos (φ2) − sin (Φ) cos (φ1)

sin (Φ) sin (φ2) sin (Φ) cos (φ2) cos (Φ)




(A.4)

Bayesian inversion method requires to provide a priori distributions for the unknown parameters. The following

uniform distributions have been used:

• C11 ∈ [100, 250] GPa

• C12 ∈ [70, 200] GPa

• C44 ∈ [70, 200] GPa830

• φ1 ∈ [−10°, 100°]

• Φ ∈ [−10°, 100°]

• φ2 ∈ [−10°, 100°]

• σ ∈ [0, 5] kHz

The Euler angles used above were restricted to the given ranges due to symmetry reasons: since a 316L lattice835

is known to exhibit cubic anisotropy, we can restrict the optimization region to a principal region of the orientation

space defined by the first [0, 90°] sector of each angle. These are padded with 10 ◦ to allow for solutions existing

on the edges of the implicitly periodic parameter space.

Appendix B. Size effects in micropillar compression tests

Figure B.31 shows all the micropillar stress-strain curves obtained on the <112> and <111> orientations at840

20 ◦C and 300 ◦C. Each subplot corresponds to one orientation and one temperature and combines all the curves

corresponding to the three micropillar diameters tested. These plots clearly highlight the presence of a smaller

is stronger type of size effect for this material at the micropillar scale. The smaller micropillars exhibit a stiffer

behaviour and have a higher yield stress and strain hardening rate. In addition, the variability in the stress-strain

response decreases as the micropillar diameter increases. These size effects can be explained by the depletion of845

dislocation sources as the specimen size decreases.

In addition, the curves at 300 ◦C are noisier than those at 20 ◦C. This suggests that there are more dislocation

avalanches at 300 ◦C than there are at 20 ◦C and/or that the dislocation mobility is less uniform at 300 ◦C. At both

temperatures, the noise amplitude observed on the stress-strain curves decreases with the micropillar diameter.
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Figure B.31: Stress-strain curve of micropillar compression tests along (a-b) <112> and (c-d) <111> directions at 20 ◦C and 300 ◦C.
Three micropillar diameters are tested for each orientation and temperature to quantify size effects.

Appendix C. Active slip systems in finite element simulations850

Figure C.32 shows the numerically predicted plastic slip fields at ∆L/L0 = 0.05. Figure C.32a can be compared

to the experimental results post-processed with the SSLIP analysis shown in Figure 9b, while Figure C.32b is the

numerical counterpart to Figure 10b. For both orientations the active slip systems in the numerical analysis are,

as expected, those with the largest Schmid factors. The maximum amplitude of plastic slip is also well captured

by the numerical simulations.855

For the <111> specimen, the numerical analysis predicts that most of the plastic slip occurs on systems #11,

#3 and #4, while the SSLIP analysis distributes the plastic slip over a larger number of slip systems (#5, #11,

#8, #1, #4, #3). The presence of intense slip bands for slip system #11 is well captured by the finite element

model. However, the simulation predicts a greater number of such bands than what is observed experimentally. In

addition, the model fails to predict the experimentally observed slip bands in slip system #8 (which forms a strong860

collinear interaction with the most active system #11). This may possibly be due to uncertainties in the measured

crystallographic orientation which is used in the numerical simulations. Additional finite element simulations (not

shown here) carried out on slightly different crystallographic orientations have shown secondary slip bands on slip

system #8 in regions complementary to slip system #11.

For the <011> specimen, the numerically predicted plastic slip is also distributed over fewer slip systems865

than what is obtained with the SSLIP analysis. The finite element simulations predict that most of the plastic

deformation occurs on slip systems #2 and #10 (the two systems with the highest Schmid factors), while relatively

little deformation is predicted on slip systems #3 and #11. Therefore, the amplitude of plastic slip predicted
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(a) <111>

(b) <011>

Figure C.32: Slip system activity for each slip system obtained by the finite element analysis of the (a) <111> and (b) <011> specimens
at ∆L/L0 = 0.05. The colour scale represents the absolute magnitude of the plastic slip.

Figure C.33: Lattice rotation field θ in specimen <011> at ∆L/L0 = 0.05.

numerically on system #2 is about twice that obtained from the SSLIP analysis. It is interesting to note that the

numerical simulation predicts both slip and kink bands (bands parallel and perpendicular to the slip direction) on870

system #2, while the SSLIP analysis favours the decomposition of the deformation over two slip systems #2 and

#11 with a majority of slip bands and few or no kink bands. As discussed in Section 4.2, kink bands are associated

with large lattice rotations and hence an increase in GND density. The lattice rotation field θ is plotted in Figure

C.33. The lattice rotation is defined as the rotation angle obtained from the rotation matrix RRR in the following

decomposition of the elastic part of the deformation gradient EEE = RRR ·UUU , where UUU is the right stretch tensor. The875

role of GND and the resulting size effects are not considered in the present work, but a strain gradient plasticity

approach will be developed in the future to capture these effects. For instance, strain gradient plasticity models,

such as the one proposed by Marano et al. (2021), are known to penalise the formation of kink bands and thus

promote the formation of slip bands.
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