
HAL Id: hal-04542157
https://hal.science/hal-04542157

Submitted on 11 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Securing a High-Level Language Virtual Machine
Through its ISA: Pharo as a Case Study

Quentin Ducasse, Pascal Cotret, Loïc Lagadec

To cite this version:
Quentin Ducasse, Pascal Cotret, Loïc Lagadec. Securing a High-Level Language Virtual Machine
Through its ISA: Pharo as a Case Study. GDR SOC2, Jun 2021, Rennes, France. �hal-04542157�

https://hal.science/hal-04542157
https://hal.archives-ouvertes.fr


Quentin Ducasse, Pascal Cotret, and Loic Lagadec

ENSTA Bretagne - Lab-STICC

Securing a High-Level Language
Virtual MachineThrough its ISA:

Pharo as a Case Study

Language Virtual Machines JIT Compilation

Bytecode Compiler: transforms source code in a high-level intermediate
representation, bytecodes

Interpreter: process the bytecodes and monitor instruction hotness

JIT compiler: compiles hot methods/blocks/constants into native code

Garbage Collector: allocates and deallocates memory

Memory Protection and Process Isolation

Memory protections are present at different level and granularity:

Memory Page Permissions: Read (R), Write (W) or Execute (X) granted
to a given memory page (4kB)

Memory Protection Keys: Userspace hardware mechanism to control
page table permissions with key tags.

Domain Keys: Per process isolation that can be split through several
memory pages.

Trusted Execution Environments: Hardware extension enabling isolated
execution environments called enclaves.

Nanufacturers propose their TEEs such as ARM Trustzone or Intel
Software Guard Extension (SGX) as well as RISC-V Keystone [1].

Protections are enforced on JIT engines using W ⊕ X, Data Execution
Prevention (DEP), Address Space Layout Randomization (ASLR)
or Control-Flow Integrity (CFI). More specific protections have also been
developed by integrating MPK [2] or SGX [3].

Attack on Virtual Machines and their JIT Engines

JIT Spraying [4] forces the JIT compilation of a XOR chain to produce a set of
constants in JITed memory then disrupts the execution flow by one byte to reveal
the hidden shellcode.

JIT-ROP [5] creates the payload from available gadgets in memory, either already
present or JIT compiled directly by the attacker. The execution flow is disrupted
to a return chain to launch the shellcode.

Pharo as a Case Study Virtual Machine for Security

Why choose Pharo?

Migration in Process or Completed to other ISAs (ARM v8).

Simpler than heavily engineered Java or JavaScript Virtual Machines.

Complex enough to be in commercial use and require the security aspect.

High-level Language Test Harness of hundreds of ISA-agnostic tests.

A VM implementation for a new ISA runs through three main phases:

1 Unit-test a simulation of the VM in the development environment itself.

2 Emulate the whole system on an architecture emulator (QEMU/Unicorn).

3 Execute the system on the real hardware.

Objectives

Port the Pharo VM to the RISC-V ISA.

Replay well-known attacks in a controlled environment.

Design enclave behaviour on critical components using Keystone.

Design instructions to handle isolation.

Test the implementation in hardware (Beagle-V, CVA6).

Open Questions

Are the attacks replayable on RISC-V?

What defines a pertinent instruction for JIT engines?

References

[1] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song, “Keystone: An open framework for architecting trusted execution environments,” in

Proceedings of the Fifteenth European Conference on Computer Systems, 2020, pp. 1–16.

[2] T. Park, K. Dhondt, D. Gens, Y. Na, S. Volckaert, and M. Franz, “Nojitsu: Locking down javascript engines,” in Symposium on Network and Distributed

System Security (NDSS), 2020.

[3] T. Frassetto, D. Gens, C. Liebchen, and A.-R. Sadeghi, “Jitguard: hardening just-in-time compilers with SGX,” in Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, 2017, pp. 2405–2419.

[4] D. Blazakis, “Interpreter exploitation: Pointer inference and JIT spraying,” BlackHat DC, 2010.

[5] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-grained address

space layout randomization,” in 2013 IEEE Symposium on Security and Privacy. IEEE, 2013, pp. 574–588.

At a glance

Problem: JIT engines are powerful but vulnerable
pieces of software.

Approach: involving the ISA in a high-level component
provides more security guarantees.

Implementation: Pharo VM on RISC-V adding
instruction extensions and enclave support.

https://labsticc.fr/en quentin.ducasse@ensta-bretagne.org


