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Deep-Learning-Based Approach in Imaging
Radiometry by Aperture Synthesis:

An Alias-Free Method
Richard Faucheron , Eric Anterrieu , Louise Yu , Ali Khazaal ,

and Nemesio J. Rodríguez-Fernández , Member, IEEE

Abstract—A new approach based on deep learning methods
is presented for reconstructing L-band brightness temperature
images from the inversion of interferometric data, namely, complex
visibilities here simulated from observations of the Soil Moisture
and Ocean Salinity (SMOS) interferometric radiometer. A spe-
cific deep neural network (DNN) architecture composed of a fully
connected layer followed by a contracting and expansive path is
proposed to learn the relationship between the simulated visibilities
and the brightness temperature maps. The performances of the
DNN are compared with those of algebraic inversions based on
Fourier theory, which are all affected by strong aliases in the
synthesized field of view (FOV), as a consequence of the spacing
between the elementary antennas of SMOS, which does not satisfy
the Nyquist criteria. In the alias-free FOV (AFFOV) of the alge-
braic reconstructions, these latter are outperformed by the DNN
reconstructions: average mean absolute error (MAE) of about 0.7 K
for the DNN instead of 3.7 K. Outside the AFFOV of the algebraic
reconstructions, the DNN reconstructions do not show significant
signs of field aliasing although the MAE increases: average MAE
of about 1.5 K in the whole FOV. An analysis of the role of different
neurons in the hidden layers is presented, and it is shown that
some neurons are specialized in reconstructing what corresponds
roughly to the AFFOV region of algebraic approaches, while other
neurons are specialized in dealing with the external regions of this
AFFOV.

Index Terms—Aperture synthesis, deep learning (DL), imaging
radiometry, inverse problem.

I. INTRODUCTION

W ITHIN the frame of imaging radiometry by aperture
synthesis with arrays of elementary antennas, the prob-

lem of retrieving the brightness temperature distribution of an
observed scene from the corresponding visibility samples has
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been widely addressed essentially with algebraic approaches. It
has been demonstrated that this inverse problem is an ill-posed
one, which has to be regularized in order to provide a unique
and stable solution. Moreover, depending on the geometry of
the antenna array and on the spacing between the elementary
antennas as well, the part of the field of view (FOV) useful for
scientific purposes can be significantly reduced by the presence
of aliasing artifacts.

During the last decade, deep learning (DL) has become an
essential paradigm in signal and image processing [1]. However,
very few examples of DL-based methods applied to aperture
synthesis problems in imaging radiometry can be found in the
literature [2], [3], [4]. These works are further presented in
Section II. The current study aims at presenting a new imaging
approach that relies on a deep neural network (DNN) to learn
inverse mapping between the input visibility samples and the
brightness temperature distribution of the observed scene. On
the one hand, it does not share any element with the algebraic
paradigm that led to the regularized methods found so far in the
literature [5], as on the mathematics side, there is no explicit
regularization principle [6]. On the imaging side, there is no
flavor of Fourier synthesis [7]. On the other hand, this new
approach proposes a distinct DNN architecture from previous
articles, as it addresses the specific configuration of the Soil
Moisture and Ocean Salinity (SMOS) mission [8], [9], regarding
spectral content, dynamic range, and underconstrained quality
of the inverse problem. The presented DNN has been trained
for inverting visibility samples provided by a sparse array of 69
equally spaced elementary antennas working at low frequency
such as the interferometric array of the SMOS mission.

SMOS was launched in November 2009, and for more than 14
years, it has provided accurate L-band brightness temperature
maps with a spatial resolution between ∼25 and ∼60 km,
depending on the position in the FOV. These maps have been
used for retrieving surface soil moisture [10] as well as sea
surface salinity [11]. Fig. 1 shows the interferometric array of
the single payload of SMOS. It is a Y-shaped array populated
with 69 equally spaced elementary antennas operating in the
protected band 1400–1427 MHz.

The DL-based reconstruction approach presented in this
article has been compared to the algebraic method com-
monly used for inverting the visibility samples provided by
SMOS. The first results obtained over a wide variety of scenes
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Fig. 1. Interferometric array of SMOS is populated with 69 elementary
antennas spaced every d � 18.6 cm along the three arms of a Y. According
to the central frequency of observation in the protected L-band from 1400
to 1427 MHz, the shortest spacing between the antennas normalized to the
central wavelength of observation d/λ is here equal to = 0.875.

demonstrate reconstructed brightness temperature maps free
from any aliasing artifact. Moreover, the quality of the retrieved
brightness temperatures shows a reduction of the mean absolute
error (MAE) of 60% and over a wider useful synthesized FOV
than that available with the algebraic approach. Compared to
the results of the three aforementioned articles, the proposed
DNN demonstrates equivalent or superior performance in terms
of reconstruction error metrics.

The rest of this article is organized as follows. The relation-
ship between the complex visibility samples and the brightness
temperature distribution of the observed scene is recalled in
Section II, which is also devoted to the algebraic regularized re-
construction method chosen by the European Space Agency for
SMOS and to the existing DL-based reconstruction approaches.
Section III describes how pairs of brightness temperature maps
and complex visibility samples have been generated, as well as
how these data have been split into three subsets for training,
validating, and testing. Section IV is devoted to the architecture
of the DNN as well as to the design of the training and of
the evaluation steps. Within the frame of the SMOS mission,
Section V illustrates the performances of the DL-based approach
with emphasis on the absence of aliasing artifacts. The perfor-
mances of the DL-based approach are compared with those of
the algebraic one in Section VI. Finally, Section VII concludes
this article.

II. PROBLEM FORMULATION

The measurement equation of imaging radiometry by aperture
synthesis is recalled in this section together with the algebraic

image reconstruction and statistical image reconstruction ap-
proaches using the DNN.

A. Measurement Equation

The cross correlation of the signals measured by any pair
on elementary antennas of an interferometric array provides a
sample of the visibility function. Without polarimetric consid-
erations, the complex visibility Vpq for a pair of antennas Ap

and Aq is given by [12]

Vpq =
1√
ΩpΩq

∫ ∫
‖ξ‖≤1

Fp(ξ)F∗
q (ξ)r̃pq(−t)

(
Tb(ξ)− Trec

)

e
−2jπ

bpq ·ξ
λ

dξ√
1− ‖ξ‖2 (1)

where bpq ≡ rq − rp is the baseline vector associated with the
two antennasAp andAq located in rp and in rq , respectively, the
components ξ1 = sin θ cosφ, ξ2 = sin θ sinφ, and ξ3 = cos θ
of the angular position variable ξ are direction cosines in the
reference frame of the array, θ and φ are the traditional spheri-
cal coordinates (the colatitude and the azimuth, respectively),
Fp(ξ) and Fq(ξ) are the normalized voltage patterns of the
two antennas with equivalent solid angles Ωp and Ωq , Tb(ξ)
is the brightness temperature distribution of the scene under
observation, Trec is the physical temperature of the receivers
(assumed to be the same for all the receivers), r̃pq(t) is the
fringe-washing function, which accounts for spatial decorrela-
tion effects with t = (bpq ·ξ)/c the spatial delay, and λ = c/f
is the central wavelength of observation. After discretization
of the double integral over an appropriate sampling grid in the
direction cosine domain, the relationship between the complex
visibilities V and the brightness temperature distribution Tb of
the scene under observation can be written in the linear algebraic
form as follows:

V = GT (2)

where G is the linear modeling matrix of the instrument.

B. Algebraic Reconstruction

Referring back to the direct problem (2), the inverse problem
aims at retrieving T = Tb (the constant Trec is canceled out from
the visibilities with the aid of the response to a flat target [13],
whatever the method used for the inversion [6]).

As the number of unknowns (the number of pixels in T )
might be larger than the number of equations (the number of
samples of V ), this linear system might be underconstrained
with an infinite number of solutions for T . This is precisely
the case of SMOS. On the one hand, the cross correlation
of the signals measured by the 69 elementary antennas of
the Y-shaped interferometric array, as depicted in Fig. 1, pro-
vides 1

2 × 69× (69− 1) = 2346 complex visibility samples.
Thanks to the Hermitian character of the Fourier transform of a
real function, other 2346 complex visibilities can be estimated as
the conjugates of those actually measured by the total number
of independent real quantities remain 4692. In addition, three
antennas out of 69 are also used to measure the total flux of
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Fig. 2. Experimental frequency coverage of SMOS. Although the number of
antenna pairs is equal to 69× (69− 1) = 4692, only 2790 of them are unique
as a consequence of redundancies.

the image, leading to a total of 4695 measurements. Due to the
redundancies of some baselines, the number of Fourier frequen-
cies that are sampled is smaller than the number of visibilities. In
the case of SMOS, as illustrated in Fig. 2, the number of Fourier
frequencies in the star-shaped frequency coverage is equal to
2791, including the zero-frequency one.

On the other hand, when discretizing the brightness tem-
perature domain with appropriate hexagonal sampling grids
satisfying the Shannon criterion, it turns out that the total
number of pixels in the FOV in front of any antenna is equal
to 34 087, of which only 23 042 point to the earth, while the
11 045 remaining ones point to the sky. However, because of the
spacing between the elementary antennas of the interferometric
array, reconstructed maps obtained with such a Fourier-based
method are suffering from aliasing artifacts. The extent of the
alias-free FOV (AFFOV) is shown in Fig. 3, which also shows
the extended AFFOV (EAFFOV) that is free from earth aliases
but not from aliasing of the sky emission. In the case of SMOS,
the number of pixels in the EAFFOV is only 8981, but the
inverse problem of retrieving the brightness temperature over
those pixels from 4695 measurements remains ill-posed, and
it has to be regularized in order to provide a unique solution.
The regularization used for SMOS [7] is referring to a physical
concept: the limited resolution of the instrument. This approach
aims at retrieving the brightness temperature map, which has
its Fourier transform confined to the experimental frequency
coverage of the antenna array. Although the number of sampling
points can be reduced, according to [14], it is more comfortable
to keep this number as a power of 2 while expecting the Shannon
sampling criterion, as illustrated in [15]. As a consequence,
rephrasing the inverse problem in terms of retrieving 2791

Fig. 3. FOV synthesized by SMOS is subject to aliasing because of the spacing
between the elementary antennas of the Y-shaped array, as shown in Fig. 1,
where d = 0.875λ. The solid ellipse (maroon) is the limit of the earthly horizon
as seen from an elevation of 755 km when the platform is tilted off Nadir
from 31.2◦ and the solid circle (blue) is the limit of the front space seen by every
antenna. The hexagonal FOV is drawn with its neighbors (red) responsible for
the six alias counterparts of the earthly horizon (dashed maroon) and of the sky
(blue dashed). The AFFOV is that part of the FOV exempt from sky and earth
aliases; the EAFFOV is free from only earth aliases.

unknown Fourier components, instead of 8981 unknown values
of the brightness temperature, from 4695 measurements, leads
now to an overconstrained problem.

C. DNN Reconstruction

Statistical approaches have also been discussed in the litera-
ture as an alternative for imaging by aperture synthesis.

An alternative data-driven approach has first been conducted
by Zhang et al. [2] to reconstruct microwave synthetic aperture
interferometric radiometer (SAIR) images from interferomet-
ric measurements with the aid of a deep convolutional neural
network (CNN) framework as a decoding model. The CNN
was trained with 55 000 images from ImageNet [16] labeled
as “geo” and “plant.” The reconstructed images showed an
improvement of the root-mean-square error (RMSE) perfor-
mances from 16.1% to 8.2% with normalized measurement bias
of 0.05% compared with those obtained with the conventional
fast Fourier transform. In addition, visual inspections showed
some noise suppression as well. The simulated instrument is
a microwave SAIR equipped with a compact array of small
elementary antennas working at high frequency.

In 2022, Xiao et al. [3] proposed a deep CNN that learns
mapping between interferometric measurements and nonuni-
form synthetic aperture radiometer images. The dataset is made
of 10 000 processed examples from the UC Merced dataset [17].
The UC Merced dataset is a 21-class land use image dataset, with
classes such as “agricultural,” “forest,” and “tenniscourt.” The
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visibility samples were generated from a program simulating a
randomly distributed nonuniform antenna array populated with
51 elementary antennas operating at 33.5 GHz, with a maximum
baseline of 50λ � 45 cm. The dimension of the processed T
maps and the number of visibility samples V leads to a highly
underconstrained problem. The authors quantitatively compared
the performance of their proposed CNN with both the array
factor forming method [18] and the grid method [19]. When
evaluated on a testing subset, the CNN achieved an average
RMSE value of 9.47 K, while the array factor forming method
and the grid method recorded average RMSE values of 14.88
and 15.33 K, respectively.

More recently, Dou et al. [4] have presented a CNN that takes
the samples of 1-D visibility functions to reconstruct brightness
temperature profiles. Their CNN is trained, validated, and tested
over 21 000 pairs of T /V , distributed in the proportions of 70%,
20%, and 10%, respectively. The brightness temperature images
are processed from the UC Merced data, and the corresponding
visibility function are simulated from a program reproducing
the antenna array configuration of a 1-D airborne microwave
interferometric radiometer operating in the C-band [4]. Their
approach yields to a better image quality, lower sidelobes and
smaller Gibbs oscillation than the brightness temperature pro-
files reconstructed by the inverse fast Fourier transform method.
It also shows smaller RMSE, 0.597 K, than that of the DNN
proposed by Zhang et al. [2], which is 1.611 K.

These three efforts illustrate that DNNs are a promising
approach to solve inverse problems in synthetic aperture imaging
radiometry with interferometric arrays and that they should
deserve more attention. This study presents a DNN trained and
tested over a dataset of 166 557 samples representative of inter-
ferometricL-band data, with regard to spectral content, dynamic
range, and underconstrained quality of the inverse problem
(4695 real-valued measurements to reconstruct 23 042 image
pixels belonging to the earth, i.e., a problem underdetermined
by a factor close to 5). As of the modeling instrument, we used
a sparse array of equally spaced elementary antennas working
at low frequency, such as the interferometric array of the SMOS
mission

Referring back to the previous studies, the network described
by Zhang et al. [2] has twice as many input values than output
pixels. The CNN proposed by Dou et al. [4] is also trained with
twice as much input values than output pixels (202 real-valued
measurements to reconstruct 101 brightness temperatures). In
contrast, the network described by Xiao et al. [3] is highly
underconstrained since it produces output images with a number
of pixels larger than the number of input interferometric data by
a factor of 11.6.

III. REPRESENTATIVE DATASET

This section describes how brightness temperature distribu-
tions T and visibility samples V have been simulated, as well
as how these T /V pairs have been split into three subsets for
training, validating, and testing the DNN reconstruction.

A. Brightness Temperatures

Dual-polarization views of the earth at instrument level
have been simulated from monthly SMOS Level 3 brightness

temperatures in H and V polarizations at ground level [20],
using the highest spatial resolution available, ranging between
∼25 and ∼60 km depending on the position in the FOV. In
order to keep the size of the dataset to a reasonable size while
accounting for seasonal effects, one snapshot every 12 s for
the first three days of every 12 months of year 2012 have
been simulated by interpolating the multi-incidence brightness
temperatures sampled over a regular geographical grid covering
the whole earth. This tridimensional interpolation takes place
at each sampling node of the hexagonal grid in the direction
cosine domain, for which the corresponding latitude, longitude,
and incidence angle are calculated with the aid of the telemetry
data.TH andTV distributions are, thus, obtained at ground level,
and a rotation angle is applied for calculating the corresponding
TX and TY distributions at instrument level. As mentioned in
Section II, these brightness temperature maps can be expressed
as vectors of 34 087 real-valued components, from which 23 042
belong to the earth and 11 045 to the sky.

B. Visibility Samples

The instrument shown in Fig. 1 has been used for simulating
the visibility samples VX and VY corresponding to every TX

and TY distributions according to (1). The modeling instrument
is configured with different antenna element patterns, from the
MIRAS database, used in the operational processing of SMOS.
Referring back again to SMOS conditions in Section II, these
visibility samples are vectors of 4695 real-valued components.

The dataset contained between 27 572 and 27 927 T /V pairs
each month, totaling 332 791 pairs for the year 2012, in both
X and Y polarizations: 166 557 for ascending passes and
166 234 for descending ones. Assuming that each real-valued
components is coded with 8 bytes, this dataset requires about
140 GB of memory, regardless of any additional data necessary
for processing it. In this work, only the 166 557 data from
the ascending passes with polarizations X are used during the
training, validation, and testing phases.

C. Splitting Method

The dataset described in the previous section has been split
into three subsets.

1) 60% of the dataset has been dedicated to the training
subset of the DNN, during which it is exercised to the
relation between V and T .

2) 20% of the dataset has been used for the validation subset,
during which DNN learning is monitored onT /V pairs not
used for the training.

3) 20% have been devoted to the testing subset, which aims at
comparing the performances of the DL-based reconstruc-
tion to those of the algebraic one, again on not previously
used T /V pairs.

The main challenge in machine learning is to avoid over-
training. The model must perform well on new and never-seen
inputs, not just on those on which it has been trained. This is
why two different methods have been tested for splitting the
dataset into these three subsets: a random split and a k-means
split. Whatever the method, the proportions between the three
subsets are maintained to the aforementioned values.
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For the first approach, T /V pairs are randomly chosen in the
dataset. An example of such a distribution is shown in Fig. 4(a).
As the pairs have been simulated every 12 s, successive FOVs
may overlap. As a consequence, similarity between the T /V
pairs of the training and testing phases cannot be excluded. This
could facilitate the prediction of brightness temperature maps
from visibility samples of the testing subset and thus increasing
the model performances. This is why another method of splitting
has been tested in order to reduce that risk by limiting the
overlapping between FOVs of T /V pairs used in the training
phase and those of the testing subset.

With the k-means method [21], T /V pairs are distributed
into subsets that are as independent as possible with respect
to a geographical distance. To this end, clusters of snapshots
have been created using the k-means algorithm, with respect
to the latitude and longitude of each snapshot. The number
of clusters has been fixed to 200, so that it is big enough to
maintain the distribution of the T /V pairs with respect to the
snapshot ocean/land composition of the k-means split method
as close as possible to the distribution used for the random split
method. At the same time, it is small enough to limit the number
of overlapping snapshots as much as possible. An example of
the resulting clusters is displayed in Fig. 4(b). Then, training,
validation, and testing subsets have been randomly selected in
the same proportions as before, among the clusters. An example
of such a distribution can be seen in Fig. 4(c). Consequently, the
only images that can overlap between the training and testing
subsets are those located in the periphery of the clusters, which
greatly reduces the occurrence of similar T /V pairs between the
training and testing phases.

IV. METHODS: DNN

This section describes the proposed architecture, the frame-
work used for the training and the methodology used to evaluate
the DNN reconstruction performances, which includes the com-
parison with the algebraic approach.

A. Architecture of the DNN

The proposed DNN architecture is shown in Fig. 5. It results
from several trials and is the one that achieved the best recon-
struction performances in preliminary tests. It is composed of
a fully connected layer followed by a contracting and expan-
sive path with residual connections for a total of 336 million
parameters.

The first layer is fully connected to the input visibility vector
and creates a first estimation of the brightness temperature
distribution by mapping the relationship from the input to the
output space. This is the only layer that must cope with the prob-
lem’s underconstraint, going from 4695 visibilities to 23 042
estimated brightness temperatures; therefore, its output is noisy.
This estimation is then reshaped into a 2-D sparse regular grid
so that each predicted temperature is set to its geographic place
in the FOV, and the spatial information about the neighborhood
of each pixel is, therefore, introduced accordingly.

The following contracting path is a succession of convolution
layers, each followed by a rectified linear unit (ReLU) and a

max-pooling operation that reduces the dimensionality of the
input representation by keeping only the maximum value of a
sliding window of size 2 × 2. The number of feature channels is
doubled at each downsampling step. The expansive path consists
of the repeated application of transposed convolutions with
stride 2 to upsample the feature maps, followed by convolution
layers and a ReLU operation. The number of channels is halved
at each upsampling step. The convolutional layers from the
contracting and expanding paths extract high-level features from
the data and force the image to be represented sparsely in the
convolutional feature space. At this stage, the layers are no
longer subject to the subconstrained nature of the problem. Their
task is to build a mask of 23 042 pixels that will be added to the
first hidden layer output (also 23 042 pixels) for the purpose of
correcting reconstruction imprecision like sharpening edges or
smoothing homogeneous areas.

B. Training

During the training stage, batches of complex visibilities are
given as input to the network, from which it must compute the
corresponding brightness temperature maps. For each batch, the
error between the estimated Te and the true T maps is measured
and retropropagated through the network by gradient descent,
to update the model weights.

The objective function to minimize is the mean squared error,
and the optimizer is the RMSprop algorithm [22] set with the
following parameters: the learning rateγ = 10−4, the smoothing
constant α = 0.99, the weight decay λ = 0, and the momentum
factor μ = 0.9. The model has been trained over 100 epochs
with mini-batch sizes set to 32, implemented in the Python pro-
gramming language using the PyTorch library version 1.8 [23].
The training of the network is performed on the train subset
described in Section III. The validation subset is used to monitor
the training of the network on data that have not been used to
update its parameters.

The training time of the proposed network on the 99 774
training T /V pairs and the 33 257 validation pairs (random
splitting case) over 100 epochs is 182 h (≈7.6 days) on two
TESLA V100 SXM2 32-GB GPUs working in parallel. During
the testing phase, the network weights are not updated. In this
case, the resulting reconstruction time of a single snapshot is
reduced to about 114 ms on a Tesla V100 SXM2 32-GB GPU
and less than 20 ms on a NVIDIA A100 SXM4 40-GB GPU. In
comparison, the mean inversion time of the algebraic method
is only of a few microseconds [24], and it does not require
prior training. Nevertheless, the computation time would not
be a bottleneck for an operational implementation since it is still
much less than the integration time (1.2 s for SMOS) and the
computing time allocated to this phase of the ground processing.

The work done for the present study is entirely reproducible.
The python environment and the package used for splitting the
data, training, and evaluating the model have been conducted
under a seed value that allows us to reproduce every result.
Finally, operations on GPUs have been run deterministically so
that the order of execution is guaranteed and can be reproduced,
at the cost of some additional computational time.
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Fig. 4. Distribution of the snapshots into training, validating and testing subsets, illustrated on 25% of the total amount of data for the sake of readability. Panel
(a) presents the snapshot distribution with a random sampling. Panel (b) presents the snapshot distribution into 200 clusters using the k-means algorithm. Panel
(c) presents the snapshot distribution with a random selection of the k-means clusters. In both splitting methods, 60% of the data are used for training, 20% for
validating, and the last 20% for testing. (a) Random splitting of the snapshots. (b) k-means clustering of the snapshots. (a) k-means splitting of the snapshots.
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Fig. 5. Scheme of the proposed DNN architecture.

C. Evaluation

In order to evaluate the DNN performances, metrics are
measured on the testing subset created from the remaining 20%
of the dataset that was used neither for training nor for validation.

The complex visibilities of the testing subset were inverted
with the algebraic regularized approach as well as with the
proposed data-driven DNN approach. As explained in Section II,
the algebraic method only reconstructs brightness temperatures
in the EAFFOV whose shape is like a distorted hexagon [25].
However, it turns out that the proposed DNN is able to re-
construct brightness temperatures over the entire FOV. As a
consequence, the DNN metrics are computed over the entire
FOV to grasp its reconstruction performances, as well as only
over the EAFFOV to allow a comparison with the algebraic
method.

The error metrics used to compare the two approaches are
the MAE, the standard deviation of error (STD), and the RMSE
of the initial brightness temperature maps with respect to the
reconstructed maps. Every values are in kelvin. In addition,
the error metrics used to compare the proposed approach to
previous work are the average normalized root-mean-square
error (NRMSE-A) and the min–max normalized root-mean-
square error (NRMSE-M). Both the metrics are expressed as
percentages. The NRMSE-A is the RMSE that has been divided
by the average value of every true T maps of the testing subset,
while the NRMSE-M is the RMSE divided by the difference
between the average maximum value of the true T maps of the
testing subset and the average minimum value.

V. RESULTS

This section is devoted to the analysis of the reconstruction
performances of the proposed DNN over the testing subset of

data. A qualitative description is made from two reconstructed
maps. Then, a quantitative description is presented using error
metrics averaged over the full testing subset.

A. Qualitative Description of Two Scenes

Figs. 6 and 7 show two representative reconstructions of
brightness temperature maps. Figs. 6(a) and 7(a) display the
brightness temperature of reference to retrieve. Figs. 6(b) and
7(b) show the DNN reconstruction, and Figs. 6(c) and 7(c) show
the algebraic performance. Figs. 6(d) and 7(d) display the DNN
reconstruction error map (that is the difference map between the
DNN reconstruction and the reference map) over the full scene,
Figs. 6(e) and 7(e) show the DNN error map over the EAFFOV
area, and, finally, Figs. 6(f) and 7(f) display the algebraic method
error map (only measured on the EAFFOV, as explained in
Section II).

Fig. 6(b) displays a DNN reconstruction whose MAE is rep-
resentative of the average MAE measured on the testing subset,
on the entire reconstructed field, so a DNN MAE is equal to
1.5 K. Fig. 7(b) displays a DNN reconstruction whose MAE
is representative of the average MAE measured on the testing
subset, only over the EAFFOV reconstructed field, so a DNN
EAFFOV MAE is equal to 0.7 K.

The comparison of the panels a and b of Figs. 6 and 7 shows
that the DNN can reproduce the full extent of the input scene
without aliasing (23 042 pixels), while the algebraic method [see
Figs. 6(c) and 7(c)] reconstructs a smaller FOV with important
aliasing effects (8981 pixels). The total number of reconstructed
T s provided by the DNN is 2.5 times greater.

Figs. 6(d) and 7(d) show that the higher errors are concentrated
on coastlines, and more particularly on coastlines that lie on the
periphery of the images. Continental surface and ocean areas
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Fig. 6. Reconstruction example of our proposed DNN compared with the algebraic regularized approach. (a) Ground truth brightness temperature (BT) map
calculated by the SMOS operational ground segment. (b) Inversion of the visibilities by the DNN. (c) Inversion of the visibilities by the algebraic method. (d)
and (e) Difference map between the DNN reconstruction and the reference BT map, over the full reconstructed field and over the EAFFOV area, respectively. (f)
Reconstructions error maps of the algebraic method on the EAFFOV. DNN MAE: 1.5 K; DNN (EAFFOV) MAE: 1.0 K; and algebraic MAE: 3.6 K. (a) Reference
BT map. (b) DNN reconstruction. (c) Algebraic reconstruction. (d) DNN - Reference. (e) DNN - Reference (EAFFOV). (f) Algebraic - Reference (EAFFOV).
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Fig. 7. Reconstruction example of our proposed DNN compared with the algebraic regularized approach. (a) Ground truth brightness temperature (BT) map
calculated by the SMOS operational ground segment. (b) Inversion of the visibilities by the DNN. (c) Inversion of the visibilities by the algebraic method. (d)
and (e) Difference map between the DNN reconstruction and the reference BT map, over the full reconstructed field and over the EAFFOV area, respectively. (f)
Reconstructions error maps of the algebraic method on the EAFFOV. DNN MAE: 0.9 K; DNN (EAFFOV) MAE: 0.7 K; and algebraic MAE: 4.3 K. (a) Reference
BT map. (b) DNN reconstruction. (c) Algebraic reconstruction. (d) DNN - Reference. (e) DNN - Reference (EAFFOV). (f) Algebraic - Reference (EAFFOV).
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TABLE I
AVERAGE RECONSTRUCTION ERROR METRICS FOR THE ALGEBRAIC APPROACH (ONLY IN THE EAFFOV) AND FOR THE DNN ONE (IN THE EAFFOV AND IN THE

FULL FOV)

are otherwise well reconstructed anywhere else. The algebraic
method does not seem to be influenced by the coastal lines, since
no error pattern can be seen on the ocean/land transitions.

In addition, the comparison of the three error maps of Figs. 6
and 7 shows that the DNN reconstruction error within the full
reconstructed field as well as in the EAFFOV is lower and more
homogeneous than that of the algebraic method [see Figs. 6(f)
and 7(f)].

B. Global Quantitative Results

The global performances of the DNN approach and of the
algebraic method are given in Table I, where the previous errors
metrics are reported for the testing subset in the EAFFOV area
as well as in the entire earth FOV.

Table I shows that the reconstructions of the DNN in the
EAFFOV area present an MAE of 0.7 K, which is twice as low as
the MAE measured over the entire reconstructed field. Likewise,
both the STD and the RMSE are about three times smaller in the
EAFFOV than in the earth FOV. As a consequence, the quality of
the DNN reconstructions is obviously better in the EAFFOV than
in any other area of the reconstructed FOV. This confirms the
qualitative observation made in the previous subsection that the
DNN reconstructions present higher errors outside the EAFFOV.

When comparing the error metrics in the EAFFOV of the
brightness temperature maps reconstructed by the DNN ap-
proach with those synthesized by the algebraic method in the
same area, it turns out that all those of the DNN are always
smaller. Considering the DNN reconstruction in the earth FOV,
the algebraic approach still presents higher errors overall.

In order to take into account the actual dispersion of the quality
metrics for all the studied scenes of the testing subset, histograms
were computed. Fig. 8 displays the DNN’s reconstruction MAE
distribution on the full scene [see Fig. 8(a)] and on the EAF-
FOV [see Fig. 8(b)], while the lower panel shows the algebraic
method reconstruction MAE distribution on the EAFFOV [see
Fig. 8(c)]. In addition, the metrics distribution was studied for
different ocean/land ratios of the snapshots. The ocean/land
ratio is divided into four categories: “Full Ocean” are snapshots
comprising more than 90% of ocean pixels, “Full Land” are
snapshots with more than 90% of land, “Mostly Ocean” are com-
posed of 50–90% of ocean, and “Mostly Land” are composed of
50–90% of land. Under each histogram, four boxplots indicate
the MAE percentiles for each ocean/land composition and are
colored accordingly: dark blue for the category “Full Ocean,”

light blue for “Mostly Ocean,” yellow for “Mostly Land,” and
green for “Full Land.” The fifth boxplot, colored in red, indicates
the average percentiles over every snapshots. For each boxplot,
the upmost left and the upmost right ticks display the 10th and
90th percentiles of the MAE distribution, respectively. The left-
and right-hand sides of the boxes display the 25th and 75th
percentiles, respectively, and the bold vertical tick in the boxes
displays the 50th percentile (median).

Looking at the global boxplot, colored in red in Fig. 8, it
appears that the median on the full reconstructed field is below
the average MAE of 1.5 K, so most of the testing T /V pairs
are reconstructed with an averaged MAE below 1.5 K on the
full scene. Also, the 90th percentile displayed by the furthest
right vertical tick of the global boxplot [see Fig. 8(b)] shows
that 90% of the snapshots are reconstructed with an MAE less
than 1.1 K on the EAFFOV. This value is to be compared to the
mean MAE of 1.5 K of the full reconstruction [see Fig. 8(a)].
The EAFFOV area is, thus, better reconstructed by the DNN
than the rest of the scene. Finally, the error distribution of the
EAFFOV reconstruction is less spread out than on the full FOV,
where 50% of the reconstructions error are ranging between 0.4
and 0.8 K for the EAFFOV, against a range between 0.8 and
1.9 K for the full area. Looking now at the four boxplots relative
to the ocean/land composition of the scenes, it appears that
every category yields smaller reconstruction error and smaller
error range in the EAFFOV than in the full area. Fig. 8 shows
that the DNN reconstructions are better on pure ocean scenes
than on mixed ocean/land and pure land snapshots, on both the
EAFFOV area and the full FOV. This is expected as those are
rather homogeneous scenes, which are easier to predict.

Comparing the DNN algorithm with the algebraic method,
it appears that both the approaches have shown a larger error
reconstructing mixed ocean/land and pure land snapshots, due
to the higher complexity of those scenes compared to pure ocean
snapshots. However, the DNN exhibits less dispersion in the
error distribution than the algebraic method for the ocean/land
ratio distribution. Focusing on the EAFFOV, 50% of the DNN
MAE ranges from about 0.4 to 0.8 K, while the algebraic MAE
ranges from 2.5 K to over 4.7 K. For the DNN, 90% of the
estimated Te are reconstructed with an MAE less than 2.7 K on
the full reconstructed field, and with an MAE less than 1.1 K on
the EAFFOV. Those values are compared to the 25th percentile
of the algebraic method, displayed by the left-hand side of the
fifth boxplot of Fig. 8(c), showing that 75% of the T maps are
reconstructed with an MAE superior to 2.5 K. Looking now
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Fig. 8. Comparison of the reconstructions MAE distribution of the proposed DNN and the algebraic method, over the testing subset, with a random split of data,
colored by ocean/land snapshot composition. Measured on the EAFFOV area for the algebraic approach and on the EAFFOV and complete areas for the DNN.
“Full Ocean” are snapshots comprising more than 90% of ocean pixels, “Full Land” are snapshots with more than 90% of land, “Mostly Ocean” are composed
between 50% and 90% of ocean, and “Mostly Land” are composed between 50% and 90% of land. The boxplots indicate the percentiles for each ocean/land
composition and are colored accordingly. The last boxplot, colored in red, indicates the average percentiles over every snapshots. For each boxplot, the upmost
left and the upmost right ticks display the 10th and 90th percentiles, respectively. The left- and right-hand sides of the boxes display the 25th and 75th percentiles,
respectively. The bold vertical tick in the boxes displays the 50th percentile. The mean value of the MAE is displayed for each distribution by a vertical red dashed
line.

at the four boxplots relative to the ocean/land composition of
the scenes, it appears that only the MAE distribution of the
full land reconstructions is about the same range between the
DNN reconstructions over the EAFFOV and the algebraic recon-
struction over the EAFFOV. Otherwise, every other category of
ocean/land composition presents higher error range and higher
error value when reconstructed by the algebraic method.

C. Results as a Function of Data Splitting

Fig. 9 displays the distribution of the MAE over the testing
subsets for the DNN trained with a k-means split of the data (see
Section IV). The color, legend, and disposition of the panels are
the same as the ones detailed for Fig. 8. Using the k-means split,
the proportion of Full Ocean scene in the testing subset is slightly
lower than with the random split.

Fig. 9(a) shows that the MAE on the full reconstructed field
is equal to 1.7 K when the model is trained on the k-means
split subset, which is higher by 0.2 K than when trained on
the random split subset [see Fig. 8(a)]. Also, 50% of the MAE
distribution on the k-means split subset ranges from 0.9 to
1.7 K, with a 90th percentile at 3.6 K. This is slightly nar-
rower than 50% of the MAE distribution on the random split
subset, which ranges from 0.8 to 1.9 K, with a 90th percentile
at 2.7 K. Looking now at the four boxplots relative to the
ocean/land composition of the scenes, it appears that the dis-
tribution of the MAE over the full ocean scenes is similar.
However, mostly ocean and mostly land categories present
overall smaller errors when the model is trained on the k-means
split subset, but with more extreme high error reconstructions.
On the other hand, the full land scenes show higher error and
higher error range when reconstructed by the model trained on
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Fig. 9. Comparison of the reconstructions MAE distribution of the proposed DNN and the algebraic method, over the testing subset, with a k-means split of the
data, colored by ocean/land snapshot composition. Measured on the EAFFOV area for the algebraic approach and on the EAFFOV and complete areas for the DNN.
“Full Ocean” are snapshots comprising more than 90% of ocean pixels, “Full Land” are snapshots with more than 90% of land, “Mostly Ocean” are composed
between 50% and 90% of ocean, and “Mostly Land” are composed between 50% and 90% of land. The boxplots indicate the percentiles for each ocean/land
composition and are colored accordingly. The last boxplot, colored in red, indicates the average percentiles over every snapshots. For each boxplot, the upmost
left and the upmost right ticks display the 10th and 90th percentiles, respectively. The left- and right-hand sides of the boxes display the 25th and 75th percentiles,
respectively. The bold vertical tick in the boxes displays the 50th percentile. The mean value of the MAE is displayed for each distribution by a vertical red dashed
line.

the k-means split subset and also present more extreme high
error.

The disparity in performance becomes less significant when
assessing the reconstruction inside the EAFFOV. In this con-
text, both data splitting methods yield similar results, with an
average MAE of 0.7 K and a common 90th percentile value
of 1.1 K. Moreover, when inspecting the boxplots relative to
the ocean/land compositions of the scenes, minimal differ-
ences are observable, both in terms of MAE value and MAE
range.

The random split method shows lower mean reconstruction
errors overall and much more less extreme high errors. However,
it is nuanced by its higher MAE for mostly ocean and mostly
land snapshots. Concerning the EAFFOV area, both splitting

methods present similar performances. The random split of the
data allows the DNN to encounter more training T /V pairs close
to the testing data, better preparing it to reconstruct those testing
data. In this way, the DNN is more capable of extrapolating
the T located outside the EAFFOV, reducing the occurrence of
extreme errors in this area.

VI. DISCUSSION

In this section, the results of the current study are discussed in
comparison to previous data-driven works and to the algebraic
method. Then, some insights on the understandability of the
proposed DNN and its ability to prevent aliasing artifacts are
provided.
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A. Comparison to Previous Works

The trained CNN of Xiao et al. (IASR-CNN), in [3],
performed an average RMSE of 9.47 K measured over a testing
subset of 1000 samples. Depending on the level of the Gaussian
noise added to these ideal visibilities used for training as well as
testing, the averaged RMSE was reported to increase up to 14 K.
Referring back to Table I, as a comparison, the present DNN
performs an averaged RMSE of 2.90 K on the full reconstructed
FOV with realistic noiseless SMOS visibilities, as reported in
Section III.

The CNN proposed by Zhang et al. [2] (SAIR-CNN) has been
evaluated with different undersampling ratios of the complex
visibility samples versus the image pixels to reconstruct. An
RMSE of 3.6% is obtained with a 40% undersampling ratio,
whereas with a 10% undersampling ratio, the RMSE is reported
to be as large as 24.6%. As a comparison, the NRMSE-A of the
DNN presented in the current study, that is the RMSE calculated
as a percentage of the true T maps average value, turns out to be
about 1.8% over the testing subset with an undersampling ratio
of about 20% typical of the SMOS satellite (4695/23042).

The 1-D CNN developed by Dou et al. [4] (AS-CNN) has
been tested over their 2100 testing data and achieved an average
RMSE of 0.597 K, which is lower than the RMSE obtained
with their implementation of the SAIR-CNN: 1.611 K on the
same testing dataset. Dou et al. [4] specify in their article that
the brightness temperature of the original scenes of the testing
dataset is comprised between an average minimum of 59.44 K
and a maximum of 179.61 K. The corresponding NRMSE-M
of the AS-CNN is thus equal to 0.597/(179.61− 59.44) �
0.005 = 0.50%. Referring back to Table I, as a comparison,
our proposed DNN performs an NRMSE-M of 0.46% on the
EAFFOV and an NRMSE-M of 1.35 K on the full reconstructed
FOV, over the brightness temperatures of our testing subset
comprised between an average minimum of 64.08 K and a
maximum of 278.64 K. The AS-CNN being trained in over-
constrained conditions, its achieved NRMSE-M is most likely
to be compared to the results obtained by our proposed approach
within the EAFFOV.

B. Comparison of the DNN to the Algebraic Method

When comparing the reconstructions of the proposed DNN
method and the algebraic method only in the EAFFOV, the DNN
obviously has a better accuracy, with an average MAE of 0.70 K
over the testing subset, against 3.75 K for the algebraic method
over the same dataset. From the resolution point of view, when
looking over the multitude of snapshots we have processed for
this article, as soon as a small island appears in the FOV, and it
is often the case, we have observed in the corresponding recon-
structions the same features as those noticed with the algebraic
inversions. This suggests that the synthetic impulse response is
the same, if it is not better. Moreover, upon examining the panels
a and b of Figs. 6 and 7, it appears that the spatial resolution
of the DNN reconstructions closely corresponds to that of the
nominal SMOS. This is totally expected since the DNN training
has been conducted with realistic L-band brightness tempera-
ture maps computed from the highest spatial resolution global

L-band observations currently available, those provided by
SMOS.

When considering the full reconstructed field of the DNN
method (AFFOV plus EAFFOV), the measured error metrics
are still higher for the algebraic method than for the DNN.
Indeed, the average RMSE of the DNN measured on the entire
scenes of the testing subset is about 2.90 K, whereas it is
about 7.78 K for the algebraic reconstructions measured in
the EAFFOV only. Moreover, the algebraic approach cannot
reconstruct T outside the EAFFOV; thus, the DNN presents
the advantage of reconstructing a much wider FOV, growing
from 8981 pixels to 23 042 pixels, representing 2.5 times more
retrieved temperatures.

Considering the reconstruction of the DNN method over the
full reconstructed field, we see that a significant number of
scenes composed only of ocean are reconstructed within the
same error range than reconstructions over mixed scene and
pure land, between an MAE of 1 and 1.5 K. On the other hand,
the reconstructions of the algebraic method stand in two distinct
ranges of error. The pure ocean scenes are reconstructed within
an MAE range of 2–3 K, while the other types of scene present
an MAE between 3.5 and 6 K. This comparison suggests that
the proposed DNN is more robust to scene compositions of sea
fraction, since the reconstruction error is less correlated to the
ocean/land ratio of the scenes.

C. Understandability of the DNN

It has been shown in Section V that there are little signs
of aliasing in the images reconstructed with the DNN method.
However, in principle, an interferometric array whose antennas
are spaced by more than half the wavelength of the observation
should show aliasing in the reconstructed images as the Shannon
criterion is not fulfilled. Therefore, it is important to understand
the processes involved in the proposed DNN, which does not
produce images with aliases folding.

To get further insight into this, we first visually analyzed
DNN reconstruction error maps that present the higher errors.
Fig. 10 presents such a reconstruction. Fig. 10(a) displays the
brightness temperature map of reference, Fig. 10(b) displays
the corresponding DNN reconstruction, and Fig. 10(c) shows
the corresponding error map. In the latter, we can see two distinct
areas defined from two different error scales. The first area
presents high errors all over the periphery of the image, while
lower errors draw an area in the center of the image with a
hexagonal like shape. We notice that this hexagonal shape is
remarkably similar to the EAFFOV of the algebraic approach.
This behavior is in fact globally attested by the MAE metric
visible in Table I, where the DNN MAE over the EAFFOV
is of 0.70 K, against a higher MAE of 1.53 K over the full
reconstructed field.

An investigation of the hidden layers among the deepest in
the network shows feature maps with neurons that activates par-
ticularly in or out the same hexagonal-like shape. Two examples
of those feature maps are shown in Fig. 11.

This behavior could be the evidence that the DNN is able
to learn the relationship between T and V to such an extent
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Fig. 10. Example of the DNN reconstruction on visibilities taken from the modeled instrument with the characteristics of the SMOS satellite [(a)–(c)] and
on visibilities taken from the same instrument rotated by 90◦ [(d)–(f)]. (a) and (d) Ground truth brightness temperature map. (b) DNN reconstruction. (e)
DNN-90 reconstruction. (c) DNN reconstruction error map. (f) DNN-90 reconstruction error map. (a) Reference BT map from a SMOS-like instrument. (b) DNN
reconstruction. (c) DNN - Reference. (d) Reference BT map from a SMOS-like instrument rotated by 90°. (e) DNN-90 reconstruction. (f) DNN-90 - Reference.
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Fig. 11. Example of DNN feature maps. (a) Feature map where the neurons activate in the EAFFOV from the 24th hidden layer. (b) Feature map where the
neurons activate outside the EAFFOV from the 26th hidden layer.

that it makes the distinction between areas where the brightness
temperature can be accurately retrieved from the accessible visi-
bilities (the AFFOV) and areas where the instrumental sampling
would produce folding that the DNN has to learn to extrapolate
(or actually interpolate in the spatial frequencies space). There-
fore, these feature maps suggest that the two areas are processed
by the DNN separately.

In order to ensure that the EAFFOV hexagon is not an artifact
coming from the fact that the brightness temperatures used
as input are coming from algebraic reconstructions of SMOS
measurements, an additional experiment was performed. A new
set of visibilities has been computed from the same brightness
temperature maps and with the same instrument, except that the
modeled instrument was rotated by 90◦. Therefore, the EAFFOV
of the algebraic reconstruction should have another shape in the
center area of the image, as displayed by the dashed maroon
line in Fig. 10(f). This rotated EAFFOV will be referred to as
the EAFFOV-90. The proposed DNN has been trained over this
new set of visibilities taken from a 90◦-rotated instrument and the
same brightness temperature maps, under the same conditions
of training. The proposed DNN trained in the context of this
experiment is called DNN-90.

An example of reconstruction from DNN-90 is compared
to a reconstruction from the original DNN in Fig. 10, where
Fig. 10(d) shows the reference T , Fig. 10(e) shows the DNN-90
reconstruction, and Fig. 10(f) shows the corresponding error
map, with the new rotated EAFFOV-90 superposed in dashed
maroon line. The two reconstructed scenes are geographically
close, so their complexity is similar. The figure shows that the
area highlighted by the lower errors in the DNN-90 reconstruc-
tion error map is very similar to the EAFFOV-90 of the algebraic
approach. This behavior is globally noticeable in Fig. 12, which
displays the MAE map of the DNN averaged over the testing

subset, for both training runs. The EAFFOV [see Fig. 12(a)]
and EAFFOV-90 [see Fig. 12(b)] are represented by the dashed
maroon lines. Deep hidden layers of DNN-90 also present some
feature maps with neurons activated mostly in or out the new
EAFFOV-90 shape.

In conclusion, the original EAFFOV shape is not an artifact
due to the origin of the input dataset. The adaptation of the
proposed DNN to the new shape of the EAFFOV attests that
the DNN succeeds in finding the proper link between V and T ,
and that the aliasing artifacts that would be present taking into
account the instrument characteristics are suppressed.

D. Influence of the Antenna Element Patterns

It is well known that disparities in the antenna patterns
can have important effects on aperture synthesis microwave
radiometer reconstructions such as a systematic error, referred
to as spatial ripple or floor error. Using algebraic reconstruction
methods, these effects exist even in the ideal case where the
actual antenna pattern of every elementary antenna element is
known [26], [27].

Therefore, it is interesting to assess the sensibility of image
reconstruction to disparities in the antenna patterns when using
statistical approaches and DNNs. In the simulations discussed in
the previous sections, visibilities were computed using slightly
different patterns for the different elementary antennas. The
algebraic reconstruction did use this information on the indi-
vidual antenna patterns. In contrast, the antenna patterns are
not used at all for the DNN reconstructions. Despite this, the
DNN reconstructions consistently exhibit smaller overall errors
compared with algebraic reconstructions. At least to a certain
extent, this can be due to a lower impact of antenna pattern
differences in the DNN approach.
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Fig. 12. MAE map of the DNN reconstructions over every snapshots of the testing subset. (a) MAE map over the testing subset of the original instrument. (b)
MAE map over the testing subset of the 90◦ rotated instrument. In both the cases, the EAFFOV is the region of the FOV with the lowest level of the MAE. (a)
MAE map on the original instrument. (b) MAE map on the instrument rotated by 90°.

Fig. 13. Reconstructions MAE distribution of the proposed DNN, over the testing subset, with a random split of the data, colored by ocean/land snapshots
composition. The DNN has been trained over visibility samples simulated with a modeling instrument with identical antenna patterns. Measured on the EAFFOV
and complete areas for the DNN. “Full Ocean” are snapshots comprising more than 90% of ocean pixels, “Full Land” are snapshots with more than 90% of land,
“Mostly Ocean” are composed between 50% and 90% of ocean, and “Mostly Land” are composed between 50% and 90% of land. The boxplots indicate the
percentiles for each ocean/land composition and are colored accordingly. The last boxplot, colored in red, indicates the average percentiles over every snapshots.
For each boxplot, the upmost left and the upmost right ticks display the 10th and 90th percentiles, respectively. The left- and right-hand sides of the boxes display
the 25th and 75th percentiles, respectively. The bold vertical tick in the boxes displays the 50th percentile. The mean value of the MAE is displayed for each
distribution by a vertical red dashed line.

To get further insight into the impact of antenna patterns
dissimilarities, we conducted an experiment to validate that the
proposed DNN can effectively learn mapping between visibility
samples and brightness temperatures, irrespective of the antenna
patterns used in simulating the visibility samples. We generated
a new set of visibility samples, denoted as Vid, following the
same methodology outlined in this article. However, this time,

we employed a modeling instrument with identical antenna
patterns. Then, we trained the proposed architecture on these
new T /Vid pairs under the same conditions of training than
the proposed DNN. This newly trained model is referred to as
DNN-id. The distribution of reconstruction MAE of DNN-id is
displayed in Fig. 13 and should be compared to the distribution
of reconstruction MAE of the proposed DNN displayed in
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Fig. 14. MAE map of the DNN-id reconstructions over every snapshot of the
testing subset with visibility samples simulated with a modeling instrument with
identical antenna patterns.

Fig. 8. The reconstruction performances of DNN-id and DNN
on their respective testing subsets are very similar, with an
average MAE of 1.6 and 1.5 K, respectively, across the entire
reconstructed field. The reconstruction performance concerning
the ocean/land snapshot composition is nearly identical, except
for full ocean scenes, which display slightly higher error rates
when reconstructed by DNN-id. The MAE map of DNN-id
reconstructions averaged over every snapshot of its testing subset
is presented in Fig. 14. It reveals that errors manifest as small
patches with errors inferior to 1.5 K in the EAFFOV, and the
error distribution is more homogeneous outside, consistent with
the pattern observed in the average MAE map of the DNN model
displayed in Fig. 12(a).

In summary, the DNN reconstructions exhibit similar errors,
whether visibilities are computed with an imperfect instrument
with slightly different antenna patterns or if they are computed
with an ideal instrument with identical antenna patterns. When
using algebraic reconstructions, spatial ripples arise from the
combination of antenna pattern dissimilarities and aliasing, even
when the different antenna patterns are used in the inversion.
Therefore, the result obtained here of a lower sensitivity of the
DNN method to antenna pattern dissimilarities is promising.

E. Perspectives for Applying DNN Methods for the Image
Reconstruction of Real Interferometric Data

The proposed DNN has been trained on simulated inter-
ferometric data similar to that of the SMOS instrument, in
terms of spectral content, dynamic range, and underconstrained
quality of the inverse problem. It has demonstrated its ability
to learn the mapping between visibility samples and brightness
temperature, showing equivalent or superior performances in
terms of reconstruction error metrics when compared to the
algebraic method. It has been shown that the proposed DNN
architecture manages to deal with the strongly ill-posed problem,
that the alias can be almost suppressed, and that the sensitivity of
disparities of the antenna patterns can be lower. Therefore, these
new results are promising. And subsequent works can deal on
applying the new approaches presented here to real data acquired
by a microwave interferometer. However, many issues must be

addressed before applying the proposed method to the inver-
sion of actual interferometric data such as SMOS acquisitions.
Examples are contributions from radio frequency interference
(RFI), Faraday rotation angle, radiometric noise, residuals of
corrected sources (direct and reflected sun, sky, and moon),
polarizations, and atmospheric attenuation. In contrast to the
algebraic method, DNNs are nonlinear, statistical, data-driven
approaches. The training subset must encompass every contri-
bution to the actual measurements. Thus, the network processes
different error sources together, making it challenging to assess
the impact of a given error source on the final reconstructions and
to perform potential corrections. Dedicated works should look
into detail into these aspects to address if hybrid approaches
should be put in place with physical modeling complement-
ing the statistical approaches before the actual reconstruction
(preprocessing) or within the DNN training phase. The results
presented in this work are just the first step to put in place such a
methodology.

VII. CONCLUSION

A novel DNN that learns reconstruction mapping between
complex visibilities and brightness temperature maps trained
on simulated interferometric data similar to that of the SMOS
instrument was presented. The new method competes with the
current algebraic method on every type of scene, from pure
ocean to complex mixed ocean/land scenes, with an average
MAE of 0.7 K over the EAFFOV, compared to 3.7 K for the
algebraic method. As a consequence of alias-free capabilities, it
also retrieves an exploitable FOV 2.5 times wider than the one
computed by the algebraic approach, with an MAE of 1.5 K
over the full scene, by learning how to extrapolate missing
information from the input data as well as from the similar
scenes observed during the learning phase and, thus, remove any
alias contamination. This interesting property can be helpful for
the design of future imaging radiometers by aperture synthesis
such as SMOS-HR [28], [29] since the spacing between the
antennas would no longer be a parameter of the necessary trade-
offs between scientific requirements and technical constraints.
Furthermore, investigations into optimizing the reconstruction
performances can be explored with the aid of external informa-
tion in addition to the input data. For example, water fraction
masks of each scene could be implemented into the DNN to
provide additional geographic information about the position
of coastlines and water points. Finally, this work might only be
considered as a proof of concept of a new method that cannot yet
be used for processing operational data from an interferometer
such as SMOS. However, it must be seen as the first step toward
a practical DL-based method to retrieve brightness temperature
maps from complex visibilities. Of course, additional refine-
ments are required to take into account all the contributions
from foreign sources (sky, sun, RFI, etc.) to interferometric
measurements and also to enhance the robustness of the method
against various errors and noise. This is precisely the road map
toward the next steps that will be detailed in a forthcoming
paper.
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