Evaluation of nonnatural L-iminosugar C,C-glycosides, a new class of C-branched iminosugars, as glycosidase inhibitors

Jérôme Désiré, Zakaria Debbah, David Gueyrard, Jérôme Marrot, Yves Blériot, Atsushi Kato

To cite this version:

Jérôme Désiré, Zakaria Debbah, David Gueyrard, Jérôme Marrot, Yves Blériot, et al.. Evaluation of nonnatural L-iminosugar C,C-glycosides, a new class of C-branched iminosugars, as glycosidase inhibitors. Carbohydrate Research, 2023, 532, pp.108903. 10.1016/j.carres.2023.108903 . hal04542506

HAL Id: hal-04542506

https://hal.science/hal-04542506

Submitted on 11 Apr 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Evaluation of nonnatural L-iminosugar C, C-glycosides, a new class of C-branched iminosugars, as glycosidase inhibitors

Jérôme Désiré, *a Zakaria Debbah, ${ }^{\text {a }}$ David Gueyrard, ${ }^{\text {b }}$ Jérôme Marrot, ${ }^{\mathrm{c}}$ Yves Blériot ${ }^{\text {a }}$ and Atsushi Kato*d
a. Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, Equipe "Synthèse Organique", Groupe Glycochimie F-86073 Poitiers, France E-mail: jerome.desire@univ-poitiers.fr
b. Laboratoire Chimie Organique II-Glycochimie - ICBMS - UMR 5246
Université de Lyon - Université Claude Bernard - Lyon 1
Bâtiment Lederer-1, rue V. Grignard, 69622 Villeurbanne Cedex France
c. Institut Lavoisier de Versailles, UMR-CNRS 8180, Université de Versailles, 78035 Versailles Cedex, France
d. Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
E-mail: kato@med.u-toyama.ac.jp

Keywords: iminosugar, glycosidases, glycomimetics, structure-activity relationship

Abstract

Capitalizing on a previously developed Staudinger/azaWittig/Grignard (SAWG)-ring contraction sequence that furnished protected six-membered L-iminosugar C, C-glycosides bearing an allyl group and various substituents at the pseudoanomeric position, the synthesis and glycosidase inhibition of a small library of six- and seven-membered L-iminosugar C,C-glycosides is reported. Their hydrogenolysis or cyclization by RCM followed by deprotection afforded eleven L-iminosugars including spirocyclic derivatives. All compounds adopt a ${ }^{1} C_{4}$ conformation in solution according to NMR data. Compared to previously reported branched L-iminosugars, the L-iminosugar C, C-glycosides reported herein were less potent glycosidase inhibitors. However, some of these compounds showed micromolar inhibition of human lysosome β-glucocerebrosidase suggesting that such iminosugars could be useful to access potent CGase inhibitors by adjusting the structure/length of the pseudoanomeric substituents.

Introduction

1-Deoxynojirimycin (DNJ), first synthesized by Paulsen in 1966^{1} before it was isolated from the root bark of a Morus species in 1976, ${ }^{2}$ is a potent inhibitor of various α-glucosidases. As a consequence, DNJ and its analogues have been investigated as anti-bacterial, anti-viral, anti-diabetic, anti-inflammatory and anti-tumor agents in the last four decades. ${ }^{3-5}$ More recently, DNJ, ${ }^{6} N$-substituted derivatives ${ }^{7}$ including N-butyl-DNJ (Miglustat) ${ }^{8}$ and N-nonyl-DNJ ($N N$ DNJ) ${ }^{9}$ (Figure 1a) were also evaluated against SARS-CoV-2. To improve DNJ therapeutic potency, N-substitution was initially examined as illustrated by Miglitol and Miglustat (Figure 1a), two approved drugs for the treatment of type II diabetes and Gaucher's disease respectively. ${ }^{10}$ Since, many N-substituted DNJ derivatives with therapeutic potential have been released. ${ }^{11,12}$ In the last two decades, 1-C-branched DNJ derivatives, ${ }^{13}$ coined iminosugar C-glycosides, have also been extensively scrutinized as they proved to have potent glycosidase inhibitory activities and improved selectivity as illustrated by 1-C-nonyl-DNJ, an almost 1000-fold more potent inhibitor than DNJ against β-glucosidase (Figure 1a). ${ }^{14}$ Finally, in the last decade, other branched iminosugars such as 5 - C-alkyl-DNJ derivatives, iminosugar C glycosides in which the alkyl chain has been moved from C1 to C5 carbon atom, ${ }^{15,16}$ have emerged as potent α glucosidase inhibitors. ${ }^{17}$
Counter-intuitively, L-iminosugars have also gained increased interest as this class of compounds holds higher therapeutic promises than initially anticipated when considering their mismatching stereochemistry. ${ }^{18,19}$ As an example, $1-C$-hexyl-L-ido-DNJ is a potent β-glucocerebrosidase inhibitor ${ }^{20}$ while $5-C$-methyl-L-ido-DNJ showed a strong affinity comparable to DNJ for lysosomal acid α-glucosidase which deficiency is responsible for Pompe disease ${ }^{21}$ (Figure 1a). Accordingly, "branching" of the L-ido-DNJ motif is worth investigating further as it could provide molecules with interesting potential as glycoside processing enzyme inhibitors.
While introduction of one alkyl chain at the C1 carbon or nitrogen of DNJ has been extensively studied, introduction of multiple alkyl chains on the DNJ motif is scarce in the literature but worth investigating. Indeed, capitalizing on the potency developed by N-butyl DNJ as an inhibitor of glucosyl ceramide synthase, an enzyme targeted for the
treatment of Gaucher disease, introduction of an additional alkyl chain either at the pseudoanomeric carbon or on one of the hydroxyl groups of DNJ has been explored to mimic the ceramide moiety of the enzyme substrate. ${ }^{23}$ More recently, similar compounds and closely related dialkylated iminoxylitol derivatives have been designed as START domain ligands of the ceramide transport protein (CERT), which dysregulation is associated with several diseases. ${ }^{24}$ In addition, scarce examples in the literature showed that quaternarization of the carbon adjacent to the nitrogen in polyhydroxylated piperidines either abolished glycosidase inhibition ${ }^{25}$ or led to potent glycosidase inhibitors. ${ }^{15}$ To the best of our knowledge, there are only two reports, respectively using a chemoenzymatic route ${ }^{26}$ and an allylic azide rearrangement, ${ }^{27}$ of DNJ derivatives bearing two pseudoanomeric substituents. Unfortunately, the glycosidase inhibition profile of these derivative has not been disclosed. In this context, we report herein the synthesis and the glycosidase inhibition of new six- and seven-membered L-iminosugars including C, C-dialkyl analogues of type \mathbf{A} and \mathbf{C} and spirocyclic structures of type \mathbf{B} and \mathbf{D} where the two alkyl chains are located at C1 carbon (Figure 1b).

miglitol $\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{OH}$
1-C-nonyl-DNJ

miglustat $\mathrm{R}=\mathrm{C}_{4} \mathrm{H}_{9}$ $N N$-DNJ R= $\mathrm{C}_{9} \mathrm{H}_{19}$

1-C-hexyl-L-ido-DNJ

B

C

$\mathrm{R}=\mathrm{Me}$ or OH
$\mathrm{n}=0,1$
$R=M e$ or Pr
c)

1) Staudinger/azaWittig
(

Figure 1: a) Structures of canonical DNJ derivatives and branched DNJ derivatives; b) L-iminosugars A-D synthesized in this work; c) strategy used to access the iminosugar precursors.

Results and discussion

Synthesis

With the aim to develop a general access to iminosugars with a quaternarized pseudoanomeric position, we have recently reported the stereoselective access to a range of protected L-iminosugar C,C-glycosides from 6azidoketopyranoses by a Staudinger/azaWittig/Grignard (SAWG)-ring contraction sequence (Figure 1c). ${ }^{28}$ From this library, three piperidines 1a, 1c and 1d, possessing all an α-configured pseudoanomeric allyl group and a distinct α configured pseudoanomeric group were selected and further deprotected to study the impact of the structure of the pseudoanomeric substituent on the glycosidase inhibition profile. To introduce a six-carbon chain at C1 position found in the potent β-glucocerebrosidase inhibitor 1-C-hexyl-L-ido-DNJ, the 3 carbon atoms chain in 1a was elongated via a cross-metathesis reaction using Grubbs' II catalyst and pentene to furnish the corresponding piperidine $\mathbf{1 b}$ in modest 31% yield. Piperidines 1a-d were hydrogenolysed under acidic conditions to furnish the L-ido-DNJ C,Cglycosides $\mathbf{2 a - d}$ in quantitative yield (Scheme 1). Compound $\mathbf{2 c}$ can be seen as a 1-C-alkyl-L-homoiminosugar, the first branched homoiminosugar ${ }^{29}$ to the best of our knowledge, and compound 2d is a $\mathbf{2 c}$ analogue in which the $\mathrm{CH}_{2} \mathrm{OH}$ group has been elongated to a four-carbon chain (Scheme 1).

Scheme 1: Synthesis of L-iminosugar C,C-glycosides 2a-d

To exploit further the synthetic potential of these iminosugar C,C-glycosides, those bearing two terminal alkenes at the pseudoanomeric position were converted into the corresponding spirocyclic iminosugars that are scarce in the literature. ${ }^{30,31,32}$ Indeed, the α-L-fucosidase inhibitory potency in the low micromolar range exhibited by derivatives 3a and $\mathbf{3 b}^{33,34}$ (Scheme 2a) encouraged us to access structural analogues bearing a pseudoanomeric five- or sixmembered ring imposed by the alkene chain length.

Scheme 2: a) Spirocyclic iminosugars 3a-b reported in the literature demonstrating fucosidase inhibition; b) Synthesis of spirocyclic derivatives of L-ido-DNJ 6a-d.

The RCM of C, C-diallyl iminosugar $\mathbf{1 e}$ and previously reported C-allyl, C-homoallyl iminosugar $\mathbf{1 f}^{28}$ using Grubbs' II catalyst in dichloroethane at $50^{\circ} \mathrm{C}$ furnished the corresponding bicycles $\mathbf{4 a}$ and $\mathbf{4 b}$ in satisfactory 62% to 78% yields respectively. Compound $\mathbf{4 b}$ was further dihydroxylated with $\mathrm{OsO}_{4} / \mathrm{NMO}$ in acetone to provide in modest yield the triols $\mathbf{5 a}(\mathbf{1 7 \%})$ and $\mathbf{5 b} \mathbf{(2 0 \%)}$. Their hydrogenolysis under mild acidic conditions furnished the spirocyclic iminosugars $\mathbf{6 a - d}$ in nearly quantitative yield (Scheme 2b). NMR analysis of the six-membered L-iminosugar C,C-glycosides 2a-d and spiro derivatives $\mathbf{6 a - d}$ indicated that the piperidine ring in $\mathrm{CD}_{3} \mathrm{OD}$ adopts an inverted ${ }^{1} \mathrm{C}_{4}$ conformation according to the small coupling constants observed for $\mathrm{H}-3$ and $\mathrm{H}-2$ (see SI).

We were also interested in accessing seven-membered derivatives as this subclass of nonnatural iminosugars ${ }^{35-37}$ also exhibit potency as glycosidase inhibitors. ${ }^{38,39}$ Therefore the same chemical transformations as above were applied to a selection of available seven-membered iminosugar C,C-glycosides. To access a tetrahydroxylated spirocyclic azepane, the C-allyl, C-homoallyl azepane 7 was protected as its benzyl carbamate 8 (44\%) and submitted to RCM with Grubbs' II catalyst to afford compound 9 a in 72% yield. The hydrogenolysis of 9 a and available azepanes C, C glycosides $\mathbf{9 b} \mathbf{b}^{28}$ and $\mathbf{9} \mathbf{c}^{28}$ furnished the corresponding polyhydroxylated iminosugars 10a-c in quantitative yields (Scheme 3), the structure of 10c being confirmed by X-ray crystallography (CCDC 2248973).

Scheme 3: Synthesis of seven-membered L-iminosugar C, C-glycosides and X-ray structure of compound 10c (CCDC 2248973).

Glycosidase inhibition

The eleven iminosugar C,C-glycosides 2a-d, 6a-d and 10a-c were assayed against a panel of twenty glycosidases (Table 1). In search for therapeutic candidates to treat Gaucher disease, the most prevalent lysosomal storage disorder, N and C-alkyl iminosugars bearing long alkyl hydrophobic chains have been extensively studied as glucocerebrosidase inhibitors owing to their mimicry of the substrate ceramide moiety. ${ }^{40}$ Accordingly, our library of compounds were assayed on a range of lysosomal glycosidases including human lysosomal β-glucocerebrosidase (GCase), human lysosomal acid α-glucosidase (GAA) involved in Pompe disease ${ }^{41}$ and human α-galactosidase $A(\alpha-G a l$ A) which deficiency is responsible for Fabry disease. ${ }^{42}$ The six-membered L-iminosugar C,C-glycosides 2a-d proved to be weak glycosidase inhibitors. Compound 2a was a selective α-glucosidase inhibitor, being a moderate rice α-glucosidase inhibitor ($\mathrm{K}_{\mathrm{i}} 11 \mu \mathrm{M}$), a weak inhibitor of rat intestinal maltase ($\mathrm{IC}_{50} 132 \mu \mathrm{M}$) and human lysosomal α-glucosidase (IC_{50} $255 \mu \mathrm{M}$). Lengthening of the propyl chain in $\mathbf{2 a}$ to a hexyl chain ($\mathbf{2 b}$) abolished α-glucosidase inhibition and changed inhibition profile of $\mathbf{2 b}$ to a weak human lysosome β-glucosidase ($\mathrm{IC}_{50} 95 \mu \mathrm{M}$), E. Coli β-glucuronidase ($\mathrm{IC}_{50} 136 \mu \mathrm{M}$) and bovine liver β-galactosidase ($\mathrm{IC}_{50} 165 \mu \mathrm{M}$) inhibitor. The inhibition profile of $\mathbf{2 a}$ and $\mathbf{2 b}$ is very distinct from the corresponding iminosugar C-glycosides reported as weak α-L-fucosidase inhibitors, ${ }^{43}$ demonstrating the impact of C1 dialkylation on inhibition. Compound 2c was a selective albeit weak human lysosome β-glucosidase (IC $280 \mu \mathrm{M}$) while its analogue $\mathbf{2 d}$ was less selective, being a poor yeast α-glucosidase (IC $\mathrm{IC}_{50} 522 \mu \mathrm{M}$), E. Coli β-glucuronidase (IC50 $284 \mu \mathrm{M}$) and human lysosomal β-glucosidase ($\mathrm{IC}_{50} 138 \mu \mathrm{M}$) inhibitor. Introduction of the pseudoanomeric propyl chain in 2c changed the inhibition profile of the parent homoiminosugar previously identified as a weak rice α glucosidase inhibitor. ${ }^{44}$ Unlike tetrahydroxylated azepanes and the corresponding C-glycosides that are potent glycosidase inhibitors, ${ }^{35,45,46}$ the azepanes C, C glycosides $\mathbf{1 0 b}$ and $\mathbf{1 0 c}$ remained inactive against all enzymes. On the contrary, spirocyclic derivatives proved to be more interesting compounds. Spirocyclopentanyl compound $\mathbf{6 a}$ was a selective albeit weak human lysosome β-glucosidase ($\mathrm{IC}_{50} 224 \mu \mathrm{M}$). Increasing the size of the pseudoanomeric ring from a five- (6 a) to a six-membered ring (6b) increased human lysosome β-glucosidase inhibition 10 -fold (IC50 $23 \mu \mathrm{M}$) but was detrimental to selectivity as $\mathbf{6 b}$ weakly inhibited β-glucuronidase ($\mathrm{IC}_{50} 95 \mu \mathrm{M}$), yeast α-glucosidase ($\mathrm{IC}_{50} 380 \mu \mathrm{M}$) and human lysosome α-galactosidase ($\mathrm{IC}_{50} 286 \mu \mathrm{M}$). When the piperidine in $\mathbf{6 b}$ was replaced by an azepane ring to lead 10a, selectivity toward human lysosome β-glucosidase was restored and improved compared to $\mathbf{6 a}$ ($\mathrm{IC}_{50} 90 \mu \mathrm{M}$). Interestingly, spirocycle $\mathbf{6 b}$ and iminosugar C, C-glycoside $\mathbf{2 b}$ mainly differ by the spatial presentation of the pseudoanomeric hydrophobic moiety (spirohexyl versus C-methyl, C-hexyl motif) and share a similar glycosidase inhibition profile although spirocycle 6b proved more potent toward β-glucuronidase and human lysosome β glucosidase. Dihydroxylation of cyclohexane ring of $\mathbf{6 b}$ to lead compounds $\mathbf{6 c}$ and $\mathbf{6 d}$ completely abolished glycosidase inhibition including CGase, an enzyme known to accommodate lipophilic aglycons.

Table 1. Concentration of iminosugars giving 50% inhibition of various glycosidases

	IC $50(\mu \mathrm{M})$										
Enzyme / Compound											
α-Glucosidase											
Yeast	${ }^{\text {a }}{ }^{1}{ }^{\text {b }}$ (10 \%)	$\mathrm{NI}(1.4$ \%)	NI (4.2 \%)	522	$\mathrm{NI}(9.1$ \%)	380	${ }^{\text {c }}{ }^{\text {d }}$ (0 \% \%	$\mathrm{NI}(0 \%)$	$\mathrm{NI}(16 \%)$	$\mathrm{NI}(0 \%)$	NI (3.0 \%)
Rice	60 (Ki 11)	$\mathrm{NI}(25.7 \%)$	$\mathrm{NI}(0 \%)$	$\mathrm{NI}(5.7 \%)$	$\mathrm{NI}(13.5$ \%)	${ }^{\text {c }}{ }^{\text {d }}$ (9.9 \%)	$\mathrm{NI}(0 \%)$	NI (1.8 \%)	$\mathrm{NI}(7.2$ \%)	$\mathrm{NI}(1.8 \%)$	$\mathrm{NI}(6.3 \%)$
Rat intestinal maltase	132	$\mathrm{NI}(6.3$ \%)	$\mathrm{NI}(0 \%)$	$\mathrm{NI}(0 \%)$	$\mathrm{NI}(\mathrm{O} \%)$	$\mathrm{NI}(4.7$ \%)	$\mathrm{NI}(0 \%)$	$\mathrm{NI}(6.3 \%)$	$\mathrm{NI}(7.1$ \%)	NI (1.9 \%)	$\mathrm{NI}(1.4$ \%)
Human Lysosome (GAA)	255	$\mathrm{NI}(3.2$ \%)	$\mathrm{NI}(0 \%)$	NI (7.5 \%)	$\mathrm{NI}(5.0 \%)$	$\mathrm{NI}(10.8 \%)$	$\mathrm{NI}(2.9 \%)$	$\mathrm{NI}(0.2 \%)$	$\mathrm{NI}(3.9 \%)$	NI (0\%)	$\mathrm{NI}(0.1$ \%)
β-Glucosidase											
Almond	$\mathrm{NI}(9.9$ \%)	$\mathrm{NI}(14.1$ \%)	$\mathrm{NI}(23 \%)$	NI (23.8 \%)	$\mathrm{NI}(33.8$ \%)	210	$\mathrm{NI}(0 \%)$	$\mathrm{NI}(0 \%)$	$\mathrm{NI}(10.1$ \%)	NI (6.5 \%)	NI (0\%)
Bovine liver	NI (15.2 \%)	$\mathrm{NI}(26.2$ \%)	NI (12.8 \%)	Nl (14.7 \%)	$\mathrm{NI}(13.4$ \%)	$\mathrm{NI}(30.1$ \%)	$\mathrm{NI}(11 \%)$	$\mathrm{NI}(15 \%)$	Nl (17.2 \%)	NI (9.6 \%)	NI (8.1 \%)
Human Lysosome (CGase)	689 (Ki 661)	95	280	138	224 (Ki 114)	23 (Ki 15)	$\mathrm{NI}(0 \%)$	$\mathrm{NI}(0 \%)$	90 (Ki 64)	NI (18.4 \%)	NI (10.8 \%)
α-Galactosidase											
Coffee beans	NI (15 \%)	$\mathrm{NI}(0 \%)$	NI(6.4 \%)	NI (11.4 \%)	$\mathrm{NI}(2.7 \%)$	NI (44.9 \%)	$\mathrm{NI}(0 \%)$	$\mathrm{NI}(0 \%)$	$\mathrm{NI}(6.7$ \%)	NI (1.9 \%)	NI (2.7 \%)
Human Lysosome (α-Gal A)	$\mathrm{NI}(31.3 \%)$	ND	$\mathrm{NI}(5.2$ \%)	$\mathrm{Nl}(38.5$ \%)	NI (16.1 \%)	286	ND	ND	$\mathrm{NI}(45.8$ \%)	$\mathrm{NI}(3.5$ \%)	NI (4.2 \%)
β-Galactosidase											
Bovine liver	$\mathrm{NI}(35.3 \%)$	165	NI (24.9 \%)	NI (17.3 \%)	$\mathrm{NI}(33.2$ \%)	NI (49.1 \%)	NI (30.1 \%)	1000	NI (34.9 \%)	NI (27.2 \%)	NI (26.7 \%)
α-Mannosidase											
β-Mannosidase											
Snail	$\mathrm{NI}(0.4$ \%)	$\mathrm{NI}(3.0$ \%)	NI (17.3 \%)	$\mathrm{NI}(11.8$ \%)	$\mathrm{NI}(0 \%)$	$\mathrm{NI}(10.8$ \%)	$\mathrm{NI}(0 \%)$	NI (3.0 \%)	$\mathrm{NI}(0 \%)$	$\mathrm{NI}(0 \%)$	$\mathrm{NI}(0 \%)$
α, α-Trehalase											
Porcine kidney	NI (0\%)	$\mathrm{NI}(3.9$ \%)	$\mathrm{NI}(0 \%)$	$\mathrm{NI}(0 \%)$	NI (7.6 \%)	NI(4.1 \%)	${ }^{\text {c }} \mathrm{NI}^{\text {d }}$ (2.0\% ${ }^{\text {c }}$	NI (2.0 \%)	$\mathrm{NI}(0 \%)$	NI(4.1 \%)	$\mathrm{NI}(3.5$ \%)
Amyloglucosidase											
Aspergillus niger	$\mathrm{NI}(0 \%)$	$\mathrm{NI}(3.7$ \%)	$\mathrm{NI}(0 \%)$	$\mathrm{NI}(8.2$ \%)	NI (0.4 \%)	$\mathrm{NI}(2.2$ \%)	$\mathrm{NI}(5.2$ \%)	NI (1.5 \%)	NI (4.5 \%)	$\mathrm{NI}(3.8$ \%)	$\mathrm{NI}(0.8$ \%)
α-L-Rhamnosidase											
β-Glucuronidase											
E. coli	$\mathrm{NI}(1.8 \%)$	136	NI (32.8 \%)	284	NI (25.8 \%)	95	$\mathrm{NI}(0 \%)$	$\mathrm{NI}(0 \%)$	NI (34.7 \%)	$\mathrm{NI}(3.7 \%)$	$\mathrm{NI}(7.9$ \%)
Bovine liver	NI (4.5 \%)	$\mathrm{NI}(27 \%)$	NI (21.9 \%)	Nl (30.5 \%)	Nl (0\%)	723	$\mathrm{NI}(0 \%)$	$\mathrm{NI}(0 \%)$	NI (0\%)	$\mathrm{NI}(0 \%)$	NI (0 \%)
$\alpha-N$-Acetylglucosaminidase											
Human recombinant	eND	$\mathrm{NI}(13.3 \%)$	NI (9.7 \%)	ND	ND	ND	NI (16.7 \%)	NI (10.0 \%)	ND	ND	ND
β - N-Acetylglucosaminidase											
Bovine kidney	ND	$\mathrm{NI}(0 \%)$	NI (26.9 \%)	ND	ND	ND	$\mathrm{NI}(2.8 \%)$	$\mathrm{NI}(0 \%)$	ND	ND	ND
HL60	ND	$\mathrm{NI}(2.7 \%)$	$\mathrm{NI}(10.0$ \%)	ND	ND	ND	NI (7.6 \%)	$\mathrm{NI}(3.7 \%)$	ND	ND	ND
Jack bean	ND	$\mathrm{NI}(0 \%)$	$\mathrm{NI}(17.5$ \%)	ND	ND	ND	NI (1.6 \%)	$\mathrm{NI}(0 \%)$	ND	ND	ND
β - N-Acetylhexosaminidase											
HL60	ND	$\mathrm{NI}(15.2$ \%)	NI (1.2 \%)	ND	ND	ND	NI (5.1 \%)	NI (6.8 \%)	ND	ND	ND
$\alpha-N$-Acetylgalactosaminidase											
Chicken liver	ND	$\mathrm{NI}(0 \%)$	$\mathrm{NI}(18.5$ \%)	ND	ND	ND	$\mathrm{NI}(5.2$ \%)	$\mathrm{NI}(2.2$ \%)	ND	ND	ND

[^0]
Conclusion

In conclusion, the synthesis and glycosidase inhibition profile of a range of L-ido-DNJ derivatives and analogues in which two alkyl substituents have been introduced in a stereoselective manner at the pseudoanomeric position including spirocyclic derivatives, is disclosed. These iminosugar C, C-glycosides, that adopt a ${ }^{1} C_{4}$ chair conformation in solution, were assayed on a range of glycosidases including the lysosomal enzymes CGase, GAA and $\alpha-\mathrm{Gal} \mathrm{A}$. Amongst all derivatives, the derivatives bearing hydrophobic moieties proved to be the most promising ones as selective or potent inhibition of CGase was recorded depending on the size of the spirocycle and the length of the alkyl chains at C1 position. Despite mitigated inhibition results, these data suggest that introduction of more lipophilic moieties through longer alkyl chains or modified spirocycles could lead to improved CGase inhibitors. Such molecules could be accessed from iminosugars $1 \mathbf{e}$ and 1f. Altogether, this work expands the structural diversity introduced at the pseudoanomeric position of DNJ, an important glycomimetic.

Experimental

General methods

All commercially available reagents were used as supplied without further purification. THF was distilled under anhydrous conditions. Petroleum ether (PE) refers to the $40-60^{\circ} \mathrm{C}$ boiling fraction. Air and water sensitive reactions were performed in oven dried glassware under Ar atmosphere. TLC plates were visualized under 254 nm UV light and/or by dipping the TLC plate into a solution of phosphomolybdic acid in ethanol ($3 \mathrm{~g} / 100 \mathrm{~mL}$) followed by heating with a heat gun. Flash chromatography columns were performed using silica gel $60(15-40 \mu \mathrm{~m})$ or carried on a combiflash ${ }^{\circledR}$ Rf automated apparatus (Teledyne-Isco) using columns specified in each protocol. NMR experiments were recorded with a Bruker Avance 400 spectrometer at 400 MHz for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$ nuclei and a Bruker Avance Neo 500 spectrometer at 500 MHz for ${ }^{1} \mathrm{H}$ and 125 MHz for ${ }^{13} \mathrm{C}$ nuclei. The chemical shifts are expressed in part per million (ppm) relative to TMS $(\delta=0 \mathrm{ppm})$ and the coupling constant J in Hertz (Hz). NMR multiplicities are reported using the following abbreviations: $b=$ broad, $s=$ singlet, $d=$ doublet, $t=$ triplet, $q=$ quadruplet, $m=$ multiplet, etc... The numbering used for NMR assignment is given following carbohydrates numbering. HRMS were obtained with a Q-TOF spectrometer from the Mass Spectrometry Service (IC2MP, UMR CNRS 7285-Poitiers University, France). Optical rotations were measured using a Modular Circular Polarimeter MCP100 (Anton Paar). Compounds 1a, 1c, 1d, $\mathbf{1 f}, \mathbf{6 b}, \mathbf{7}, \mathbf{9 b}$ were previously fully described by our group. ${ }^{25}$

General procedure \mathbf{A} for azepane ring contraction. A solution of azepane (1.0 eq.) in anhydrous toluene (0.1 M) and $\mathrm{Et}_{3} \mathrm{~N}$ (2.0 eq.) under Ar was stirred 20 min at room temperature, then cooled down to $0^{\circ} \mathrm{C}$, and TFAA (1.5 eq.) was added. The reaction mixture was stirred for 4 h at $120^{\circ} \mathrm{C}$, then allowed to reach room temperature. A solution of $\mathrm{NaOH}(1 \mathrm{M}, 1.5 \mathrm{~mL})$ was added, then the reaction mixture was stirred for 1 h 30 at room temperature and extracted with AcOEt. The organic layer was dried over MgSO_{4}, filtered and concentrated. The crude was purified over a flash chromatography column.
General procedure \mathbf{B} for ring closing metathesis. To a solution of 1,1-bis-allyl or 1-allyl-1-homoallyl derivative (1.0 eq.) in dry dichloroethane ($D C E, 0.05 \mathrm{M}$) under an Ar atmosphere was added $2^{\text {nd }}$ generation Grubbs catalyst (0.1 eq.). The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 2 h by which time TLC monitoring showed the total consumption of the starting material. The mixture was concentrated under reduced pressure and purified by flash chromatography.
General procedure C for hydrogenolysis. The benzylated substrate was dissolved in a 1:1 mixture of i - $\mathrm{PrOH} / \mathrm{THF}$ (0.05 M). The mixture was flushed 4 times with Ar then 1 N HCl (3 eq.), palladium black (0.5 mass eq.) and 5% or $10 \% \mathrm{Pd} / \mathrm{C}$ (0.5 mass eq.) were added. The mixture was flushed 4 times with H_{2} and stirred at room temperature under H_{2} atmosphere. After 24 h , the mixture was filtered through a pad of celite (previously washed with $1 \mathrm{~N} \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$ and then MeOH) and the filtrate was concentrated under reduced pressure to give the fully deprotected product as its hydrochloride salt.

Synthesis

α-C-((E)-hex-2-en-1-yl)- β-C-methyl-2,3,4-tri-O-benzyl- N-benzyl-1-deoxy-L-idonojirimycin (1b). To a solution of 1a (30 mg, $0.052 \mathrm{mmol}, 1.0$ eq.) and pentene ($45.4 \mu \mathrm{~L}, 0.311 \mathrm{mmol}, 6.0$ eq.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL}, 0.05 \mathrm{M}$), under Ar atmosphere, was added $2^{\text {nd }}$ generation Grubbs catalyst ($26 \mathrm{mg}, 0.041 \mathrm{mmol}, 0.8$ eq.). The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 48 h by which time TLC monitoring showed the total consumption of the starting material. The mixture was concentrated under reduced pressure and the crude was purified over a flash chromatography column (Interchim ${ }^{\circ} 4 \mathrm{~g}, \mathrm{PE} / \mathrm{EtOAc} 95: 5$ to 85:15) to afford 1b $(10 \mathrm{mg}, 31 \%)$ as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.4$ (PE/EtOAc 95/5). $[\alpha]_{\mathrm{D}}^{20}=-55.8\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $87.40-7.10(\mathrm{~m}$, 20H, H-Ar), 5.73-5.65 (m, 1H, H-8), 5.45-5.32 (m, 1H, H-9), $4.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.3 \mathrm{~Hz}, \mathrm{OCHH}-\mathrm{Ph}), 4.78$ (d, $1 \mathrm{H}, \mathrm{J}=10.6 \mathrm{~Hz}, \mathrm{OCHH}-$ $\mathrm{Ph}), 4.73(\mathrm{~d}, 1 \mathrm{H}, J=10.6 \mathrm{~Hz}, \mathrm{OCHH}-\mathrm{Ph}), 4.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCHH}-\mathrm{Ph}), 4.52(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.4 \mathrm{~Hz}, \mathrm{OCHH}-\mathrm{Ph}), 3.92-3.82(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCHH}-$ Ph, H-6b, H-4, H-3), 3.72-3.62 (m, 3H, NCHH-Ph, H-6a, H-5), 3.42 (d, 1H, J = 9.4 Hz, H-2), 2.45 (dd, 1H, J = 15.3, $8.9 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{~b}$), 2.30-2.21(m, 1H, H-7a), 2.00-1.81 (m, 2H, H-10), 1.30-1.12 (m, 5H, H-11, H-13), 0.80 (t, 3H, J = 7.4 Hz, H-12); ${ }^{13} \mathrm{C}$ NMR (125
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.2,139.3,138.6,138.2$ (C$\left.{ }^{\mathrm{IV}}-\mathrm{Ar}\right), 133.7$ (C9), $128.4-126.2$ (CH-Ar), 126.2 (C8), 81.0 (C2), 80.3 (C4), 78.9 (C3), $75.5,74.7,73.5\left(\mathrm{OCH}_{2}-\mathrm{Ph}\right), 67.0\left(\mathrm{C} 6, \mathrm{NCH}_{2} \mathrm{Ph}\right), 62.3$ ($\mathrm{C}^{\mathrm{IV}}-1$), 58.0 (C5), 43.0 (C7), 35.1 (C10), 22.7 (C11), 20.5 (C13), 13.9 (C12); HRMS (ESI) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{41} \mathrm{H}_{49} \mathrm{NO}_{4} \mathrm{Na}$ 642.3559; Found 642.3480 .
α-C-methyl- β-C-propyl-1-deoxy-L-idonojirimycin (2a). Application of procedure C to compound $\mathbf{1 a}$ ($22 \mathrm{mg}, 0.038 \mathrm{mmol}$) afforded compound 2a (10 mg, quant., hydrochloride salt) as a colorless oil. $[\alpha]_{\mathrm{D}}^{20}=-25.6$ (c $\left.0.5, \mathrm{MeOH}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\mathrm{CD}_{3} \mathrm{OD}$) $\delta 3.97(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=3.1 \mathrm{~Hz}, \mathrm{H}-3), 3.85-3.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.76(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{H}-6), 3.65(\mathrm{br} . \mathrm{d}, 1 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz}, \mathrm{H}-2), 3.56$ ($\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{H}-5$), 2.23 (td, $1 \mathrm{H}, \mathrm{J}=12.4,4.9 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{~b}), 1.70-1.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}), 1.35(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-10), 1.34-1.26(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ 8), 0.86 (t, 3H, J= $7.2 \mathrm{~Hz}, \mathrm{H}-9$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 70.15$ (C2), 69.6 (C3), 67.6 (C4), 62.3 (C ${ }^{\text {IV }-1), ~} 59.2$ (C6), 52.8 (C5) 35.5 (C7), 20.9 (C10), 16.6 (C8), 13.4 (C9); HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{NO}_{4} 220.1543$; Found 220.1542.
α-C-methyl- β-C-hexyl-1-deoxy-L-idonojirimycin (2b). Application of procedure C to compound $\mathbf{1 b}$ ($10 \mathrm{mg}, 0.016 \mathrm{mmol}$) afforded compound $\mathbf{2 b}$ (5 mg , quant., hydrochloride salt) as a colorless oil. $[\alpha]_{\mathrm{D}}^{20}=-21.2$ (c $0.25, \mathrm{MeOH}$); ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\mathrm{CD}_{3} \mathrm{OD}$) $\delta 3.95(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=3.1 \mathrm{~Hz}, \mathrm{H}-3), 3.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.77-3.71(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6), 3.64(\mathrm{brd}, 1 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz}, \mathrm{H}-2), 3.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 5), 2.35-2.19 (m, 1H, H-7b), 1.71-1.51 (m, 1H, H-7a), 1.34 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-13$), 1.31-1.18 (m, 8H, H-8, H-9, H-10, H-11), 0.81 (m, 3H, $\mathrm{H}-12$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 70.2$ (C2), 69.7 (C3), 67.7 (C4), 62.3 ($\mathrm{C}^{1 V} 1$), 59.3 (C6), 52.9 (C5), 33.3 (C7), 31.3, 29.3, 23.1, 22.2 (C8, C9, C10, C11), 20.8 (C13), 13.0 (C12); HRMS (ESI ${ }^{+}$) m/z [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$: calcd for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{NO}_{4}$ 262.2013; Found 262.2023.
α-C-hydroxymethyl- β-C-propyl-1-deoxy-L-idonojirimycin (2c). Application of procedure C to compound $\mathbf{1 c}(8.5 \mathrm{mg}, 13.3$ $\mu \mathrm{mol})$, using an excess of $10 \mathrm{~N} \mathrm{HCl}(16 \mu \mathrm{~L}, 160 \mu \mathrm{~mol}, 12 \mathrm{eq})$, afforded compound $\mathbf{2 c}$ (3.6 mg , quant., hydrochloride salt) as a colorless oil. $[\alpha]_{\mathrm{D}}^{20}=-8.4(\mathrm{c} 0.9, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 3.96(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=3.1 \mathrm{~Hz}, \mathrm{H}-3), 3.91(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-10 \mathrm{~b}, \mathrm{H}-2), 3.84$ $-3.79(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-4), 3.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.8 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{a}), 3.56(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}, \mathrm{H}-5), 2.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}), 1.88-1.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ $7 \mathrm{a}), 1.43-1.33(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-8), 0.90(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{H}-9) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 69.6$ (C3), 68.6 (C4), 67.6 (C2), 65.2 (C $\mathrm{C}^{1 \mathrm{~V}}-$ 1), 61.3 (C10), 58.6 (C6), 52.2 (C5), 30.3 (C7), 16.2 (C8), 13.3 (C9); HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{NO}_{5} 236.1492$; Found 236.1486 .
α-C-(4-hydroxybutyl)- β-C-propyl-1-deoxy-L-idonojirimycin (2d). Application of procedure C to compound 1d (10.5 mg, 14 $\mu \mathrm{mol})$, using an excess of $1 \mathrm{~N} \mathrm{HCl}(168 \mu \mathrm{~L}, 168 \mu \mathrm{~mol}, 12 \mathrm{eq})$, afforded compound $\mathbf{2 d}(4.4 \mathrm{mg}$, quant., hydrochloride salt) as a colorless oil after freeze drying. $[\alpha]_{\mathrm{D}}^{20}=-17.6(c 0.45, \mathrm{MeOH})$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 4.06(\mathrm{t}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}, \mathrm{H}-3), 3.94$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$), $3.85(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6), 3.73(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=0.8,2.8 \mathrm{~Hz}, \mathrm{H}-2), 3.59(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-13), 2.31(\mathrm{td}, 1 \mathrm{H}, J=4.1,16.0 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a})$, 1.93 (td, $1 \mathrm{H}, \mathrm{J}=4.5,12.8 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{a}), 1.85-1.72(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}, \mathrm{H}-10 \mathrm{~b}), 1.58(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-12), 1.49-1.32(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-11), 0.98$ ($\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 71.4$ (C3), 71.4 (C2), 69.2 (C4), 66.6 ($\mathrm{C}^{\mathrm{IV}}-1$), 62.4 (C13), 60.4 (C6), 54.5 (C5), 33.7 (C12), 33.4 (C10), 32.0 (C7), 19.8 (C11), 16.7 (C8), 14.7 (C9); HRMS (ESI) m/z: [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{NO}_{5} 278.1962$; Found 278.1961.

C,C-diallyl-2,3,4-tri-O-benzyl-N-benzyl-1-deoxy-L-idonojirimycin (1e). To a solution of (5R,4R,3R,2S)-1,1-diallyl-2,3,4tris(benzyloxy) azepan-5-ol ${ }^{25}$ ($90 \mathrm{mg}, 0.175 \mathrm{mmol}, 1.0$ eq.) in a mixture EtOAc/ $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL} / 2 \mathrm{~mL}$) were added at room temperature $\mathrm{KHCO}_{3}(350 \mathrm{mg}, 1.75 \mathrm{mmol}, 10 \mathrm{eq}$.), KI (cat) and benzyl bromide ($64 \mu \mathrm{~L}, 0.525 \mathrm{mmol}, 3.0$ eq.), then the mixture was stirred for 24 h at $80^{\circ} \mathrm{C}$. The reaction mixture was extracted twice with EtOAc, the combined organic layers were dried over MgSO_{4}, filtered and concentrated. The crude was purified over a flash chromatography column (Interchim ${ }^{\circ} 4 \mathrm{~g}, \mathrm{EP} / \mathrm{AcOEt}$ $95 / 5$ to $80 / 15$) to afford the expected N-benzylated azepane ($80 \mathrm{mg}, 75 \%$) as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.23$ (PE/EtOAc 90/10); $[\alpha]_{\mathrm{D}}^{20}$ $=-7.0\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.11(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 6.22-5.87(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-11), 5.21-5.06(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{H}-9, \mathrm{H}-12), 4.91(\mathrm{~d}, 1 \mathrm{H}, J=11.8 \mathrm{~Hz}, \mathrm{OCHH}-\mathrm{Ph}), 4.79(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.1 \mathrm{~Hz}, \mathrm{OCHH}-\mathrm{Ph}), 4.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.1 \mathrm{~Hz}, \mathrm{OCHH}-\mathrm{Ph}), 4.73-4.65$ ($\mathrm{m}, 2 \mathrm{H}, 2 \mathrm{xOCHH}-\mathrm{Ph}$), $4.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.1 \mathrm{~Hz}, \mathrm{OCHH}-\mathrm{Ph}), 4.21-4.16(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{NCHH}-\mathrm{Ph}), 3.83(\mathrm{~d}, 1 \mathrm{H}, J=13.9 \mathrm{~Hz}, \mathrm{NCHH}-\mathrm{Ph})$, $3.76-3.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.66(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.1,2.8 \mathrm{~Hz}, \mathrm{H}-4), 3.63(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, \mathrm{H}-2), 3.06$ (dd, $1 \mathrm{H}, \mathrm{J}=15.3,1.7 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}), 2.93$ (dd, $1 \mathrm{H}, \mathrm{J}=15.3,6.1 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}$), $2.71-2.58(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}, \mathrm{H}-10), 2.50(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.2,7.2 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $138.7,138.7,138.1$ ($\mathrm{C}^{\mathrm{IV}}-\mathrm{Ar}$), 135.5, 134.7 (C8, C10), 128.6 - 127.1 (CH-Ar), 118.3, 118.1 (C12, C9), 85.98 (C4), 83.1 (C2), 80.8 (C3), $74.75,74.4,72.8\left(\mathrm{OCH}_{2}-\mathrm{Ph}\right), 68.6(\mathrm{C} 5), 64.7\left(\mathrm{C}^{\mathrm{IV}}-1\right), 54.8\left(\mathrm{NCH}_{2}-\mathrm{Ph}\right), 49.8(\mathrm{C} 6), 39.8,38.4(\mathrm{C} 10, \mathrm{C} 7) ; \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{40} \mathrm{H}_{45} \mathrm{NO}_{4} \mathrm{Na}$ 626.3240; Found 626.3236.
The obtained azepane ($68 \mathrm{mg}, 0.112 \mathrm{mmol}, 1.0$ eq.) was reacted with TFAA ($23.6 \mu \mathrm{~L}, 0.225 \mathrm{mmol}, 1.5 \mathrm{eq}$.) in the presence of $\mathrm{Et}_{3} \mathrm{~N}(23.6 \mu \mathrm{~L}, 0.169 \mathrm{mmol}, 2.0 \mathrm{eq}$.) following general procedure A . The crude was purified over a flash chromatography column (Interchim ${ }^{\circ} 4 \mathrm{~g}, \mathrm{PE} / E t O A c 95: 5$ to $90: 10$) to afford $1 \mathrm{e}\left(23 \mathrm{mg}, 34 \%\right.$) as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.41$ (PE/EtOAc 90/10); $[\alpha]_{\mathrm{D}}^{20}=+33.1$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.11$ (m, 20H, H-Ar), 6.02 (ddt, $1 \mathrm{H}, \mathrm{J}=10.0,8.0,7.0 \mathrm{~Hz}, \mathrm{H}-8$), 5.83 (dddd, $1 \mathrm{H}, \mathrm{J}$ $=17.0,10.3,8.3,5.4 \mathrm{~Hz}, \mathrm{H}-11), 5.08(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-9), 5.05-4.95(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-12, \mathrm{OCHH}-\mathrm{Ph}), 4.90(\mathrm{~d}, 1 \mathrm{H}, J=10.7 \mathrm{~Hz}, \mathrm{OCHH}-\mathrm{Ph}), 4.81$ ($\mathrm{d}, 1 \mathrm{H}, J=10.7 \mathrm{~Hz}, \mathrm{OCHH}-\mathrm{Ph}$), $4.73(\mathrm{~d}, 1 \mathrm{H}, J=11.3 \mathrm{~Hz}, \mathrm{OCHH}-\mathrm{Ph}), 4.67(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}, \mathrm{OCHH}-\mathrm{Ph}), 4.55(\mathrm{~d}, 1 \mathrm{H}, J=11.3 \mathrm{~Hz}$, OCHH-Ph), 4.12 (d, 1H, J = $15.4 \mathrm{~Hz}, \mathrm{NCHH}-\mathrm{Ph}), 4.06-4.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 3.97(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.6 \mathrm{~Hz}, \mathrm{H}-3), 3.88-3.76(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$, NCHH-Ph), 3.69 (dd, 1H, J = 9.7, $6.2 \mathrm{~Hz}, \mathrm{H}-4$), $3.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{H}-2$), $3.19(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{H}-5), 2.82-2.58(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-10 \mathrm{~b}$, OH), 2.52 (dd, $1 \mathrm{H}, \mathrm{J}=14.6,6.8 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{~b}), 2.41$ (dd, $1 \mathrm{H}, \mathrm{J}=16.2,8.3 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{a}$), 2.17 (dd, $1 \mathrm{H}, \mathrm{J}=14.6,8.1 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.9,139.7,139.0,138.6,137.6$ (C^{IV}-Ar), 135.7 (C8), 134.3 (C11), 128.6 - 126.7 (CH-Ar), 118.55 (C9), 117.8
 (C10); HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{NO}_{4}[\mathrm{M}+]^{+}: 604.3427$; Found: 604.3458.
Compound (4a). Compound $1 \mathbf{e}$ ($23 \mathrm{mg}, 0.038 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was reacted according to procedure B. The crude was purified over a flash chromatography column (Interchim ${ }^{\circ} 4 \mathrm{~g}$, EP/AcOEt 95:5 to 85:15) to afford $\mathbf{4 a}$ ($13.5 \mathrm{mg}, 62 \%$) as a colorless oil. R_{f}
$=0.14$ (PE/EtOAc 95/5); $[\alpha]_{\mathrm{D}}^{20}=+7.6\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51-7.00(\mathrm{~m}, 20 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 5.65$ (br.d, $1 \mathrm{H}, \mathrm{J}=5.9$ $\mathrm{Hz}, \mathrm{H}-8), 5.52(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.9 \mathrm{~Hz}, \mathrm{H}-9), 4.93(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}, \mathrm{OCHH}-\mathrm{Ph}), 4.84(\mathrm{~d}, 1 \mathrm{H}, J=10.9 \mathrm{~Hz}, \mathrm{OCHH}-\mathrm{Ph}), 4.75(\mathrm{~d}, 1 \mathrm{H}, J=10.9$ $\mathrm{Hz}, \mathrm{OCHH}-\mathrm{Ph}$), $4.70(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz}, \mathrm{OCHH}-\mathrm{Ph}), 4.62(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}, \mathrm{OCHH}-\mathrm{Ph}), 4.54(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz}, \mathrm{OCHH}-\mathrm{Ph}), 3.80$ (m, 4H, H-6, H-4, H-3), 3.69 (d, 1H, J = $15.9 \mathrm{~Hz}, \mathrm{NCHH}-\mathrm{Ph}$), 3.64 (d, $1 \mathrm{H}, \mathrm{J}=15.9 \mathrm{~Hz}, \mathrm{NCHH}-\mathrm{Ph}$), 3.46 (d, $1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{H}-2$), 3.10 (ddd, 1H, J = 8.5, 5.6, $2.9 \mathrm{~Hz}, \mathrm{H}-5$), 2.97 (d, $1 \mathrm{H}, \mathrm{J}=9.6 \mathrm{~Hz}, \mathrm{OH}$), 2.67 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=17.5 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{~b}$), 2.52 (d, J = $18.0 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{~b}$), 2.40 (d, 1H, J=18.0 Hz, H-7a), 2.02 (d, 1H, J= $17.5 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{a}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.7,138.8,138.6,137.6$ ($\mathrm{C}^{1 \mathrm{~V}}-\mathrm{Ar}$), 130.5 (C9), 128.0 (C8), 128.6-126.7 (CH-Ar), 86.0 (C2), 82.0 (C3), 81.3 (C4), 75.3, 75.2, 74.3 ($\mathrm{OCH}_{2}-\mathrm{Ph}$), 69.0 ($\mathrm{C}^{\mathrm{IV}-1), ~} 59.7$ (C6), 59.5 (C5), 50.2 ($\mathrm{NCH}_{2} \mathrm{Ph}$), 45.7 (C10), 38.6 (C7); $\mathrm{HRMS}\left(E S I^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{38} \mathrm{H}_{41} \mathrm{NNaO}_{4} 598.2927$; Found 598.2956.
Compound (4b). Compound $\mathbf{1 f}$ ($83 \mathrm{mg}, 0.134 \mathrm{mmol}, 1.0$ eq.) was reacted according to procedure B . The crude was purified over a flash chromatography column (Interchim ${ }^{\circ} 4 \mathrm{~g}$, EP/AcOEt 95:5 to $85: 15$) to afford $\mathbf{4 b}$ ($62 \mathrm{mg}, 78 \%$) as a colorless oil. $\mathrm{R}_{\mathrm{f}}=$ 0.26 (PE/EtOAc 90/10); $[\alpha]_{\mathrm{D}}^{20}=+3.8\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.14(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 5.77(\mathrm{br} . \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}$, $\mathrm{H}-9), 5.62(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.0 \mathrm{~Hz}, \mathrm{H}-8), 5.02(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}, \mathrm{OCHH}-\mathrm{Ph}), 4.86(\mathrm{~d}, 1 \mathrm{H}, J=10.7 \mathrm{~Hz}, \mathrm{OCHH}-\mathrm{Ph}), 4.79(\mathrm{~d}, 1 \mathrm{H}, J=10.7$ $\mathrm{Hz}, \mathrm{OCHH}-\mathrm{Ph}), 4.72$ (d, 1H, J=11.2 Hz, OCHH-Ph), 4.58 (d, 1H, J = $11.5 \mathrm{~Hz}, \mathrm{OCHH}-\mathrm{Ph}$), 4.53 (d, 1H, J = 11.2 Hz, OCHH-Ph), 4.30 (d, 1H, J = $16.1 \mathrm{~Hz}, \mathrm{NCHH}-\mathrm{Ph}$), 4.08 (dd, 1H, J = 10.9, $8.7 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$), $4.02-3.90$ (m, 2H, H-3, NCHH-Ph), 3.77 (dd, $1 \mathrm{H}, \mathrm{J}=9.4,6.6$ $\mathrm{Hz}, \mathrm{H}-4), 3.73(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.9 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 3.26(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}, \mathrm{H}-2), 3.14(\mathrm{t}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{H}-5), 2.61(\mathrm{br} . \mathrm{d}, 1 \mathrm{H}, \mathrm{J}=18.3 \mathrm{~Hz}, \mathrm{H}-$ 7b), 2.15-2.02 (m, 3H, H-10, H-11b), 1.84 (br.d, $1 \mathrm{H}, \mathrm{J}=18.2 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}$), $1.53(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-11 \mathrm{a}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.3$, 138.8, 138.6, 137.7 ($\mathrm{C}^{\mathrm{IV}}-\mathrm{Ar}$), 128.6-127.0 (CH-Ar), 126.9 (C8), 126.6 (C9), 86.0 (C2), 81.5 (C4), 80.8 (C3), 75.9, 75.3, $74.2\left(\mathrm{OCH}_{2}-\right.$ $\mathrm{Ph}), 61.5$ (C6), 59.8 (CV-1), 59.7 (C5), 52.0 ($\mathrm{NCH}_{2} \mathrm{Ph}$), 34.3 (C7), 29.0 (C11), 23.3 (C10); HRMS (ESI ${ }^{+}$m/z calcd for $\mathrm{C}_{39} \mathrm{H}_{44} \mathrm{NO}_{4}$ [M+H] ${ }^{+}$: 590.3264; Found: 590.3285.
Compounds (5a) and (5b). To a solution spiro-iminosugar $\mathbf{4 b}$ ($61 \mathrm{mg}, 0.103 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in a $1: 1$ mixture of acetone/ $\mathrm{H}_{2} \mathrm{O}$ (1 $\mathrm{mL} / 1 \mathrm{~mL}$) were added citric acid ($24 \mathrm{mg}, 0.113 \mathrm{mmol}, 1.1 \mathrm{eq}$.), 4 -methylmorpholine N-oxide ($14.5 \mathrm{mg}, 0.123 \mathrm{mmol}, 1.2 \mathrm{eq}$) and OsO_{4} ($131.5 \mathrm{~mL}, 0.020 \mathrm{mmol}, 0.2$ eq.). The mixture was stirred at room temperature for 18 h when TLC showed total consumption of the starting material. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(24.5 \mathrm{mg}, 0.113 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added and the mixture was stirred at room temperature for 1 h . The mixture was extracted 3 times with EtOAc (15 mL), the combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. The crude was purified over a flash chromatography column (Interchim 4 g, EP/AcOEt $85: 15$ to $70: 30$) to afford $\mathbf{5 a}$ ($11 \mathrm{mg}, \mathbf{1 7 \%}$) and 5b ($13 \mathrm{mg}, 20 \%$) as colorless oils. These two compounds were directly engaged in the next step of hydrogenolysis to give $\mathbf{6 c}$ and $\mathbf{6 d}$.
Compound (6a). Application of procedure C to compound $\mathbf{4 a}(13 \mathrm{mg}, 0.022 \mathrm{mmol})$ afforded compound $\mathbf{6 a}$ (5 mg , quant., hydrochloride salt) as a colorless oil. [$\alpha]_{\mathrm{D}}^{20}=-18.8(\mathrm{c} 0.25, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 3.96(\mathrm{t}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}, \mathrm{H}-3)$, $3.86-3.81$ (m, 1H, H-4), 3.76 (dd, 1H, J = 9.3, 4.2 Hz, H-6b), 3.73 (dd, 1H, J = 9.3, 5.0 Hz, H-6a), 3.52 (dd, $1 \mathrm{H}, \mathrm{J}=3.0,1.0 \mathrm{~Hz}, \mathrm{H}-$ 2), $3.46(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}, \mathrm{H}-5), 2.53-2.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10 \mathrm{~b}), 2.29-2.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}), 1.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7 \mathrm{a}, \mathrm{H}-9 \mathrm{~b}), 1.68(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ 8b, H-10a), 1.58 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-8 \mathrm{a}, \mathrm{H}-9 \mathrm{a}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 71.4$ (C2), 69.7 ($\mathrm{C}^{\text {IV }}-1$), 69.2 (C3), 67.6 (C4), 59.0 (C6), 54.7 (C5), 34.8 (C10), 32.1 (C7), 24.2 (C9), 22.6 (C8); HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 218.1386$; Found: 218.1387.
Compound (6b). Application of procedure C to compound $\mathbf{4 b}$ ($17 \mathrm{mg}, 0.028 \mathrm{mmol}$) afforded compound $\mathbf{6 b}$ ($6 \mathrm{mg}, 91 \%$, hydrochloride salt) as a colorless oil. $[\alpha]_{\mathrm{D}}^{20}=-20.4(c 0.25, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} N \mathrm{NR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 4.03$ (br.d, $1 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{H}-5$), 3.99 (t, 1H, J = 3.1 Hz, H-4), 3.84-3.80 (m, 1H, H-3), 3.76 (dd, 1H, J = 10.6, 5.4 Hz, H-2'b), 3.72 (dd, 1H, J = 10.6, 6.6 Hz, H-2'a), $3.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 2.76$ (br.d, $1 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{~b}), 2.31$ (dd, $1 \mathrm{H}, \mathrm{J}=13.5,4.7 \mathrm{~Hz}, \mathrm{H}-11 \mathrm{~b}), 1.71-1.57$ (m, 3H, H-8b, H-9b, H-10b), 1.48-1.29 (m, 4H, H-7a, H-8a H-10a, H-11a), 1.28-1.20 (m, 1H, H-9a); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 69.5$ (C4), 67.8 (C3), 66.6 (C5), 61.8 (C IV -6), 59.1 (C2'), 52.1 (C2), 32.3 (C7), 29.5 (C11), 24.7 (C9), 21.8 (C8), 20.9 (C10); HRMS (ESI ${ }^{+}$) m/z Calcd for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 232.1543 ; Found: 232.1546.
Compound ($\mathbf{6 c}$). Application of procedure C to compound $\mathbf{5 a}$ ($11 \mathrm{mg}, 0.018 \mathrm{mmol}$) afforded compound $\mathbf{6 c}$ (6 mg , quant., hydrochloride salt) as a colorless oil. [$\alpha]_{\mathrm{D}}^{20}=-90.0\left(\mathrm{c} 0.5, \mathrm{MeOH}\right.$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 4.28$ (br.s, $1 \mathrm{H}, \mathrm{H}-2$), $4.03(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}$ $=3.3 \mathrm{~Hz}, \mathrm{H}-3), 3.91(\mathrm{dd}, 2 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-4), 3.77(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=11.9,5.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}), 3.74-3.66(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-9), 3.60(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}$, $\mathrm{H}-5$), 2.63 (br.s, 1H, H-7b), 2.17 (br.d, $1 \mathrm{H}, \mathrm{J}=12.3 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{~b}$), 1.78 (dd, $1 \mathrm{H}, \mathrm{J}=14.3,2.8 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}$), 1.61 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-10 \mathrm{a}$), 1.51 (m , $2 \mathrm{H}, \mathrm{H}-11$); ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{D}_{2} \mathrm{O}$) $\delta 69.27$ (C3), 69.2 (C9), 68.6 (C2), 67.0 (C8), 66.9 (C4), 61.3 (CV -1), 58.9 (C6), 52.6 (C5), 32.7 (C7), 28.4 (C10), 23.1 (C11); HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 264.1442$; Found: 264.1448.
Compound ($\mathbf{6 d}$). Application of procedure C to compound $\mathbf{5 b}$ ($13 \mathrm{mg}, 0.022 \mathrm{mmol}$) afforded compound $\mathbf{6 d}$ (6.5 mg , quant., hydrochloride salt) as a colorless oil. $[\alpha]_{\mathrm{D}}^{20}=-64.0(\mathrm{c} 0.5, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 3.96(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=3.3 \mathrm{~Hz}, \mathrm{H}-3), 3.92$ $-3.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 3.82-3.74(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 3.73-3.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9), 3.47(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.1 \mathrm{~Hz}, \mathrm{H}-2), 2.75$ (br.d, $1 \mathrm{H}, \mathrm{J}=13.5 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}$), 2.28 (br.d, $1 \mathrm{H}, \mathrm{J}=11.2 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{~b}$), $1.80-1.53$ (m, $4 \mathrm{H}, \mathrm{H}-7 \mathrm{a}, \mathrm{H}-10 \mathrm{a}, \mathrm{H}-11$); ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\mathrm{CD}_{3} \mathrm{OD}$) $\delta 72.8$ (C2), 69.3 (C9), 69.1 (C3), 69.0 (C8), 67.5 (C4), 60.6 ($\mathrm{C}^{\mathrm{V}-1), ~} 59.4$ (C6), 52.7 (C5), 31.8 (C7), 30.1 (C10), 22.9 (C11); HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 264.1442$; Found: 264.1452.
Benzyl (1S,2S,3R,4R,5R)-1-allyl-2,3,4-tris(benzyloxy)-1-(but-3-en-yl)-5-hydroxyazepane-N-carboxylate (8). To a solution of compound $\mathbf{7}^{25}$ ($174 \mathrm{mg}, 0.329 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in EtOAc/ $\mathrm{H}_{2} \mathrm{O}(1: 1,0.1 \mathrm{M})$ were added at room temperature $\mathrm{KHCO}_{3}(329 \mathrm{mg}$, $3.290 \mathrm{mmol}, 10 \mathrm{eq}$.$) and \mathrm{CbzCl}(216 \mu \mathrm{~L}, 0.987 \mathrm{mmol}, 3.0 \mathrm{eq}$.). The mixture was stirred for 16 h at room temperature, then extracted twice with EtOAc. The organic layers were dried over MgSO_{4}, filtered and concentrated. The crude was purified over a flash chromatography column (Interchim ${ }^{\circ} 4 \mathrm{~g}, \mathrm{PE} / \mathrm{EtOAc}^{25: 5}$ to $85: 15$) to afford compound 8 ($95 \mathrm{mg}, 44 \%$) as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.26(\mathrm{PE} / \mathrm{EtOAc} 90 / 10) ;[\alpha]_{\mathrm{D}}^{20}=-25.3\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51-7.04(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 5.79-5.62(\mathrm{~m}$,
$2 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-12$), 5.08 (d, $1 \mathrm{H}, \mathrm{J}=12.4 \mathrm{~Hz}, \mathrm{OCHH}-\mathrm{Ph}), 5.03(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-9, \mathrm{OCHH}-\mathrm{Ph}), 4.84(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-13), 4.73(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.3 \mathrm{~Hz}$, OCHH-Ph), $4.70-4.66$ (m, 2H, 2xOCHH-Ph), $4.65(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz}, \mathrm{OCHH}-\mathrm{Ph}), 4.40(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz}, \mathrm{OCHH}-\mathrm{Ph}), 4.16$ (dq, 1 H , $J=10.6,3.5 \mathrm{~Hz}, \mathrm{H}-5), 4.03(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.2,3.9 \mathrm{~Hz}, \mathrm{H}-3), 3.80(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-2), 3.71$ (dd, $1 \mathrm{H}, \mathrm{J}=9.0,3.5 \mathrm{~Hz}, \mathrm{H}-4), 3.27(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}$, $6 \mathrm{~b}), 2.72$ (dd, $1 \mathrm{H}, \mathrm{J}=14.0,7.8 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}$), 2.59 (br.s, $1 \mathrm{H}, \mathrm{OH}$), $2.26-2.16$ (m, $1 \mathrm{H}, \mathrm{H}-11 \mathrm{~b}), 2.07-1.94$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-10 \mathrm{~b}, \mathrm{H}-11 \mathrm{a}$), 1.81 (m, H-10a); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.9$ (C=O), 139.0 (C8), 138.3, 138.1, 137.7, 136.6 ($\mathrm{C}^{\mathrm{IV}}-\mathrm{Ar}$), 134.3 (C12), 128.6-127.0 (CH-Ar), 119.1 (C9), 114.1 (C13), 84.8 (C2), 82.0 (C3), 81.8 (C4), 74.5, 74.4, 73.7 ($\left.\mathrm{OCH}_{2}-\mathrm{Ph}\right), 67.3$ (C5), 67.1 ($\left.\mathrm{OCH}_{2}-\mathrm{Ph}\right), 65.4$ (C ${ }^{\mathrm{IV}-}$ 1), 46.6 (C6), 38.5 (C7), 34.6 (C10), 29.3 (C11); HRMS (ESI ${ }^{+}$) m/z: [$\left.\mathrm{M}+\mathrm{Na}\right]^{+}$Calcd for $\mathrm{C}_{42} \mathrm{H}_{47} \mathrm{NNaO}_{6} 684.3295$; Found 684.3303.

Compound (9a). To a solution of 8 ($41 \mathrm{mg}, 0.061 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.7 \mathrm{~mL}, 0.05 \mathrm{M})$ under Ar atmosphere was added $2^{\text {nd }}$ generation Grubbs catalyst ($5.1 \mathrm{mg}, 0.006 \mathrm{mmol}, 0.1 \mathrm{eq}$.). The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 1 h by which time TLC monitoring showed the total consumption of the starting material. The mixture was then concentrated under reduced pressure and the crude was purified over a flash chromatography column (Interchim ${ }^{\circ} 4 \mathrm{~g}, \mathrm{PE} / \mathrm{EtOAc} 98: 2$ to 90:10) to afford 9a $(28 \mathrm{mg}, 72 \%)$ as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.28(\mathrm{PE} / E t O A c 90 / 10) ;[\alpha]_{\mathrm{D}}^{20}=-6.8\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.17$ (m, 20H, H-Ar) 5.64 (br.d, 1H, J = $10.1 \mathrm{~Hz}, \mathrm{H}-10$), 5.59 (br.d, $1 \mathrm{H}, J=10.1 \mathrm{~Hz}, \mathrm{H}-9$), 4.98 (s, $2 \mathrm{H}, 2 \times \mathrm{OCHH}-\mathrm{Ph}$). 4.72 (d, J=11.2 Hz, OCHH-Ph), 4.66 (s, 2H, 2xOCHH-Ph), 4.60 ($\mathrm{d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}, \mathrm{OCHH}-\mathrm{Ph}$), 4.50 (d, 1H, J=11.2 Hz, OCHH-Ph), 4.24 ($\mathrm{d}, 1 \mathrm{H}, J=11.2$ $\mathrm{Hz}, \mathrm{OCHH}-\mathrm{Ph}$), $4.23-4.17(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 4.06(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.0,8.2 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~b}), 4.01(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.4,2.3 \mathrm{~Hz}, \mathrm{H}-5), 3.93(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $2.3 \mathrm{~Hz}, \mathrm{H}-6), 3.77$ (dd, 1H, J = 9.4, 3.6 Hz, H-4), 3.71 (dd, $1 \mathrm{H}, \mathrm{J}=15.0,9.3 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{a}$), 3.52 (d, $1 \mathrm{H}, \mathrm{J}=16.7 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{~b}$), $2.53-2.42$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-8 \mathrm{a}, \mathrm{OH}$), $2.40-2.29$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-11 \mathrm{~b}$), $2.09-1.88(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-9 \mathrm{a}, \mathrm{H}-12) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.1$ (C=O), 138.4, 138.2, 138.0, 136.7 (C'V-Ar), 128.5-127.2 (CH-Ar), 125.4, 125.4 (C10, C9), 82.7 (C6), 81.1 (C4), 80.6 (C5), 73.9, 73.9, 73.4 ($\mathrm{OCH}_{2}{ }^{-}$ Ph), $67.6(\mathrm{C} 3), 66.72\left(\mathrm{OCH}_{2}-\mathrm{Ph}\right) .63 .4\left(\mathrm{C}^{\mathrm{IV}-7)}\right.$, $45.4(\mathrm{C} 2), 29.4(\mathrm{C} 8), 26.5$ (C11), 23.5 (C12); HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{40} \mathrm{H}_{43} \mathrm{NO}_{6} \mathrm{Na} 656.2982$; Found 656.2996.
($5 R, 4 R, 3 R, 2 R, 1 S$)-1-allyl-2,3,4-tris(benzyloxy)-1-propylazepan-5-ol (9c). To a solution of 6-azido-6-deoxy-2,3,4-tri-O-benzyl-Dglucono lactone ${ }^{25}(410 \mathrm{mg}, 0.86 \mathrm{mmol})$ in anhydrous THF (9 mL), at $0^{\circ} \mathrm{C}$ under Ar, was added a solution of propylmagnesium chloride (2 M in THF, $0.65 \mathrm{~mL}, 1.30 \mathrm{mmol}, 1.5 \mathrm{eq}$.). The mixture was stirred for 2 h at room temperature, then quenched by addition of aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted three times with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated. The crude was purified over a flash chromatography column (Interchim ${ }^{*} 12 \mathrm{~g}$, PE/EtOAc 90:10 to 85:15) to afford the expected 6-azido-6-deoxy-2,3,4-tri-O-benzyl- β-propyl- α-D-gluco pyranose ($190 \mathrm{mg}, 43$ $\%$) as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.23(\mathrm{PE} / \mathrm{EtOAc} 90 / 10) ;[\alpha]_{\mathrm{D}}^{20}=+107.8\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.26(\mathrm{~m}, 15 \mathrm{H}$, H-Ar), 4.97-4.90 (m, 4H, 4xOCHH-Ph), $4.71(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.1 \mathrm{~Hz}, \mathrm{OCHH}-\mathrm{Ph}), 4.64(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.0 \mathrm{~Hz}, \mathrm{OCHH}-\mathrm{Ph})$, $4.07-4.00(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5), 3.56(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.6 \mathrm{~Hz}, \mathrm{H}-4), 3.51(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=13.2,2.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}), 3.46(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{H}-2), 3.31(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=13.2$, $4.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}$), $2.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.68-1.61$ (m, 2H, H-7a, H-7b), 1.50-1.39 (m, 1H, H-8b), 1.31 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), 0.87 (t, 3H, J = 7.3, $\mathrm{H}-9) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.4,137.9,137.8$ ($\mathrm{C}^{\mathrm{IV}}-\mathrm{Ar}$), $128.6-127.8$ (CH-Ar), 98.6 (C $\mathrm{C}^{1 \mathrm{~V}}-1$), 83.6 (C3), 81.3 (C2), 78.8 (C4), $75.7,75.6,75.2\left(\mathrm{OCH}_{2}-\mathrm{Ph}\right), 71.3$ (C5), 51.2 (C6), 40.8 (C7), 15.9 (C8), 14.3 (C9); HRMS (ESI ${ }^{+}$) m/z: [$\left.\mathrm{M}+\mathrm{Na}\right]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{NaO}_{5}$ 540.2474; Found 540.2476.

To a solution of 6-azido-6-deoxy-2,3,4-tri-O-benzyl- β-propyl- α-D-glucopyranose ($139 \mathrm{mg}, 0.269 \mathrm{mmol}, 1.0 \mathrm{eq}$) in anhydrous $\mathrm{MeOH}(3 \mathrm{~mL})$ under Ar , was added at room temperature, triphenylphosphine polymer bound ($3.0 \mathrm{mmol} . \mathrm{g}^{-1}, 269 \mathrm{mg}, 0.806$ $\mathrm{mmol}, 3.0$ eq.). The reaction mixture was stirred at $45^{\circ} \mathrm{C}$ for 36 h , then filtered over a pad of Celite, eluted with DCM and concentrated to give the expected bicyclic hemiaminal which was directly used for the next step without further purification. This crude bicyclic hemiaminal was dissolved in anhydrous THF (3 mL) under Ar, then All $\mathrm{MgBr}(1 \mathrm{M}, 0.806 \mathrm{~mL}, 0.806 \mathrm{mmol}, 3.0$ eq.) was added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 1 h 30 . The reaction mixture was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$, then extracted thrice with DCM. The combined organic layers were dried over MgSO_{4}, filtered and concentrated. The crude was purified over a flash chromatography column (EP/AcOEt 60/40 to 40/60) to afford 9c ($33 \mathrm{mg}, 24 \%, 2$ steps) as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.32$ (PE/EtOAc 70/30); $[\alpha]_{\mathrm{D}}^{20}=-10.1\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.45-7.09(\mathrm{~m}, 15 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 5.82-5.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 5.02(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-9), 4.67(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.6 \mathrm{~Hz}, \mathrm{OCHH}-\mathrm{Ph}), 4.67(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.6$ $\mathrm{Hz}, \mathrm{OCHH}-\mathrm{Ph}), 4.62(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}, \mathrm{OCHH}-\mathrm{Ph}), 4.57(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}, \mathrm{OCHH}-\mathrm{Ph}), 4.56(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz}, \mathrm{OCHH}-\mathrm{Ph}), 4.16$ (d, 1H, J = 11.0 Hz, OCHH-Ph), 3.94 (dd, $1 \mathrm{H}, J=6.9,2.7 \mathrm{~Hz}, \mathrm{H}-3$), 3.84 (brd, $1 \mathrm{H}, J=4.3 \mathrm{~Hz}, \mathrm{H}-5$), 3.77 (dd, $1 \mathrm{H}, J=6.9,1.6 \mathrm{~Hz}, \mathrm{H}-$ 4), $3.32(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.7 \mathrm{~Hz}, \mathrm{H}-2), 2.89(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.2,5.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}), 2.78(\mathrm{~d}, 1 \mathrm{H}, J=15.2 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.31(\mathrm{dd}, 1 \mathrm{H}, J=15.1,7.0 \mathrm{~Hz}$, $\mathrm{H}-7 \mathrm{~b}), 2.14$ (dd, 1H, J = 15.1, $7.3 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}$), 1.27-1.15 (m, 3H, H-10b, H-11), 0.90-0.79 (m, 1H, H-10a), 0.69 (t, 3H, J=7.0 Hz,
 (C3), 81.3 (C2), 73.9, 73.1, 72.5 ($\mathrm{OCH}_{2}-\mathrm{Ph}$), 71.2 (C5), 60.1 ($\mathrm{Cl}^{\mathrm{V}-1), ~} 46.4$ (C6), 39.7 (C10), 34.5 (C7), 16.9 (C11), 14.6 (C12); HRMS (ESI ${ }^{+}$m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{NO}_{4} 516.3114$; Found 516.3117.
Compound (10a). Application of procedure C to compound 9 a ($22 \mathrm{mg}, 0.035 \mathrm{mmol}$) afforded compound 10a (9.5 mg , quant., hydrochloride salt) as a colorless oil. $[\alpha]_{\mathrm{D}}^{20}=-26.0(\mathrm{c} 0.5, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 4.14(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=5.8,1.6 \mathrm{~Hz}, \mathrm{H}-$ 5), 4.03 (m, 2H, H-2, H-3), 3.97 (dd, 1H, J = 6.3, 1.7 Hz, H-4), 3.41 (dd, 1H, J = 14.3, 1.3 Hz, H-6b), 3.24 (dd, 1H, J=14.3, 5.9 Hz, H-6a), 2.25-2.15 (m, 2H, H-11b, H-7b), 1.77-1.54 (m, 7H, H-7a, H-8, H-19b, H-10, H-11a), 1.44 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-9 \mathrm{a}$); ${ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 77.9$ (C4), 77.8 (C3), 72.1 (C2), 69.8 (C5), 63.9 ($\mathrm{C}^{\mathrm{V}}-1$), 44.4 (C6), 33.2 (C7), 28.8 (C11), 24.5 (C9), 21.1 (C8, C10); HRMS (ESI ${ }^{+}$) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{NO}_{4}$ 232.1543; Found 232.1546.
Compound (10b). Application of procedure C to compound $9 \mathrm{~b}(30 \mathrm{mg}, 0.061 \mathrm{mmol})$ afforded compound $\mathbf{1 0 b}$ (15.7 mg , quant., hydrochloride salt) as a colorless oil. $[\alpha]_{\mathrm{D}}^{20}=-14.6(c 0.5, \mathrm{MeOH}),{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 4.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.8 \mathrm{~Hz}, \mathrm{H}-5), 3.93$
(dd, 1H, J = 6.7, 4.7 Hz, H-3), 3.89 (dd, 1H, J = 6.7, $1.8 \mathrm{~Hz}, \mathrm{H}-4$), 3.66 (d, 1H, J = $4.7 \mathrm{~Hz}, \mathrm{H}-6$), 3.36 (d, 1H, J = $10.9 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$), 3.25 (dd, $1 \mathrm{H}, \mathrm{J}=14.3,6.1 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 1.86(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=13.7,4.2 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{~b}), 1.77-1.69(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}), 1.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{~b}), 1.47(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-8 \mathrm{a}), 1.43(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-10), 1.01(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{H}-9),{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 77.2$ (C4), 75.2 (C3), 74.7 (C2), 68.3 (C5), 63.9 (C'IV-1), 44.1 (C6), 36.5 (C7), 21.0 (C10), 16.3 (C8), 13.3 (C9), HRMS (ESI ${ }^{+}$) m/z: [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{NO}_{4} 220.1549$; Found 220.1538.

Compound (10c). Application of procedure C to compound 9c ($17 \mathrm{mg}, 0.033 \mathrm{mmol}$) afforded compound 10c (9.5 mg , quant., hydrochloride salt) as a colorless oil. [$\alpha]_{\mathrm{D}}^{20}=-21.2(\mathrm{c} 0.25, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 4.03(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.9 \mathrm{~Hz}, \mathrm{H}-5)$, 3.87 (dd, $1 \mathrm{H}, J=6.5,3.6 \mathrm{~Hz}, \mathrm{H}-3$), 3.84 (dd, $1 \mathrm{H}, J=6.5,1.7 \mathrm{~Hz}, \mathrm{H}-4$), $3.64(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}, \mathrm{H}-2$), $3.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 3.15$ (dd, $1 \mathrm{H}, \mathrm{J}=14.3,5.9 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 1.79(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=13.4,4.6 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{~b}), 1.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-10), 1.59-1.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}), 1.40-1.20(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{H}-8, \mathrm{H}-11), 0.90(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}-9, \mathrm{H}-12)$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 77.6$ (C4), 77.0 (C3), 73.5 (C2), 69.3 (C5), 66.8 ($\mathrm{C}^{\mathrm{IV}-1), ~} 44.7$ (C6), 35.5 (C7), 31.7 (C10), 15.9, 15.6 (C8, C11), 13.2, 13.2 (C9, C12); HRMS (ESI ${ }^{+}$) m/z: [M+H] Calcd for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{NO}_{4} 248.1856$; Found 248.1856.

Material and methods for enzymes inhibition assays

The affinity of human lysosomal acid α-glucosidase (GAA) was performed according to our usual method. Briefly, GAA activity was used in combination with Myozyme (Genzyme; Boston, MA) and 4-methylumbelliferyl- α-D-glucopyranoside (Sigma-Aldrich Co; St. Louis, Mo, USA). The reaction mixture consisted of 100 mM Mcllvaine buffer (pH 5.2), 0.25% sodium taurocholate, 0.1% Triton X-100 (Nacalai Tesque Inc.; Kyoto, Japan), and an appropriate amount of enzyme. The reaction mixture was preincubated at $0{ }^{\circ} \mathrm{C}$ for 45 min , and the reaction was started by using 4 mM substrate solution, followed by incubation at $37^{\circ} \mathrm{C}$ for 30 min . The reaction was stopped by the addition of 1.6 mL of the solution of 400 mM glycine- NaOH solution (pH 10.6). The released 4-methylumbelliferone was measured (excitation 362 nm and emission 450 nm) with a F-4500 fluorescence spectrophotometer (Hitachi, Tokyo, Japan).
Kinetic parameters were determined by the double-reciprocal plot method of Lineweaver-Burk plots at increasing substrate concentrations.
The inhibitory activity toward β-glucocerebrosidase was measured with Cerezyme (Genzyme; Boston, MA) as the enzyme source and 4-methylumbelliferyl- β-D-glucopyranoside (Sigma-Aldrich Co; St. Louis, Mo, USA) as the substrate. Brush border membranes were prepared from the rat small intestine according to the method of Kessler and were assayed at pH 6.8 for rat intestinal maltase and sucrase using the appropriate disaccharides as substrates.
Other enzymes were purchased from Sigma-Aldrich Chemical Co. (St. Louis, Mo. USA).
For rat intestinal maltase activities, the reaction mixture contained 25 mM maltose or sucrose and the appropriate amount of enzyme, and the incubations were performed for $10-30 \mathrm{~min}$ at $37^{\circ} \mathrm{C}$. The reaction was stopped by heating at $100^{\circ} \mathrm{C}$ for 3 min . After centrifugation ($600 \mathrm{~g} ; 10 \mathrm{~min}$), 0.05 mL of the resulting reaction mixture was added to 3 mL of the Glucose CII-test Wako (Wako Pure Chemical Ind., Osaka, Japan). The absorbance at 505 nm was measured to determine the amount of the released D-glucose.
Other glycosidase activities were determined using an appropriate amount of p-nitrophenyl glycoside as a substrate in a buffer solution at the optimum pH value of each enzyme. The reaction was stopped by adding $400 \mathrm{mM} \mathrm{Na}{ }_{2} \mathrm{CO}_{3}$. The released p nitrophenol was measured spectrometrically at 400 nm .

Conflicts of interest

"There are no conflicts to declare".

Acknowledgements

Z.D. acknowledges Poitiers University and "Région Nouvelle Aquitaine" for a PhD grant. The authors acknowledge financial support from the European Union (ERDF) and "Région Nouvelle Aquitaine". This work pertains to the French government program "Investissements d'Avenir" (EUR INTREE, reference ANR-18-EURE-0010).

Notes and references

1 H. Paulsen, Angew. Chem. Int. Ed. Engl., 1966, 5, 495-510.

2 M. Yagi, T. Kouno, Y. Aoyagi and H. Murai, J. Agric. Chem. Soc. Jpn, 1976, 50, 571-572.
3 W. Zhang, W. Mu, H. Wu and Z. Liang, Appl Microbiol Biotechnol, 2019, 103, 9335-9344.

4 X.-S. Ye, F. Sun, M. Liu, Q. Li, Y. Wang, G. Zhang, L.-H. Zhang and X.-L. Zhang, J. Med. Chem., 2005, 48, 3688-3691.

5 N. Wang, F. Zhu and K. Chen, Nat. Prod. Commun., 2017, 12, 1521-1526.
6 S. Azeez, Z. Ghalib Alhashim, W. M. Al Otaibi, H. S. Alsuwat, A. M. Ibrahim, N. B. Almandil and J. F. Borgio, Arch. Med. Sci., 2020, 16, 497-507.

7 S. S. Karade, E. J. Franco, A. C. Rojas, K. C. Hanrahan, A. Kolesnikov, W. Yu, A. D. MacKerell, D. C. Hill, D. J. Weber, A. N. Brown, A. M. Treston and R. A. Mariuzza, J. Med. Chem., 2023, acs.jmedchem.2c01750.

8 S. Rajasekharan, R. Milan Bonotto, L. Nascimento Alves, Y. Kazungu, M. Poggianella, P. Martinez-Orellana, N. Skoko, S. Polez and A. Marcello, Viruses, 2021, 13, 808.

9 M. Holwerda, P. V'kovski, M. Wider, V. Thiel and R. Dijkman, Microorganisms, 2020, 8, 1872.

10 K. Gao, C. Zheng, T. Wang, H. Zhao, J. Wang, Z. Wang, X. Zhai, Z. Jia, J. Chen, Y. Zhou and W. Wang, Molecules, 2016, 21, 1600.
11 K. L. Warfield, D. S. Alonzi, J. C. Hill, A. T. Caputo, P. Roversi, J. L. Kiappes, N. Sheets, M. Duchars, R. A. Dwek, J. Biggins, D. Barnard, S. Shresta, A. M. Treston and N. Zitzmann, J. Med. Chem., 2020, 63, 4205-4214.

12 A. Ghisaidoobe, P. Bikker, A. C. J. de Bruijn, F. D. Godschalk, E. Rogaar, M. C. Guijt, P. Hagens, J. M. Halma, S. M. van't Hart, S. B. Luitjens, V. H. S. van Rixel, M. Wijzenbroek, T. Zweegers, W. E. Donker-Koopman, A. Strijland, R. Boot, G. van der Marel, H. S. Overkleeft, J. M. F. G. Aerts and R. J. B. H. N. van den Berg, ACS Med. Chem. Lett., 2011, 2, 119-123.

13 P. Compain, V. Chagnault and O. R. Martin, Tetrahedron: Asymmetry, 2009, 20, 672-711.
14 Natori Y., J. Pharm. Soc. Jap., 2021, 141, 15-24.

15 N. J. Pawar, V. S. Parihar, S. T. Chavan, R. Joshi, P. V. Joshi, S. G. Sabharwal, V. G. Puranik and D. D. Dhavale, J. Org. Chem., 2012, 77, 7873-7882.

16 M. A. T. Maughan, I. G. Davies, T. D. W. Claridge, S. Courtney, P. Hay and B. G. Davis, Angew. Chem. Int. Ed., 2003, 42, 3788-3792.

17 T.-T. Lu, Y. Shimadate, B. Cheng, U. Kanekiyo, A. Kato, J.-Z. Wang, Y.-X. Li, Y.-M. Jia, G. W. J. Fleet and C.-Y. Yu, Eur. J. Med. Chem., 2021, 224, 113716.

18 R. Shishiuchi, H. Kang, T. Tagami, Y. Ueda, W. Lang, A. Kimura and M. Okuyama, ACS Omega, 2022, 7, 47411-47423.
19 A. Kato, N. Kato, E. Kano, I. Adachi, K. Ikeda, L. Yu, T. Okamoto, Y. Banba, H. Ouchi, H. Takahata and N. Asano, J. Med. Chem., 2005, 48, 2036-2044.

20 W. Schönemann, E. Gallienne, P. Compain, K. Ikeda, N. Asano and O. R. Martin, Bioorg. Med. Chem., 2010, 18, 2645-2650.

21 A. Kato, I. Nakagome, K. Yoshimura, U. Kanekiyo, M. Kishida, K. Shinzawa, T.-T. Lu, Y.-X. Li, R. J. Nash, G. W. J. Fleet, N. Tanaka and C.-Y. Yu, Org. Biomol. Chem., 2022, 20, 7250-7260.

22 V. De Pasquale, A. Esposito, G. Scerra, M. Scarcella, M. Ciampa, A. Luongo, D. D’Alonzo, A. Guaragna, M. D'Agostino and L. M. Pavone, J. Med. Chem., 2023, 66, 1790-1808.

23 C. Boucheron, V. Desvergnes, P. Compain, O. R. Martin, A. Lavi, M. Mackeen, M. Wormald, R. Dwek and T. D. Butters, Tetrahedron: Asymmetry, 2005, 16, 1747-1756.

24 C. Santos, F. Stauffert, S. Ballereau, C. Dehoux, F. Rodriguez, A. Bodlenner, P. Compain and Y. Génisson, Bioorg. Med. Chem., 2017, 25, 1984-1989.

25 T. Hill, M. B. Tropak, D. Mahuran and S. G. Withers, ChemBioChem, 2011, 12, 2151-2154.

26 S. Takayama, R. Martin, J. Wu, K. Laslo, G. Siuzdak and C.-H. Wong, Journal of the American Chemical Society, 1997, 119, 8146-8151.
27 R. Chadda and P. V. Murphy, European Journal of Organic Chemistry, 2020, 2020, 2389-2398.

28 Z. Debbah, J. Marrot, N. Auberger, J. Désiré and Y. Blériot, Org. Lett., 2022, 24, 4542-4546.

29 D. D. Dhavale and M. M. Matin, Arkivoc, 2005, 2005, 110-132.

30 D. Hazelard, R. Hensienne, J.-B. Behr and P. Compain, in Carbohydrate-spiro-heterocycles, ed. L. Somsák, Springer International Publishing, Cham, 2019, vol. 57, pp. 261-290.

31 P.-A. Nocquet, R. Hensienne, J. Wencel-Delord, E. Wimmer, D. Hazelard and P. Compain, Org. Biomol. Chem., 2015, 13, 9176-9180.

32 M. Malik, G. Witkowski, M. Ceborska and S. Jarosz, Org. Lett., 2013, 15, 6214-6217.

33 C. Laroche, J.-B. Behr, J. Szymoniak, P. Bertus, C. Schütz, P. Vogel and R. Plantier-Royon, Bioorg. Med. Chem., 2006, 14, 4047-4054.

34 S. R. Chavan, K. S. Gavale, A. Khan, R. Joshi, N. Kumbhar, D. Chakravarty and D. D. Dhavale, ACS Omega, 2017, 2, 7203-7218.

35 F. Morís-Varas, X.-H. Qian and C.-H. Wong, J. Am. Chem. Soc., 1996, 118, 7647-7652.

36 S. Pino-Gonzalez, C. Assiego and N. Onas, Targets in Heterocyclic Systems, 2004, 8, 364-397.
37 H. Li, Y. Blériot, C. Chantereau, J.-M. Mallet, M. Sollogoub, Y. Zhang, E. Rodríguez-García, P. Vogel, J. Jiménez-Barbero and P. Sinaÿ, Org. Biomol. Chem., 2004, 2, 1492-1499.

38 F. Marcelo, Y. He, S. A. Yuzwa, L. Nieto, J. Jiménez-Barbero, M. Sollogoub, D. J. Vocadlo, G. D. Davies and Y. Blériot, J. Am. Chem. Soc., 2009, 131, 5390-5392.

39 M. Mondon, S. Hur, G. Vadlamani, P. Rodrigues, P. Tsybina, A. Oliver, B. L. Mark, D. J. Vocadlo and Y. Blériot, Chem. Commun., 2013, 49, 10983.

40 T. D. Butters, Curr. Opin. Chem. Biol., 2007, 11, 412-418.

41 V. Roig-Zamboni, B. Cobucci-Ponzano, R. Iacono, M. C. Ferrara, S. Germany, Y. Bourne, G. Parenti, M. Moracci and G. Sulzenbacher, Nat Commun, 2017, 8, 1111.

42 C. M. Eng, N. Guffon, W. R. Wilcox, D. P. Germain, P. Lee, S. Waldek, L. Caplan, G. E. Linthorst and R. J. Desnick, N Engl J Med, 2001, 345, 9-16.

43 M. Mondon, F. Lecornué, J. Guillard, S. Nakagawa, A. Kato and Y. Blériot, Bioorganic \& Medicinal Chemistry, 2013, 21, 4803-4812.

44 A. F. G. Glawar, S. F. Jenkinson, S. J. Newberry, A. L. Thompson, S. Nakagawa, A. Yoshihara, K. Akimitsu, K. Izumori, T. D. Butters, A. Kato and G. W. J. Fleet, Org. Biomol. Chem., 2013, 11, 6886.

45 J. Désiré, M. Mondon, N. Fontelle, S. Nakagawa, Y. Hirokami, I. Adachi, R. Iwaki, G. W. J. Fleet, D. S. Alonzi, G. Twigg, T. D. Butters, J. Bertrand, V. Cendret, F. Becq, C. Norez, J. Marrot, A. Kato and Y. Blériot, Org. Biomol. Chem., 2014, 12, 8977-8996.

46 W.-B. Zhao, S. Nakagawa, A. Kato, I. Adachi, Y.-M. Jia, X.-G. Hu, G. W. J. Fleet, F. X. Wilson, G. Horne, A. Yoshihara, K. Izumori and C.-Y. Yu, J. Org. Chem., 2013, 78, 3208-3221.

[^0]:

