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We report an experimental investigation on the impact
of the pump pulse duration on the modulation instabil-
ity process in fiber Fabry-Pérot resonators. We demon-
strate that cross-phase modulation between the forward
and the backward waves alters significantly the modu-
lation instability process. By varying the pump pulse
duration, we show the modification of the modulation
instability threshold and frequency. These experimental
observations are in excellent agreement with theoretical
predictions. © 2024 Optica Publishing Group

http://dx.doi.org/10.1364/ao.XX.XXXXXX

Optical frequency combs (OFC) generated in Kerr optical res-
onators have attracted significant attention over the last decade
[1–3]. In particular, OFCs generated by pumping a high-Q mi-
croresonator are attractive for a wealth of applications [2, 4].
Fiber Fabry-Pérot (FFP) resonators emerged recently as a promis-
ing complement to the well studied ring microresonators [5–10].
FFP resonators combine the advantages of both microresonators
and fiber ring cavities, namely, high quality factor, compact de-
sign, and the capability to be easily implanted in fibered systems
thanks to FC/PC connectors. In these devices, pulsed pump-
ing allows to effectively reduce the average power, to limit the
beam fluence sent to the mirrors, and to alleviate the intracavity
thermal effect [5–11]. Due to its fundamental role in the nonlin-
ear dynamics of resonators, particularly in the soliton build-up
[3, 12], modulation instability (MI) has been deeply investigated
in fiber ring resonators [13–17] and microresonators [18–20] but
much less in FFP resonators. The dynamics in FFP resonators is
much more complicated because backward and forward waves
interact within the resonator through cross-phase modulation
(XPM). This additional nonlinear phase contribution modifies
the dynamics of the MI process in these systems as it was re-
cently theoretically predicted in [21–23]. However, there is a
lack of experimental confirmation of these theoretical predic-
tions. In this paper, we experimentally demonstrate the impact
of the pump duration on MI in FFP resonators. We show that

the threshold and the frequency of the MI sidebands are deeply
affected by the pump duration.

We consider a FFP resonator of length L consisting of a Kerr-
type nonlinear medium, two identical mirrors, of reflectivity co-
efficient ρ and transmissivity coefficients θ. We take into account
of the overall losses in the reflection coefficients, i.e. θ2 + ρ2 ≲ 1,
and the cavity losses reads as α = 1 − ρ2. As shown in [23], for
a FFP cavity pumped with rectangular pulses, of duration δt,
input peak power Pin, at the repetition rate 1/tr of the cavity, the
intracavity peak power P of the circulating forward field in the
stationary regime can be written as:

P =
θ2Pin

1 + ρ4 − 2ρ2 cos(ϕ)
, (1)

with ϕ = ϕ0 + ϕNL, ϕ0 is the cavity linear phase (modulo 2π)
and ϕNL = γ(1 + ρ2)(1 + χG)P is the nonlinear phase. G = 2
accounts for XPM [21, 22] and χ = δt/tR is the duty cycle. It
is important to note that the effective XPM is reduced by a
factor equal to the duty cycle, and therefore depends on the
pump duration δt. Through a stability analysis of the stationary
solutions, we can derive the parametric gain [23]:
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It is worth noting that the parametric gain within a FFP cavity
depends on pump duration through the overall phase ϕ. Also,
these theoretical developments are valid as long as we are
operating in a quasi-CW regime, i.e. when the MI period
is well shorter than the pulse duration, which is 2 ps in our
configuration.

In Fig. 1, we plot the nonlinear transfer function [Fig. 1(a)]
and the cavity response [Fig. 1(b)] for different pump pulse
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durations. For pulses much shorter than the cavity round trip
time (2 ps vs 637 ps), XPM between forward and backward
pulses is negligible and the FFP resonator behaves as a ring
resonator [blue lines in Fig. 1(a) and (b)]. By increasing the
pulse duration [orange and yellow lines in Fig. 1(a) and (b)], the
nonlinear resonance is more tilted [Fig. 1(a)] due to an additional
nonlinear phase brought on by XPM. For instance, moving from
480 ps to 160 ps leads to shift the first knee position from 9 W to
14 W for bistable regimes [continuous lines in Fig. 1(b)] and to a
significant increase of the stationary power in the monostable
regime [dashed lines in Fig. 1(b)].

In the following, we experimentally study an optical cavity
in the anomalous dispersion regime, where MI exists in the
monostable case above the intracavity power threshold and on
the upper branch of the cavity response in bistable zone [14,
23]. A simple but rather accurate estimate of the threshold is
Pth = α/(2γL) ≈ 64 W in our case. To quantify the effect of the
pump duration on MI in FFP cavities in monostable and bistable
regimes, we will follow the evolution of three characteristic
points. They are labelled 1, 2 and 3 on the yellow curve in
Fig. 1(a): 1 - the MI threshold, 2 - the lower knee of the bistable
region, 3 - the upper knee of the bistable region.

The experimental setup is described in Fig. 2(a). We pump a
FFP resonator with a square pulse train generated at 1550 nm
by a tunable CW laser, and an intensity modulator (IM) which is
driven by square electrical pulses from an arbitrary waveform
generator (AWG). We finely adjust the bias voltage and the RF
amplifier gain to generate flat top optical pulses which dura-
tion ranges from 30 to 200 ps [selected examples in Fig. 2(b)].
Thus, we will be able to directly compare our results with the-
oretical prediction in [23], derived by assuming the cavity is
pumped by flat-topped square pulses. Moreover, the clock of
the AWG is delivered by a frequency synthesizer allowing us
to set the repetition rate very accurately (in the Hz range), in
a way that the pulses perfectly overlap in the cavity at each
round trip. The pulses are amplified through an EDFA and are
launched within the cavity. We use the same cavity as in [9]
[insert in Fig. 2(a)] which is made from an optical single-mode
fiber (SMF-28) of L = 6.51 cm and a group velocity dispersion
of β2 = −22.9 ps2 km−1 (see Fig. 1 caption for the other param-
eters). Both fiber ends are mounted in FC/PC connectors and
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Fig. 1. Numerical results illustrating the transfer function
and cavity response, as a function of the pump duration.
Cavity parameters: ρ = 0.9950; θ = 0.0396; α = 0.01;
γ = 1.2 W−1 km−1; β2 = −22.9 ps2 km−1; L = 6.51 cm;
n = 1.4582; and λ = 1550 nm. (a) Intracavity peak power
as a function of the phase (fixed input peak power = 10 W).
The black numbered points correspond to the characteristic
points defined in the main text. (b) Intracavity peak power as a
function of the input peak power (fixed phase)
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Fig. 2. (a) Experimental setup with a two arms stabilisation
system. Brown line: pumping path; beige line: stabilization
path. The pumping and stabilization beams are perpendic-
ularly polarized to each other. AWG: Arbitrary Waveform
Generator; IM: Intensity Modulator; PM: Phase Modulator;
EDFA: Erbium Doped Fiber Amplifier; PC: Polarization Con-
troller; OI: Optical Isolator; FBG: Fiber Bragg Grating; PD:
Photo-diode; PDH: Pound-Drever-Hall; SSB: single-side-band
generator. The insert shows the used FFP resonator and one of
its mirrors deposited on the ferule. (b) Superimposed square
pump pulses measured with an optical sampling oscilloscope.

Bragg mirrors are deposited at each extremity with a physical
vapor deposition technique, to achieve 99.84% reflectance over
100 nm [24] and obtain a resonator with a free spectral range
(FSR) of 1.57 GHz for a finesse of F = πρ/(1 − ρ2) ≈ 314. To
perfectly control the cavity detuning δ = −ϕ0, we implemented
a two-arms stabilization scheme in a similar way to [11] and [25].
The CW laser is split to obtain one beam for the stabilization (con-
trol beam) of the laser on a cavity resonance, and another one to
pump the cavity (nonlinear beam). We adjust the polarization
states of the control and nonlinear beams, with polarization con-
trollers, in order to separate the beams with a polarization beam
splitter at the output and also to make sure they do not interact
with each other within the cavity. The stabilization [lower beige
arm in the Fig. 2(a)] is performed thanks to a Pound-Drever-
Hall system [26]. For the nonlinear beam [upper brown arm in
Fig. 2(a)], we change the cavity phase thanks to a homemade
tunable single-side-band generator [see SSB in Fig. 2(a)]. The
nearest side band of a modulated beam, obtained with a phase
modulator driven by a 30 GHz tunable frequency synthesizer,
is isolated to obtain a pump signal with a tunable frequency
shift. At the cavity output, we record the whole signal, corre-
sponding to the steady states, and the new spectral component
using a notch filter (fiber Bragg grating) to remove the pump
component as in [9] [Fig. 3(e)]. In order to measure the charac-
teristic phase values for which MI exists in the cavity [point 1,
2 and 3 in Fig. 1(a)], we scan a cavity resonance, by applying a
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Fig. 3. (a), (b), (c) and (d) are theoretical explanations of the
determination of the critical points, with the same numbering
as Fig. 1. Black dotted lines represent unstable states. (e) and
(f) are an example of experimental determination of the crit-
ical points for a pump duration δt = 40 ps. Colored circles
are used to link the various figures, specifically to indicate the
locations of critical points. (a) Nonlinear transfer function de-
pending on the scan direction. Stationary states at different
cavity phases, ϕ01 , ϕ02 and ϕ03 , respectively. The modulational
unstable branch is pinpointed by the hatched orange lines. (e)
Experimental scans, by increasing the phase (green) and de-
creasing the phase (blue), for Pin = 9 W. Solid lines: cavity
output power; filled color plots: new spectral components ob-
tained by removing the pump component of the output signal.
(f) Delineation of the area where MI is observable. Crosses:
experiments; red solid line: simulation by increasing the phase;
red dashed line: simulation by decreasing the phase.

frequency sweep with the tunable frequency synthesizer, along
one FSR of the cavity (between 30 GHz and 31.57 GHz) with
a speed of 15.7 GHz.s−1 (i.e. 62.82 rad.s−1). As the stabiliza-
tion and nonlinear beams are almost independent, the scans are
repeatable.

Figures 3(a), (b), (c) and (d) illustrate how we managed to
measure the values of the characteristic points, by applying
either positive or negative phase scans on the nonlinear beam.
Starting from a high positive cavity linear phase (strong negative
detuning) and by decreasing the phase, the system is initially
monostable, reaches the bistable regime by following the upper
branch [blue dashed line in Fig. 3(a)] and eventually jumps on
the lower branch at the upper knee. Thus MI is observable be-
tween the MI threshold [orange circle in Fig. 3] and the upper
knee [blue circle]. Conversely, starting form a high negative cav-
ity linear phase (strong positive detuning) and by increasing the
phase [green dashed line in Fig. 3(a)], the system is initially on
the lower branch and jumps on the upper branch from the lower
knee [black circle], at a different phase than for the previous
scan, thus entering the system monostable regime. In this case,

MI is triggered between the lower knee [black to green circle] till
it reaches the MI threshold [orange circle in Fig. 3].

Fig. 3(e) presents the results of an ascending and descending
phase scans for an input power of 9 W and a pulse duration
of 40 ps. Note that, as mentioned above, all the power values
mentioned refer to the peak power of the square-shaped pump
pulses. The input peak power is determined by measuring the in-
put average power Pav, using the expression Pin = Pav/(FSR.δt),
and checking the EDFA operates in a linear regime. The steady
states [solid lines] and the new spectral components [filled col-
ored plot] are superimposed to highlight the existence range of
MI for both scans. As expected, the two scans do not provide the
same results. By decreasing the phase [blue plots in Fig. 3(e)],
we measure the MI threshold (ϕ01 = 0.001 rad) [orange circle]
and the upper knee position (ϕ03 = −0.026 rad) [blue circle] by
locating the edges of the range where the new spectral compo-
nents due to MI appear. Note that at this point (blue circle) we
observe the simultaneous jump to the lower branch of the steady
state (blue line) and the fading of the MI spectral components
(filled blue plot) as expected. In the same way, by increasing
the phase [green plots in Fig. 3(e)], we measure the lower knee
position (ϕ02 = −0.023 rad) [green circle] and the MI threshold
value (same point than the previous scan, orange circle). Again,
at the green point we observe at the same time the steady state
jump and the MI fading. By increasing the pump power from 0
to 10 W, and repeating the phase scans, we measured minimum
and maximum phase values for which MI is observable [blue
crosses in Fig. 3(f) for descending phase scans; green crosses for
the ascending phase scans]. In the monostable region [white area
in Fig. 3(f)], blue and green crosses overlap as they correspond
to the MI threshold [orange circle]. In the bistable region [beige
part in Fig. 3(f)], blue and the green crosses are distinct and
constitute two separate branches. The upper one [green crosses]
corresponds to the lower knee, and the lower one [blue crosses]
to the upper knee. The experimental measurements are in per-
fect agreement with theoretical prediction [red line in Fig. 3(f)],
obtained by locating the phase for which the gain [Eq.(2)] is pos-
itive when the system is monostable. For the bistable region, the
red dashed line and the red solid line are obtained by locating
the phase of the two knees [green and blue circles in Fig. 2(b),
(c) and (d)]. As shown in Fig. 1, the coordinates (intracavity
power and linear phase) of the three critical points depend on
the pump duration. To evidence this dependence, we repeated
the same experiment for durations ranging from 30 ps to 200 ps.
For the sake of clarity, we focus on the MI threshold. Its evo-
lution as a function of the pump pulse duration is represented
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for three different phases, -0.008, -0.014 and -0.016 rad, respec-
tively [orange circles in Fig. 4]. The experimental measurements
[orange circles] are in good agreement with numerics [orange
solid lines]. Depending on the phase value, MI threshold can
significantly decrease or increase with the pump pulse duration.
For instance, for a pulse duration variation of 170 ps, we observe
a MI pump power threshold variation of more than 1.2 W. The
orange curves in Fig. 4 show that the lower is the phase, the
longer is the pump pulse corresponding to the minimum MI
pump power threshold [23].

Another remarkable fact is the MI spectra dependence to
the pump pulse duration. In [23], it is predicted that the MI
gain lobes are shifted away from the pump by increasing the
pump duration. Fig. 5(b) shows the evolution of the paramet-
ric gain, calculated with Eq.(2), for different pump durations at
ϕ0 = −0.008 rad and a 64 W intracavity power (just above the MI
threshold). The maximum of the MI gain lobes does not change
with the pulse duration but they are frequency shifted. Corre-
sponding experimental MI spectra shown in Fig. 5(a) have been
recorded with a pump power just above the pump power thresh-
old [orange plots in Fig. 4], i.e. P90ps = 5.3 W, P60ps = 4.89 W
and P30ps = 4.57 W, in a way that the intracavity power always
remains the same (around 64 W). The MI side lobes are frequency
shifted as the pulse duration is increased. The agreement with
theoretical prediction is excellent. Note that the increase of the
MI lobe width with decreasing pump duration in Fig. 5(a) is
due to the spectra of the pump pulses themselves, wider for
short pulses. To get a larger overview, we repeated these mea-
surements for different pump durations, and report the results
in Fig. 4 (blue circles). The MI frequency is shifted of more
than 80 GHz for a pulse duration difference of 90 ps, in good
agreement with theory.

In summary, we have investigated the impact of the pulse
duration on modulation instability in FFP resonators. To quan-
tify and clearly illustrate this phenomenon, we have studied the
variation of three critical points: the MI threshold, the upper
knee and the lower knee of the bistable region. We have shown
that the pump power and the cavity phase of the MI threshold
change with the pump duration. Moreover, we have shown
that the pump duration modifies the MI side lobe position by
decreasing the MI frequency shift at short duration. These exper-

imental results are in good agreement with theory and confirm
the importance of the contribution of the pulse duration in a
pulsed pumping scheme of an FFP resonator. Our results con-
tribute to a better understanding of the dynamics of Kerr comb
generation in FFP resonators.
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