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LEMUR: Latent EM Unsupervised Regression for
Sparse Inverse Problems

Pierre Barbault, Matthieu Kowalski and Charles Soussen

Abstract—Most methods for sparse signal recovery require to
set one or several hyperparameters. We propose an unsupervised
method to estimate the parameters of a Bernoulli-Gaussian (BG)
model describing sparse signals. The proposed method is first
derived for denoising problems, based on a maximum likelihood
(ML) approach. Then, an extention to general inverse problems is
achieved through a latent variable formulation. Two expectation-
maximization (EM) algorithms are then proposed to estimate the
signal together with the BG model parameters. Combining these
two approaches leads to the proposed LEMUR algorithm. All
proposed algorithms are then evaluated on extensive simulations
in terms of ability to recover the parameters and provide accurate
sparse signal estimates.

Index Terms—Bernoulli-Gaussian, Expectation-Maximization,
Sparsity, Hyperparameter estimation.

I. INTRODUCTION

Linear inverse problems are prevalent in various scientific
and engineering fields, encompassing scenarios where the
objective is to reconstruct an unknown signal or image from
noisy measurements. Many signals of interest, such as natural
images and audio signals, exhibit sparse representation, which
can be exploited for reconstruction from incomplete and noisy
measurements. Sparsity is typically achieved using a linear
transform or dictionary that allows the signal to be represented
with sparse synthesis coefficients. In the following, we assume,
without loss of generality, that the signal of interest is sparse
with respect to the canonical basis.

The relation between the noisy measurement vector
y ∈ RM and the unknown sparse signal x ∈ RN is given by
the linear operator H ∈ RM×N , with additive white Gaussian
noise e having variance σ2

e and zero mean:

y = Hx+ e. (1)

Regularized least-squares is a popular approach for solving
sparse inverse problems. The Lasso [1] or Basis Pursuit
Denoising [2] is a common approach which makes use of an ℓ1
constraint or penalty. While ℓ1 regularization is prevalent, an
ideal measure of sparsity is the so-called ℓ0-“norm”, which
counts the number of non-zero coefficients in x. The ℓ0-
regularized least-squares problems can then be solved using
various methods including proximal descent algorithms [3]
such as the Fast Iterative Shrinkage/Thresholding algorithm
(FISTA) [4]. These methods were initially developed for
convex regularizers. However, they can be generalized to
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the non-convex case as long as the proximal operator can
be efficiently computed. For the ℓ0 regularized problem, the
Iterative Hard Thresholding algorithm (IHT) [5] can be used.
Alternatives to IHT are greedy algorithms such as Orthogonal
Matching Pursuit [6] and Single Best Replacement [7]. While
these methods are effective in finding a sub-optimal solution,
exact solvers based mixed integer programming have recently
been proposed [8], [9] for moderate size problems, together
with efficient branch and bound implementations.

The main shortcoming of these methods is the need to tune
at least one hyperparameter, balancing the data-fidelity and
sparsity-promoting terms. For the Lasso, the hyperparameter
can be chosen using the Stein Unbiased Risk Estimator
(SURE) in the denoising case [10], [11] by providing an
unbiased estimate of the mean squared error between the
estimated signal and the actual signal. This approach has
been extended to inverse problems using the SUGAR [12] or
Generalized-SURE (GSURE) [13]. However, SURE cannot be
applied to ℓ0 regularization as it is not weakly differentiable. In
the denoising case, the SURE-based Coordinate-wise RElaxed
(SCORE) [14] has been proposed, but its extension to inverse
problems is not straightforward.

In the Bayesian framework, regularized least-squares can
be interpreted as a Maximum a Posteriori (MAP) approach,
where the regularization term is the neg-likelihood of a prior
distribution over the signal coefficients. Pereyra et al. [15]
proposed to use a Gamma prior on the hyperparameter when
the negative log-likelihood of the prior corresponds to a
1-homogeneous regularizer. This method can be efficiently
optimized. Among Bayesian methods for sparsity, Sparse
Bayesian Learning (SBL) is a popular approach that uses a
Gaussian prior on the signal coefficients with a free variance
for each coefficient. Variance estimation is achieved through
marginalization with respect to the signal x, leading to sparse
estimation. A related model proposed by Calvetti and Somer-
salo [16] uses a Gamma prior on the variances.

One advantage of the Bayesian approach is the ability to
use hierarchical Bayes models, where a hyperprior can be
chosen for the hyperparameters. Markov Chain Monte Carlo
(MCMC) methods with hierarchical Bayes models provide
a fully unsupervised approach for hyperparameter selection.
While these methods can be computationally expensive, they
can accurately estimate the hyperparameters.

The Bernoulli-Gaussian (BG) model is a popular choice for
modeling sparsity in signal processing and is strongly related
to the ℓ0 regularized problem through the MAP estimator [7].
In [17], the authors proposed a stochastic-EM procedure to
estimate the sparse solution of a deconvolution problem. How-
ever, a classical EM procedure becomes intractable because of
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the combinatorial nature of the related optimization problem.
Following the EM approach developed in [18] that relies
on an additional latent variable, [19] proposed an iterative
procedure to estimate the parameters of a BG model when
the matrix H is a union of unitary dictionaries. However,
this approach leads to a non-convergent estimate even in the
denoising case, as shown in [20], when using the chosen prior
on the hyperparameters. Moreover, preliminary experiments
have shown that this method is not robust for the general
inverse problem. MCMC approaches for the BG sparse model
do not scale well in practice [21], although recent efforts have
been made to improve their efficiency [22], [23].

Contributions and outline of the paper. This article is an
extension of our conference paper [24]. The primary purpose
is to provide an estimation of the BG parameters in the
inverse problem framework together with the sparse signal
reconstruction. On the contrary, only the parameters were
estimated in [24]. Here, we aim to provide a fully unsupervised
iterative/shrinkage thresholding algorithm. In Section II, we
introduce the statistical models and derive the expression of
likelihood functionals. Section III is dedicated to the denoising
case. We first propose a joint MAP/Maximum Likelihood
method to estimate both sparse signal and hyperparameters.
Additionally, we derive an EM algorithm, which is initialized
using the method of moments. In Section IV, we elaborate the
extension to general inverse problems using the latent variable
formulation proposed in [18]. We explore the choice of hidden
variables and propose two distinct EM approaches. Finally,
Section V includes a comprehensive experimental evaluation
of the proposed approaches.

II. BG MODEL

The sparse source signal x is modeled using the Bernoulli-
Gaussian (BG) process. Assuming that the signal coefficients
xn are independent and identically distributed, xn is modeled
as a mixture of a Gaussian distribution and the Dirac δ
distribution:

xn ∼ BG(p, σ2
x) = pN (0, σ2

x) + (1− p)δ(xn) (2)

where p and σ2
x refer to the sparsity level and the variance

of the nonzero entries, respectively. Alternatively, one may
introduce the sequence of binary variables sn such that

sn =

{
1 if xn ̸= 0,

0 if xn = 0.
(3)

sn follows the Bernoulli distribution of parameter p,
and the conditional distribution of xn given sn reads
(xn|sn) ∼ N (0, σ2

x) if sn = 1 and (xn|sn) = 0.
In Eq. (1), the independent noise vector e is assumed to be

white and Gaussian with variance σ2
e , thus we have:

y|x ∼ N (Hx, σ2
eIM ) (4)

where IM is the M ×M identity matrix.
Due to the presence of the Dirac distribution in Eq. (2),

one cannot directly define the maximum a posteriori (MAP)
estimator for x using this equation. However, by introduc-
ing the indicator variable sn in Eq. (3) and observing that

p(xn ̸= 0|sn = 1) = 1 and p(xn = 0|sn = 0) = 1, we can es-
tablish a joint-MAP formulation in terms of (s,x). Ultimately,
we demonstrate that this joint estimator relies solely on x, and
we denote the latter estimator as the MAP estimator for x.
Denoting the set of model hyperparameters as

θ = (p, σ2
x, σ

2
e), (5)

this estimator is expressed hereafter.

Proposition 1. Let x follow the BG model Eq. (2) and
y = Hx + e. The MAP estimator of x is the solution of
the following optimization problem:

argmin
x

1

2σ2
e

∥y −Hx∥22 +
∥x∥22
2σ2

x

+ λ∥x∥0 + C(σ2
e , p)

with

λ(σ2
x, p) = log

(√
2πσ2

x

1− p

p

)
and

C(σ2
e , p) = N log

(√
2πσ2

e

1− p

)
Proof. The proof is given in Appendix A.

The expression of C(σ2
e , p) is given for reasons that will

become clear in the next sections devoted to estimating the
parameters. As far as we know, it is the first time that this
MAP estimator is properly derived. In [20], this MAP was
given in the denoising case with no proof. One can notice
that this posterior slightly differs from the one given in [7].
The latter cost function is similar with λ = log

(
1−p
p

)
. This

difference comes from the chosen model to induce the BG
random variable x. In [7], x is written as the product of
two independent random variables s and r, which model the
support and the value of the coefficients, respectively. Hence,
the derivation is based on the factorization p(s, r) = p(s)p(r).
Hence, the related MAP criterion differs from the one stated
in Proposition 1.

III. PARAMETER ESTIMATION IN THE DENOISING CASE

This section deals with parameter estimation in the denois-
ing case. This case is modeled by H = IM , hence

y = x+ e . (6)

Here, the distribution of y is a simple mixture of two centered
Gaussians with variances σ2

e and σ2
e + σ2

x, and respective
weights (1− p) and p. In other words, yn are i.i.d. random
variables such that

yn ∼ pN (0, σ2
x + σ2

e) + (1− p)N (0, σ2
e). (7)

In Section III-A, we derive an EM procedure for ML estima-
tion of parameters θ and then propose two methods of recon-
struction of the sparse signal x knowing θ. In Section III-B,
we propose a joint estimator of x and θ. We further derive the
method of moments, which provides an initial estimate of θ
(Section III-C).
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Algorithm 1: Denoising problem: EM algorithm for
parameter estimation [24].

Result: p, σ2
x, σ

2
e

Input: t = 0, p(0), (σ2
x)

(0)
, (σ2

e)
(0)

while not converged do
update ϕ

(t)
n with Eq. (8);

update µ(t) and ν(t) with Eq. (9);
update p(t+1), (σ2

x)
(t+1)

, (σ2
e)

(t+1) with Eqs. (10)
to (12);
t = t+ 1;

end

A. Maximum Likelihood estimation

1) Estimation of hyperparameters: ML estimation amounts
to maximizing p(y|θ) with respect to θ. y being a mixture of
two Gaussians, it is a typical case where the EM procedure can
be derived [25]. In [24], we derived an EM algorithm using x
as hidden variable. We briefly summarize this procedure for
the sake of completeness.

Denoting by θ(t) = {p(t), (σ2
x)

(t)
, (σ2

e)
(t)} the estimated

parameters at iteration t, let

ϕ(t)
n = p(sn = 1|yn, θ(t))

=

p√
σ2
x
(t)+σ2

e
(t)

e
− y2

n

2(σ2
x
(t)+σ2

e
(t))

p√
σ2
x
(t)+σ2

e
(t)

e
− y2

n

2(σ2
x
(t)+σ2

e
(t)) + 1−p√

σ2
e
(t)

e
− y2

n

2σ2
e
(t)

(8)

(where the latter equation results from Bayes’ rule) and

µ(t) =
(σ2

x)
(t)

(σ2
x)

(t)
+ (σ2

e)
(t)

, ν(t) =
(σ2

x)
(t)
(σ2

e)
(t)

(σ2
x)

(t)
+ (σ2

e)
(t)

. (9)

According to [24], the expectation Ex|y,θ(t) [log p(y,x|θ)]
reaches a maximum value when θ = θ(t+1), with

p(t+1) =
1

N

N∑
n=1

ϕ(t)
n (10)

(σ2
x)

(t+1)
= ν(t) +

(µ(t))
2

Np(t+1)

N∑
n=1

y2nϕ
(t)
n (11)

(σ2
e)

(t+1)
=

1

N

N∑
n=1

y2n −
2µ(t)

N

N∑
n=1

y2nϕ
(t)
n + p(t+1)(σ2

x)
(t+1)

.

(12)

The resulting EM algorithm is summarized in Alg. 1. Since
EM algorithms are local maximization schemes, the choice of
initial solution is an important issue. This point will be further
discussed in Section III-C.

2) Estimation of the sparse signal: Once the hyperpa-
rameters θ have been retrieved using Algorithm 1, one can
reconstruct the signal x using two alternative strategies.

The first strategy amounts to computing the posterior mean
estimate x̂ = Ex|y,θ [x], which is also the Bayesian estimator
minimizing the Mean Squared Error Ex|y,θ

[
∥x̂− x∥2

]
(with

respect to x). For denoising problems, the posterior mean is

defined componentwise. Using the total probability rule, we
get

Exn|yn,θ [xn] = p(sn = 1|yn, θ)× Exn|yn,sn=1,θ [xn]

+ p(sn = 0|yn, θ)× 0

= ϕn µ yn (13)

where ϕn and µ refer to the estimates in Eq. (8)-Eq. (9)
computed with parameter θ obtained at the final iteration
of Alg. 1 (for more details, see [24]).

The second strategy is based on the MAP reconstruction of
the signal support, that is

sn = 1 ⇔ p(sn = 1|yn, θ) > p(sn = 0|yn, θ). (14)

where p(sn = 1|yn, θ) is given in Eq. (8) and
p(sn = 0|yn, θ) = 1− p(sn = 1|yn, θ). Up to a few rear-
rangements, we find that sn = 1 if and only if

y2n > 2σ2
e

σ2
e + σ2

x

σ2
x

log

(
1− p

p

√
1 +

σ2
x

σ2
e

)
. (15)

Once the support is reconstructed using Eq. (15), we propose
to compute the mean of the posterior distribution of x con-
ditionally to s and θ. This estimator can be easily computed
given that the latter distribution is Gaussian:

Exn|yn,sn,θ [xn] =

{
σ2
x

σ2
x+σ2

e
yn if sn = 1,

0 if sn = 0.
(16)

The reader can refer to [26] for a study and comparison of
both estimates Eq. (13) and Eq. (16) in denoising problems.

B. Joint estimation of x and θ

As one is usually primarily interested in the estimation of
signal x, it seems natural to investigate the following joint
estimation problem

(x̂, θ̂) = argmin
x,θ

J(x, θ) (17)

where

J(x, θ) =
1

2σ2
e

∥y − x∥22 +
∥x∥22
2σ2

x

+ λ(σ2
e , p)∥x∥0 + C(σ2

e , p)

(18)
with λ(σ2

e , p) and C(σ2
e , p) defined as in Proposition 1. This

joint optimization problem can be interpreted as a joint MAP
estimator of (x, θ) using a non-informative (uniform) prior on
θ following the approach of Proposition 1 where the support
s is inferred together with x.

We first notice that for a given set of parameters θ, the
minimization of J with respect to x leads to

∀n, x̂n =

{
σ2
x

σ2
x+σ2

e
yn if y2n > T (p, σ2

x, σ
2
e),

0 otherwise
(19)

where the threshold T (p, σ2
x, σ

2
e) is given by

T (p, σ2
x, σ

2
e) = 2σ2

e

σ2
x + σ2

e

σ2
x

log

(√
2πσ2

x

1− p

p

)
. (20)

By substituting x̂ into Eq. (17), it has been shown [20] that
the functional to minimize can be rewritten as a function
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depending on the threshold T and the parameters θ. The
problem reduces to minimizing with respect to θ and T the
following functional

J̃(θ, T ) =
1

2σ2
e

∑
{n:y2

n>T}

(yn − xn)
2
+

1

2σ2
x

∑
{n:y2

n>T}

x2
n

+ λ(σ2
e , p)

∑
{n:y2

n>T}

1 + C(σ2
e , p) (21)

subject to

T = 2σ2
e

σ2
x + σ2

e

σ2
x

log

(√
2πσ2

x

1− p

p

)
. (22)

For a given threshold value T , the minimization with respect
to the parameters θ leads to:

p̂ =
1

N

∑
{n;y2

n>T}

1 (23)

σ̂2
x =

∑
{n;y2

n>T}
y2n

(1 + γ)
2 ∑
{n;y2

n>T}
1

(24)

σ̂2
e = γσ2

x (25)

where γ is the smallest root of

γ2(1 + ρ) + γ

(
2− ρ

N∑
{n:y2

n>T}
1

)
+ 1 = 0 (26)

with

ρ =

∑
{n:y2

n>T}
y2n∑

{n:y2
n≤T}

y2n
. (27)

To minimize Eq. (21), one can remark that, because we are
in a finite-dimensional discrete setting, the quantities

∑
n:y2

n>T

1,∑
n:y2

n≤T

y2n and
∑

n;y2
n>T

1 have a piecewise constant dependency

with respect to T . Indeed, denoting by ỹ the vector y sorted in
decreasing order, then the previous quantities remain constant
on [ỹ2n, ỹ

2
n+1[. Overall, there are only N possible values for p̂,

σ̂2
x and σ̂2

e . Hence, one just needs to compute these N possible
parameter values, estimate the corresponding x̂ and compute
the related value of J in Eq. (17). Then, the parameters
yielding the minimum value of J are selected. This procedure
is summarized in Alg. 2.

It is worth noticing that when N tends to infinity, one
recovers the expression of the parameters given in [20]. One
of the main results in [20] is that the estimation Eq. (23)
is necessarily biased and non consistent. Moreover, it turns
out that this method reduces to a Classification-EM (CEM)
procedure [27] applied to a mixture of two centered Gaussians,
also known to produce a biased estimator.

C. Estimation by the method of moments

Algs. 1 and 2 presented above are local optimization pro-
cedures. Therefore, they are sensitive to the initial θ value.

Algorithm 2: Joint Estimation of x and θ

Result: x̂, θ̂ = (p̂, σ̂2
x, σ̂

2
e)

Input: y
for all k ∈ {1, . . . , N} do

Compute θk = (p̂, σ̂2
x, σ̂

2
e) according to Eqs. (23)

to (25) with T = y2k;
Compute xk according to Eq. (19) with
T (p̂, σ̂2

x, σ̂
2
e);

Compute Jk = J(xk, θk);
end
Set κ = argmink J

k;
Set θ̂ = θκ;
Set x̂ = xκ;

Hereafter, we propose an estimator of θ based the method of
moments that will be further used to initialize Algs. 1 and 2.

Theorem 1. Let y = {y1, . . . , yN} such that, for all n, yn
are i.i.d. distributed according to Eq. (7). Define the following
quantities:

m2 =
1

N

N∑
n=1

y2n m4 =
1

3N

N∑
n=1

y4n m6 =
1

15N

N∑
n=1

y6n

A =
m6 −m2m4

2(m4 −m2
2)

B =
m2m6 −m2

4

m4 −m2
2

.

Then, the method of moments applied to θ = (p, σ2
x, σ

2
e) yields

the following estimator:

σ̂2
e = A−

√
A2 −B

σ̂2
x =

m4 − (σ̂2
e)

2

m2 − σ̂2
e

− 2σ̂2
e

p̂ =
m2 − σ̂2

e

σ̂2
x

Moreover, this estimator is consistent.

Proof. The derivation of the method of moments is given
in Appendix B. Consistency comes from the continuity of the
functions used to build the estimator [28, Chp. 9].

Although the estimator is consistent, the method of mo-
ments is known to yield biased estimators. In practice, it could
happen that the conditions m2

2 < m4 and m2
4 < m2m6 (which

imply that B > 0 and then σ̂2
e given above is well-defined,

see Appendix B) are not met for specific observations y.
Therefore, we apply an empirical procedure which iteratively
removes one entry at a time in y so as to increase as much
as possible the value of

min
{
0;m4 −m2

2

}
+min

{
0;m2m6 −m2

4

}
. (28)

This process is stopped when m2
2 < m4 and m2

4 < m2m6.
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IV. EXTENSION TO GENERAL INVERSE PROBLEMS

In this section, we extend the hyperparameter estimation
procedure of Section III to general inverse problems (1). The
case where H is orthonormal boils down to a denoising
problem with vector HTy as input, since ∥y − Hx∥2 =
∥HTy − x∥2.When H is not orthonormal, the distribution
of y is no longer a mixture of two Gaussians. Then, the
standard EM procedure cannot be applied anymore. Indeed,
the computation and optimization of the likelihood function is
known to be untractable, see [17].

We resort to the re-parametrization proposed in [18], involv-
ing a so-called latent variable z. Eq. (1) rewrites:

y = Hz+ b (29)
z = x+ n , (30)

where n ∼ N (0, σ2
nIN ) and b ∼ N (0,Γb) are independent

random vectors. Since e = b + Hn, the covariance of the
“outer” noise b must satisfy

Γb = σ2
eIM − σ2

nHHT (31)

with σ2
n <

σ2
e

∥HHT ∥ to yield a non-degenerate distribution,
where ∥ . ∥ refers to the spectral norm of a matrix.

One can notice from (29) that the distribution of y|z,x
is independent of x. Moreover, from Bayes’ rule, we have
p(x|y, z) ∝ p(y|x, z) p(x|z) (where ∝ denotes proportional-
ity). It follows that

p(y|z,x) = p(y|z) and p(x|y, z) = p(x|z). (32)

With the reparametrization (30), the parameters to be estimated
are now (p, σ2

x, σ
2
e , σ

2
n). Hereafter, we will set

σ2
n = ασ2

e (33)

where α is a predefined parameter satisfying α < 1
∥HHT ∥ .

Therefore, the remaining free parameters to be estimated are
θ = (p, σ2

x, σ
2
n).

Because

p(z|y,x, θ) ∝ p(y|z, θ) p(z|x, θ) (34)

and both probability density functions appearing in the latter
equation are Gaussian, the posterior distribution of z given
(y,x) is a multivariate Gaussian distribution written (see
e.g., [28, Chap. 10])

z|y,x, θ ∼ N (µz,Γz) (35)

with

µz = x+ αHT (y −Hx) (36)

Γz = σ2
n(I− αHTH) . (37)

Notice that the computation of µz reads as a gradient descent
iteration on the ℓ2-loss 1

2∥y −Hx∥22 with step α.
We provide two Bayesian estimators. In Section IV-A, using

a noninformative uniform prior on the parameters, we derive
the joint MAP estimator of (x, θ):

(x̂, θ̂) = argmax
x,θ

p(x, θ|y) . (38)

In Section IV-B, we exhibit the joint MAP estimator of (z, θ):

(ẑ, θ̂) = argmax
z,θ

p(z, θ|y) . (39)

already proposed in our preliminary conference publica-
tion [24]. In the denoising case (and by extension, when
H is orthogonal), the former yields a biased estimator of θ
(see Section III-B). The later reduces to the ML estimator
described in Section III-A. It yields a consistent estimator of
θ [24].

A. Joint estimation of (x, θ) using z as hidden variable

Adapting [18] to the BG model, let us derive the EM
algorithm using z as hidden variable.

a) E-Step: Exploiting the decoupling property in (32),
the E-step of (38) reads:

Q(x, θ|x(t), θ(t)) = Ez|y,x(t),θ(t) [− log p(x, θ, z|y)]
= Ez|y,x(t),θ(t) [− log p(y|z, θ)− log p(z,x, θ)] + C1

= Ez|y,x(t),θ(t) [− log p(y|z, θ)− log p(x, θ|z)] + C2

(40)

where C1 and C2 do not depend on x nor θ.
Let us now express both terms within (40). According

to Eq. (29), we have (y|z, θ) ∼ N (Hz,Γb). Using elementary
identities on the expectation of quadratic forms, we get

Ez|y,x(t),θ(t) [− log p(y|z, θ)] = 1

2
Trace[Γ(t)

z HTΓ−1
b H]

+
1

2
(y −Hz(t))

T
Γ−1
b (y −Hz(t)) +

1

2
log |2πΓb| (41)

where z(t) = x(t) +αHT (y−Hx(t)) and Γ
(t)
z = (σ2

n)
(t)
(I−

αHTH) are defined from Eqs. (36) and (37).
In order to derive the second term of (40), we need to

express − log p(x, θ|z). Since z reads as a noisy version of
x (see (30)), one can use Proposition 1 in the denoising case.
− log p(x, θ|z) thus reads

1

2σ2
n

∥z− x∥22 +
1

2σ2
x

∥x∥22 + λ(σ2
x, p)∥x∥0 + C(σ2

n, p). (42)

It follows from Eq. (35) that

Ez|y,x(t),θ(t) [− log p(x, θ|z)] = ||z
(t) − x||22 +Trace[Γ

(t)
z ]

2σ2
n

+
1

2σ2
x

∥x∥22 + λ(σ2
x, p)∥x∥0 + C(σ2

n, p). (43)

b) M-Step: Summarizing, the criterion Q(x, θ|x(t), θ(t))
reads as the sum of (41) and (43), plus a constant independent
of x and θ. One can notice that (43) depends on both x and
θ, whereas (41) solely depends on σ2

e . Indeed, all vectors and
matrices within (41) do not depend on θ, except for Γb =
σ2
e

(
I− αHHT

)
, see Eqs. (31) and (33).

Following these dependencies and taking into account (33),
the minimization scheme is as follows:

1) (x(t+1), θ(t+1)) = argmin
x,θ

Ez|y,x(t),θ(t) [− log p(z,x, θ)]

2) (σ2
e)

(t+1)
=

(σ2
n)

(t+1)

α
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The first step is very similar to the joint denoising problem
of Section III-B applied to z(t), with the extra term Trace[Γ(t)

z ]
2σ2

n
.

Hence, one can derive an algorithm very similar to Alg. 2
to estimate jointly x(t+1) and θ(t+1). The only difference is
related to the constant ρ in Eq. (27), which must be set as
follows:

ρ =

∑
{n:(z(t)

n )
2
>T}

(z
(t)
n )

2

∑
{n:(z(t)

n )
2
≤T}

(z
(t)
n )

2
+Trace[Γ

(t)
z ]

. (44)

The whole EM procedure is summarized in Alg. 3, where
parameter α is set to the limit value 1

∥HHT ∥ .

Algorithm 3: Joint estimation of (x, θ)

Result: x̂, θ̂
Input: t = 0, z(t) = 0, x(t) = 0, α = 1

∥HHT ∥
while Not converged do

z(t) = x(t) + αHT (y −Hx(t));
Γ
(t)
z = σ2

n
(t)
(I− αHTH);

Estimate x(t) and θ(t) by applying Alg. 2 with
y = z(t) and the modified expression (44) for ρ;

(σ2
e)

(t+1)
=

(σ2
n)

(t+1)

α ;
t = t+ 1;

end

B. Joint estimation of z, θ using x as hidden variable

We first briefly summarize the procedure described in our
conference paper [24]. We use z as the variable to be estimated
and consider x as the hidden variable that is marginalized out.
Using a uniform prior on θ and exploiting the property (32),
the E-step reads

Ex|y,z(t),θ(t) [− log p(x, z, θ|y)] = − log p(y|z)
−Ex|z(t),θ(t) [log p(z,x|θ)] + C

(45)

where C does not depend on z nor θ. Similar to Section IV-A,
we set σ2

n = ασ2
e . The resulting EM algorithm alternates

between updates of θ and z, as detailed in [24]. At iteration
t, z is estimated according to

z(t+1) = x(t) + αHT (y −Hx(t)). (46)

Then, the update of θ reduces to the ML estimate of the
denoising problem in z(t) discussed in Section III-A.

The EM procedure is given in Alg. 4, which provides
estimates of the model parameters p and σ2

x as well as the
noise variance σ2

n = ασ2
e . By construction, the algorithm also

provides an estimate for x, which is the posterior mean of the
denoising problem for z.

The EM that uses z as hidden variable is proved to
be asymptotically biased [29] when it comes to parameter
estimation but appears to be stable in practice, that is, not
very sensitive to initial settings. On the other hand, the EM
algorithm that uses x as hidden variable is unbiased at the

Algorithm 4: Joint estimation of (z, θ)

Result: ẑ, θ̂
Input: t = 0, z(t) = 0, x(t) = 0, α = 1

∥HHT ∥
while not converged do

z(t+1) = x(t) + αHT
(
y −Hx(t)

)
;

Estimate θ(t+1) using Alg. 1 with y = z(t+1);
Estimate x(t+1) using Eq. (13) with y = z(t+1);
t = t+ 1;

end

optimum but very sensitive to initialization. Therefore, we
propose the complete Latent EM Unsupervised Regression
(LEMUR) procedure, where Alg. 4 is initialized by Alg. 3.

V. EXPERIMENTAL STUDY

In this section, we present an assessment of the proposed
methods for parameter estimation and sparse signal recovery.
To do so, we generate synthetic BG signals x following
model Eq. (2) for varying degrees of sparsity controlled by
the Bernoulli parameter p ∈ {0.01, 0.05, 0.1}. The variance of
the non-zero coefficients is set to σ2

x = 1. We then generate
several observations y following the direct model (1) using
various matrix operators H. In addition to the simple denoising
model, where H = IM with M = 900, we generate correlated
Gaussian random matrices of size 300× 900. The covariance
matrix C is such that

Cij = w|i−j| (47)

where w ∈ (0, 1) is the correlation degree. The matrices H
are then normalized so as to have unit norm columns. When
w = 0, the covariance matrix is simply the identity matrix,
which makes of H a pure Gaussian random matrix as found
in compressive sensing. For each y, we generate a white
Gaussian noise vector with variance

σ2
e = ||Hx|| × 10−iSNR/10 (48)

where iSNR stands for the input Signal-to-Noise Ratio.
We monitor the estimation of both parameters and sources.

Denoting by (p̂, σ̂2
e , σ̂

2
x) the estimated hyperparameters, the

metric used to quantify the quality of parameter estimation is
the absolute error for p ∈ {0.01, 0.05, 0.1} and σ2

x = 1:

errorp = |p− p̂| errorσ2
x
= |σ2

x − σ̂2
x| . (49)

The value of σ2
e being fixed to reach the target iSNR, as it

depends directly on all the parameters as well as the matrix
H, we define the relative error:

errorσ2
e
=
|σ2

e − σ̂2
e |

σ2
e

. (50)

The results are averaged on 100 realizations of (x, e) for each
setup (H, p, iSNR).

Let us denote by x̂ an estimate of the original signal x. To
quantify the quality of source recovery, we define the output
Signal-to-Noise Ratio (oSNR):

oSNR = 10 log10

(
||x||22
||x− x̂||22

)
(51)
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Fig. 1. iSNR = 5dB. Top: Parameter estimation (errorp, errorσ2

x
, errorσ2

e
as defined in Eq. (49) and Eq. (50)), Bottom: output SNR as defined in Eq. (51),

False Negative and False positive, Eq. (52)

We also count the number of False positives (Fp) and False
negatives (Fn) in the support of x̂, that is

Fp = #{x̂n ̸= 0|xn = 0}, Fn = #{x̂n = 0|xn ̸= 0}. (52)

The algorithms are all initialized using the method of
moments described in Section III-C, with HTy as input. The
initial choice of the estimated sources is the zero vector. The
output of Alg. 4 being a posterior mean estimate, the recovered
signal z is not sparse. Hence, we choose to estimate the
support of the signal by considering the coordinates such that
p(xn ̸= 0|zn) (given by Eq. (8) with yn ← zn) is greater than
1
2 .

The algorithms are designated with shorthand norations.
Alg. 3 will be referred to as Jx for joint estimation of x
and θ. Similarly, Alg. 4 is referred to as Jz . We consider the
IHT algorithm [5] dedicated to the minimization of the cost
function 1

2∥y−Hx∥22 + λ∥x∥0 which can be thought of as a
limit form of the cost function appearing in Proposition 1 when
σ2
x tends to infinity. The latter is a supervised algorithm, where

λ is set empirically. IHT is run repeatedly for 100 decreasing
λ-values defined on a logaritmic grid with warm-restart. We
keep the IHT output yielding the better SNR score. The last
considered algorithm is LEMUR, in which Alg. 4 is initialized
using the output of Alg. 3, as described in Section IV-B.

The experiments are run with Python on a laptop with an
Intel Core i7 CPU at 1.8 GHz with 16 GB of RAM1.

Figs. 1 to 3 display the performance of algorithms in terms
of parameter and signal recovery for specific input signal-to-

1Code is available at https://github.com/PBrblt/BGBox

noise ratios (iSNR) of 5, 10, and 20 dB, respectively. The top
part of each figure illustrates the absolute error on parameters
p and σ2

x, and the relative error on σ2
e . The bottom part of

the figures showcases metrics related to signal recovery, that
is, the output SNR, the number of false negatives and of false
positives. This evaluation is repeated for different values of
p and matrix operators H, including the identity matrix and
random matrices with varying coefficients w (see Eq. (47)).
For parameter estimation, the proposed EM algorithms are
compared against the methods of moments (in red). In terms of
signal recovery, the three algorithms Jx, Jz and LEMUR are
compared against the outcomes of the supervised IHT algo-
rithm (in red). The behavior remains consistent across varying
iSNRs. For clarity, we will focus our analysis primarily on
Fig. 2 corresponding to an iSNR of 10dB.

A. Parameter estimation
We first evaluate the quality of BG parameter estimation,

as displayed in Figs. 2a to 2c.
Regarding the recovery of parameter p, LEMUR consis-

tently outperforms other methods except in the denoising
scenario with p = 0.1, where Jz is exceptionally good,
especially for high iSNRs. It has been observed that LEMUR
performs better in estimating σ2

x for low values of p and large
w. On the other hand, in the compressed sensing scenario
with w = 0, Jz is found to be competitive. It is worth noting
that Jz outperforms other methods when p = 0.1. When
focusing on σ2

e estimation, the method of moments exhibits
strong performance. LEMUR consistently outperforms Jz and
Jx across all cases.

https://github.com/PBrblt/BGBox
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(f) False Negative
Fig. 2. iSNR = 10dB. Top: Parameter estimation (errorp, errorσ2

x
and errorσ2

e
), Bottom: output SNR, False Negatives and False positives.

It is essential to highlight that the methods of moments
and the Jx method are prone to generating biased estimators,
as discussed in Section III, which leads to lower accuracy
and performance in estimating parameters, especially in de-
noising scenarios. Across different scenarios and iSNR levels,
LEMUR is the most robust and competitive approach for
parameter estimation, even with varying sparsity levels of the
actual solution.

B. Signal estimation

We now focus on evaluating the quality of signal and
support recovery, see Figs. 2d to 2f. Identifying the support of
a sparse signal indeed appears to be an important aspect that
complements the signal estimation process.

The oSNR metric is used to evaluate the recovery of
a signal. Among all approaches, Jx consistently gives the
weakest performance when it comes to denoising situations.
On the other hand, the LEMUR method outperforms all
other methods. However, when the dictionary matrix is highly
correlated (w = 0.9), there is an exception where supervised
IHT exhibits superior performance followed closely by Jz .

The estimation quality of the support is measured by the
False Positive (where a coefficient is mistakenly considered
present in the signal) and False Negative (where a true coeffi-
cient is missed) scores. Among various scenarios, LEMUR has
been found to be the most effective method regarding False
Positive rates. However, Lemur yields an increases rate False
Negative score. This behavior is actually desirable, since some
dictionary atoms with small weights xi are likely to be lost in
the observation noise. One thus cannot expect to detect such
signal entries with high condifence.

VI. CONCLUSION

In addressing the challenges inherent to sparse signal re-
covery, particularly the delicate balance required between data-
fidelity and sparsity promotion through hyperparameter tuning,
the LEMUR algorithm emerges as a key solution. Building
upon the established Iterative Shrinkage/Thresholding algo-
rithm used in solving Lasso/BPDN and related variants, this
work introduces a novel extension to an unsupervised set-
ting. Focusing on parameter estimation within the Bernoulli-
Gaussian model, the methodology leverages maximum likeli-
hood estimation for denoising tasks, further expanding these
techniques to general inverse problems through latent variable
formulations.

We proposed two distinct expectation-maximization ap-
proaches to address signal and BG model parameter estima-
tion. While one approach displays robustness to initialization
but shows bias even in simple denoising scenarios, the second
approach suffers from sensitivity to initialization. LEMUR
leverages on both EM strategies to yield stable estimates
of both hyperparameters and signals, showcasing superior
performance in output SNR and False Positive Rate recovery
across various scenarios.

Noteworthy is the fact that LEMUR is operates in a fully
unsupervised manner, positioning it favorably compared to the
optimally (empirically) tuned IHT algorithm. Moreover, by
capitalizing on the iterative shrinkage/thresholding algorithm,
LEMUR ensures computational efficiency without imposing
the prohibitive demands associated with MCMC methods.
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Fig. 3. iSNR = 20dB. Top: Parameter estimation (errorp, errorσ2

x
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e
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APPENDIX A
PROOF OF PROPOSITION 1

Using the indicator variable s, and after observing that
p(y|x, s, θ) = p(y|x, θ), we can define the joint-MAP esti-
mator of (x, s) as

(x̂, ŝ) = argmax
x,s

p(x, s|y, θ)

= argmax
x,s

p(y|x, θ) p(x, s|θ). (A.1)

With the fact that p(xn ̸= 0|sn = 1) = 1 and
p(xn = 0|sn = 0) = 1, we can write

p(x, s|θ) =
N∏

n=1

p(xn, sn|θ) (A.2)

=
∏

{n:sn=0}

p(xn = 0|sn = 0, θ) p(sn = 0|θ)

×
∏

{n:sn=1}

p(xn|sn = 1, θ) p(sn = 1|θ) (A.3)

=
∏

{n:sn=0}

(1− p)
∏

{n:sn=1}

(
p√
2πσ2

x

e
− x2

n
2σ2

x

)
(A.4)

=

N∏
n=1

(
1√
2πσ2

x

e
− x2

n
2σ2

x

)sn

psn(1− p)
1−sn (A.5)

Then, using the fact that for all n, snxn = xn and
∑

n sn =

∥x∥0, we can write

− log p(x, s, θ) =
1

2σ2
x

∥x∥2 + log

(√
2πσ2

x

1− p

p

)
∥x∥0

−N log(1− p) (A.6)

which does not depend on s anymore. The conclusion follows
from Eq. (A.1) using

− log p(y|x, θ) = 1

2σ2
e

∥y −Hx∥22 +N log(
√
2πσ2

e) .

APPENDIX B
PROOF OF THEOREM 1

The first three non-zero moments of the mixture of two
centered Gaussians, see (7), are given by

E{y2n} = pσ2
x + σ2

e (B.7)

E{y4n} = 3p(σ2
x + σ2

e)
2
+ 3(1− p)(σ2

e)
2

(B.8)

E{y6n} = 15p(σ2
x + σ2

e)
3
+ 15(1− p)(σ2

e)
3
. (B.9)

Let us define the empirial moment estimators as follows:

m2 =
1

N

N∑
n=1

y2n , m4 =
1

3N

N∑
n=1

y4n , m6 =
1

15N

N∑
n=1

y6n

Denoting by p̂, σ̂2
e , σ̂

2
x the estimates of p, σ2

e , σ
2
x given by the

method of moments, we have:

m2 = p̂(σ̂2
x + σ̂2

e) + (1− p)σ2
e (B.10a)

= p̂σ̂2
x + σ̂2

e (B.10b)
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m4 = p̂(σ̂2
x + σ̂2

e)
2
+ (1− p̂)(σ̂2

e)
2

(B.11a)

= p̂σ̂2
x(σ̂

2
x + 2σ̂2

e) + (σ̂2
e)

2
(B.11b)

m6 = p̂(σ̂2
x + σ̂2

e)
3
+ (1− p̂)(σ̂2

e)
3

(B.12)

Hereafter, we will use the simplified notations p, σ2
e , σ

2
x instead

of p̂, σ̂2
e , σ̂2

x for improved readability. Eq. (B.10b) yields:

p =
m2 − σ2

e

σ2
x

. (B.13)

Since 0 < p < 1, one can check that the following inequalities
are satisfied:

σ2
e < m2 (B.14)

m2 − σ2
e < σ2

x (B.15)

m2
4 < m2m6. (B.16)

The latter is obtained from Eq. (B.10a), Eq. (B.11a)
and Eq. (B.12):

m2
4 −m2m6 = p (p− 1)σ2

e (σ
2
x + σ2

e) (σ
2
x)

2 < 0. (B.17)

Plugging Eq. (B.13) in Eq. (B.11b), one has

m4 = (m2 − σ2
e)(σ

2
x + 2σ2

e) + (σ2
e)

2
(B.18)

hence

σ2
x =

m4 − (σ2
e)

2

m2 − σ2
e

− 2σ2
e . (B.19)

Also, combining Eq. (B.10b) with Eq. (B.11b), we get
m2

2 −m4 = σ2
x (p

2 − p) < 0, so

m2
2 < m4. (B.20)

Using Eqs. (B.13) and (B.19) within Eq. (B.12), and after
some tiedous algebra, we get

(m4 −m2
2)(σ

2
e)

2
+ (m2m4 −m6)σ

2
e + (m2m6 −m4

2) = 0
(B.21)

Hence, we obtain the following quadratic equation in σ2
e :

φ(σ2
e) := (σ2

e)
2
+

m2m4 −m6

m4 −m2
2

σ2
e +

m2m6 −m4
2

m4 −m2
2

= 0.

(B.22)
According to (B.14), we need to have one root of φ in between
0 and m2. On the one hand,

φ(σ2
e = m2) = m2

2 +
m2

2m4 −m2m6

m4 −m2
2

+
m2m6 −m4

2

m4 −m2
2

= m2
2 −m4 < 0 (B.23)

using Eq. (B.20). On the other hand,

φ(0) =
m2m6 −m4

2

m4 −m2
2

> 0 (B.24)

using Eq. (B.16). It follows that φ(σ2
e) = 0 admits one root

in (0,m2).
Since m4 − m2

2 > 0, Descartes’s rule of signs ensures
that the weight of σ2

e within Eq. (B.22) is negative. Using

Eq. (B.16), we get m2m4−m6 < 0. Then, the root in (0,m2)
is given by

σ2
e = A−

√
A2 −B (B.25)

with

A =
m6 −m2m4

2(m4 −m2
2)

and B =
m2m6 −m4

2

m4 −m2
2

. (B.26)
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