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Evaluation of augmented visualisations to prevent
the fragmentation of robot swarm

Aymeric Hénard, Etienne Peillard, Jérémy Riviere, Sébastien Kubicki, and Gilles Coppin

Abstract—Swarm fragmentation is a breakdown of communi-
cation and coordination among robots in the swarm. Detrimental
for the self-organisation of the swarm, it can have multiple
causes such as the robots’ limited capabilities, obstacles in the
environment, wrong model parameter settings or unfitting control
by an operator. Transmitting information about the swarm
using visualisations to human operators could allow them to
prevent these fragmentations. In this paper, we propose three
augmented visualisations respectively based on the perception,
decision process, and action of each robot. We evaluate their
benefit on the ability of humans to anticipate and prevent
fragmentation arising from four swarm behaviours selected
amongst expansion, densification, flocking and swarming. The
effect of each of these behaviours is also evaluated in the same
context. The experimental protocol consists of two tasks, in which
participants have to 1) anticipate the apparition of fragmentation,
and 2) choose the appropriate command to prevent fragmentation
from occurring. The results show that visualisation showing links
between connected robots outperforms visualisation showing the
direction of the robots or the force dominating their movement
in anticipating fragmentation, but no visualisation proves to be
more useful in preventing fragmentation. In addition, they show
that humans anticipate fragmentations arising from densification
behaviour more accurately than from the other three behaviours.
Our study reveals elements that will be useful in designing future
visualisation for human-swarm interaction.

Index Terms—Human-Swarm Interaction, Robot swarm, Vi-
sualisation, Control, User study, Virtual Reality

I. INTRODUCTION

Swarms of robots are autonomous systems composed of
many robots with low capabilities [1] that exhibit self-
organised collective behaviours, such as flocking [2], which
require the coordination of the robots that compose them.
However, the technical limitations of the robots only allow
them to communicate over limited distances [3]. Some robots
may no longer be able to interact, and the swarm may split
up. This phenomenon is known as swarm fragmentation [4].
As a result, the swarm may no longer be able to achieve its
objective because part of itself is missing (e.g. coverage of a
large area requiring a minimum number of robots). A solution
to avoid fragmentation is to allow human users to monitor
the swarm and intervene if necessary, as they can determine
if fragmentation is detrimental to the swarm. The users can
adopt different roles when interacting with the swarm [5],
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and in particular the operator role, which implies low-level
control and short-term actions, making it possible to influence
the self-organisation of the swarm. If the self-organisation
of the swarm is the cause of the fragmentation, influencing
it can enable the users to prevent fragmentation. In the
context of preventing fragmentation, displaying the appropriate
visualisations may enable the operators to anticipate or at
least perceive swarm fragmentation [6] and react accordingly.
Using an Augmented Reality (AR) device could improve the
operators’ understanding of the swarm dynamics by displaying
information directly on the robots [7].

The main objective of this study is to evaluate how augmented
visualisations based on the robots’ behaviour affect the human
capability to prevent swarm fragmentation. Making certain as-
pects of the behavioural model of swarm robots explicit could
convey the relevant information to users to facilitate the under-
standing of swarm dynamics, as proposed by [8], and therefore
help them anticipate and prevent fragmentation. These aspects
of the model can be characterised by the Perception-Decision-
Action (PDA) loop [9] of multi-agent systems. In this context,
three visualisations representing what each robot perceives,
what drives their decision process and what is the decided
action are evaluated in a user study involving 51 participants.
In addition, four swarm behaviours previously used in the
literature [6], [10], [11] are implemented to present various
situations of fragmentation to the participants. These situations
of fragmentation are triggered by changes in the parameters
of the model, causing a disturbance in the swarm’s self-
organisation. All these conditions are evaluated to determine
how they affect the ability of users to anticipate the appearance
of fragmentation, and also whether they affect the ability
of users to choose the appropriate control to prevent their
appearance. The obtained results suggest that it is preferable to
focus the choice of visualisation on the perception aspect of the
robots” PDA loop rather than on the action or decision aspect
to help users anticipate fragmentation, and that densification
behaviour is easier to anticipate than the other three. The study
presented in this document is structured as follows. First, a
review of the literature on swarm fragmentation and visualisa-
tions is presented in section II, followed by section III which
focuses on the information and visualisations related to the
PDA behaviour loop of the robots. The experimental protocol
is then detailed in section IV and the results are presented
in section V. Finally, an interpretation of the results and a
discussion about limitations and perspectives are provided in
section VI, followed by a conclusion in section VIIL.
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II. RELATED WORK

Fragmentation [4], [12], [13] is a well-known phenomenon
in swarms and raises important risks when it is not appropriate
for the situation and the context. When humans are in charge
of the swarm, they should prevent fragmentation that could be
detrimental to the accomplishment of the mission. Therefore,
the question of understanding the behaviour of a swarm
and detecting or even preventing any fragmentation remains
crucial. Previous Human-Swarm Interaction studies [6], [14],
[15] have been conducted to determine how humans perceive
swarm fragmentation. In [14], [15], the authors reported that
humans are not proficient enough to accurately detect swarm
fragmentation or the proportion of the swarm that is frag-
mented in a flocking simulation. In [6], the authors evaluate
the human ability to perceive fragmentation among four swarm
behaviours: flocking, swarming, expansion, and densification.
Overall, the results show that swarm fragmentation is well-
perceived for most behaviours, except for expansion, which
is more challenging. The authors suggest that expansion be-
haviour is difficult to assess because the visual appearance of
the swarm is the same in a fragmentation or cohesion situation,
which both exhibit uniform behaviour and spatial distribution,
making the connectivity of the swarm hard to perceive. They
also show that participants have difficulty anticipating the
appearance of swarm fragmentation, possibly because the
elements used to assess the presence of fragmentation appear
clearly once it has already occurred. To help the users prevent
fragmentation, different solutions can be explored. Firstly,
dedicated metrics could be developed that predict the onset
of fragmentation [12], [13], warning users of potential risk.
However, using such a solution is unlikely to explain to the
users why fragmentation occurs and what can be done to
avoid it. As swarm behaviour and fragmentation result from
the individual behaviour of robots and their local interactions,
perceiving their presence does not mean that users understand
why they appear.

An alternative solution could be to visually augment the
robots, by adding appropriate localised information. This sec-
tion presents an overview of the visualisations used in the
literature related to robot swarms, and the experimental setups
used to evaluate them.

A. Robot swarm visualisations

To the best of our knowledge, recent taxonomies [16], [17]
classifying visualisations used on robots seem difficult to apply
to swarms, as they are mainly aimed at a single robot and
do not take into account the characteristics of multi-robot
systems, such as the interaction between robots or the spatial
distribution specific to these systems, which require special
attention. As visualisations applied to swarms of robots are
characterised according to various aspects, we propose some
criteria for classifying them.

The first criterion is the visualisation level. As the situation
may need to consider the swarm as a whole, an aggregation of
subsets or individuals clearly discriminated, the visualisations
can characterise several levels within the swarm, such as the
robot level [18], [19], the group level or the swarm level [20],

[21].

The second criterion is the visualisation frequency. As a lot
of robots may be augmented, the user’s field of vision could
be saturated, as could their mental load. Consequently, it may
be appropriate for some visualisations to be displayed condi-
tionally, while others are displayed systematically [20], [21],
and the whole cognitive load must be seriously considered.
The third criterion is the type of information conveyed by
the visualisation. Among the existing visualisations applied to
swarms of robots, we can find different types of information.
Visualisations may display:

« robots’ capabilities such as robots’ perception area [22]—
(24]

o robots’ internal decision process, such as the current
state of the robots when controlled by a Finite State
Machine [25]

o interactions and relationships within the swarm such as
groups [18], [26], [27], links between robots [21], [27],
[28], the force of influence between robots [29] and
swarm’s leaders [20]

« information about the current action of the swarm such as
robots’ direction [18]-[20], [24], swarm’s direction [20],
[21] or robot’s trajectories [30], [31]

« information about the spatial distribution of the swarm
such as swarm’s centroid [20], swarm densities [21] or
swarm outline [7], [20], [21]

o state prediction such as robot’s future position [32]

o environmental influence such as force fields [33]—[35]

A last criterion could be to identify if the visualisation aims
to add new information [7], [19], convey information already
present in a different way [20], [21], or remove information
from the swarm, by hiding some of the robots for exam-
ple [20].

B. Visualisation choice according to context

Previous works on Human-Swarm Interaction evaluate the
use of different visualisations in different contexts. As some
swarms can be composed of many robots, some works tested
to reduce the amount of information conveyed to users using
different strategies [20], [21]. The results of these studies
show that hiding swarm members by displaying only some of
them [20] or displaying specific aspects of the swarm using
a global representation [21] is detrimental to users if it is
not appropriate to the current task. Indeed, using a global
representation can be equivalent to observing swarm members
if the global representation conveys appropriate information to
users, such as synthesised information about swarm spatiality
in a task about identifying swarm spatiality [20]. By default, it
seems preferable to display the members of the swarm, which
is suitable for most contexts, rather than a global representation
of the swarm which would only be suitable for a specific
context, as the latter has not proved more useful [20], [21].
In addition, the use of a visualisation showing the members
of the swarm enables additional information to be displayed
on the swarm, which may normally be imperceptible to users,
which could improve their performance in their task [7].
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C. Experimental set-up

Deploying an experimental set-up to study interactions
between humans and robot swarms can be complicated, as it
often requires the use of many robots. Different solutions exist
to carry out research on swarms. The solution widely used is
to display the swarm members on a 2D screen with a bird’s
eye view [6], [20], [21], [30]. But in situations where the user’s
point of view, the realism of the swarm and its environment
are important experimental factors, a solution is to use real
robots [7], [18], [27], [36]. An alternative is to use a Virtual
Reality (VR) environment [37], [38] to immerse the users into
a reproduction of real-world conditions. The use of VR also
allows experimenters to control the experimental variables,
ensure the reproducibility of the experiment and follow the
task from the participant’s eyes to ensure that everything is
going correctly.

III. ANALYSIS OF PERCEPTION-DECISION-ACTION
VISUALISATIONS

The PDA loop [9] is a way of representing the functioning

of the robots’ behaviour. This concept was developed in the
field of Multi-Agent Systems and allows the cyclical behaviour
of an agent to be compartmentalised into 3 aspects. For
each robot, this loop encompasses the robot’s perception, its
decision and its action. The perception aspect represents all
the information obtained from the environment, whether raw
or interpreted, using sensors or communications. The decision
aspect represents the process to determine the next action of
the robot, using the information perceived and the robot’s
internal information. Finally, the action aspect represents the
execution of the action decided by the robot. Once the robot
has acted, its environment changes, triggering the PDA loop
again.
When the swarm’s behaviour leads to its fragmentation, the
decisive information for anticipating its appearance may be
found in one of these three aspects. Using visualisations to
convey this information to users may be a solution to prevent
fragmentation.

A. Robot perception

Among the information perceived by the robots in the
environment, some represent other robots of the swarm. As
long as the robots in the swarm perceive each other, they can
adapt their behaviour according to their neighbours. However,
for users, the connectivity of robots is not something that can
be observed explicitly, and it is possible that humans do not
perceive the connectivity of the swarm, as suggested in [6].
Connectivity can be visualised at the local robot level by
displaying the robots’ perception fields [22]-[24] or the links
between robots [21], [27]. But it can also be visualised at
the global swarm level by displaying the convex hull of
connected robots [7], [20], [21] or the groups by colouring
them using distinct colours [18], [26]. However, these visu-
alisations at the global level only provide new information
on the swarm connectivity after fragmentation. For example,
group colouring shows a single colour when all robots are
connected, and two or more colours only after fragmentation

occurs. To help anticipate fragmentation, the visualisation must
provide information on the connectivity of the swarm before
fragmentation, as with these local-level visualisations. In both
case, visualisations mostly use the grouping principle named
Uniformed Connectedness from the Gestalt Theory [39], natu-
rally making humans identifying groups in a simple glance by
using links [21], colours [18] or convex hull [7] for example.

B. Robot decision

The decision of the robot is an internal process that takes
into account the robot’s perception of its environment and
itself, to determine its next action. Users usually follow a
training approach [40] to build a mental model of this decision-
making process. Providing users with real-time information
about this process could help them understand and anticipate
the dynamics of the swarm, thus improving the effectiveness
of their training, or even replacing it. However, there are few
examples in the literature of swarms transmitting what the
robots decide. An example can be found in [25] where robots
are coloured according to the current state of their Finite
State Machine. For example, for a robot coming dangerously
close to another robot, showing that it is currently avoiding
robots or an obstacle can indicate to users that its cohesion
parameter is not too high and that it should instead reduce
its repulsion parameter to avoid collision. In the case of a
swarm whose robots use virtual forces [6], the behaviour
of the robots is not made up of discrete states, as different
forces drive the behaviour of the robots. Indicating which force
dominates the robot’s movement may inform the users about
the dynamics of the swarm [8], which could be useful for
preventing fragmentation. And it also works for other types of
implementation. For example, by indicating the active rules of
robots controlled by fuzzy logic, we can inform users about
what causes the robots to act.

C. Robot action

The actions that can be carried out by swarm robots are lim-
ited. An example of these actions is the deposit of pheromones,
which can be visualised by displaying the pheromones [41].
But the most common action performed by swarm robots is
to move. In this case, showing the action aspect of the PDA
loop corresponds to displaying information related to their
movement. Visualising the movement of the swarm can be
done at the robots’ level by showing the direction of the robots,
which is frequently used in the literature. [18]-[20], [24], [36],
[42], their past trajectories [30], [31], or their potential future
position [32]. But it can also be done at the swarm level,
by showing the average direction of the swarm [21] or its
average speed [21]. In addition, the visualisations displayed at
the robot level can be applied at the group or swarm level and
vice versa, as the movement of a swarm is the composition
of the movement of its robots. These visualisations convey
various information to users, some of which could already
be naturally perceived by humans, such as robots’ directions
given that they are naturally able to see movement as well as
variations in movement within a set of moving entities [43].
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IV. EXPERIMENTAL PROTOCOL

The experiment conducted in this study aims to determine if
the proposed visualisations (see section IV-B) can help prevent
swarm fragmentation. More precisely two research questions
are addressed here:

e (Q1) Does providing information through visualisations
based on the PDA loop improve human anticipation of
fragmentation?

e (Q2) Does providing information through visualisations
based on the PDA loop help humans choose the appro-
priate control to prevent fragmentation?

To ensure the swarms in motion presented are the same for
all participants, we chose to pre-record clips from the swarm
simulation covering different categories of behaviour such as
flocking, swarming, expansion and densification. Using these
behaviours will allow us to answer the following secondary
question:

o (Q3) What is the impact of the behaviour on the ability
of humans to prevent swarm fragmentation?

To answer these questions, we set up a within-subjects ex-
perimental design based on two separate tasks, using Virtual
Reality (VR) to immerse the users in the role of operator [37].
The first task is a binary discrimination task. Participants have
to determine whether the presented simulated swarms will
fragment. In the second task, participants have to determine
which of the two proposed controls will prevent fragmentation
from occurring. Three visualisations (see section IV-B) are
compared during the two tasks to assess their impact on users’
performance.

A. Swarm behaviour model

In this study, the implementation detailed in [6] based
on virtual forces is used. This model provides flocking,
swarming, expansion and densification behaviour, by using
six behavioural rules and modifying the weight of each rule.
Three of these rules respectively represent cohesion, separation
and alignment from the Reynolds’ Boids model [2]. The
other three are random movement (allows the robot to move
independently and randomly), friction (reduces the agent’s
speed over time) and overlapping avoidance (prevents robots
from overlapping). The sum of the forces produced by these
six rules gives the robot’s acceleration. The acceleration is
then used to update the robot’s speed (direction and intensity).
Cohesion, separation, alignment and overlapping avoidance are
rules that depend on the perceived neighbourhood of the robot
applying them. This neighbourhood corresponds to the robots
present in the robot perception zone. This zone is circular and
is influenced by two parameters, its radius and a blind spot
located at the rear of the robot. In this study, two robots are
considered to be connected if at least one of them perceives
the other.

B. Evaluated visualisations

To represent the three aspects of the swarm model’s PDA
loop, three visualisations are implemented based on the anal-
ysis from section III. The visualisations are displayed at the

robot level, notably because visualisations at the swarm level
for the perception aspect do not give any information before
the appearance of fragmentation, as detailed in section III-A.
In addition, as this experiment aims to check if the aspects
shown are usually missing for humans, the visualisations
are displayed systematically. Based on these choices, three
visualisations are chosen and are compared in the experiment
with each other and with a baseline, giving a total of four
conditions. The chosen visualisations are the following:

1) Links: To represent the perception aspect, the links be-
tween the connected robots are displayed. As well as showing
the links between robots, the line’s thickness is modified ac-
cording to the distance between the robots, until it disappears
when the connection is broken (see Figure 1.b), to show
users how far the robots are from the break. Instead of just
indicating which robots are interacting, qualifying the distance
between two robots might provide relevant information for
users, particularly to anticipate fragmentation.

2) Dominant force: To represent the decision aspect, the
dominating forces of the robots are displayed, showing be-
tween attraction, repulsion, alignment or the lack of domi-
nation, using a coloured directional arrow above each robot:
red, blue, green and white respectively (see Figure 1.c). The
arrow has the following dimensions: 0.26 m long, 0.05 m high,
0.15 m head width, 0.05 m tail width. It points in the direction
of the robot’s acceleration. Moreover, the stronger the force,
the more intense the colour. Here are the steps followed to
obtain the dominant force for each robot:

1) From the forces composing the acceleration, the one
with the greatest magnitude is identified.

2) The final colour depends on this force.

3) To compute the intensity of the colour, the angle between
the acceleration and the force is calculated.

o If the angle obtained is 0°, then the intensity of the
colour is maximum.
« As the angle increases, the colour approaches white,
until it becomes white at 90° or more.
If the angle is greater than 90°, the force is not considered
dominating the movement.

3) Direction: To represent the action aspect, the robots’
directions are displayed. In this experiment, the direction of
each robot is displayed above them with the same arrow, as
for the display of the direction (see Figure 1.d). The direction
is obtained using the speed vector of each robot, calculated
by the swarm model (see section IV-A).

4) Baseline: Finally, displaying only the robots without
adding any additional information allows us to test the partici-
pants’ anticipation capabilities and provide a comparison basis
for assessing the impact of the three other visualisations. This
visualisation therefore represents the baseline for this study,
as robots are displayed in all visualisations (see Figure 1).

C. Swarm recordings

The stimuli presented to the participants are recordings
of a swarm in motion. A total of 24 different clips were
recorded at 60 frames per second, varying in length from 6 to 7
seconds (6.75 seconds on average). Among them, 12 lead to a
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Fig. 1. (a) The baseline visualisation, where only the robots are visible; and
the three proposed visualisations, (b) robots and links between interacting
robots using grey lines of varying thickness, (c) robots and their dominant
force using coloured arrows, (d) robots and their direction using pink
directional arrows

Fig. 2. Environment of the experiment, (a) Axis of symmetry used to reverse
robot positions (b) Participant position during both tasks.

fragmentation of the swarm and 12 do not, for which the model
used is defined in section IV-A. The simulated robots navigate
on a plane at a maximum speed of 0.2 m/s (median: 0.1 m/s),
and have a 330° field of vision and 0.6 or 1.0 m perception
distance, depending on the clip. To obtain the clips with and
without fragmentation, longer versions are recorded, before
being cut to the desired length. Clips containing fragmentation
end 0.5 seconds before fragmentation. For those containing
no fragmentation as a reference point, they are cut so that the
swarm dynamics correspond to those with fragmentation. For
each recording, fragmentation is identified using a function
based on the robots’ perception, by representing robots as
graph nodes and interactions between robots as links. If the
resulting graph is disconnected and contains two or more
components, it means the swarm is fragmented. The clips
are also classified according to four behaviours that can
be obtained with the model used: densification, expansion,
flocking and swarming. Each behaviour is represented by six
clips, half of which lead to swarm fragmentation. These clips
are used in two separate tasks, and viewed by participants
in VR (see Figure 1) using a Meta Quest 2 head-mounted
display. During these tasks, guided randomisation ensures that
clips and visualisations are distributed correctly. To prevent
participants from recognising the clips despite the different
visualisations, a right-left symmetry is used (in relation to the
participant’s position), which does not cause any change in
perspective or distance. This symmetry is used on two of the
four presentations of the same clip. The same version is never
shown consecutively.

D. Environment

The environment (see Figure 2) is a virtual office measuring
11x13 m, containing a 7x7 m arena where the robots can move
around, bounded by borders 0.1 m thick and 0.2 m high. The
participant stands and is located outside the arena in a fixed
position, 1 m from the edge of the arena, and standing halfway
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along an edge. The 3D models representing the robots are
Mona [44] robots measuring 0.08 m in diameter and 0.03 m
in height. All the elements create shadows and are subject to
them.

E. Procedure

First, participants are given information about the experi-
ment and then sign the consent form if they wish to continue.
They then fill in the demographic form. The concept of swarm
fragmentation is introduced to the participants, along with a
video! showing a swarm fragmenting. Different colours for
distinguishing the different sub-swarms are used in the video to
highlight fragmentation. No explicit information on the swarm
model is given to the participant during the experiment. Next,
the experimenter explains the first task to the participants
(see section IV-F) and makes sure that they understand it.
The participants then read a document briefly explaining the
visualisations and providing the required information to use
them, before putting on the headset and starting the first
task. Once the first task has been completed, the second task
is explained to the participants along with an explanatory
video (see section IV-G). Once again, the participants put
on the headset and complete the second task. Once the last
task has been completed, participants complete a feedback
questionnaire (see section IV-H)

FE. First task: Fragmentation Anticipation

The first task aims to study the participants’ ability to
anticipate swarm fragmentation depending on the different
visualisations proposed. For this task, participants must watch
each of the clips (see section IV-C) presented to them and
answer the question “Will the swarm fragment?”. Participants
watch each clip in its entirety before being able to respond.
When the clip ends, the swarm disappears and the response
interface appears in the environment. They then have as much
time as they need to give their answer, by clicking on the
answer of their choice on the virtual interface. Participants are
informed before the start of the task that if fragmentation has
to occur, it must happen soon after the end of the clip. During
this task, the participant’s responses and response times are
recorded.

G. Second task: Appropriate Control

The second task aims to study whether participants can
choose the right control, between two proposals, to prevent
fragmentation. It also aims to show the impact of visualisations
on participants’ choices. Consequently, only the 12 clips
leading to swarm fragmentation (see section IV-C) are used for
this task. Fragmentation is still not visible in the clips, as they
end before it. As each clip is viewed once for each category
of visualisation, participants have to choose the appropriate
control in 48 situations. In the same way, as for the first
task, participants watch a clip in its entirety and then answer
the question: “What changes should have been made to the
swarm to prevent it from fragmenting?” on the interface that

'REMOVED FOR ANONYMISATION

appears once the clip has finished. The proposed responses to
prevent fragmentation of the swarm at each clip are defined
beforehand, as they depend on the state of the swarm. One of
the two proposals prevents fragmentation, the other does not.
We chose parameter changes [8] as a means of control because
it is directly linked to the model, and therefore offers the low-
level control required for the operator role. In addition, because
of its low-level control over the model, users must have an
adequate understanding of the dynamics of the swarm to adjust
the parameters correctly to obtain the desired result. To define
the two proposals, we used our simulator to switch from the
clip to the simulation, enabling us to check which control
prevents the appearance of fragmentation and which does not.
To ensure that the proposed controls lead to the desired result
on the swarm, the seed of the random generator is saved for
each clip and the execution of the system is controlled to
obtain the same simulation each time. Even if the proposals
are specific to the clips, they are selected from among four
control alternatives: “Increase cohesion”, “reduce cohesion”,
“increase alignment” and “reduce alignment”. However, one
clip in the swarming category has a different proposal from
the others, because a combination of cohesion and alignment
was needed to prevent fragmentation. The proposal for this
clip is: “increase cohesion and alignment” or “reduce cohesion
and increase alignment”. For the other clips, it is sometimes
possible to prevent fragmentation using different approaches.
As only one control to prevent fragmentation can be proposed
to participants, the control chosen is not necessarily the most
obvious one to prevent fragmentation. This choice makes the
test deliberately difficult to better show the impact of the
visualisations. These controls are explained beforehand using a
video?, showing the effect of the control on a swarm. There is
no fragmentation in this video. In addition, the participants
only watch the video once and are not given any further
explanation by the experimenter. Consequently, participants
were given only explicit information on the macroscopic
level of the swarm. As they were not given any information
about how the swarm model works, they had to deduce by
themselves how the robots interact with each other at the
micro-level.

H. Qualitative data

At the end of the experiment, the participants fill in a
questionnaire designed to gather qualitative results. First, par-
ticipants are asked to give their perception of their performance
on each of the two tasks. In addition, they must indicate
which visualisation they found most helpful for each task. The
participants are then asked to explain what they understood
about the effect of each of the controls from the second
task. Finally, they can express themselves freely about the
experiment and are free to add any additional comments.

L. Hypotheses

Based on the findings of the literature and the analysis
provided in section III, assumptions are made about the results

2REMOVED FOR ANONYMISATION



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

that can be expected from the visualisations evaluated in this
study. The main hypotheses, null or alternative, concerning
visualisations are presented below:
o H1:1-3 (Alternative hypothesis) The rate of correct an-
swers obtained by the visualisation showing links for the
anticipation task is different from that obtained by:

— the baseline (H1:1)
— the visualisation showing direction (H1:2)
— the visualisation showing dominant force (H1:3)

o H1:4-6 (Alternative hypothesis) The rate of correct an-
swers obtained by the visualisation showing the dominant
force for the appropriate control task is different from that
obtained by:

— the baseline (H1:4)
— the visualisation showing links (H1:5)
— the visualisation showing direction (H1:6)

e HO:7-8 (Null hypothesis) The rate of correct answers
obtained by the visualisation showing the direction is
equal to that obtained by the baseline for the:

— anticipation task (HO:7)

— appropriate control task (HO:8)
These hypotheses represent our expectations prior to the
evaluation. However, all the conditions of the experiment are
evaluated in this study and not just these hypotheses.

J. Preparations

The ethics committee of the authors’ institution has ap-
proved this experimental protocol. The study was conducted in
a quiet room exclusively dedicated to the study for its duration.
A total of 51 participants with no prior expertise in swarms
took part in the experiment, of which 69% were male and
31% were female. Among them, 35% took part in experiments
involving swarms of robots. The participants ranged in age
from 18 to 56 (median of 25). All participants had a correct
or corrected vision. Collected data were anonymised.

V. RESULTS

Two factors were tested in the experiment: the impact of

« the different visualisations (Q1 & Q2),

« and of the different swarm behaviours (Q3),
on the ability to anticipate fragmentation (first task) and to
choose the appropriate control (second task). Non-parametric
tests were used, as the experiment uses a within-subject pattern
and a Shapiro test has confirmed that data do not follow a
normal distribution. The Friedman test followed by a Nemenyi
post-hoc were used to check differences in correct answers and
response times among visualisation. Non-significant results
are not reported in this document. To assess the impact of
the different swarm behaviours (Q3), all the tests are done
in the baseline condition, which represents a quarter of the
participants’ data.

A. Results of the anticipation task

While analysing the results of the first task, 6 participants
were removed from the analysis, as they were considered to
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Fig. 3. Diagrams showing medians and quartiles of (a) Correct answer rate
in the first task according to the visualisation displayed (b) Answer time in
the first task according to the visualisation displayed

be outliers using the interquartile range method. Consequently,
the following tests were performed on the results obtained
from 45 participants.

1) Impact of visualisations: When analysing the effect of
the visualisations on the rate of correct answers from partic-
ipants in anticipating fragmentation, the Friedman test shows
statistically significant differences (@) = 13.67,p = 0.003).
The Nemenyi post-hoc test shows that visualisation displaying
links was found to be significantly more helpful in anticipating
fragmentation than either dominant force (p = 0.011) or
direction (p = 0.015). Figure 3.a shows the obtained results.

Then, when examining the answer time of participants in an-
ticipating fragmentation, the Friedman test shows statistically
significant differences (Q = 10.63,p = 0.01). The Nemenyi
post-hoc test shows that visualisation displaying the dominant
force was found to significantly increase the answer time in
anticipating fragmentation than either visualisation displaying
links (p = 0.028) or direction (p = 0.022). Figure 3.b shows
the obtained results.

2) Impact of swarm behaviour: When analysing the effect
of the swarm’s behaviours on the rate of correct answers from
participants in anticipating fragmentation, the Friedman test
shows statistically significant differences (Q = 66.42,p <
0.001). The Nemenyi post-hoc test shows that fragmentation
from the densification category was found to be significantly
easier to anticipate than either expansion (p < 0.001), flocking
(p < 0.001) or swarming (p < 0.001). Figure 4.a shows the
obtained results.

Then, looking at the answer time from participants in
anticipating fragmentation, the Friedman test shows statisti-
cally significant differences (Q = 17.98,p < 0.001). The
Nemenyi post-hoc test shows that densification behaviour was
found to significantly reduce the answer time in anticipating
fragmentation than either expansion (p < 0.001) or swarming
(p = 0.013). Figure 4.b shows the obtained results.

B. Results of the appropriate control task

While analysing the results of the second task, 2 participants
were removed from the analysis, as they were considered to
be outliers using the interquartile range method. Consequently,
the following tests were performed on the results obtained
from 49 participants. In this analysis, it was verified if the
visualisation and the behaviour displayed by the swarm have



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8
(a) (b) (a) (b)
150 = * * 30 e
15 oom sl "~ & 100 25 ,—.**
4 —_ [} z n o
@ 100 4 £E4l ‘ o 807 | £ 20 -
z } 5 $ S | | = —_—
w — w —
S 751 g . < 60 I g 15 4 z $
- 4l
S 504 by b |2 S 40 2 101
o < 1T o <
‘S 251 21 == = ! ‘S 20 54 |—__|_—|
i I L
0 . y y ' 0 . . 0 y y y . 0 . . . .
D E F s D F D E F s D E F s

Swarm behaviour Swarm behaviour

Fig. 4. (a) Correct answers rate in the first task according to the behaviour
displayed by the swarm, by showing mean values and standard deviations
(b) Answer time in the first task according to the behaviour displayed by the
swarm, by showing medians and quartiles (D) Densification (E) Expansion
(F) Flocking (S) Swarming

R
[+ 0T :z:i
e

2.51

=
o
S)

®
S

o
o
L

N
o
Answer time

%%
%H

i

Baseline Links Force Direction
Visualisation

N
o
s

Correct answers (%)

Baseline Links Force Direction
Visualisation

Fig. 5. Diagrams showing medians and quartiles of (a) Correct answers rate
in the second task according to the visualisation displayed (b) Answer time
in the second task according to the visualisation displayed

an impact on the human capability to choose the appropriate
control to prevent fragmentation.

1) Impact of visualisations: When analysing the effect of
visualisations on the rate of correct answers from participants
in choosing the appropriate interaction, the Friedman test
shows no statistically significant differences (QQ = 5.80,p =
0.12). Figure 5.a shows the obtained results.

Then, looking at the answer time from participants, the
Friedman test shows statistically significant differences (@) =
9.17,p = 0.027). The Nemenyi post-hoc test shows that
visualisation displaying the links was found to significantly
increase the answer time in choosing the right interaction
than the baseline (p = 0.015). Figure 5.b shows the obtained
results.

2) Impact of swarm behaviour: When analysing the effect
of the swarm’s behaviours on the rate of correct answers from
participants in choosing the appropriate control, the Friedman
test shows statistically significant differences (Q = 12.81,p =
0.005). The Nemenyi post-hoc test shows that it is significantly
easier to choose the right interaction to prevent fragmentation
from the densification category than swarming (p = 0.028).
Figure 6.a shows the obtained results.

Then, looking at the answer time from participants, the
Friedman test shows statistically significant differences (@) =
22.34,p < 0.001). The Nemenyi post-hoc test shows that
densification behaviour was found to significantly reduce the
answer time in choosing the control than either flocking (p =
0.007) or swarming (p < 0.001). Moreover, the expansion
behaviour was found also to have a significant difference
compared to the swarming behaviour (p = 0.007). Figure 6.b

Swarm behaviour Swarm behaviour

Fig. 6. (a) Correct answers rate in the second task according to the behaviour
displayed by the swarm, by showing mean values and standard deviations (b)
Answer time in the second task according to the behaviour displayed by the
swarm, by showing medians and quartiles (D) Densification (E) Expansion
(F) Flocking (S) Swarming
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shows the obtained results.

C. Qualitative results

The qualitative results were obtained from the participants
using a form. The results presented in this section are based
on the responses of 51 participants. For each task, participants
were asked which visualisation they considered the most
helpful in completing the task. They were also asked to give
their opinion of their performance on each task on a five-point
scale ranging from “1-Not at all” to “5-Perfectly”. Finally, they
were asked to explain the effect of the controls in the second
task in their own words.

1) Feedback on the first task: Regarding the distribution of
the preferred visualisations for the first task, the visualisation
displaying links has the highest proportion (73%), compared
to displaying direction (12%), dominant force (14%) or the
baseline (2%). Figure 7.a shows the obtained results. Con-
cerning participants’ opinions of their performance in the first
task, the mean value is 2.78 (median = 3). Figure 7.b shows
the obtained results.

2) Feedback on the second task: Regarding the distribution
of the preferred visualisations for the second task, the visuali-
sation displaying the dominant force has the highest proportion
(47%), compared to displaying links (25%), direction (24%)
or the baseline (4%). Figure 8.a shows the obtained results.
Concerning participants’ opinions of their performance in the
second task, the mean value is 3.03 (median = 3). Figure 8.b
shows the obtained results.

3) Controls understanding: Two principles were used in
the second task controls, cohesion and alignment. Participants
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were asked to explain the effect of increasing or decreasing
these two principles independently of each other. In their
answer, it was checked whether the participants correctly
explained the effect of the principle on the swarm and
whether they noticed that the effect applies to the robots’
neighbourhood. Of the explanations given by participants for
the cohesion principle, 84% mentioned an effect on robots
moving closer together or further apart, and 39% mentioned
the involvement of the robot’s neighbours. Concerning the
alignment principle, 64% of participants mentioned an effect
on the coordination of robot movement, and 27% mentioned
the involvement of the robot’s neighbours. Then, it was
checked whether the participants highlighted the effect of
control on fragmentation. 8% of participants mentioned using
the controls for specific fragmentation situations: increasing
cohesion to avoid fragmentation when robots spread out
too much, decreasing cohesion when several groups form,
increasing alignment when two groups go in distinct directions
or when robots move randomly, and decreasing alignment
when they are too far apart and keeping their current di-
rection prevents them from moving closer together. Finally,
the number of participants with an explanation that was
undoubtedly incorrect was checked. 2% of the participants
incorrectly explained the effect of the cohesion principle, as
they mentioned the synchronisation of the robots’ movement
and 10% of the participants incorrectly explained the effect of
the alignment principle, as they mentioned changes in distance
between robots.

VI. DISCUSSION

The results presented in section V show that the visualisa-
tion displaying the links between robots scored significantly
higher on the anticipation task than the other two, direction
and dominant force, and was considered the most useful by
the participants. For the appropriate control task, there is no
significant difference between the three visualisations, and
half of the participants rated the visualisation showing the
dominant forces as the most useful. In both tasks, none of
the proposed visualisations improved the results compared
with the baseline showing only robots. Concerning the swarm
behaviours, results show that fragmentation resulting from
the densification behaviour is easier to anticipate than either
expansion, flocking or swarming. For the appropriate control

task, fragmentation resulting from the densification behaviour
was easier to correct than swarming.

A. Visualisation of links

The results obtained by the visualisation displaying links
between interacting robots are different from those expected.
This visualisation was expected to be more helpful to the
users than the two other visualisations and the baseline for
anticipating fragmentation, as it was designed to show just how
close two agents are to breaking up. The quantitative results
show that this visualisation enables users to anticipate frag-
mentation more accurately than the display of directions and
forces. Moreover, 73% of the participants said they preferred
this visualisation for anticipating fragmentation. However,
there is no significant difference between displaying links
and displaying nothing on robots in terms of correct answers
rate. A comment from a participant could help explain the
difference between the qualitative and quantitative results. This
comment says that displaying the links between the robots
gives an impression of cohesion which may be contradictory
to the movement of the robots, which seems to indicate future
fragmentation. This is consistent with the fact that the display
of links relies on the notion of uniform connectedness from
Gestalt theory [39] to identify robots that are part of the
same group. Looking at the causes of the participants’ wrong
answers for each visualisation to check whether this effect is
visible in the results, no significant difference appears. This
suggests that this visualisation only conveys the connectivity
of the swarm, but not the dynamics of their interaction.
A visualisation focusing on the dynamics of the interaction
between the robots might be more appropriate in this context,
perhaps using calculated information rather than displaying
raw information. Concerning the second task, this visualisation
does not therefore seem to be useful for choosing the appropri-
ate control and preventing fragmentation. But using the same
reasoning as for the first task, a visualisation focusing on the
dynamics of the interaction between the robots could convey
useful information to users.

B. Visualisation of direction

The quantitative results obtained by the visualisation dis-
playing the directions of the robots show no difference with
the display of the robots alone for both tasks. In general,
displaying directions is useful for representing movement
when it is absent or imperceptible [45]. However, given that
humans are naturally capable of perceiving the movement of
moving elements, displaying the direction was not expected to
provide the users with any more information than they already
perceive. Consequently, in the context of fragmentation, the
results suggest that displaying the direction of the robots
does not improve humans’ ability to anticipate fragmentation,
nor their ability to choose the right interaction from among
several proposals. However, although this visualisation appears
to display information already perceived by humans [43],
transmitting other information about the action aspect of the
swarm other than direction (e.g. the relative movement of
the robots compared to the swarm) could give users the



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

information they need to understand the dynamics of the
swarm.

C. Visualisation of dominant force

The visualisation showing the dominant force of the robots
aims to help users understand the swarm model by displaying
information related to the model rather than explaining its
functioning. This visualisation displays information about the
dominant force of the robots, and as stated by [8], it might
aid comprehension of the model. As the second task aims
to modify the intensity of these forces, it could be expected
that it also helps to choose the right interaction. However, the
quantitative results obtained by the visualisation displaying
the dominant force show no difference with the display of
the robots alone for both tasks. Moreover, 5 participants
commented that they were disturbed by this visualisation.
Systematically displaying the dominant force of robots turns
out to be counter-productive, as it becomes illegible when
the swarm exhibits certain dynamics, such as swarming. The
displayed arrows are pointing in all directions, are coloured
differently within the same neighbourhood, and all change at
the next time step, making it difficult to select the area to
focus on and analyse the swarm in a reasonable amount of
time. Information acquisition must be immediate, especially
when fragmentation can occur in a matter of seconds, and
on swarms of much more than 40 robots. This complicates
the design of a visualisation based on the swarm model.
The visualisation must be detailed enough to represent the
swarm model, but simple enough for users to understand [46].
Taking the example of the display of dominant forces, it could
be simplified by displaying the information conditionally, by
choosing only certain arrows to be displayed, but also by
dynamically aggregating some of the information to reduce
the amount of information transmitted [8]. Otherwise, rather
than displaying the dominant forces, other visualisations rep-
resenting the decision aspect of the robots could be used, more
or less transformed.

D. Swarm Behaviours

Among the four behaviours compared in this study, densi-
fication is significantly easier to anticipate. It obtained 88%
of correct answers on average, while the others obtained
an average of around 60% of correct answers. In addition,
the densification behaviour is also the one with the best
score for choosing the right interaction, with an average of
80%. However, there was no significant difference with the
other categories, which scored around 65%. A difference is
noticeable in comparing these results with those of [6]. In
their study, participants were free to anticipate or not their
response to identify fragmentation. In the end, they noted that
participants were more likely to wait until the last moment to
respond when the swarm adopted swarming behaviour. In this
study, the participants were forced to respond after viewing
the clip. Swarming did not turn out to be significantly more
difficult to anticipate than the other behaviours. It was the
densification behaviour that stood out, being easier than the
others to prevent. This result is consistent with the results

from [6], as fragmentation in densification behaviour proved
easier to identify. The authors suggest that the notion of
Common Fate from Gestalt theory [39] plays an important
role concerning densification behaviour, as the identification
of one or more centres of gravity seems to be a crucial clue
for the identification of fragmentation in this behaviour. For
the other three behaviours, the absence of visual evidence of
fragmentation (e.g. group identification through the detection
of distinct directions or variations in distance, respectively
based on common fate and proximity grouping principles)
makes the task more difficult. The expansion behaviour shows
a synchronised and homogeneous movement, the swarming
behaviour shows a disordered movement that is difficult to
predict, and the flocking behaviour shows an ordered and
synchronised movement that shows few or no anomalies.
As variations in distance between robots occur without im-
mediately causing fragmentation, the densification behaviour
is probably the only one to give the users enough time to
anticipate fragmentation. Finally, despite the difference in the
user’s point of view compared to [6], and the use of an
immersive environment, the results are consistent.

E. Perception Decision Action loop

The results obtained in the first task suggest that it is prefer-
able to focus the choice of visualisation on the perception
aspect of the robots’ PDA loop rather than on the action
or decision aspect to help users anticipate fragmentation.
The visualisation of the links did not improve the results
compared with the baseline, probably because it did not
sufficiently convey the dynamics of the interactions, which
would have made it possible to anticipate future breaks in the
swarm, as detailed in section VI-A. In contrast, displaying the
direction to represent the action aspect of the swarm conveys
information that is already perceived, which has no impact on
participants’ choices, as the results show. Instead of directions
to represent the action aspect, visualisation should focus on
information that is not perceived by humans, by improving
contrast or transforming low-level information into high-level
information, for example. Finally, the systematic display of the
dominant forces of the robots to represent the decision aspect
was probably too complex for the participants. The design of
such a visualisation must consider the users’ expertise, the
human capability of perception, the task to be accomplished
and the complexity of the model to extract only the necessary
information. Another interpretation of the results on dominant
forces lies in the notion of mental model, which consists
of an internal and simplified representation of a dynamical
system, allowing humans to describe, explain and predict its
form, function and state [47]. According to the qualitative
results, it seems that a majority of participants understood the
effects of the model’s core principles on collective behaviour
and are able, to some extent, to describe and explain it.
However, the design of the second task requires another level
of comprehension, as participants have to also be able to
predict controls’ effects on the robots. Future works will need
to investigate the influence of the visualisation of the dominant
force, as it may have contributed towards the understanding of
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how the model works, but not enough to allow the prediction
of how the model will react.

FE. Limitation and future work

Gathering enough expert swarm operators is very difficult,

so we had to experiment on people with no prior knowledge
of swarms. The results could therefore be different with expe-
rienced users. Moreover, the results of the second task showed
that the proposed visualisations did not affect participants’
choice of appropriate control, as no difference is noticeable.
As the controls were deliberately imposed on the participants,
limited in choice, sometimes counter-intuitive and no feedback
on their effect was shown to the participants, it is possible that
the task did not allow any differences to be highlighted.
By observing the differences in results within the same cat-
egory of videos, we can note various parameters that could
influence the users’ answers during the anticipation task:
the speed of expansion of the swarm, its final expansion,
the presence of empty space and the presence of centres of
gravity. It would then be interesting to evaluate the impact
of these parameters. In addition, this study shows elements
that could influence the design of future visualisations applied
to Human-Swarm Interaction. Future work should consider
conducting additional studies to determine what information
in the swarm is perceived or not by users, enabling the
design of visualisations that do not convey information already
perceived, but instead transmit information users are lacking.
Finally, future work should also consider exploring new vi-
sualisations for conveying the necessary information, taking
into account the effect that can be induced by the number of
robots making up the swarm, notably related to the Gestalt
theory principles, which can increase cognitive overload or be
counter-productive.

VII. CONCLUSION

In this document, the impact of three visualisations on
the ability of humans to prevent fragmentation is evaluated,
by presenting 51 participants with two distinct tasks. These
respectively assessed the ability to anticipate and the ability
to choose the right interaction to avoid fragmentation, using
videos containing swarms that fragment or not. The localised
and systematic display of robot interactions using links, robot
direction using arrows and dominant robot strength using
coloured arrows does not help anticipate or choose the right
interaction to prevent fragmentation from occurring. Finally,
humans more easily anticipate and prevent fragmentation
in densification behaviour than in expansion, flocking and
swarming. These results show that there is a real need to help
humans prevent fragmentation, notably for flocking, expansion
and swarming behaviours. Furthermore, the results show that
the proposed visualisations do not improve the ability of
the users to prevent fragmentation and that it is therefore
necessary to explore new solutions. We suggest exploring
solutions conveying information that is not already transmitted
by the swarm, that does not make swarm monitoring more
complicated than it already is, perhaps using conditional or
global visualisation.
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