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Abstract

This work performs the convergence analysis of the polytopal nodal discretisation of contact-
mechanics (with Tresca friction) recently introduced in [18] in the framework of poro-elastic
models in fractured porous media. The scheme is based on a mixed formulation, using face-
wise constant approximations of the Lagrange multipliers along the fracture network and a fully
discrete first order nodal approximation of the displacement field. The displacement field is
enriched with additional bubble degrees of freedom along the fractures to ensure the inf-sup
stability with the Lagrange multiplier space. It is presented in a fully discrete formulation, which
makes its study more straightforward, but also has a Virtual Element interpretation.

The analysis establishes an abstract error estimate accounting for the fully discrete frame-
work and the non-conformity of the discretisation. A first order error estimate is deduced for
sufficiently smooth solutions both for the gradient of the displacement field and the Lagrange
multiplier. A key difficulty of the numerical analysis is the proof of a discrete inf-sup condition,
which is based on a non-standard H~"?>-norm (to deal with fracture networks) and involves the
jump of the displacements, not their traces. The analysis also requires the proof of a discrete
Korn inequality for the discrete displacement field which takes into account fracture networks.
Numerical experiments based on analytical solutions confirm our theoretical findings.

Keywords: Contact-mechanics, fracture networks, polytopal method, fully discrete approach,
virtual element method, bubble stabilisation, error estimates, discrete inf-sup condition, discrete
Korn inequality.

1 Introduction

The simulation of poromechanical models in fractured (or faulted) porous rocks plays an important
role in many subsurface applications such as the assessment of fault reactivation risks in CO2 storage
or the hydraulic fracture stimulation in deep geothermal systems. These models couple the flow along
the fractures and the surrounding matrix to the rock mechanical deformation and the mechanical
behavior of the fractures. Fractures are classically represented as a network of planar surfaces
connected to the surrounding matrix domain, leading to the so-called mixed-dimensional models
which have been the object of many recent works in poromechanics [27, 21, 22, 23, 5, 29, 6, 8, 7, 9].

Polytopal discretisations are motivated in subsurface applications to cope with the complexity of the
geometries representing geological structures including faults/fractures, layering, erosions and hetero-
geneities. Different classes of polytopal methods have been developed in the field of mechanics such
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as Discontinuous Galerkin [24], Hybrid High Order (HHO) [16], MultiPoint Stress Approximation
(MPSA) [26], Hybrid Mimetic Methods [15] and Virtual Element Methods (VEM) [3, 14]. Some of
them have been extended to account for contact-mechanics as in [5] for the MSPA based on facewise
constant approximations of the surface tractions and displacement jump along the fracture network,
in [12] for HHO combined with a Nitsche’s contact formulation, and in [30] for VEM based on node
to node contact conditions. Among these polytopal methods, VEM, as a natural extension of the
Finite Element Method (FEM) to polyhedral meshes, has received a lot of attention in the mechanics
community since its introduction in [3] and has been applied to various problems including in the
context of geomechanics [1], poromechanics [13, 10, 20] and fracture mechanics [31].

In [18], an extension of the first order VEM to contact-mechanics is introduced based on a fully
discrete framework with vector space of discrete unknowns and reconstruction operators in the spirit
of Hybrid High Order discretisations [16]. Following [4, 19, 21, 7] in the FEM case, the contact
problem is expressed in mixed form with face-wise constant Lagrange multipliers imposing the contact
conditions in average on each face of the fracture network. This approach enables the handling of
fracture networks (including corners, tips and intersections), the use of efficient semi-smooth Newton
nonlinear solvers, and the preservation at the discrete level of the dissipative properties of the contact
terms. On the other hand, the combination of a first order nodal discretisation of the displacement
field with a face-wise constant approximation of the Lagrange multiplier requires a stabilisation to
ensure the inf-sup compatibility condition. This is achieved in [18] by extending to the polytopal
framework the P!-bubble FEM discretisation [4] based on the enrichment of the displacement space
by an additional bubble unknown on one side of each fracture face. Numerical evidence is obtained
that this enrichment achieves the sought stabilisation, but no proof or analysis thereof is provided in
this reference.

The goal of the present work is to precisely perform the numerical analysis of the polytopal discreti-
sation proposed in [18]. To simplify the presentation, we focus on a static isotropic linear elastic
mechanical model with Tresca frictional contact at matrix-fracture interfaces. The key new diffi-
culty is related to the proof of the inf-sup condition between the discrete displacement and Lagrange
multiplier spaces, which must account for the polytopal nature of the scheme and the geometrical
complexity of the fracture network including tips, corners and intersections. Previous results [4, 19]
established for FEM cannot be used since they are adapted neither to the fully discrete framework, nor
to fracture networks which necessitates the introduction of a specific H,; (F) -norm. The stability
and convergence analysis also requires the proof of a discrete Korn 1nequahty for the discrete dis-
placement field accounting for the bubble stabilisation and the fracture network. The error estimate
relies on an abstract estimate taking into account our fully discrete framework and the non-conformity
of the displacement discretisation.

The remaining of this paper is organised as follows. Section 2 introduces the static contact-mechanical
model with Tresca friction and its mixed formulation. Section 3 recalls the main ingredients of the
discretisation from [18] with the mesh described in Section 3.1, the discrete spaces of displacement
and Lagrange multiplier unknowns in Section 3.2, the function, jump and gradient reconstruction
operators in Section 3.3, the definition of the interpolation operators in Section 3.4, and the discrete
mixed formulation in Section 3.5. Section 4 states the main results regarding the well-posedness and
convergence analysis of the scheme, while the proofs are reported in Section 5, with additional details
in the Appendix. Section 6 investigates the numerical behavior of the scheme on analytical solutions
in order to assess our theoretical results.



2 Model

We consider a Discrete Fracture Matrix (DFM) model on the polyhedral domain Q c R< including
a fracture network I' with co-dimension 1 defined by

r=|JT.

iel

We assume that Q\I" is connected. Each fracture I'; € Q (i € I) is a polygonal simply connected open
subdomain of a plane of R¢. Without restriction of generality, it is assumed that fractures may only
intersect at their boundaries. The two sides of a given fracture of I are denoted by + in the matrix
domain Q\f The two unit normal vectors n*, oriented outward from the sides +, satisfy n* +n~ = 0.
Given, for simplicity, homogeneous Dirichlet boundary conditions, the space for the displacement

U = Hy(Q\ID?

is endowed with the norm ||v||y, = [[Vv|| L2\ (which is, indeed, a norm since Q\I is connected).
The oriented jump operator on I" for functions u € Uy is defined by

[u] =y"u-y"u,

where y* are the trace operators on both sides of I'. Its normal and tangential components are denoted

respectively by [u], = [u] - n* and [u]; = [u] — [u],n*. Note that [u]. depends on the orientation,

while [u], does not. The sided normal trace operator on I" oriented outward to the side =+, applied

to Hgiy(Q\I') functions, is denoted by y:. The symmetric gradient operator is defined on Uy by
(v) = %(VV+[VV).

The model we consider accounts for the mechanical equilibrium equation with a linear elastic consti-
tutive law and a Tresca frictional contact model at matrix—fracture interfaces. In its strong form, it is
written

—div (u) =f on Q\T,
(u) =24 (u) + Adivu on Q\T,
Ya @W+y, (=0 onT, 0
Ta(u) <0, [u]n <0, [u]gZn(u) =0 onT,
IT-(w)| < g onl,
T:(u) - [u]; + g|[u]-| =0 onT,

with Tresca threshold g > 0, Lamé coefficients u and A, and normal and tangential surface tractions
Ta(u) =y} (u)-n"and T;(u) = y; (u) — Th(uw)n*. Itis assumed in the following that the external
force term f belongs to L(Q)4.

The weak formulation of the mechanical model with Tresca frictional-contact (1) is written in mixed
form using a vector-valued Lagrange multiplier A : I' — R¢ at matrix—fracture interfaces. Define the
displacement jump space by

H(l)/j(l“) ={[v] : ve U}

and denote by H, ;/ *(T) its dual space; the duality pairing between these two spaces is written (-, -)r-.

We will also use this notation for the duality pairing between H(l)/ *(I), trace space of H'(Q\I'), and



its dual space H(;l/z(l“). We note that L2(I')? ¢ H(;;/Z(F) and that (u, v)r = Jr'” - v whenever
u € L?(Q)“. The dual cone is then defined by

C = {u € Hy(T) : (u.v)r < (g.|veDr forall v € H’(T) with v n* < o}.

The weak mixed-variational formulation of (1) reads: find u € Uy and A € Cy such that, for all
veUpand u € Cy,

j W : (V)+ [M]>r=j v, (2a)
Q Q

(n—A,[u)r <0. (2b)

Note that, based on the variational formulation, the Lagrange multiplier satisfies

A=—yp (W)=, ().

3 Scheme

3.1 Mesh

We take a polyhedral mesh of the domain € that is conforming with the fracture network I". We also
assume that the Tresca threshold g > 0 is piecewise constant on the trace of the mesh on I'. For each
cell K (resp. face o), we denote by hg (resp. i) and |K| (resp. |o|) its diameter and its measure,
and we set

hg) = max hK.
KeM

The set of cells K, the set of faces o, the set of nodes s and the set of edges e are denoted respectively
by M, ¥, V and €. By conformity of the mesh with respect to I', there exists a subset of faces
Fr C F such that

r=| )&

oefr

We denote by M, the set of cells neighboring a face o € F; thus, M, = {K, L} for interior face
o € F™ (in which case we write o = K|L) and M, = {K} for boundary face o € F. Since
I' c Q, we have 7 ¢ F™. For a face o € ¥, K and L in the notation o = K|L are labelled such
that ng, = n* and nz, = n~, where ng,- (resp. nz. ) is the unit normal vector to o~ oriented outward
of K (resp. L). We denote by V! the boundary nodes, and by V,, the set of nodes of o, &, the
set of edges of o, Fk the set of faces of K, Vi the set of nodes of K, and M; the set of cells that
contain the vertex s. For each o € ¥, ny. is the unit normal vector to e € &, in the plane o oriented
outward to . For each K € M and o € Fx we denote by yX the trace operator on o for functions
in H'(K) (or their vector-valued versions).

Throughout this paper we suppose that mesh regularity assumptions of [16, Definition 1.9] hold, and
we write a < b (resp. a 2 b) as a shorthand for a < Cb (resp. Ca < b) with C > 0 depending only
on Q, I', on the mesh regularity parameter, and possibly on the Lamé coefficients and f.

If X e MUT and ¢ € N, we denote by P! (X) the space of polynomials of degree < £ on X. For
X = Mor X = Fr, we use the notation P/ (X) for the space of piecewise-polynomials of degree < ¢
on X.



3.2 Spaces

The degrees of freedom (DOFs) for the displacement are nodal (attached to the vertices of the mesh).
To account for the discontinuity of the discrete displacement field at matrix fracture interfaces, these
nodal DOFs can be discontinuous across the fracture network — each vertex on the fracture network
(that is not an interior tip) has two or more values attached to it, one for each local connected
component of the matrix in a neighborhood of the vertex. To use specific notations, for each s € Vr
and each K € Mg, we denote by v, the nodal unknown corresponding to the side of K in the matrix.
This unknown is identical for all cell lying on the same side as K: if L € M; is on the same side as
K, then vy, = v 5. The notation Ks is used for the set of all cells containing s and lying on the same
side of I as K. If s ¢ VI, there is a unique displacement unknown at s, which is denoted by v; in
that case, K's = M. Figure 1 visually illustrates this idea.

Additionally, on the positive side of the fracture, we attach to each face a vector DOF corresponding
to a “correction” of the face values generated by the nodal DOFs; this correction plays the role,
at the discrete level represented by the space of DOFs, of a bubble function and is introduced to
ensure a suitable inf-sup condition between the space of Lagrange multipliers and the jump of the
displacements.

s’ e YMs’

e nodal unknowns

T Vs

Figure 1. Nodal degrees of freedom.

For each K € M, we denote by
EK:{G-E?‘FH?"K : nKU-n+>O}

the set of faces of K that lie on the positive side of I" (that set is empty if K does not touch I" or
only touches it from its negative side). According to the discussion above, the discrete space of
displacement is

Uo.0 = {Vo = (Vi) ket sevies (VKo ket e )
Voes €ER?Y, vigo € R vyey = 0if 5 € Ve (3)

Vs = Vs if K, L € M are on the same side of F}.

The Lagrange multiplier plays the role of approximations of —y,; (u) on I'. Its space is made of
piecewise constant vectors:

Mg = {/l@ eLl>’(M? : A, = (Ap)|s is constant for all o € 7-}}
For Ay € My, we define its normal and tangential components by

Apn=Ap-n", Apr=Ap—Apan’,



and the discrete dual cone by
Cp= {/11) EMyp : dpn 20, |[Ap| < g} cCy.

(the inclusion being easy to check).

3.3 Reconstruction operators in Uy p

We first define, for each K € M and o € Fx, a tangential face gradient VK7 : Uy p — P0(0)¥*4
and tangential displacement reconstruction ITX? : Uy o — P!(0)?. First, we choose nonnegative
weights (w{ )sey, to express the center of mass X, of o in terms of its vertices:

oo Y etx. Y ere @

SEV, SEV,
Then, for vy € Up, p, we set
1 Vs, + Vg
VKO-VZ) =T Z |6|M Nge,
o] 2
e:S1S2€80- (5)

IX%7vp(x) = VKOV (x = Xo) + VKo VX €0, where Vg, = Z Wy Vs
seVs

Above, we have noted e = 5157 to indicate that the edge e has vertices sy, 7.

If o € r is a fracture face, and K (resp. L) is the cell on the positive (resp. negative) side of o, we
define the displacement jump operator on o~ as -]+ : Up.p — PY(o)4 such that, for all vy € Uo. o,

1 _ _
volo = ol J (MX%vp —TT™ V) + Vi = VKo — Vio + VKo (6)
o

The normal component of that jump is denoted by [-]o.n = [] o - DKo

For each cell K € M, we select nonnegative weights (wX)scqs of a linear decomposition of the
center of mass Xg of K in terms of its vertices

T NS T Y )
seVk s€Vk
)dxd

and we design a gradient reconstruction VK : Uy o — PO(K
X : Up.p — P'(K)? by setting, for vy € Ug p,

and a displacement reconstruction

1 _ |o|
VEvp = — VKo @ Ngo + —Vko @ Ngo, 7
D |K| (T; |O—| Ko Ko Z |K| Ko Ko ( )
K O'GSFF’K
DX%vp(x) = VEvp(x —Xk) +Vk Vxe K, wherevg = Z a)fv(;(s. (8)

SE(VK

These local jump, gradient and displacement reconstructions are patched together to create their
global piecewise polynomial counterparts [-]p : Up.p — PY(F1)9, V2 : Up.p — PO(M)¥9 and
% : Ug.p — PI(M)?: forall vy € Ug p,

([[VD]]Z))la = [[VZ)]]O' Yo € Fr,
(VDV@)”( = VKV@ VK e M,

6



(HDVZ))“( = HKVZ) VK € M.

We also define the cellwise constant reconstruction operator I%vy : Up.p — P°(M)? such that
(ITPvyp) |k = Vi . Finally, the discrete symmetric gradient g, divergence divyp and stress tensor o
are deduced from the previous operators:

|
p=5(V? +TVD), divp=Tr( p) and () =24 p()+Adivp ()L

Remark 3.1 (Non planar faces). At this point, we have only considered meshes with planar faces. In
numerical simulations in geosciences, meshes with non-planar faces are however naturally encoun-
tered, for example in Corner Pointed Geometries (CPG) situations. One approach to handle such
meshes is to cut the non-planar faces into two or more planar subfaces; this leads to polytopal meshes
that can be handled by our method. Another approach was introduced in [11]. It consists in adding a
barycentric center X, = ﬂ%a 2.sey, Xs to the non-planar face o, which is artificial in the sense that
it is not counted as a geometric node of the mesh. The discrete displacement u,- at X is then defined
by barycentric linear combination of the nodal displacements at the vertices of the face. Additionally,
a triangulation of the face o, centered at X, is defined. In this context, the gradient reconstruction

operator (7) in each cell must be adapted as follows

VKVD = |17| Z Z |7:;_e|(V(Ksl + Vges, VO') ® nkgr, + Z %VKG' ® ngo,

o€FKg e=5152€E5 (Te?_lt,K

where T, is the triangle defined by X, and the edge e, ng7, is the normal vector to triangle 7, pointing

outof K, and v, = ﬁ%(r 2.sev, Vs Note that the fracture faces are still assumed to be planar, hence

the bubble terms are unchanged. Moreover, for cells with planar faces, this new gradient is identical

to (7). With this approach, the same discrete space of displacement Uy, o is retained, as the unknowns
remain unchanged.

3.4 Interpolators

The space C(()) (Q\I) is spanned by functions that are continuous on Q\I", have limits on each side of
I", and vanish on €. The interpolator Iy, ,, : Cg (Q\IN4 — U, p is defined through its components
by setting, for v € C(Q\I)¢,

(IU(),Z)V)'KS = V|K (Xs) VK e M , Vs € (VK,

! o o ©)
(ZUgp VKo = WJ‘ Y7V -11%7(Iy, ,v)) VK e M, Vo € Ty

This definition is seemingly recursive, since the DOF corresponding to Ko are built using the
interpolator Iy, ,, itself. However, the definition (5) of 157 shows that HKO-(IUO,DV) only depends
on the nodes unknowns (Iy, ,, V)%, Which are properly defined without any self-reference to Iy, ,,.
We also note that, since v = 0 on 9, this operator indeed defines an element in U, p.

The interpolator Zy,, : L*>(I') — My on the Lagrange space simply corresponds to averaging on
each face: for A € L>(I')9,

1
(ImpA) o = WJ pl Yo € Fr.



3.5 Mixed-variational formulation

We now introduce the numerical scheme for the mixed-variational formulation of the mechanics
contact problem (2): Find (up, Ap) € Uy p X Cp such that, for all (vp, up) € Up.p X Cop,

L p(up): p(Vp)+Suao (up,vp) + L Ap - [vplp = Lf M Pvyp, (10a)

f (1p = Ap) - [up]p <0. (10b)
r
Here, S, 1, p is the scaled stabilisation bilinear form defined by
Suap(up,vp) = Z (Quk +Ak)Sk(up,vp)
KeM

where, for each K € M, ug and Ak are respectively the average of A and p on K and the local
stabilisation bilinear form Sk : Ug, p X Up, p — R is given by

Sk (up,vp) = h§? Z (llm - HKH@(XS)) ' (V‘Ks - HKVD(XS))

seVk

+ h?(_z Z UKo * VKo -
oeff k

(1)

Let us also introduce the unscaled stabilisation bilinear form

Sp(up,vp) = Z Sk(up,vp).
KeM

Remark 3.2. Thanks to the fracture face-wise Lagrange multiplier, the variational inequality (10b)
together with 19 € Cyp can be equivalently replaced by the following non linear equations (see [2]),
in which [s]r+ = max(0, s), and [£], is the projection of & € R4 on the ball of center 0 and radius g:

Apn = [/lZ),H +ﬁ2),n[[uD]]Z),n]R+
(12)
/ll),'r = [/12),1' +IBZ),T [[ui)]]l),'r]g

(these equations can easily be expressed locally to each fracture face). Here, Bpn > 0, Bpr > 0 are
given face-wise constant functions along I'.

Remark 3.3 (Virtual element interpretation). It is shown in [18] that the scheme (10) can be re-
interpreted in a Virtual Element presentation.

4 Main results

To carry out the convergence analysis of the scheme, we need to define norms on the spaces of
unknowns: an H'-like norm on the space of displacement and an H, ;/ *(I')-like norm on the space of
Lagrange multipliers.



Definition 4.1 (Discrete H'-like semi-norm on Ugp). The semi-norm ||-||;.p on Uy is defined by:
forallup € Uy,

12

. 12

luplli,o = ( Z ||U1)||%,K) with [[upli x = (lIVKUZ)Hsz(K) + SK(“D,UD)) . (13)
KeM

where Sk is given by (11). We note that ||-||;, p is genuinely a norm on Uy, o since Q\T is connected.

To define the norm on My, we recall that I' = U;¢;17; with each I'; open connected subset of a
hyperplane, and I'; N T'; = @ if i # j. We define Q] as the intersection of Q with the half-plane
defined by I'; and (n*)|r,; see Figure 2. The space H ! (@] T;) is spanned by functions in H ! ()
that vanish on Q\I';.

Figure 2. Splitting of the fracture network and construction of sub-domains used to define the norm
on Mgp.

Definition 4.2 (H, ;/ *(IN)-like norm on Myp). The H, ;/ *(I')-like norm on My, is defined by: for all
A D E M@,

. Jlri AD ©Vi
D ll-1or = Z lApll-1r; with [[Ap|l-isr; = sup — (14)
iel viert @trna\ (o) 1Vill e

Remark 4.3 (Norm on the fracture network). The definition of this H(;,}/ *( I')-like norm is non-standard
due to localisation to each planar component of I'. This is however required to properly take into
account the possible complex topology of the fracture network (triple — or more — intersections of
fractures, etc.) and the fact that the inf-sup condition below is based on the jump of the functions,
not their traces. See Remark 5.6 for more insight on this.

In case of a simple network in which no more than two planar fractures intersect at a given location,
since these intersections (and the fracture tips) have a zero 2-capacity it can be checked that the norm
(14) is equivalent to a more standard H, g *(I')-norm on the network.

Proposition 4.4 (Existence and uniqueness result). There exists a unique solution (up,dp) €
U()’z) X Cqp to (10).



Proof. [25, Theorem 3.9] gives the existence of a solution. The uniqueness of uyp derives from the
discrete Korn inequality (42) below and the uniqueness of A4 from the discrete inf-sup property (20)
below. m|

To state the error estimates, we introduce the following notations:

0
Fr

* The (primal) consistency error is: for vp € Up o,

« 7% is the orthogonal projection on P°(7T).

D ) 1/2
Co(u,vp) = (IVu=V2¥pIR, o +Sn(vo, VD)) (1s)

* Letting _
W={ eHu@S'R). 1 vy +ya =097 €L*(D)}, (16)
(where S¢(R) is the space of symmetric d X d matrices with real coefficients), the adjoint

consistency error (or limit-conformity measure) is defined, for € W, by

wp( ,Vp)
Wp( )= sup ————,
VZ)EUO,Z) ”VDHI,D

(17
where wp( ,vp) = —J : D(V@)+J Y [volo - I O%vy - div .
Q r Q
* The discrete H(l)/z(l“)—norm is defined on L?(I")¢ by: for u € L*(I")4,
~ 1/2
Il = () W lala ) (18)

oefr

Theorem 4.5 (Abstract error estimate). For (uyp, Ap) solution of (10) and (u, A) solution of (2) with
A € L2()4, we have the following abstract error estimate

”VDUZ) - Vu”LZ(Q\f) +[1p = Al|—ipr S|4 - ”(f)ﬁ/ln—l/z,l“ +Wop( (w)

. 1/
+ inf {(||a—n%u|u<r>||ﬂv@]]@—uu]]nm) (19

vpelp.p
+[[vo]o - ﬂ(g)cr [u]lly,p + Cp(u, VZ))}-
Proof. See Section 5.3. |
In the following theorem, we denote by H>(M) (resp. H' (71)) the space of functions defined on Q

that are H? on each K € M (resp. defined on T" and H' on each o € 7). These spaces are endowed
with their usual broken semi-norms.

Theorem 4.6 (Error estimate). Let (u, A) be the solution to (2) and assume that u € H*(M) and
A € H'(Fr). Then the solution (up, Ap) of (10) satisfies the following error estimate:

120 = Vall 2,5 + 140 = Al < 7o (1Al + 10l + 1[0l o )
Proof. See Section 5.4. O
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5 Proof of the error estimate

5.1 Inf-sup condition

We prove in this section the following result, which establishes that the bubble degree of freedom in
(3) plays its role controlling the Lagrange multiplier through the jump of the displacements.

Theorem 5.1 (Discrete inf-sup condition). It holds

fr Ap - [volo
sup ———— 2 |[[Apll-ipr  VAp € Mp. (20)
voeUoo\{0}  IVolli,o

5.1.1 Fracture-compatible averaged interpolator

To prove the inf-sup condition, we need a Clément-like interpolator that takes into account the fracture
network. Due to the design of the H(;’ ;/ *(I")-like norm, we will use this interpolator considering only
one planar component at a time. In the following, we therefore fix i € I and, in the constructions
below, the sets Ks(i) are considered only in respect to I';. Thus, for all K € M and s € Vg, Ks(i)
is the set of all cells L € M; that lie on the same side of I'; as K. In particular, Ks c K's(i) with
equality whenever s is internal to ;.

For each K € M and s € Vi, we take an open set Uiy € Uk exs(i) K and a function @y () €
L®(Ugcs(iy) such that

U (1 2 K B v (1 s 1 ) 21
|Ugcs (i) | JRUEL K|, |@xs)l (21a)
! 1 ! (21b)
Wxs@i) = 1, XWxks (i) = Xs-
1Uxs il Juseyr, @ 1Uxs | Jugey o=

If s ¢ ', Ugy(iy can be a taken as a ball centered at s, and wg,(;) = 1. Figure 3 illustrates possible
choices for U, (;) depending on the nature of s, and Appendix A presents an explicit way to construct
(Uxcs(iy» @xs(i)) in the generic case.

Figure 3. Domains for local fracture-compatible averages.

The space Hé (Q\I;) is the subspace of H!(Q\I';) spanned by functions that vanish on 9, but not
necessarily on I';. Forv € Hé (Q\I;)4, the averaged interpolate Ié;aov € Uy, p of v is defined by

(I V)ges =0 for all s € V&, (22a)

Uo,»

11



1

(I Vxes = ——— Tcs (i)Y forall K € M, s € Vg \ V™, (22b)
0.0 Uy Uss i)
1
(T, Vker = mj K7y =R (Z50 V) forall K e M, o € i . (22¢)
o
(IIlJoaz)V)KU =0 forall K e M, o € ?}TK \ 7:1::',1(' (22d)

Remark 5.2 (Averaged interpolator). The usage of averages in the definition of the nodal values is
mandatory since we need well-defined and stable interpolations of functions with only H'!-regularity
— see Proposition 5.5. However, the averages must not be done across I'; (hence the condition
Uiy € Uk exs(i) K), and must have x; as center of mass (hence the integral conditions on @y (;)),
to ensure that the interpolator is exact on linear functions — see the proof of Proposition 5.5.

If s € T" is not in the relative interior of I';, then for all K, L € Mg we have K's(i) = Ls(i) and thus

(]I’joa@ V)gs = (I - V) rs- In other words, this I';-adapted interpolator I b produces single nodal

values on I'; for j ;t i, and possibly multiple nodal values only on Vertlces 1n the interior of I';. This
is coherent w1th the continuity properties of functions in H,, '(Q\I;) that it interpolates.

Finally, we note that a zero value is imposed for boundary nodes, so that Ié;)aDv € Uy, p (computing
boundary nodal values by averaging would not ensure that they vanish), and that the “bubble” value
is set at zero for faces not on I';.

The main properties of this interpolator are its behaviour with respect to the jump, and its H'-stability.
Proposition 5.3 (Jump of the averaged interpolate). For all v € Hé (Q\I)¥, it holds

VK € M, Vo € Fx J[[I”‘v}](,: (23)

Uo.o

LT()/K‘TV— HL‘TIéiDV) ifo e ¢1"+,~,1<’
ifo e T;’K\TE,K.

Proof. If o € 7"{: k- then the equality directly follows from the definition (6) of the jump on o and
from (22¢). If o € TF* &\ 7-?[ x then any s € V, is not internal to I'; and thus, as noted in Remark

5.2, for all K,L € M we have (Ié:‘z)v)q(s = (IG:‘DV)LS. Hence, HK‘TIéZfDV = HL‘TI[?:DV. The

definition (6) of the jump on o, together with the fact that (Ié;az) V)ko = 0 by (22d) yields the relation
in (23). ' O

Establishing the H'-stability of Z&a@ requires the following lemma.

Lemma 5.4 (DOF-based bound on the discrete norm). Let K € M. Recalling the definition (13) of
”'Hl,K) we have, for all wg = ((W(](S)SE(VK’ (WKO')O'E"FF"K)’

Iwicllk < A 1KIY2( max [woegl + max [Wiol). 24)
Vi 0'6‘7'_1.K

Proof. Set

Wk ook = max |Wocs| + max  |[Wge|.
eVk oETE ¢

The definition (7) of VX and the mesh regularity assumption (which ensures that |o|/|K| < h;g)
shows that

IVEWK | Lo (k) S BE' [Wk |oo.k (25)

12



(remember that the weights w¢ are all nonnegative and sum up to 1). Plugged into (8) this shows that
I Wi [l 2 (k) S Wk ook - (26)

The bound (24) follows by using (25) and the Cauchy—Schwarz inequality to get ||[VEwp || L2(K) S
h 1K' |Wi |0,k » and by using (11) and (26) in the definition (13) of ||wk |1k, recalling that
hjl(‘z < h}2|K| and Card(Vk) + Card(Fk ) < 1 by mesh regularity. |

Proposition 5.5 (Stability of the averaged interpolator). It holds

1258 Vlo S V¥l WV € Ho(@\M)“. 27)
Proof. Letv e Hé (Q\TI';,)4. The proof is split in several steps. The idea is to first obtain a bound

on a cell K, by locally approximating v by a linear function ¢ and using the linear exactness of I[g;az)
resulting from the properties of @wqc,. This allows us to bound the interpolates of q and of v — q, and
to conclude.

Step 1: local linear approximation q.

Let K € M and set
Nky= ) | L
seVk LeKs(i)

the patch around K made of all the cells in Ks(7) for each s vertex of K. By mesh regularity, it can be
checked that N (K) is connected by star-shaped sets as per [16, Definition 1.4], and by definition of
Ks(i) wehave v e H'(N(K))?. As aconsequence, the L (N (K))?-projection q of von P! (N (K))?
enjoys the following approximation and stability properties:

la = vllzvky S VY2 vk s (28)
1/2

la = Vllz2o) $ BNV vy Vo € Fr, (29)

IVall2 vk S VY2 vk - (30)

The relation (28) comes from [16, Theorem 1.45, Eq. (1.74)], accounting for the fact that the
diameter of N(K) is < hg by mesh regularity; the trace approximation property (29) can be
established following the same arguments as for Eq. (1.75) in this reference (which establishes the

trace approximation property for o on the boundary of N(K)); the boundedness (30) follows from
[16, Remark 1.47].

Step 2: bound on Iy, ,q.

In the following, by abuse of notation we denote by Iy, ,,q the (non-averaged) local interpolate of q
on K, that is, the vector obtained gathering only the degrees of freedom (9) attached to the chosen
cell K (for s € Vk and o € 7-}* x)- We also note that the DOFs lying on the boundary of €2 do not
necessarily vanish for this local interpolate.

For all s € Vk we have (Iy, ,q)%xs = q(X,) and thus, by choice (4) of the face weights and since
q is linear, it holds VK‘TIUO‘Dq = Vyq for all o € Fx (V, being the tangential gradient), see [17,
Lemma 14.8] for details. From (5), we easily infer

%7 1y, ,q = qjo- 3D

13



Plugging this into the second relation of (9) yields

(Tv,pWko =0 Vo € Fig. (32)

Recalling (7) and using again [17, Lemma 14.8] and the fact that q is linear, we deduce that
VX Iu, »q = Va. (33)

The definition (8) of ITX then shows that ITX 1y, »q = q. Together with (32) and the definition (11)
of Sk, this gives
Sk 1y, Q- Wp) =0 Vwp € Up. (34)

Finally, recalling (33) and (30), as well as the definition (13) of ||-||; x, we obtain

17uspalli.x S IVYIlL2(n(K))- (35)

Step 3: bound on Iy, ,q — ]é;aﬂv.

We bound each type of degree of freedom (boundary vertex, internal vertex, fracture face), then use
(24) to conclude.

If s € Vg then (Ié;)az)v)q(s =0 and (Zy, ,q)xs = q(Xs). We can then take o~ € F*' that contains s
and write ’
j - - 2
|(Zup.0 Dcs = (I, Vxs| < |0l llqllz2(0) < lo] 12 VY2 vy
S K12 IVl vy (36)
where we have used the inverse Lebesgue inequality [16, Lemma 1.25] for the first inequality, the

bound (29) together with v|, = 0 (since o= C dQ) for the second inequality, and the mesh regularity
assumption to conclude.

Ifse (V}(m then (21b) and the fact that q is linear ensure that

(LU p D ks = q(X5) = s (i)4-

[Usxsi| Juges o)

Hence,

1
1Uxs il Jugey

|(Z0y.0 Dcs = (I3 Vsl = Tis(i) (@ = V)| S [Uges iy |72 llq - VIlL2 Uy )

0,D

S IKIT PV 2 vikyy. BT

where the first inequality follows from the bound |@wy; ;)| < 1 and the Cauchy—Schwarz inequality,
while the conclusion is obtained using [Ugc,(;)| 2 |K| (see (21a)), Uiy € N(K) and (28).

Finally, we consider the face degrees of freedom. If o € 7—}* x\ 7—';: K then by (22d) and (32) we have
LUy p DKo = (Ié;az)v) ko =0.Ifo € 7—'1{ k then (9) and (22¢) yield

i,a 1 o i,a
(IUo,z)q)KO' - (I ’ V)KO' = m j YK (q - V) - HKO-(IU(),Dq - ‘Z—U:)’Z)V)' (38)

Uo.o
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By (36) and (37), all vertex degrees of freedom of Iy, ,q — Ié’a vare O(|K|™2hg IVVIlL2 vy

0,D
The operator ITX“ only depends on these degrees of freedom so, by the same arguments that led to

(26), we find that |[ITX7 (Iy, ,q10 = I V=) S IKI72hk|IVV] 2(n (k). Plugging this into

U )
(38) and using the Cauchy—Schwarz inealzfality, we infer that

(Tuy.0 Do = (I Vx| < 10172 1a = Vil 2oy + KT 2R 19V 2 v
< K172l L2 v » (39)
where the mesh regularity and (29) were used to conclude.
Gathering (36), (37) and (39) and invoking the bound (24) with wg gathering the degrees of freedom
on K of Iy, ,q — I} v yields

0,D

170009 — L57* Vil S IVVIl2 vk - (40)

Uo,0

Step 4. conclusion.

Combining (35) and (40), squaring, summing over K € M and gathering the integrals by cells we
infer

BV 0 D IV iy = D IVVIa g Card{K € M : K’ € N(K)}.
KeM K'eM

The proof of (27) is complete by using the mesh regularity properties to see that Card{K € M :
K e N(K)} < 1. O
5.1.2 Proof of the inf-sup condition

We are now ready to prove Theorem 5.1. Let App € Myp. Recalling the definition (14) of the
H, }/ ?(I")-like norm, the inf-sup condition (20) holds provided we can prove that, for all i € I and all

v; € HO1 (QF; I';)4, there exists vp € Ug,p such that

IF/IZ) . [[Vz)]]z) S Il“i /lD -V

Ivollo  ~ lIvillm@n

(41)

Since v; vanishes on dQ\I';, its extension V; by 0 to Q belongs to H(l) (Q\I'1)? and satisfies
Vil @vryy = Vil H (@) Let us consider vy = Jé;f@?i with the interpolator defined by (22);
by the construction done in Appendix A, we can define this interpolator in such a way that, for all
s € I'; and L on the negative side of I';, U z(;) is fully contained in Q\Qzr (since U g4(;) can be fully
contained in any chosen cell that contains s). This ensures that (Iéz)aDVi) £s(i) = 0 for all such s, and

thus that TTX” Iéz)aDVi = 0 for all such L. Hence, by (23) and since A is piecewise constant on ¥,
| Ao volo= Y ac- | 152710 = 3 a0 | <%= [ a0
r oeFr o ’ o, o I

where the conclusion follows from the fact that yK is the trace on the positive side, where V; = v;.
Dividing throughout by |[vp||;.p = ”JIKD%”LD < Villg @y = ||v,~||H01 @) (see (27)) we infer
that (41) holds.
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Remark 5.6 (Jump-based norm on the fracture network). An apparent simpler — and perhaps more
natural — choice, that would prevent us from having to cut the fracture network into planar components
(I')ier, would be to define the H|, 0, (F) -norm using test functions v € H,, 1 (Q\I')? and replacing their
trace on the positive side of the fractures by their jump across the fractures This choice is fully
valid if we consider discretisations that have two bubble degrees of freedom, one on each side of the
fracture, because in that case we have

J 14 UODV]]O- = J [v] Vv € Hy(Q\IN)4.

However, in the case of a single bubble degree of freedom located only on one side of the fracture
(which has some practical interest in case of non-matching interfaces), the best relation that can be
established between [[I['j‘o z)v]] o and v is (23) (dropping the index i since we are discussing the option

to handle the whole network at once), in which [t Iﬁ‘o 5V is not the trace of v on the negative side,
but some approximation thereof. As a consequence, when bubble degrees of freedom are only taken
on the positive side of the network, we have to ensure that I I{}‘O v = 0 on the negative side;
this is achieved in the proof above by working on each individual planar component of the network
and using the zero extension outside Q] (which provides zero values on the negative side of I'). For
simple networks we might be able to create a v that is zero on the whole negative side, but for complex
network with multiple intersection lines, this does not look feasible, and explains why we resort to
the decomposed norm (14).

5.2 Discrete Korn inequality

Theorem 5.7 (Discrete Korn inequality). It holds
Volli,p 3 D\VD 2 D\VD, VD Vo 0,D-
Vol o < Il (D)2, o1 +S0(VD. VD) Wp €U (“2)

Proof. We begin by substituting the quantities V?vp in ||vpll1.p and o (vp) with their equivalents
Vm(IIPvyp) and p(ITPvyp) (where Vo and yq are the broken gradient and strain on M) to
expose the function II®vy € P! (M)9, and enable the usage of [16, Lemma 7.23] with adjustments
to account for fractures.

Specifically, the node-averaging operator 7, b , from [16, Section 7.3.2] can be adapted to avoid
crossing fractures, by defining the node-averaged value at a given s on the side K of the fracture as
follows

1
(Z, av, hHDVD)‘Ks = % Z HLVZ)(Xs)-

LeXKs

It results that the jumps (7, ! HD vp)xs — IIEvp(X,) can be controlled using only non-fracture
faces, instead of all mesh faces as in [16, Section 7.3.2]. Applying the techniques there, we obtain
the following modified version of [16, Eq. (7.66)]:

IV MT2VD)IT, 05 S I MTTPVD)IT, o ) + ; A MIPVoliolla ) (43)
o eF\Fr

To conclude, we need to bound the jump terms in the right-hand side. We consider a face K|L = o €
F\ 1. For s € V-, noticing that vy, = v 25, we write

IITPvp] o (x:)1* = [T V) (x5) — (TEvp) (x4)
< 2lvgey — (M8vp) (x5) 7 + 2|V £ — (Thvp) (x)
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S hg4(Sk(Vop,vp) +SL(Vp, VD)), (44)

where the conclusion follows from the definition (11) of the local stabilisation terms and the mesh
regularity (which ensures hx =~ hy). Further, the fact that [[HD Volio € P! ()4 along with (44)
yields

||[[HDVD]]|alliz((,) < |olIMPvo] ol s he! max IMPvp]|0 (x5) [
S hk(Sk(Vp, Vo) +SL.(Vp,Vp)). (45)

In the second inequality, we have used the fact that, by mesh regularity property, any X € o can
be written X = Y cq psXs With Yicq, ps = 1 and e |ps| < 1, and that M?Pvp](x) =
Dsev, Ps [MPvp](xs). We deduce from (45) that

h}1||ﬂHDV@]]|a||iz(U) S Sk(Vp,Vp) + SL(Vp, Vo). (46)

Consider now a face o € F*' N Fx, K € M. For s € V,,, noticing that vy, = 0, we obtain

IITPvp] e (x)1* = [T V) (Xs) = Vs |? < hE 9SSk (v, Vo).

Then, following the same arguments that lead to (46), we get

K IIPVo] i l172 () S Sk (V. Vo). (47)

Summing (46) over the faces o € F'" \ Fr and (47) over the faces o € ¥, we deduce

D Vol el $ D Sk(Vo, Vo). (48)
oeF\Fr KeM

The proof of (42) is concluded by noticing that
Vollf.o = IVMIPVD)I, g ) + %SK(VD,VZ»,
Ke

and by using (43) and (48). m]

5.3 Proof of the abstract error estimate

We prove here Theorem 4.5. To shorten the notations, let us define the discrete energy inner product
(*, *)e.p such that, forup,vp € Up,

(Up,Vplep = J pup): p(vp)+Su a0 (up,vp),
Q

and denote by ||-||.,p its associated norm. From the discrete Korn inequality (42), we deduce the
following bound for all vyy € U, p:

IVvolli.o < IVolle,o- (49)
Since u is a weak solution to the contact problem and by the regularity assumed on A in the theorem,

we have —div( (u)) = f € L>(Q) and A = -y} (u) € L*>(T"). Hence, (u) € W defined by (16) and,
using the definition (17) of wg, we have for all wp € Ug p

J (W) - @(wm—j £-T1%wp = wa( (u>,w@>—j - [wolo. (50)
Q Q r
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Subtracting (10a) (with vy = wgp) from (50), we obtain

L}( ()= pup)): p(wp)=Su 10 U, Wp) =-wp( (U),WZ))+L(/1@—/1)'[W@]]D- (51)

Take v € Up.p and set wo = Vo — up in (51) to get
o~ sl = ~wn( (W.vp-up) = [ (W= o) : o(vp-up)
#5,.00 (Do ~up) + | (o= 2)- (vl - [ul)
+ | (o= (o] ~ sl (52)

Recalling that 1p € Cp C Cy, we deduce from (2b) that fr(/lz) — ) - [u] < 0. Furthermore, as
ﬂ%/l € Cp (since g is assumed to be piecewise constant on 1), we obtain from the fact that [up] p
is piecewise constant on 1 and (10b) that

Lu ~p) - [un]p = L(noﬁa ~p) - [un]p <0,

and consequently
L(/ID =) ([u] = [up]p) <0.

Plugging this relation into (52), using the norm estimate (49), the definitions (15) of Cp and (17) of
Wy, a Cauchy-Schwarz inequality on S, 1 » and Young’s inequality, we infer

Ivo —uslli p S Wo( (0)*+Cop(u,vp)®+ L(/lz) =) ([vplo — [u]). (53)
We now return to (51), which shows that, for all wp, vy € U p,
[ an =2 wolp = wn( @.wo)+ [ (@ = oo s pwo)

=S a0(Vp, Wp) =S ap(Up —Vp,Wp). (54)

Setting ugp = ﬂ%/l and noticing that erl [wop]o = fr,uz) - [wp] o since [wWp]p is piecewise
constant on ¥, we deduce from (54) that

L(/lo —up) - [Wop]lp =wp( (u),wp) + L( (u) = p(up)): p(wp)
= Sua0(Vp,Wp) =Sy ap(Up —Vp,Wop).

The discrete inf-sup condition (20) then leads to

J:(Ap = o) - [wolp
lAp — popll-1ypr S sup
wpeUo.p Iwolli, o
SWo( )+ (- 20Vl + I 2(wn = Vo)l 20

12 1/2
+Su 10V, VD) 2+ S, 1.p(up — Vp,up —vp)'/2,

18



from which we infer

Ao — upll-1pr S llup —vVolli,0 + Wop( (u)) +Cop(u,vp). (55)
Combining (53) and (55) yields
lup = volli p +l1do = ol € Wo( (w)*+Cp(u,vp)*
+| (ap -2 (fvolo - [u). (56)
Let us introduce the discrete H, G *(I")-norm, dual of the discrete H(l)/ *(I")-norm (18) and defined for

all g € L>(IN9 by
1/2
Il = (D hollulida,,) (57)

oeFr

Using a weighted Cauchy—Schwarz inequality, we note that
| & < Mllolélen Vi € ) (58

Then, the contact term in the right-hand side of (56) can be estimated by introducing gy = n()ﬁxl and
writing

[ o= 2 (volo - ) = | A - no) - (wolo =53 [ + [ (o =+ (volo - [u)
I I I

¢ 2 1 0 2
< 5o~ upllZy, o+ 5-IVo]o — 75 [ullliy, o
+luo — Al2 Ilvolo - [[“]]HLZ(F),

where the introduction of the projector n(g)fr in front of [u] in the first line is justified by the fact that
Ap — [y is piecewise constant on Fr, and the conclusion follows from Cauchy—Schwarz inequalities
(including (58)) and a Young inequality (with an arbitrary ¢ > 0). We then apply Lemma B.2 in the
appendix to write ||[dp — ﬂD”%l/z,z) S |[Ap — uz)||%1/2’F and plug the resulting inequality in (56).
Adjusting ¢ to absorb ||1p — upl|?, T in the left-hand side, we infer

lup = vollf p+ 140 = ol < o = A2y Vol o = [u]ll 2

0 2 2 2 (59)
+I[volo - g [u]lli, » + Wo( (W) +Co(u,vp)~
Applying triangular inequalities we can write

HVZ)uD - VUHLZ(Q\F) + ”/lZ) - /1”—1/2,1“
< IVPup - VDVZ)HLz(Q\f) +1dp — poll—ppr + IVPVp - Vull 2o + llto — All-ysr

Slup —vplli,p +1dp = poll-ipr + Co(,vp) + [|up — All-ips 1. (60)

Taking the square root of (59), plugging the resulting estimate into (60), recalling that gy = 7r0Tr A,
then taking the infimum over vy concludes the proof of (19).
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5.4 Proof of the error estimate

Theorem 4.6 directly follows from the abstract error estimate (19), Lemma B.1 (with s = 1) in the
appendix, and Lemmas 5.8, 5.9 and 5.10 below.

Lemma 5.8 (Consistency of the gradient reconstruction). If u € Uy N H>(M)? then, recalling the
definition (15) of Cp, it holds

Cop(u, Iy, ,0) < hoplulg2pm- (61)

Proof. We first note that the regularity assumption ensures that u € Cg(ﬁ\l“): the H? regularity
ensures the continuity of u on each K, and the values on each side of each o ¢ 7 match by the H'
regularity. Hence, Iy, ,u is well-defined.

Let K € M and q be the L?>(K)-orthogonal projection of u on P!(K)?. By the approximation
properties of the polynomial projector [16, Theorem 1.45], we have

lu—qlgsx) S hglulgzky, Vs e{0,1,2}. (62)
Applying the bound [16, Eq. (5.110)] to u — q yields
max o~ af < 1K1 (1l = all 2 o0 + el = Gl oy + el =l )
< K7 PR lul g2 k- (63)

where the conclusion follows from (62). Plugging this estimate into the bound (24) for wk gathering
the DOFs on K of Iy, ,, (u — q) and recalling the definition (13) of the local norm, we infer

(195 Tt 0= @I )+ S T~ Tt T~ Fio)) S il
The linear exactness properties (33) and (34) allow us to manipulate the left-hand side to obtain
1/2
(195 Zup.00 = VaI22 ) + Sk Ty 00 T o)) < il -
Recalling the definition (15) of Cyp (u, Iy, ,u), the estimate (61) follows by introducing +Vu in the

left-hand side above, using a triangle inequality, invoking again the approximation property (62) (with
s = 1), squaring, summing over K, using the bound 2x < hgp and taking the square root. m|

Lemma 5.9 (Consistency of the jump reconstructions). Ifu € H2(M)? then

Il Zvypul o = [u]llz2ry S ko (|[[“ﬂ|H1(ﬁ) + hgzlulm(M)) (64)
and
IlZv, pulp = 7% [u]lli /2.0 S hplulg2m (65)

Proof. These approximation properties are, similarly to (61), a consequence of the linear exactness
of the jump reconstruction (upon projection on piecewise constant functions) and of a bound on this
operator.
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The definition (6) of the jump reconstruction directly gives

[volel < max \Z + max [Vesl+ Vko| Vvp € Up, Yo =K|L € Fr. (66)

Consider now, for such a o, two linear functions qx € P'(K)4, resp. q; € P'(L)?, that satisfy (63)
for K, resp. for L. Let q be the piecewise polynomial on K U L defined by qx and qz. Applying (63)
on each side of o we have

ITu—allliz=(o) S IKI7 2R lulge k) + 1L172RE g2 - (67)

Moreover, even though q is not globally defined or in Uy, its interpolate on the degrees of freedom
attached to o is well defined. The definition (9) of Iy, ,, easily shows that the degrees of freedom of
Iy, (w—q) on o are bounded by the maximum of [u — q| on K U L. Hence, by (66) and (63),

|[Zvy» (0 = @] < 1KI7 2Rl ) + ILI72R [l g (68)

The linear exactness (31) applied on each side of o together with (32) shows that [Ty, ,q]o = 7% [q]
(with 79 the L2-projector on P°(0-)¢). We can therefore write

112, pule = [Ulll2(0) < 1 ZUpp (0= D] ll 20y + 170 [a = u]ll2(0r) + 70 [u] = [u]llz2 (o)
< 102 (1K1 20l ey + 1720 Nl )
+ 17 [u] = [u]ll 2 ()
3/2
< hzé (|11|H2(K) + |11|H2(L)) +hol[u]lgi (o), (69)
where we have introduced +7%.[q — u] = +([Zy, ,q]+ — 7% [u]) and used a triangle inequality in
the first line, invoked (68) and used the L?(o)-boundedness of n% together with (67) in the second
inequality, and used the mesh regularity property in the conclusion to write |o-|!/ 2h}</2 < |K|'/? and

||V zhlL/ 2 g |L|'/2, together with the approximation properties of 7% [16, Theorem 1.45]. Squaring,
summing over o and taking the square root yields (64).

To prove the second estimate, we first notice that, by definition (6) of [-] » and (9) of the interpolator,

1
[Tu, 0] = ol J (Y 7 u -1 (Iy, ,w) = 7% (7w -1 (I, ,0)).
[oa
Hence,
112, pule = 7% [u]ll 12 (o) = lI7% (570 =TT (Zy, ) = [UD)l 20
< ly"u -1 (Ty, Wl 120 -

Introduce as above a linear approximation qz of u in L, and use the linear exactness (31) (with L
instead of K) of IT“ to deduce

I [Zv, pu] o = ﬂ(()f[[u]]HLZ(a) <l = qelizz (o + M Ty, (i = 401l 22(0r)-

In a similar way as (26) we can show that ITX” w, is bounded above, on o, by the maximum of the
absolute values of the degrees of freedom associated with . By definition of Iy, ,, and (63) (with L
instead of K) and using similar arguments as for the first terms in (69), we infer

3/2
I Zvonulo = 7% [ulll2(0) < 1) 2 lulpr)-

1

Squaring, multiplying by &~ < hzl, summing over o and taking the square root yields (65). O
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Lemma 5.10 (Adjoint consistency). Recalling the definition (17) of the adjoint consistency error
W, we have for all € W such that € H' (M)?*? the estimate

Wo() < hol la(m- (70)

Proof. Foreach € W n H'(M)?*9, the definitions (17) of wp and (6) of [-] yield

wo( vo)= Y (-([ ) ko= Y e [ Clienin)
oEFK 7

KeM K

+ Z (I |KnK(,.)-(VK(r—VL(r+VKa)

o=K|Lef Y9

= Z (—|K| K . K(V@)— Z |O_|VK'TK0')

KeM oeFk

+ D oltke - (Vko = Vie +Vko),
o=K|Le%r

with | |
K =15 and Tk =—j ( lknko).
K] IK 7ol ) 7

Recalling the definition (7) of VX and noticing that x : g(vp) = k : VEvp since g is
symmetric, we infer

wo( Vo) = 3 > (oo - (ki) = lo| ¥k - 7o )

KeM
eMoeFk B B (71)
- Z lo| VKo - ( kDko) + Z oItk o - (VKo = Vio + VKo )-
o=K|Le%r o=K|Le%r

By the normal continuity property embedded in the space W we have g, = —71 forall o = K|L €
FtSince Vi = V7 Whenever o= ¢ Fr, we infer

D 1ol tke (ko Vi) = D D |o|¥ke - Tkor

o=K|LeFr KeM oeFk

Moreover, as 3. ;e |0 g =0 for all K € M,
DX ek (knke)= Y, k(& Y lolnke) =0,
KeMoeFk KeM oEeFK

Plugging these relations into (71) leads to

wp( Vo) = > Y olVke (= kMke+Tko)+ D, D 0|k ( kMko - ko)
KeM oeFx KeM oeFk
> 1olke Ve = . 1ol ( kNke) Yk
o=K|Le%r o=K|Le%r

Z Z lo| (Vko = V) - (Tko — KkDKo) + Z ol VKo - (TKko — KDKo)-

KeM O'ETK O'ZK|L€7:1"

Using the Cauchy—Schwarz inequality and invoking Lemma 5.11, we infer

]/2 1/2
ol — —
wp( ,vp) < Z Z %lVK(T_VKlz) (Z Z lo|hk Tk o — KNKo|?

KeM oeFk KeM oeFk
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12 1/2
lo|
+ Z h_|VK0'| Z lo|hk Tk o — KDKo |

o=K|Les K o=K|LeFr
1/2
2
Slvolun| Y, D) lolhklece = knxol’| (72)
KeM oeFk

Note that the term 3, _g e 1Mk Tk & — kMo | has been included in the last factor in the
right-hand side. By [17, Lemma B.6],

2
lolhk |tk o = kMkol® S hi| |H1(K)

Plugging this into (72), dividing by ||vp|li,» and taking the supremum over vy concludes the
proof. O

Lemma 5.11. Forall vp € Uy, p, the following two inequalities hold:

|| V2
>, Vkel) 5 Ivollo, 73)
o=K[Ler K
o /2
(> >k ||v1<g—vkl) < Vol o. (74)
KeM O'ETK
Proof. To prove (73), we simply write, by mesh regularity property, h;é so that, by definition
(13) of the discrete norm,
lo| 2 -2 2 2
2 kel s )L Mol s So(vo.vo) < IVolli 5.
K
o=K|Le%r o=K|Le%r

We now turn to (74). Let K € M and o € Fx. By the choice (4) of the weights (w7 )sey, . the
definition (5) of Vi, and the definition (8) of the linear function ITX vy, we have

Z w? (vacs = TTXVp (x,)) = Vo — VK = VEV (X — Xk).
seVy

The convexity of the function x — |x|? then yields

Vko =k = V0 (Ro =X)I” < ) 0 Ivies = TV (x0) .
se€Vs
Apply the inequality %|a|2 < |b|?+]a - b|* witha = Vg, — Vg and b = VEvp (X, —Xk). Recalling
the definition (11) of Sk, and using the facts that each w?; is in [0, 1] and that the number of faces
that meet at a vertex s € Vg is < 1, we deduce that

1 _ _ _
§|VKO' Vi |? < hi [V¥up > + g 4Sk (Vo, Vo).

The estimate (74) then follows by multiplying by |o-|/hk, by noticing that |o-|hx < |K]| < h?(, and
by summing over K € M. O
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6 Numerical Experiments

6.1 Unbounded 2D domain with a single fracture under compression

This test case presented in [28, 21, 22, 18] for a Coulomb frictional contact model also applies here
to the Tresca frictional contact model (1) since the normal traction of the analytical solution and the
friction coeflicient are constant along the fracture. It consists of a 2D unbounded domain containing a
single fracture and subject to a compressive remote stress o = 100 MPa. The fracture inclination with
respect to the x-direction is ¢ = /9 and its length is 2¢ = 2 m. The Coulomb-friction coeflicient,
Young’s modulus and Poisson’s ratio are set to F = 1/V3, E = 25 GPa and v = 0.25. The analytical
solution in terms of the Lagrange multiplier A4, and of the jump of the tangential displacement field
is given by:

tn=osi’). Il = 2o sin) [cosw) - L sinw) | VE- @ -72). (9

where 0 < 7 < 2¢ is a curvilinear abscissa along the fracture. Note that, since 4, > 0, we have
[u]n = O on the fracture. It results that the Tresca threshold is constant along the fracture and defined
by g = FA,.

Boundary conditions are imposed on u at specific nodes of the mesh, as shown in Figure 4, to respect
the symmetry of the expected solution. For this simulation, we sample a 320m X 320 m square, and
carry out uniform refinements at each step in such a way to compute the solution on meshes containing
100, 200, 400, and 800 faces on the fracture (corresponding, respectively, to 12468, 49 872, 199 488,
and 797952 triangular elements). The initial mesh is refined in a neighborhood of the fracture;
starting from this mesh, we perform global uniform refinements at each step.

Figure 5 shows the comparison between the analytical and numerical Lagrange multipliers A, and
tangential displacement jump [u]; computed on the finest mesh. The Lagrange multiplier A,, presents
some oscillations in a neighborhood of the fracture tips. As already explained in [21], this is due to
the sliding of faces close to the fracture tips (in this test case, all fracture faces are in a contact-slip
state). The discrete tangential displacement jump cannot be distinguished from the analytical solution
on this fine mesh. Figure 6 displays the convergence of the tangential displacement jump and of the
normal Lagrange multiplier as a function of the size of the largest fracture face denoted by 4. Note
that the L? error for the Lagrange multiplier is computed 5% away from each tip to circumvent the lack
of convergence induced by the oscillations as in [21]. A first-order convergence for the displacement
jump and a 1.5 convergence order for the Lagrange multiplier are observed. The former (low) rate
is related to the low regularity of [u]; close to the tips (cf. the analytical expression (75)), the latter
(higher than expected) rate is likely related to the fact that A, is constant.
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v

(a) (b)

Figure 4. Unbounded domain containing a single fracture under uniform compression (a) and mesh
including nodes for boundary conditions (¢: u, = 0, m: u, = 0), for the example of Section 6.1.

de+7 : : : : 0.004
An ——
An analytic - - -
3e+7 | 1 0.003 +
[u]l —
2e+7 0.002 +

[u],REF - - -

le+7 0.001 4

0 04 08 12 16 2 0 04 08 12 16 2
7 (m) 7 (m)

Figure 5. Comparison between the numerical and analytical solutions on the finest mesh (with 800
fracture faces), in terms of A, (a) and [u], (b), example of Section 6.1.
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Ist and 1.5th order \
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Figure 6. Convergence of the relative L? error of [u]; — [up]pr and of 1y — Ap n away from the
tip, as a function of the size of the largest fracture face denoted by 4. Test case of Section 6.1.
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6.2 3D manufactured solution for the Tresca friction model

We consider the 3D domain Q = (-1, 1)? with the single non-immersed fracture I" = {0} x (=1, 1).
The Tresca coefficient g is set to 1 and the Lamé coefficients are set to 4 = 4 = 1. Note that this
situation does not formally match the assumptions made in the analysis of the scheme: specifically,
Q\TI is not connected; however, this assumption was solely made to ensure that the Korn inequality
is valid in the fractured domain, which is the case here since each connected component of Q\I" sees
0Q (as a matter of fact, the connectedness assumption could be replaced by the assumption that each
connected component of Q\I" touches the boundary of Q along some hypersurface).

The exact solution

h(x,y)P(z) — gy
P(2) ifz >0,
sz(z)

h(x,y)Q(2) — gy
u(x,y,z) = 20(z) ifz<0, x <0, (76)

x2Q(z)

h(x,y)0(z) — gy
0(z) ifz<0, x >0,

x*Q(2)

with i(x, y) = —sin(x) cos(y), P(z) = z> and Q(z) = z*/4, is designed to satisfy the Tresca frictional-
contact conditions at the matrix fracture interface I'. The right hand side f = —div (u) is deduced
and the trace of u is imposed as Dirichlet boundary condition on 9. Note that the fracture I'
is in sticky-contact state for z > 0 (Ju]n = 0, Ju]; = 0) and slippy-contact for z < 0 (Ju], = 0,
|[u]-| > 0). The convergence of the mixed P'-bubble VEM — P° formulation is investigated on
families of uniform Cartesian, tetrahedral, and hexahedral meshes. Starting from a uniform Cartesian
mesh, an hexahedral mesh is generated by random perturbation of the nodes. This lead to non-planar
faces (except on the fracture) which are dealt with either by cutting the faces into two triangles or by
applying the modified gradient operator as described in remark 3.1. These two choices illustrated in
Figure 7 are denoted respectively by Hexa-cut and Hexa-bary in the following.

Figure 7. Example of randomly perturbed Cartesian cell with non planar faces: hexahedral cell
with a non planar face cut into two triangles (left, denoted by Hexa-cut) or four triangles using the
isobarycenter of the face nodes (right, denoted by Hexa-bary). Note that in the Hexa-bary case, the
displacement at the isobarycenter is eliminated by linear combination of the displacements at the face
nodes as detailed in Remark 3.1.

Figure 8 exhibits the relative L norms of the errors u — Ilpup, [u] - [up]p, Vu - Vpup and
An — Ap n on the three families of refined meshes as a function of the cubic root of the number of
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cells. It shows, as expected for such a smooth solution, a second-order convergence for u and Ju] with
all families of meshes. A first-order convergence, coherent with Theorem 4.6, is obtained for Vu and
Ap with both the hexahedral and tetrahedral families of meshes, while a second-order convergence
for Vu and a 1.5th-order convergence for A, is observed with the family of Cartesian meshes (these
improved rates being probably due to the symmetry and uniformity of the mesh).

(a)

(b)

0.1 0.1
5 001 0.01 |
=
o
Y 0.001 0.001 |
;
0.0001 [ T 0.0001
Vu ——
A 1.5th and 2nd order A Ist and 2nd order
le-05 . . . . le-05 Lo . . . .
4 8 14 24 40 64 12 20 31 51 81 116
! %
Neen Neen
© @
1 0.1
0.1
s 0.01°7F ]
=
e
5 o.01
N 0.001 | ,
u —e—
0.001 [u]
Vu —«— p
A Ist and 2nd order 0.0001 A Ist and 2nd order ]
0.0001 . . . . , . .
4 14 24 40 8 14 24 40 64

N3

cell

N3

cell

Figure 8. Relative L? norms of the errors u — Ipuyp, [u] — [up]p, Vu-Vpup and 4y — App asa
function of the square root of the number of cells, using the families of Cartesian (a), tetrahedral (b),
Hexa-cut (c) and Hexa-bary (d) meshes. Test case of Section 6.2.

The discrete solution for the face-wise constant normal jump [up] o p is essentially zero (machine
precision of 107!6) for any mesh, as we are in a contact state on the fracture I". In contrast, the nodal
normal jumps approach zero as the mesh is refined, as illustrated in Figure 9 for the family of Hexa-cut
meshes. The nodal normal jumps in Figure 9 are plotted as a function of z along the “broken” line
corresponding to x = y = 0 before perturbation of the mesh. Figure 10 plots, for the Hexa-cut family
of meshes, the face-wise constant non-zero tangential component jump [up]p , on I" as well as the
nodal tangential jumps as a function of z as for [up]p n in Figure 9. We recall that, on the fracture,
the exact tangential jump [u], depends only on z and is equal to min(z/2, 0).
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Figure 9. Nodal normal jumps [up]p n along the line x = y = 0 as a function of z for the discrete
solutions on the Hexa-cut meshes with 23 cells, m = 3,4, 5 and for the continuous solution. Test
case of Section 6.2.
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Figure 10. (a) Face-wise constant non-zero tangential component jump [up]p , on I" obtained on
the Hexa-cut mesh with 23 cells, m = 5. (b) Nodal tangential jumps along the line x = y = O as a
function of z both for the discrete solutions on the Hexa-cut meshes with 23 cells, m = 3,4, 5 and
for the continuous solution depending only on z. Test case of Section 6.2.

7 Conclusions
We have presented in this work the convergence analysis of a fully discrete polytopal discretisation of a

contact-mechanical model with Tresca friction at matrix-fracture interfaces. The analysis accounts for
general elements and network of planar fractures including immersed and non-immersed fractures,
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with intersections, corners and tips. The main new features are related to the polytopal bubble
additional displacement degree of freedom, the proof of a discrete inf-sup condition using a specific
H 6’]./ *(I')-norm to deal with networks of fractures and one-sided bubbles, and the proof of a discrete
Korn inequality taking fracture networks into account. Numerical experiments based on two analytical
solutions are presented and confirm the established first order error estimates on the L?(Q)-norm of
the displacement gradient and on the H(;, ;/ *(I'")-norm of the Lagrange multiplier.

A Construction of Uy, ;) and @y for the averaged interpolator

For each K € M and s € Vi, we construct an explicit Uy (;) and @y (;) that satisfies (21). The
construction shows that Uy ;) can be entirely contained in any single element in %s (i). For simplicity
of presentation we assume here that the space dimension is d = 3, but the same construction can also
be done in 2D.

Let L € Ks(i). By mesh regularity there is a simplex S C L that contains s as one of its vertices, and
that is shape-regular (with regularity factor bounded above by the global mesh regularity factor). We
take Ugcs(;) = S. We then build @y, (;) on the reference simplex

S = ¢0{(0,0,0), (1,0,0), (0,1,0), (0,0,1)}

and linearly transport it onto § = Uy (;); the relation (21b) are preserved by this linear transport, and
the upper bound in (21a) is the same as the one on the reference simplex.

Without loss of generality we can therefore assume /t\hat Xs = (0,0,0). The simplex S has center of
mass xg = (1/3,1/3,1/3), and the simplex S; = %S has center of mass xg, = (1/6,1/6,1/6). We
therefore have

Xy = 2Xs, — Xg. (77)

Let us define @y ;) = 161s, — 15, where 14 is the characteristic function of A. Then, since

1S1] = 1S1/8,

S’

ﬁw«sm ~ 16]5,] - [5] = |3,
S

which establishes the first relation in (21b). To prove the second, by definition of the centers of mass
we write

ng«sm _ L 16x - Lx = 16515, — Sxg = I5](2xs, — x2) = [S]xs.
1

where the conclusion follows from (77).

B Estimate on fracture norms

We establish here two estimates involving the H, }/ *(I')-like norms, that are used in the error estimates.

0

The first one is an approximation property of the L?-projector T

on piecewise constant functions.

Lemma B.1 (Approximation properties of 7% in L? and discrete H, }/ *(T') norms). We have

Fr
1A= 7% A2y S holdlgrgy VA€ H'(Fr)4, (78)
and, for all s € [0, 1],
Lig
1A =) Al < W2 Alusry YA € HY(F0)”. (79)
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Proof. Let A € H*(1)¢. The approximation properties of L2-orthogonal projectors on polynomial
spaces give, for all o € #r and denoting by 7% the L?-orthogonal projector on P°(co)4,

1A= 7% Al 20y < B A5 (o)

(this estimate is established in [16, Theorem 1.45] for the scalar case and s € {0, 1}, and can be ob-
tained for vector-valued functions and s € (0, 1) working component by component and interpolating
between s = 0 and s = 1). Squaring, summing over o= € ¥ and taking the square root, we infer

1A= 7 Allg2ry S WiplAlms () - (80)

The case s = 1 corresponds to (78).

We now turn to (79). Given the definition (14), we only need to bound the norm on I'; for each i € 1.
For all v; € H' (©f:T;)\{0}, by orthogonality property of n()ﬁ and a Cauchy—Schwarz inequality we
have

L (A=7pA)-vi = L (A=7pA) - (vi = 7 vi)

0 0
<A =mp A2y lvi — e vill 2 ry)

< Wyl s () 1vi = 7% Vill L2 » oy

where we have used (80) in the second inequality. Letting 71'(/)\/[ be the L?-orthogonal projector on
piecewise constant functions over M and introducing (n%vi)m we have, since 77(;)% (”(/)V(Vi)\Fi =

(7S v s

0 0 0 0
llvi — ﬂchViHLz(ri) <|lvi- (ﬂMVi)|ri||L2(r,-) + ||777:F(Vi - (ﬂMVi)|F,~,)||L2(F,-)
0
<20lvi = (mp vl 2y

0

where the conclusion comes from the boundedness in L*(I';)-norm of M- The approximation

properties of ﬂ(/)w (see [16, Theorem 1.45]) then yield

1
Vi = - Vill 2y < hpllvill g ar)- (82)

Plugging (82) into (81), dividing by ||v;|| g1+ and taking the supremum over v; concludes the
proof. O

The second property is a bound between H~'/?-like norms on I'.

Lemma B.2 (Estimate of the discrete H~'/2-norm). It holds
Idoll-1p,0 S IApll-1pr,  ¥Ap € Mop.

Proof. Let A € Mgp. Given the definitions (14) and (57) of the two norms, we only need to prove
that, for each i € I, there exists v; € H' (Qf; ;)4 such that

IWilli o < Ipll-s,0;  and jap-vi=|u@||%l,z,o,i, (83)
I;
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where
1/2
Al o0 = ( > hg|a||aa|2)
ocly

is the restriction to I'; of [[Ap||-15,». To achieve this, we first define the boundary values of v; and
then lift these boundary values to create v; itself.
Step 1: design of bubble functions.

For each o c I'; we take a ball B, C ¢ and a bubble function b, € W' (o) such that

B, hasradius = hy, dist(Bs,00) = he,

| L (84)
[ bo=tol. bo=0ousice By Wbolin s 1. 19l < B
o

The existence of B, is ensured by the mesh regularity assumption, and b, can then be constructed
on B, by scaling the function x — dist(x, 98, ). We then have

b (X) = b (y)I > j I dxdy
b dxdy < ||Vb oo _
l O—|H1/2(O—) J‘cr\[ |X—Y|d y H O_HL o Jo |X_Y|d_2

Using polar coordinates around x (setting y = x + pé with p > 0 and € of unit length) and recalling

that o has dimension d — 1 we easily get f Ix(;% < hs. Hence, invoking (84), we infer
bolipn g S halol. (85)

For any x € B, since x is at distance 2 h, of do a use of polar coordinates around x yields
dy Ty < hy'. Using (84), we infer that

bs 2
Jj LV < hitior. (86)
o Joane X -l

Step 2: construction of the boundary value.

.[6&?’\0' |x—

Setw : 0Qf — R4 such that W], = hgdob o forall o c Ty, and Wlag}‘\ri = 0. Then,

[ anw= 3 haldol [ bo= Y holtePlol = oI (87)
I; o

ocl; oclj

By the support condition in (84), w is continuous (and piecewise H') on 0Q, so it belongs to
H'2(0Q})?. Having in mind to create a lifting of w, we want to bound its H'/2 norm. Specifically,
we will prove that

Wl 11200 < 14D ll0.: (88)

We only detail the bound of the seminorm, as bounding the L? norm of w is straightforward. We have

S [ ] e W9 = wOP

lwl?
Ix —y|4

H2(00) ~
0'C6Q+ o C(')ST

lw(x) - w(y)|* lw(x) - w(y)|?
J J x—y[d — " dxdy + Z Z J j x—y[d — = dxdy

ocl; ocoQf o'coQf, o'#o
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=T+ 3. (89)

To bound T, we use W|s = hyAdsb s and (85):

Ti= ) Wlelying, S D, hololldel =l1Aol?,, p - (90)

ocly ocl;
We now turn to I, for which we write

TL<2 Y D jj - ylddd y+2 Y D JJ ||:ny;||idxdy

ocoQf o' coQf, o'#to oCcoQf o' coQf, o'to

J I A3
7 dxdy
o a0 Jo Joapio (X =l

< D holollAel = 1oy, o 91)
O'CGQ,T

where the second line follows gathering the two terms in the right-hand side of the first line by
symmetric roles of o~ and ¢/, and the last line from w|, = hyA,b s and (86).

Plugging (90) and (91) into (89) concludes the proof of (88).

Step 3: conclusion.

Sincew € H1/2(89+)d we can find a lifting v; € H1(§2+)d of w such that ||V,||H1(Q+) ||W||H1/2(6Q+)

Since w vanishes outside I';, we have v; € H' (Ql ;7). By (88) and (87), the relations (83) hold and
the proof is complete. |
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