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Abstract

Nanoporous materials serve as very effective media for storing or separating small

molecules. To design the best materials for a given application based on adsorption, one

usually assesses the equilibrium performance by using key thermodynamic quantities

such as Henry constants or adsorption loading values. To go beyond standard method-

ologies, we probe here the transport effects occurring in the material by studying the

self-diffusion coefficients of xenon inside the nanopores of framework materials. We find

good correlations between the diffusion coefficients and the pore aperture size, as well

as other geometrical and energetic descriptors. We used extensive molecular dynamics

simulations to calculate the diffusion coefficient of xenon in 4 873 MOFs from the CoRE-

MOF 2019 database, the first large-scale database of transport properties published at

this scale. Based on this data, we present a tool to quickly evaluate the diffusion energy

barrier that proved to be very correlated to the diffusion rate. This descriptor, alongside

other geometrical characterizations, were then used to build a machine learning model

that can predict the xenon diffusion coefficients in MOFs. The final trained model is

quite accurate and shows a root mean square error (RMSE) on the log10 of the diffusion

coefficient equal to 0.25.
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1 Introduction

Separation processes are omnipresent in the industry in many areas, including energy, envi-

ronment and health, to separate chemical mixtures into pure components through operations

such as distillation, molecular sieving, etc.1,2 These processes are account for a significant

fraction of the world’s energy consumption, and therefore the design of more energy efficient

separation methods could help lower global energy use, carbon dioxide emissions and pollu-

tion.3 While distillation is the chemical engineering process most commonly associated with

chemical separation and purification, other options exist such as crystallization, adsorption

and membranes. Microporous materials, such as porous amorphous polymers4 or nanoporous

crystalline materials,5 are among the materials frequently used for both adsorption and the

design of membranes.

In molecular separation processes based on nanoporous materials, microscopic transport

properties are key to the kinetics of the adsorption process at the macroscopic scale. Two

distinct use cases for nanoporous materials in separation processes exist: adsorption-based

separation, which is primarily a thermodynamic process, and nanoporous separation mem-

branes, which rely on both kinetic and thermodynamic properties. Depending on the targeted

application, diffusion is either the main performance metric (for membranes) or a secondary

parameter (for adsorption) that is often overlooked. In processes based on molecular sieving,

for instance, gases are passed through a membrane material that selectively blocks certain

atoms or molecules on the basis of their size, while allowing other particles to diffuse freely.6

In the steady state, the performance of the separation is, in part, related to the ratio of diffu-

sion coefficients for the species involved. On the other hand, the thermodynamic selectivity

is the primary performance metric in adsorption-based separation processes commonly per-

formed at the industrial scale, such as pressure and/or temperature swing adsorption (PSA,

TSA or PTSA).7,8 However, even in those cases, it is worth considering that the kinetic

performance can enhance the overall industrial process.9 For instance, in breakthrough ex-

periments used to characterize the comparative adsorption performances of a gas mixture
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— and somewhat akin, at the lab scale, of a pressure swing adsorption — the shape of the

breakthrough curve can be explained by diffusion processes.

Despite the importance of guest transport properties, most high-throughput computa-

tional studies based on atomistic simulations of nanoporous materials so far have focused

heavily on the thermodynamics of adsorption,10–12 studying adsorption parameters such as

adsorption enthalpy, adsorption entropy, Henry constant, uptake isotherms at various tem-

peratures, loading at specific values of pressure, working capacity, and other such thermody-

namic quantities.13–15 Here, we want to explore this frequently overlooked aspect through a

high-throughput screening approach, and we therefore focus on a single quantity: the guest

diffusion coefficient in the low loading regime (or low pressure limit). While transport phe-

nomena in nanoporous media are very complex, we want to start addressing the issue with

a manageable quantity, and therefore have chosen the low-loading diffusion coefficient as a

first target.

The diffusion coefficient of a guest molecule inside nanopores is relatively straightforward

to calculation from molecular dynamics simulations.16 However, this approach has a very

high computational cost, explaining in part why it has not been routinely adopted in high-

throughput studies — although some examples exist in the literature: Altintas et al. studied

the diffusion of H2 and CH4 in 4240 MOFs;17 Zhou and Wu calculated minimum energy

paths for the diffusion of polyatomic molecules;18 Bukowski and Snurr characterized the

diffusion of a chemical warfare agent simulant in a diverse set of 776 Zr-based MOFs.19 More

recently, alternative approaches have been proposed and developed to compute the diffusion

coefficient of species directly from the characteristics of the potential energy field of the

diffusing particles.20,21 These approaches are very efficient, because they do not require the

explicit molecular simulation of the dynamics of the diffusion itself, but instead are built

on physics-informed approximations linking the underlying potential energy surface to the

transport properties.

In this article, we implemented and tested a third approach to this problem, based on the
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generation of a large database of self-diffusion coefficients and the application of statistical

learning. We first performed explicit molecular dynamics simulations on a subset of the

CoREMOF 2019 database in order to compute diffusion coefficients for a specific guest

molecule — we have chosen xenon to illustrate our algorithm. We then introduced a grid-

based algorithm to calculate the diffusion energy barrier values for the guest migration inside

the nanoporous material. We then trained a machine learning model on our database, using

as features this energy barrier alongside key geometrical descriptors (like the pore limiting

diameter). We found that the final model is sufficiently accurate for the purpose of a fast

estimation of the self-diffusion coefficient, showing an RMSE on the log10 of the diffusion

coefficient equal to 0.25. We then discuss the perspectives opened by this new methodology.

2 Methods

The several computational methods that have been proposed to calculation diffusion coeffi-

cient values in nanoporous materials can be broken down into two main categories: methods

based on molecular dynamics (MD) simulations and those relying on the application of tran-

sition state theory (TST).22 The first approach is probably the most “natural” way, leveraging

physically meaningful MD trajectories of adsorbates inside the nanoporous material, but it

is computationally intensive. The second approach is much faster, relying only on the po-

tential energy surface instead of computing long trajectories, but represents an important

approximation. In this work, we use statistical learning to predict MD-based diffusion coef-

ficients using approximate values coming from a TST-based method, augmented with other

descriptors of the nanoporous geometry.

2.1 Screening of transport properties

Using systematic MD simulation, we calculated xenon self-diffusion coefficient values at infi-

nite dilution (no guest–guest interactions) for 6 525 non-disordered materials from the CoRE-
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MOF (Computation-Ready Experimental MOFs) 2019 database,23,24 chosen to be the most

thermodynamically selective for Xe/Kr separation based on a previous screening study.25

From this set, we removed a small number of structures (291) that had several, inequiva-

lent channels — since we can only probe one channel at a time in an infinite dilution MD

simulation, that would cause inaccurate sampling in materials with several channels.

For each material, MD simulations were performed using the RASPA2 software16,26 on

the calculation machines (Intel Xeon Platinum 8168 cores at 2.7 GHz). Simulations were

performed in the (𝑁, 𝑉, 𝑇 ) ensemble with a Nosé–Hoover thermostat at 𝑇 = 298 K. The

simulations were set up with a maximum of 500 million MD steps, but we also set a CPU

time limit of 60 hours. Within this time constraint, 3 899 structures completed all 500 million

steps.

We then used the MSD, corresponding to the average of the squared displacement of

the xenon atom ⟨𝑟(𝑡)2⟩ in the nanoporous material at time 𝑡, to determine the diffusion

coefficients through the Einstein equation:

⟨𝑟(𝑡)2⟩ = 6𝐷diff 𝑡 (1)

The RASPA2 software uses a multiple-window algorithm developed by Dubbeldam et al.27

to probe different timescales of the MSD data when running MD simulations. We used this

software for our MD calculations, with the default value of 25 for sampling rate (“SampleMS-

DEvery” parameter), 500 million time steps and a relatively large value of 5 fs for each step,

in order to obtain sufficiently long dynamics — which we confirmed was acceptable in the

absence of dynamics for light elements in the system. For larger structures, which did not

complete the full MD trajectory, we set up a criterion for convergence of the mean squared

displacement (MSD) calculation: we included trajectories that had a good linear fit, with a

correlation coefficient 𝑅2 > 0.9.

The final methodological choice in our exploration was: what characteristic time range do
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we use to fit the MSD profiles and obtain diffusion coefficients? Based on manual examination

of the MSD data on several materials, it is clear that there was no one-size-fits-all answer, but

we typically found that most materials exhibited a clear diffusion regime in one of two time

windows: 2–47 ns and 50–950 ns. we decided to avoid adding physical insight or intuition

into the process, and in a data-based approach, chose for each material the time window

that corresponded to the fit with the highest determination coefficient (ranging from 0 to

1) — as highlighted in the case of structure KAXQIL_clean in Figure S9. After this fitting

step, structures with a determination coefficient R2 below 0.9 were removed, leaving 5 125

structures reported in the following and used for drawing structure–diffusivity relationships,

correlation analyses and prediction model development.

2.2 Energy barrier

A few years ago, Mace et al. developed an algorithm to calculate self-diffusion coefficients

from the potential energy surface of an adsorbate molecule, based on the transition state

theory.20 In their work, they used a clustering algorithm to identify the adsorption sites,

transition states, and connecting tunnels within the material for a specific adsorbate, which

are then leveraged to run a lattice kinetic Monte Carlo simulation from which the mean square

displacements are deduced. We were inspired by this approach, but are more interested in the

present work in the use of the energy barrier itself: instead of using it to determine transition

probabilities, we have developed a simplified version of the algorithm that only focuses on

the energy at which the diffusion tunnels have percolated (i.e., become all connected).

Recently, we developed the GrAED algorithm that efficiently computes energy grids

in nanoporous materials: we divide the unit cell into small voxels, whose size is typically

between 0.1 and 0.2 Å. For each voxel, we compute the host–guest interaction energy that

would have a guest molecule placed in the center of that voxel. While this concept is not

novel, we recently made strong improvements in its computational efficiency, by using the

symmetry of the host framework and excluding from calculations the space occupied by
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framework atoms.28 This grid is a discrete representation of the potential energy surface

(PES) of a guest molecular inside the framework. From this PES surface representation, the

energy minima are determined. Then, in order to determine the values of energy barrier for

diffusion, we then needed to develop an algorithm that detects all-connected clusters within

the energy grid. A breadth-first search algorithm is employed to label different connected

components within a given channel between 𝐸min and 𝐸min + 𝑖𝛿𝐸 (at the 𝑖th iteration). By

monitoring changes in the number of connected components between two energy values,

the code automatically detects the energy 𝐸TS at which components reconnect and form

a channel (allowing diffusion from one boundary to another). The activation energy 𝐸a is

then calculated as the difference between the calculated transition state energy 𝐸TS and the

minimal energy 𝐸min within the channel: 𝐸a = 𝐸TS − 𝐸min.

To illustrate the approach, here we show the case of KAXQIL,29 where the barrier detec-

tion was performed using an energy step 𝛿𝐸 of 0.3 kJmol−1. A single symmetrically unique

type of channel was identified in KAXQIL, with a minimal energy of −44.3 kJmol−1 — the

various channels shown in Figure 1c are all symmetrically equivalent. The code detected a

single merge that resulted in a fully connected component within the channel. This merging

occurred at an energy of −25.7 kJmol−1 (as depicted in Figure 1b), indicating that the

estimated activation energy is 18.6 kJmol−1 with an uncertainty of 0.3 kJmol−1 (due to the

energy step used).1

In the simplest case of one unique merge of a unidimensional channel, the method demon-

strates strong performance, and it becomes possible to associate the activation energy with

a diffusion rate 𝑘diff using the Arrhenius equation:

𝑘diff = 𝐴 exp

(︂
− 𝐸a

𝑘B𝑇

)︂
(2)

where 𝐴 is a prefactor that depends on the temperature and system (adsorbate, adsorbent).

This is a simplified version of the transition probability used in TST-based methods. In the
1Code available at: https://github.com/coudertlab/FaEB
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(a) 𝐸max = −30 kJmol−1 (b) 𝐸max = −23 kJmol−1 (c) 𝐸max = 10 kJmol−1

Figure 1: 3D visualization of channels within KAXQIL using different energy thresholds 𝐸max.
Depending on the maximum value of energy allowed, the channel is either composed of
unconnected basins (a), or they are fully connected (b) and (c). This illustrates the principle
of the energy barrier detection.

case of a unidimensional channel with a single possible transition, the diffusion coefficient is

directly associated with the diffusion rate. The problem can be reduced to a unidimensional

random walk with a given transition probability, and the diffusion coefficient is given by

𝐷 = 𝑘diff𝐿
2/2, where 𝐿 is the distance between two basins. In this special case, there exists

a direct relationship between the diffusion coefficient and the activation energy, such that

log(𝐷) ∝ 𝐸a. For more complex systems, the relationship may be more complex, hence the

need for our statistical learning approach.

We calculated the xenon diffusion barrier energy for all 5 125 structures previously se-

lected for screening of diffusion coefficient. An energy step of 𝛿𝐸 = 0.1 kJmol−1 was employed

during the energy loop to determine the minimal energy barrier for each unique channel in

the material. Then, to avoid any potential noise arising from the MD simulation initializa-

tion problem, materials with significantly different energy barrier values from one channel to

another (standard deviation of energy barrier values higher than 1 kJmol−1) were excluded,

reducing the number of structures considered to 4 873.
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2.3 Energetic and geometrical descriptions

The approach chosen in this work is to rely on a fast energy evaluation to boost the perfor-

mance of the ML model, instead of simply adding a maximum information on the chemical,

geometrical and adsorptive properties of the material as typically done in previous studies.30

The total set of descriptors for our model, detailed in Table 1, is relatively restricted.

The activation energy 𝐸𝑎 and the adsorption enthalpy ∆ads𝐻
Xe
0 within a channel were

both obtained by the energy barrier algorithm described above. The adsorption enthalpy

does not cost much more computational resources to compute and can be seen as a cheap

descriptor that comes with the more useful barrier descriptor 𝐸𝑎.

We also added information on the pore size distribution inside the nanoporous material,

characterized by geometrical methods with the Zeo++ code.31,32 As is typical, we used the

largest cavity diameter (LCD) and the pore limiting diameter (PLD), as well as their differ-

ence. The pore limiting diameter is found to be a very important feature for the description

of diffusion, as shown by an in-depth correlation analysis of the PLD and energy barrier.

We then added general (and easily accessible) data on the structure such as the frame-

work mass 𝑀𝑓 and density 𝜌𝑓 . These descriptors are useful as a primary description of the

structures, but are rarely what makes a difference in the ML model. Other standard geomet-

rical descriptors such as the surface area (SA) and the void fraction or porosity (VF) were

also considered. Finally, information about the dimensionality of the nanoporous channels

of the materials were also found to be beneficial for the accuracy of the model the diffusion

process and are therefore were also included in the final list of descriptors.

All descriptors are described in detail in Table 1, and were used to train the supervised

ML model presented further in this article. The model architecture chosen is an XGBoost33

framework, similar to that previously used in our study of the thermodynamics of Xe/Kr

selectivity in nanoporous materials,28 and the hyperparameters of the XGBoost model were

determined using a random search. The SHAP interpretation tools are applied to better

understand the underlying reasons behind the performance of the final ML model.34
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Table 1: Features used in the ML model for diffusion coefficient prediction.

Feature name Symbol Description

barrier 𝐸a

Energy barrier: difference between tran-
sition state energy 𝐸TS and the min-
imal energy 𝐸a within a channel (in
kJmol−1)

adsorption_enthalpy ∆ads𝐻
Xe
0 (channel)

Xenon adsorption enthalpy within a
channel calculated using the barrier al-
gorithm (in kJmol−1)

framework mass 𝑀𝑓
Molar mass of the framework material
considered (in gmol−1)

framework density 𝜌𝑓
Mass density of the framework material
considered (in kgm−3)

ASA SA Surface area accessible to a 1.2Å radius
probe (in m2 cm−3)

PO_VF_2.0 𝑉 𝐹 =
𝑉pore

𝑉tot

Void fraction or the ratio of the pore
volume occupied by a 2Å radius probe
over the total material volume

D_f_vdw_uff298 PLD or 𝐷𝑓

Pore limiting diameter of the largest
free sphere diameter calculated using
the UFF dependent definition (in Å)

D_if_vdw_uff298 LCD or 𝐷𝑖𝑓

The largest included free sphere diam-
eter in a free diffusion path calculated
using the UFF dependent definition (in
Å)

delta_LCD_PLD LCD−PLD Difference between the LCD and PLD
values (in Å)

1D_chan 11D
Binary feature: 1 if there is a unidimen-
sional channel, 0 else

2D_chan 12D
Binary feature: 1 if there is a bidimen-
sional channel, 0 else

3D_chan 13D
Binary feature: 1 if there is a tridimen-
sional channel, 0 else
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2.4 Interaction energy calculation details

This study focuses on xenon and its interaction with materials of the MOF family. The

interatomic interactions were modeled using Lennard-Jones potentials. The MOF atoms

are described using the UFF forcefield,35 whereas the Lennard-Jones parameters of xenon,

taken from Ref. 36, are 𝜀Xe = 221.0 K and 𝜎Xe = 4.100 Å. To determine cross interaction

parameters between xenon and all MOF atoms, we used the Lorentz–Berthelot combination

rules.37 No Coulombic interactions are considered in this force field.

3 Results and Discussion

3.1 Analysis of the diffusion coefficient values

We first analyzed the values of diffusion coefficient computed for all 5 125 structures with

converged MSD data and a satisfactory linear fit. Because of the large range of variation

of the diffusion coefficient 𝐷, we focus in the following on its base-10 logarithm, log10(𝐷).

In order to get a good physical understanding of the process at the microscopic scale, we

studied the correlation between log10(𝐷) and the geometric descriptors of the materials.

After carrying out a thorough analysis for all the 12 descriptors listed in Table 1, whose

results are reported in the Supporting Information, we identified the two descriptors with

the strongest correlation to the diffusion coefficient: the pore limiting diameter (PLD) and

the energy barrier (or diffusion activation energy). We also show in Figure S1 the distribution

of values of the PLD and energy barrier across the structure retained for the model training.

As shown in Figure 2a, the activation energy is correlated with the diffusion coefficient for

xenon in MOF nanopores. A stronger correlation is observed for points with a PLD around

4.5Å, while for PLD values exceeding 6Å, the correlation appears to be weaker compared to

smaller PLD values, as illustrated in Figure 2b. This correlation between the energy barrier

and the diffusion coefficient is confirmed in a different visualization in Figure 3. The points
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are labeled according to the energy barrier value in a given material, and the highest energy

barrier points tend to be concentrated among lower diffusion coefficient values. However, a

few points with very high energy barriers are also observed for diffusion coefficients that are

quite low.

We see from the different representations that while both PLD and barrier energy play

an important role in the diffusion coefficient, they are also complementary: the informa-

tion obtained through energy calculations strengthens our comprehension of the correlation,

compared to a purely geometric description. Indeed, PLD values cannot distinguish between

structures over 6Å in the “plateau” region of the diffusion/PLD graph. While a geomet-

ric analysis would interpret the different values of diffusion coefficient as statistical noise,

Figure 3 reveals that higher values of barrier energies are typically associated with lower

diffusion coefficients, thereby explaining the variations in diffusion coefficient across mate-

rials within this plateau based on the activation barrier values. Although the correlation is

not perfect, this barrier descriptor provides better insights into this uncharted area of PLD

values above 6Å, which cannot be explained by simple geometric considerations. The barrier

activation energy value sheds light on the chemical nature of the diffusion barrier that needs

to be overcome.

Based on this microscopic understanding, we then decided to combine standard geomet-

rical descriptors with energy barrier values to train a machine learning model, following the

approach we had previously used for high-throughput screening of thermodynamics of Xe/Kr

separation28. We describe and analyse this ML model in the next section, and show how it

can be used to evaluate the diffusion coefficient of xenon in nanoporous materials, offering a

significantly faster alternative to MD simulations.

3.2 Machine learning model

The calculation of diffusion coefficients through explicit molecular simulation is an extremely

time-consuming process, and is further complicated for high-throughput purposes by various
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Figure 2: Scatterplots of the log10 of the diffusion coefficient (in cm2 s−1) as a function of
the diffusion activation energy 𝐸a in kJmol−1. Panel (a): for all structures; panel (b): for
structures with a PLD larger than 6Å. For all structures, the Pearson correlation coefficient
is equal to 𝑟 = −0.77, whereas for the restriction to structures with a PLD below 6Å this
correlation is stronger with a Pearson coefficient of 𝑟 = −0.85. For structures with a PLD
above 6Å, this coefficient decreases to reach 𝑟 = −0.74.
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Figure 3: Scatterplot of the log10 of the diffusion coefficient (in cm2 s−1) as a function of the
PLD values and labeled by the barrier activation energy. The higher barriers seem to cor-
respond to lower diffusion coefficients, thus echoing the correlation observed in the previous
Figure 2.

challenges in the fitting of the trajectory (i.e., the MSD data). Out of the 6,525 structures

initially considered for this work, over one thousand were not completely evaluated through

MD simulations, resulting in a success rate of approximately 75% for the direct simulation

approach — and this is mainly due to either insufficient time for obtaining a usable MSD,

or MSD data corresponding to non-Brownian regimes. It could be possible to use a larger

time step than conventional for the MD simulation, in order to reduce the computational

cost to attain the diffusion regime, but at the expense of accuracy: however, such simulations

still require a typical simulation time of a couple of days per structure. On the other hand,

the calculation of energy barriers with an energy step of 0.1 kJmol−1 has an average time of

12 seconds, and the determination of geometric descriptors through the Zeo++ software typi-

cally takes a few minutes at most. The MD method is therefore several orders of magnitude

slower, even under highly optimistic hypotheses for MD simulation parameters.

However, the relationships between energy barrier, PLD, and diffusion coefficient remain

unclear — the relatively weak correlation demonstrated in Figure 2a highlights the impor-

tant limitations of the Arrhenius law as a general and direct relationship between diffusion
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coefficient and energy barrier. The aim of the ML model is to build upon this observed

correlation by introducing additional geometrical descriptors, and achieve accurate calcula-

tion of diffusion coefficients while significantly reducing the time required for predicting the

diffusion coefficient of future selective materials. The ML model was trained using 80% of

the 4 873 structures that survived all the different filters imposed. We employed a total of

12 descriptors listed in Table 1 to build the model. The selected hyperparameters for the

XGBoost model are detailed in Table 2.

Table 2: Hyperparameters of the XGBoost model trained in this work.

parameter value
objective reg:squarederror
n_estimators 1500
max_depth 4
colsample_bytree 1
colsample_bylevel 0.75
subsample 0.75
alpha 0.6
lambda 1
learning_rate 0.04

With this parameterization, the ML model predicts the log10 of the diffusion coefficient

(in units of cm2 s−1) with a root mean square error (RMSE) of 0.26 on the test set and a mean

absolute error (MAE) of 0.18. This implies that the exponent 𝛼 is known with an accuracy of

approximately ±0.2, when expressing the diffusion coefficient as 𝐷 = 10𝛼. For comparison,

the previous ML model for thermodynamic selectivity predicts the log10 of selectivity with

an error of about 0.07. It is important to note that the goal here is not to predict the exact

values of the diffusion coefficient due to the inherent noise in the values generated by MD

simulation (about 20% relative error for KAXQIL). Instead, the objective is to determine the

order of magnitude of the diffusion coefficient. The proposed model achieves this objective

effectively, as illustrated in Figure 4a, where the predicted diffusion coefficient aligns closely

with the true values when represented on a log scale.

The training curve (Figure 4b) was examined to assess whether the model had sufficient
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Figure 4: (a) Comparison of the log10 of the diffusion coefficient predicted by an ML model
and the true values. (b) Root mean squared errors on the same test set (20% of all data) as a
function of the fraction of the training set used to train smaller models. The error decreases
as the amount of data increases and seems to stabilize near 0.25.

training data or required additional data. As the amount of training data increased, the error

converged to 0.25, indicating that no further data was necessary for training the model,

given the descriptors available and the complexity of the model being fixed. However, it

is conceivable to train a similar model using fewer data (50% instead of 80% of the total

data could probably suffice to train a similar model). Furthermore, to prove that this good

accuracy does not correspond to a fortuitous random train/test split, a cross-validation

evaluation was performed on the whole dataset using a 5-fold cross-validation scheme. The

average error (RMSE) on the five validation sets equals 0.26 with a standard deviation of

0.01, which is very similar to the one obtained with the specific train/test split we obtained

here.
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Figure 5: Feature importance determined using the average of the absolute Shapley values
for each feature based on every training data. An influential feature would have a very high
average absolute SHAP value. The features are detailed in Table 1.

3.3 Interpretation of the ML model

In order to get more insight into the impact of the materials’ features on the diffusion

coefficient, we then interpreted the ML model using the SHAP algorithms. The values of

feature importance, determined using the average of the absolute Shapley values for each

feature, are plotted in Figure 5. As expected, the most important features are found to be

the PLD and the barrier activation energy, as demonstrated in the previous section. The

void fraction also appeared to play a non-negligible role.

To unravel the relationship between these features and the target diffusion coefficient,

partial dependence plots (PDPs) were examined for these features shown in Figure 6. The

PLD has a contribution similar to that described in Figure 3. A linear contribution was

observed when the PLD values were below 6Å, followed by a constant contribution for

PLD values above this threshold. The activation energy showed a negative correlation with

the log of the diffusion coefficient, which explained the linear contribution observed in the

dependence plot.

The analysis of the model also reveals less obvious contributions. Figure S5 indicates that

no clear relationships can be inferred between surface areas or void fractions and the diffusion

coefficient. These factors played a more secondary role, slightly adjusting the obtained values
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with contributions of the order of 0.2 as shown on Figure 6. For instance, the model identifies

a positive relation between the void fraction and the contribution to the diffusion coefficient,

which aligns with the physical understanding that lower void fractions correspond to lower

diffusion rates within the material, assuming other parameters are equal. Conversely, larger

surface areas imply more interaction with the pore walls, which slows down the diffusion

of particles. Regarding the LCD, the LCD – PLD difference, xenon adsorption enthalpy,

framework’s mass, and density, no clear contribution patterns were observed. This may be

attributed to the fact that the previous features account for a substantial portion of the

contribution due to the correlation between all these features.

Finally, we note that the final predicted values are only marginally influenced by the

channel dimension, despite its association with a clear physical phenomenon. This could be

in part explained by the fact that no clear statistical distinctions can be drawn between

the materials with different channel dimensions (see Figure S3 and S4). For the model,

the behavior of diffusion coefficients varies slightly depending on the dimensionality of the

channel. Figure 6 illustrates that a 1D channel has a lower diffusion coefficient when all other

features are similar. On the other hand, a 2D channel demonstrates a higher contribution,

which is further confirmed by the partial dependence plots. A tridimensional channel exhibits

an even higher diffusion coefficient. The model can distinguish between different material

types based on their channel dimensionality.

4 Conclusions and perspectives

In this article, we have introduced different methods for evaluating transport properties of

an adsorbate inside a nanoporous material, through the guest species’ diffusion coefficient.

The most accurate method is the direct molecular simulation through molecular dynamics:

it requires considerable computational time and “meticulous attention” to achieve optimal

accuracy. In particular, careful selection of parameters in MD simulations is essential to ob-
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Figure 6: A SHAP dependence plot corresponds to the Shapley values as a function of the
feature values for every structure. These SHAP plots show the contribution of the features to
the prediction given by the ML model. Each Shapley value depends not only on the value of
the feature itself but also on the other features. For this reason, the plots are labeled based
on a relevant second feature. The partial dependence plots of every feature in the diffusion
prediction model are presented here.
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tain relevant mean square displacement data and allow the accurate calculation of a diffusion

coefficient through fitting. We performed a high-throughput screening of diffusion coefficient

values for xenon in 4 873 nanoporous materials from the CoreMOF 2019 database, allowing

us to identify materials with notable thermodynamic and kinetic separation performance.

This published database is a first of its kinds, as we are not aware of any published database

of similar size for molecular diffusion through nanoporous frameworks.

We have used this data as a baseline for testing other methods, such as the calculation

of diffusion activation energy, and the training of a machine learning (ML) model based on

structural and energetic descriptors. The final ML model demonstrates promising perfor-

mance, achieving a root mean squared error (RMSE) of only 0.25 on the base-10 logarithm

of the diffusion coefficient. This indicates the ability to accurately assess the order of magni-

tude of diffusion properties. Such assessment can help identify potential diffusion limitations

in promising materials and optimize this property to improve the performance of materials

for adsorption-based separations. Furthermore, the techniques developed in this study, as

well as future developments, can also be applied to membrane separation processes.

The results obtained here provide the foundation for possible future work. For instance,

the effect of tortuosity on diffusion coefficient values and relevant definitions for tortuosity

remain open questions. Unidimensional channels can be particularly examined, where the

frequency and magnitude of changes in direction can be analyzed to quantify their occur-

rence38. Another challenge could consist in measuring different diffusion regimes, such as

single-file diffusion characterized by a square root time relation in the mean square displace-

ment (MSD)39. In this study, materials with MSD relations other than linear were excluded

since only materials with high determination coefficients in the linear fit were considered.

To expand beyond conventional studies, the diffusion coefficient could be used to model

breakthrough experiments, which is the closest a lab experiment can get from the industrial

adsorption process. The recent development of the RUPTURA software40 opens new per-

spectives in modeling. For instance, the axial dispersion coefficient used in a breakthrough
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model can be calculated using transport properties, combined with thermodynamic data on

the adsorption process of xenon and krypton. This presents an opportunity for experiment-

theory comparison, fostering a virtuous feedback loop to improve modeling and facilitate the

discovery of best-performing materials.

The diffusion coefficients calculated using the aforementioned methodologies solely de-

scribe self-diffusion in an infinitely diluted environment. To better describe transport proper-

ties in industrial conditions, it will be necessary, in the future, to study diffusion coefficients

in a higher loading environment to account for host–host interactions. Furthermore, mixture

simulations can be directly conducted to obtain the so-called Onsager diffusion coefficients,

which are based on the Maxwell–Stefan diffusion equation rather than Fick’s equation.41

The calculation of such quantities requires significant computational resources, as MD sim-

ulations on mixtures at relatively high loading must be run for a sufficiently long duration

to capture the diffusion regime. Therefore, applying this approach to large-scale screening

is impractical, but some interesting materials can be tested to study the effects of mixtures

and loading on transport properties.

Finally, we note that the work performed here relies on the “rigid host” approximation,

which is an important limitation of our current methodology. Indeed, many MOFs are known

to exhibit dynamic behavior, whether by local flexibility of their organic linkers or through

large-scale structure changes upon external stimulation. Both types of flexibility can have a

significant impact on adsorption, on its thermodynamics as well as on the transport proper-

ties of the guest molecules.42,43 While flexibility and its impact on adsorption can be studied

on a case-by-case basis, we do not believe there is any reliable methodology today that can

systematically determine what structures are flexible or rigid, at the scale of thousands of

structures. Moreover, classical simulations of flexible frameworks would require the use of

“universal” or transferable force fields for intramolecular interactions, whose accuracy will be

rather limited. We see this, for now, as a wide open and challenging question — on which

perhaps we can draw inspiration from the recent methodologies to address the question of
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high-throughput screening of thermal conductivity.44
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