
HAL Id: hal-04541828
https://hal.science/hal-04541828v2

Preprint submitted on 7 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Sharp convergence rates for the homogenization of the
Stokes equations in a perforated domain

Loïc Balazi, Grégoire Allaire, Pascal Omnes

To cite this version:
Loïc Balazi, Grégoire Allaire, Pascal Omnes. Sharp convergence rates for the homogenization of the
Stokes equations in a perforated domain. 2024. �hal-04541828v2�

https://hal.science/hal-04541828v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Sharp convergence rates for the homogenization of the Stokes

equations in a perforated domain
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Abstract

This paper is concerned with the homogenization of the Stokes equations in a periodic
perforated domain. The homogenized model is known to be Darcy’s law in the full domain.
We establish a sharp convergence rate O(

√
ε) for the energy norm of the difference of the

velocities, where ε represents the size of the solid obstacles. This is achieved by using a
two-scale asymptotic expansion of the Stokes equations and a new construction of a cut-off
function which avoids the introduction of boundary layers. The main novelty is that our
analysis applies for the physically relevant case of a porous medium where each of the fluid
and solid parts is a connected subdomain.

1 Introduction

In this paper, we deal with the Stokes problem for an incompressible viscous fluid in a porous
medium which is represented as a periodic perforated domain (see for example Figure 1 or
Figure 2). This work is motivated by the derivation of an error estimate for a Multiscale Finite
Element Method (MsFEM) applied to the Stokes equations in perforated domains [11, 7] which
is based on the homogenization theory. Let Ω ⊂ Rd be a regular bounded open set. As shown in
Figure 1, we divide the domain Ω into a fixed solid part Bε and its complementary fluid part Ωε.
Here ε denotes a small parameter equal to the ratio between the characteristic length of the
periodic heterogeneities and the characteristic length of the domain. A first typical example of
such a porous domain Ωε is given by Figure 1 where the solid obstacles Bε are a collection of
isolated and periodically repeated obstacles. A second typical case, in dimension d ≥ 3, is a
porous domain Ωε perforated by a regular lattice of interconnected solid cylinders as presented
in Figure 2. A precise definition of Ωε is given in Section 2.
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Figure 1: Porous medium Ωε, obtained from a domain Ω perforated by a set of solid isolated
obstacles Bε

Figure 2: Regular lattice of interconnected cylinders

The steady-state Stokes problem with homogeneous Dirichlet boundary condition in a per-
forated domain is to find the velocity uε : Ωε → Rd and the pressure pε : Ωε → R solution
to: 

−ν∆uε +∇pε = f in Ωε,
divuε = 0 in Ωε,

uε = 0 on ∂Bε ∩ ∂Ωε,
uε = 0 on ∂Ω ∩ ∂Ωε,

(1)

where ν > 0 is the viscosity and f the applied force. Vector valued functions are written in
bold. In the literature, some authors consider a different scaling of (1), replacing the velocity uε

by uε = ε2ũε. This does not change anything to our methodology and our results, up to this ε2

factor.

We denote by (·, ·) the usual scalar product in L2(Ωε) for scalar and vector-valued functions.
We introduce the classical velocity space V = H1

0 (Ω
ε)d = {u ∈ H1(Ωε)d s.t. u|∂Ωε= 0} and

pressure space M = L2
0(Ω

ε) = {q ∈ L2(Ωε), s.t.
∫
Ωε q = 0}. In V we shall often use the

semi-norm |·|H1 , equivalent to the usual norm and defined by:

|v|H1(Ωε) = ∥∇v∥L2(Ωε), v ∈ H1(Ωε)d.
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We introduce the bilinear forms a : V × V → R and b : M × V → R by:

a(u,v) = ν(∇u,∇v), b(p,v) = (p,div v).

Then, assuming that f ∈ L2(Ω)d, a weak formulation of the Stokes problem (1) reads as follows:
find uε ∈ V and pε ∈ M such that{

a(uε,v) + b(pε,v) = (f ,v) ∀v ∈ V,
b(q,uε) = 0 ∀q ∈ M.

(2)

It is well known that, if Ωε is connected (to ensure that the zero-average condition of the
pressure is enough to remove the undetermined constant of the pressure), there exists a unique
weak solution to (2) [9].

The homogenization of the Stokes equations, i.e. finding the limit system satisfied by the
limit of (uε, pε) as ε goes to zero, was first investigated by [13, 15, 1]. A review of these results
can be found in [10], [5]. The homogenized or effective equations for the Stokes system, in a
periodic perforated domain, is Darcy’s law for the velocity u and the homogenized pressure p∗:

u = 1
νA

∗(f −∇p∗) in Ω,
divu = 0 in Ω,
u · n = 0 on ∂Ω,

where A∗ is a constant permeability tensor (see Proposition 3.2).

The first convergence result for the homogenization of the Stokes equations was established
in [15], where the author proved the weak L2 convergence of the velocity and the strong L2

convergence of the pressure. The strong L2 convergence of the velocity with a corrector was
proven later in [1]. The first quantitative result of convergence in the H1-norm was obtained
in [12] with a relative error estimate of order ε1/6 in a two-dimensional domain (d = 2). This
result has been improved to

√
ε in [11] for the case of isolated solid obstacles (still in two space

dimension d = 2). This
√
ε error estimate was independently and further improved in [14] for

any space dimension d ≥ 2, still under the assumption of isolated solid obstacles (as in Figure 1).
The main technical idea in [14] is to construct boundary correctors which control the boundary
layers appearing in the proof of the error estimate. Note that the assumption of isolated solid
obstacles is not physically realistic in dimension d ≥ 3.

The goal of the present paper is to extend this
√
ε error estimate to the case of connected

solid obstacles (as in Figure 2). Before stating our main result (in loose terms, see Theorem 4.1
for a precise statement) we need to introduce some notations. Actually the Darcy velocity u does
not see the solid obstacles and thus cannot be a good approximation of the original velocity uε.
It must be corrected by introducing a better approximation which is

u2

(
x,

x

ε

)
=

1

ν

d∑
i=1

ωi

(x
ε

)(
fi(x)−

∂p∗

∂xi
(x)

)
where the local velocities ωi are solutions of cell problems (6). Actually the link between u2

and the Darcy velocity u is that u(x) is the average of u2(x, y) with respect to the periodic
variable y.

The main result we shall proved is:

Theorem 1.1. Let uε, pε be the solution to the Stokes problem (1) and u2, p
∗, their homogenized

approximations. Assuming that f is smooth enough, there exists a constant C, independent of ε
and f , such that

∥pε − p∗∥L2(Ωε)

∥p∗∥L2(Ωε)
≤ Cε

1
2 ∥f∥H2(Ω)∩C1,α(Ω),
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|uε − ε2u2|H1(Ωε)

|ε2u2|H1(Ωε)
≤ Cε

1
2 ∥f∥H2(Ω)∩C1,α(Ω),

∥uε − ε2u2∥L2(Ωε)

∥ε2u2∥L2(Ωε)
≤ Cε

1
2 ∥f∥H2(Ω)∩C1,α(Ω).

Theorem 1.1 is stated in terms of relative errors since ε2u2 (and thus uε) is small. Its proof
follows the same strategy as that in [11] (but extends it to dimensions larger than 2) and differs
significantly from the proof in [14]. Actually, our proof is simpler in the sense that no boundary
layers (and thus correctors of their effect) appear. It turns out that we are able to use a cut-
off argument as in the standard elliptic case [3] but without compromising the divergence-free
condition for the velocities. Of course, the main novelty is that Theorem 1.1 applies to any case
of solide obstacles, isolated or connected. In dimension d ≥ 3, the physically relevant case is
that of connected obstacles and not isolated obstacles.

The content of this paper is the following. Section 2 gives a precise definition of the geo-
metrical assumptions of a periodic porous medium. Section 3 is devoted to the formal two-scale
asymptotic expansion method which delivers the homogenized problem, as well as some cell
correctors, including the velocities ωi appearing in the definition of u2. In Section 4 is stated
our main result (Theorem 4.1 which is just a rigorous statement of Theorem 1.1) and its proof
is decomposed in several technical lemmas.

2 Geometric modeling of the porous medium

As usual in periodic homogenization theory [3, 10, 13], we consider a porous medium obtained
by the periodic repetition of an elementary cell of size ε, in a bounded domain of Rd. We first
define the corresponding dimensionless elementary cell Y .

2.1 Definition of the elementary cell Y

Let Y =]0, 1[d be the open unit cube of Rd, d ≥ 2. Let YS be a closed subset of Y . We define YF ,
an open set of Rd, by YF = Y \ YS , where YS represents the part of Y occupied by the solid
and YF represents the part of Y occupied by the fluid. The fluid part YF and the solid part YS
satisfy YF ∪ YS = Y and YF ∩ YS = ∅ (see Figure 3). The closed set YS is repeated by Y -
periodicity and fills the entire space Rd, in order to obtain a closed set of Rd, noted ES . Let the
open set EF be the complementary of ES in Rd, i.e. EF = Rd \ ES . We assume the following
hypotheses on YF and EF :

1. YF and YS have stricly positive measure on Y (the elementary cell Y contains fluid and
solid together).

2. YF is an open connected set with a locally Lipschitz boundary.

3. EF and the interior of ES are open sets with smooth boundaries of class Cm+2, with
m > d

2 , and are locally located on one side of their boundary. Moreover EF is connected.

Remark that the solid part ES can be connected or not, corresponding to the two different
geometric cases of Figures 1 and 2 which are later called isolated obstacles or connected obstacles.
The assumption that EF is smooth and connected implies that, on each face of Y , there is a
fluid sub-domain of non-zero (surface) measure.
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(a) (b)

Figure 3: Isolated (left) or connected (right) solid obstacles in the unit cell Y = YF ∪ YS

2.2 Definition of the open set Ωε

Let Ω be a bounded and connected open set of Rd (d ≥ 2) which is assumed to have a smooth
boundary of class C3,α, for some 0 < α < 1. The set Ω is covered with a regular square mesh of
size ε, each cell being a cube Y ε

i . We define for any i ∈ Zd:

Yi = Y + i, Yi,F = YF + i, Yi,S = YS + i,

Y ε
i = ε(Y + i), Y ε

i,F = ε(YF + i), Y ε
i,S = ε(YF + i).

The periodic set of solid obstacles (or perforations) inside Ω is defined as:

Bε =
⋃
i∈I

Y ε
i,S ,

where I ⊂ Zd is a set of indices which is precisely defined in Assumption 2.1 below. The role
of I is to remove obstacles from Ω only if they are sufficiently away from the boundary ∂Ω.
Finally, the fluid part Ωε of the perforated medium is defined by Ωε = Ω \Bε, i.e.

Ωε = Ω \
⋃
i∈I

Y ε
i,S .

The definition of I depends on the two cases of isolated or connected solid obstacles (see Fig-
ure 3).

Assumption 2.1. We consider two different sets of assumptions depending on the two cases of
isolated or connected solid obstacles.

1. If the solid part YS is isolated, namely stricly included in Y (not touching its boundary),
then I = {i ∈ Zd s.t. Y ε

i ⊂ Ω}. In other words, only entire obstacles Y ε
i,S are removed

from Ω and thus no obstacles are cut by the boundary ∂Ω.

2. If the solid part YS touches the boundary of Y , meaning that obstacles are connected, then
we define a first set of indices I1 = {i ∈ Zd s.t. Y ε

i ⊂ Ω} and an open subset of Ω defined
by its closure

Cε
1 =

⋃
i∈I1

Y ε
i .

Then, a second smaller set of indices is

I2 = {i ∈ I1 such that Y ε
i ∩ ∂Cε

1 = ∅},
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meaning that no cell Y ε
i in I2 touches the boundary ∂Cε

1. Similarly, we define an open
subset of Ω defined by its closure

Cε
2 =

⋃
i∈I2

Y ε
i .

Finally, we choose I = I2, meaning that the obstacles are not cut by the boundary ∂Ω and
stay away from ∂Ω and ∂Cε

1 at a distance of the order of ε (see Figure 4, which is 2-d
sketch of a 3-d situation).

Remark 2.2. The second item of Assumption 2.1 allows us to treat the realistic case of a
connected solid part, which is possible only for space dimensions d ≥ 3 because in 2-d EF

and ES cannot be connected simultaneously. The second item of Assumption 2.1 is similar to
an assumption in [5] and is slightly different from the assumption made in [1]. It is a necessary
assumption for several technical reasons, including the fact that, when ES is connected, there
may be some pathological cut obstacles near the boundary ∂Ω. In particular, the fluid domain
may be not connected.

Domain Ω

Cε
1

Cε
2

Figure 4: Porous medium Ωε when the solid part YS touches the boundary of Y

3 Two-scale asymptotic expansion

This section recalls how to formally obtain the homogenized problem for the Stokes equations
(1), as well as the definitions of several corrector terms in the unit cell which are required for the
sequel. This is achieved by applying the classical method of two-scale asymptotic expansion [3,
13]. The following results are already well-known but are recalled since the notations are required
for the next sections. The formal method of two-scale asymptotic expansion starts with the
following ansatz for the velocity uε and pressure pε:

uε(x) =

+∞∑
k=2

εkuk

(
x,

x

ε

)
, pε(x) =

+∞∑
k=0

εkpk

(
x,

x

ε

)
. (3)

All functions uk(x, y), pk(x, y) are assumed Zd-periodic in y i.e. 1-periodic with respect to each
component y1, . . . , yd.

Remark 3.1. We begin the asymptotic expansion of the velocity uε at k = 2 since it is well-
known in the literature that the first terms u0 and u1 vanish.
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We recall the following derivation rule:

∇
(
uk(x,

x

ε
)
)
=

(
ε−1∇yuk +∇uk

) (
x,

x

ε

)
, (4)

where ∇ and ∇y denote the partial derivatives with respect to the macroscopic variable x and
the microscopic variable y. Then, introducing the series (3) in the Stokes equations (1), using
the derivation rule (4), we obtain for the momentum equation:

−ν∆uε(x) +∇pε(x) = ε−1∇yp0 + ε0 {−ν divy ∇yu2 +∇p0 +∇yp1}

+ε {−ν(div∇yu2 + divy ∇u2 + divy ∇yu3) +∇p1 +∇yp2}

+

+∞∑
k=2

εk{−ν(div∇uk + div∇yuk+1 + divy ∇uk+1 + divy ∇yuk+2)

+∇pk +∇ypk+1} = f

and for the incompressiblity condition:

divuε(x) = εdivy u2 +

+∞∑
k=2

εk{divuk + divy uk+1} = 0.

Now, we identify the quantities associated to the different orders of ε. The leading order ε−1 of
the momentum equation is: {

∇yp0 = 0 in YF ,
y → p0(x, y) Y − periodic.

(5)

From (5) one deduces that p0 does not depend on y and there exists a function p∗(x) such
that p0(x, y) = p∗(x). At the next order ε0 for the momentum equation and ε for the incom-
pressibility condition, we get:

−ν∆yu2 +∇yp1 = f −∇p∗ in YF ,
divy u2 = 0 in YF ,
u2 = 0 on ∂YS ,
y → u2(x, y), p1(x, y) Y − periodic.

It follows that u2 and p1 are linear combinations of the solutions to the following cell Stokes
problems: for i = 1, . . . , d find ωi : Y → Rd and πi : Y → R, Zd-periodic and solutions to:

−∆yωi +∇yπi = ei in YF ,
divy ωi = 0 in YF ,
ωi = 0 on ∂YS ,∫
Y
πi = 0,

y → ωi, πi Y − periodic.

(6)

Velocity and pressure are extended by 0 in YS . Using the Einstein summation convention on
repeated indices, it follows that:

u2(x, y) =
1

ν
ωi(y)

(
fi(x)−

∂p∗

∂xi
(x)

)
,

p1(x, y) = πi(y)

(
fi(x)−

∂p∗

∂xi
(x)

)
.

(7)
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Furthermore, averaging on YF the ε2 term of the incompressibility condition (taking into account
the boundary conditions for u3 in (11)) yields

div ⟨u2⟩ = 0, (8)

where ⟨·⟩ stands for the average over YF :

⟨v⟩ = 1

|YF |

∫
YF

v(y)dy.

Inserting formula (7) for u2 in (8) leads to the Darcy equation for the pressure p∗. Furthermore,
a similar asymptotic analysis can be performed on the boundary ∂Ω but the homogenized
boundary condition turns out to be weaker, namely only the normal component of u vanishes
on ∂Ω [1, 10, 11].

Proposition 3.2. The Darcy velocity is defined as

u = ⟨u2⟩ =
1

ν
⟨ωi⟩

(
fi(x)−

∂p∗

∂xi
(x)

)
(9)

and the homogenized pressure p∗ is the solution to the following Darcy problem:{
divA∗(f −∇p∗) = 0 in Ω,
n · (A∗(f −∇p∗)) = 0 on ∂Ω,

(10)

where the constant tensor A∗ is defined by its columns

A∗ei = ⟨ωi⟩ =
1

|YF |

∫
YF

ωi(y)dy.

There exists a solution p∗ ∈ H1(Ω) of (10), which is unique up to an additive constant. Fur-
thermore, under Assumption 2.1 and assuming f ∈ C1,α(Ω)d with 0 < α < 1, then ∇p∗ is of
class C1,α(Ω) and p∗ is of class C2,α(Ω). Similarly, if f ∈ H2(Ω)d, then ∇p∗ ∈ H2(Ω)d too.

Proof. Problem (10) is well-posed in H1(Ω)/R because it is just a second-order elliptic equation
for the pressure p∗, complemented by a Neumann boundary condition (one can check that A∗

is positive definite). Recall that C1,α(Ω) is the space of functions in C1(Ω) with derivatives
which are α-Hölderian. Since f ∈ C1,α(Ω) then it is known that ∇p∗ is of class C1,α(Ω) (see for
example [8, Theorems 8.33 and 8.34]). Finally, f ∈ H2(Ω)d implies ∇p∗ ∈ H2(Ω)d by standard
Sobolev regularity theory for elliptic equations.

At the next order ε for the momentum equation and ε2 for the incompressibility condition,
we get: 

−ν∆yu3 +∇yp2 = νdiv∇yu2 + ν divy ∇u2 −∇p1 in YF ,
divy u3 = −div u2 in YF ,
u3 = 0 on ∂YS ,
y → u3(x, y), p2(x, y) Y − periodic.

(11)

Substituting the expressions (7) of u2 and p1 in (11) leads to

−ν∆yu3 +∇yp2 = (2∇yωi(y)− πi(y)Id)∇
(
fi(x)−

∂p∗

∂xi
(x)

)
.

By linearity, we deduce that
u3(x, y) =

1

ν
γij(y)

∂

∂xj

(
fi(x)−

∂p∗

∂xi
(x)

)
,

p2(x, y) = θij(y)
∂

∂xj

(
fi(x)−

∂p∗

∂xi
(x)

)
,
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where, for i, j = 1, . . . , d, γij : Y → Rd and θij : Y → R are Zd-periodic solutions to another
cell Stokes problem: 

−∆yγij +∇yθij = 2
∂ωi

∂yj
− πiej in YF ,

divy γij = −ωi · ej + ⟨ωi · ej⟩ in YF ,
γij = 0 on ∂YS ,∫
Y
θij = 0,

y → γij , θij Y − periodic.

(12)

We recall some notations on Sobolev spaces of periodic functions (see [10, Appendix B.2.2] for
details). The L2 space of Y -periodic functions is

L2
#(Y ) = {φ ∈ L2

loc(Rd), φ is Y − periodic},

endowed with the usual scalar product and norm of L2(Y ). It turns out that L2
#(Y ) coincides

with L2(Y ). Higher-order Sobolev spaces are defined, for m ≥ 1, by

Hm
# (Y ) = {φ ∈ Hm

loc(Rd), φ is Y − periodic},

endowed with the usual scalar product and norm of Hm(Y ). Let us recall a classical regularity
result [4].

Lemma 3.3. Let m ≥ 0 and YF be of class Cm+2, consider f(y) ∈ Hm
# (Y )d and g(y) ∈

Hm+1
# (Y ) with zero mean on Y . The problem

−∆yu+∇yp = f(y) in YF ,
divy u = g(y) in YF ,
u = 0 on ∂YS ,
y → u(y), p(y) Y − periodic,

admits a unique solution u ∈ Hm+2
0,# (YF )

d and p ∈ Hm+1
# (YF )/R , where the space Hk

0,#(YF ) is
defined by

Hk
0,#(YF ) = {φ ∈ Hk

#(YF ) such that φ = 0 on ∂YS}

Using Lemma 3.3, it is clear that (6) and (12) admit each a unique solution since the right-
hand side of the divergence condition has zero-average in YF . In particular ωi and γi,j are
in Hm+2

0,# (YF )
d, and, πi and θi,j are in Hm+1

# (YF )/R.

The conclusion of this section is that we obtained an approximation of order 3 of the velocity

uε(x) ≈ ε2u2

(
x,

x

ε

)
+ ε3u3

(
x,

x

ε

)
, (13)

and of order 1 of the pressure

pε(x) ≈ p∗(x) + εp1

(
x,

x

ε

)
. (14)

The derivation of (13) and (14) is merely formal but these approximations are key ingredients
in the rigorous proof of our main result of quantitative homogenization.
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4 A quantitative homogenization result

4.1 Main result

Our main result is a quantitative error estimate for the homogenization of Stokes equations in
a periodic porous medium, which was loosely announced as Theorem 1.1 in the introduction. A
more precise statement of this result is given below.

Theorem 4.1. Let uε, pε be the solution to the Stokes equations (1), p∗ be the solution to the
Darcy equation (10) and u2 be defined by (7). Under Assumption 2.1 and assuming that f
belongs to H2(Ω)d ∩ C1,α(Ω)d with 0 < α < 1, there holds:

∥pε(x)− p∗(x)∥L2(Ωε) ≤ Cε
1
2 ∥f(x)−∇p∗(x)∥H2(Ω)∩C1,α(Ω) (15)

|uε(x)− ε2u2

(
x,

x

ε

)
|H1(Ωε) ≤ Cε

3
2 ∥f(x)−∇p∗(x)∥H2(Ω)∩C1,α(Ω) (16)

∥uε(x)− ε2u2

(
x,

x

ε

)
∥L2(Ωε) ≤ Cε

5
2 ∥f(x)−∇p∗(x)∥H2(Ω)∩C1,α(Ω) (17)

where C is independent of ε and the data.

Theorem 4.1 was already proved in the easier case of isolated obstacles in [11] when d = 2
and in [14] for any dimension. The main novelty of the present paper is that Theorem 4.1 applies
to the physically relevant case of connected obstacles (in dimension d ≥ 3).

Remark 4.2. In Theorem 4.1, the regularity of f ensures that ∇p∗ also belongs to H2(Ω)d ∩
C1,α(Ω)d (see Proposition 3.2). We assume that f ∈ H2(Ω)d ∩ C1,α(Ω)d, but all what follows
only requires the assumption that the difference (f −∇p∗) belongs to H2(Ω)d ∩ C1,α(Ω)d. The
space H2(Ω)d ∩C1,α(Ω)d is equipped with the norm ∥·∥H2∩C1,α defined by ∥·∥H2∩C1,α = ∥·∥H2 +
∥·∥C1,α.

Remark 4.3. The two estimates for the velocity essentially mean that the relative error for
the velocity in the H1-norm is of the order

√
ε. Indeed, the velocity is of order ε2 (be it uε

or ε2u2), but its gradient is of order ε (see the derivative rule (4)) since they oscillate on the
length scale ε. Finally the relative error for the pressure is also of order

√
ε. Eventually, upon

rescaling the velocity, we can write:

ε−2∥uε − ε2u2∥L2(Ωε) + ε−1|uε − ε2u2|H1(Ωε) + ∥pε − p∗∥L2(Ωε) ≤ C
√
ε∥f −∇p∗∥H2(Ω)∩C1,α(Ω).

The relative error of order
√
ε is worse than the expected ε. It is a classical phenomenon

in homogenization [3, 2, 11] due to boundary layer effects caused by the Dirichlet boundary
condition on ∂Ω. Technically, this is taken into account by introducing a suitably chosen cut-
off function ηε in the proof. If the boundary layers were absent, which would be the case, for
example, with periodic boundary conditions over a rectangular box Ω =

∏d
i=1(0, εni) with ni ∈ N,

the error estimate would improve and give a relative error of order ε:

ε−2∥uε − ε2u2∥L2(Ωε) + ε−1|uε − ε2u2|H1(Ωε) + ∥pε − p∗∥L2(Ωε) ≤ Cε∥f −∇p∗∥H2(Ω)∩C1,α(Ω).

The proof of Theorem 4.1 is given in Subsection 4.5. Beforehand, it requires three techni-
cal lemmas concerning (i) solving a non-homogeneous divergence equation in a porous domain
(Lemma 4.9), (ii) correcting non-homogeneous boundary conditions (Lemma 4.13) and (iii) rep-
resenting periodic divergence-free fields (Lemma 4.15).
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4.2 Correction of the divergence condition

Notation 4.4. In what follows, for any ϕ ∈ H1
0 (Ω

ε), we also denote by ϕ its extension by zero
in Ω \ Ωε, which belongs to H1

0 (Ω).

Definition 4.5. We note πε
i the linear continuous invertible application, composed of a trans-

lation and an homothety of ratio 1
ε , which maps any cell Y ε

i onto the reference cell Y :

πε
i : Y ε

i −→ Y
x 7−→ y = x

ε + translation.
(18)

First, we recall the Poincaré inequality in perforated domains (for a proof, see [10]).

Lemma 4.6. Assume that the hypotheses on the unit cell Y (Section 2.1) hold true, then there
exists a constant C > 0, independent of ε, such that, for any ϕ ∈ H1

0 (Ω
ε),

∥ϕ∥L2(Ωε) ≤ Cε|ϕ|H1(Ωε).

We now recall a result [15, 1] on a restriction operator for velocities defined on the full
domain Ω which are restricted to the porous domain Ωε.

Lemma 4.7. Assume that the hypotheses on the unit cell Y (Section 2.1) hold true. Then there
exists a linear continuous operator Rε such that

1. Rε ∈ L
(
H1

0 (Ω)
d;H1

0 (Ω
ε)d

)
;

2. u|Ωε∈ H1
0 (Ω

ε)d implies Rεu = u|Ωε in Ωε;

3. divu = 0 in Ω \ Ωε implies div (Rεu) = divu in Ωε;

4. there exists a constant C, which does not depend on ε, such that, for any u ∈ H1
0 (Ω)

d, we
have:

∥Rεu∥L2(Ωε) + ε∥∇(Rεu)∥L2(Ωε) ≤ C
(
∥u∥L2(Ω) + ε∥∇u∥L2(Ω)

)
.

Remark 4.8. Lemma 4.7 was first proved in [15] for the case of a solid part YS strictly included
in the cell Y (see Figure 3a) and was then extended in [1] for the more general case of a solid
part YS which touches the boundary of Y (see Figure 3b).

Proof. Since we shall need specific properties of the operator Rε in the sequel, we briefly recall
how to construct this operator. We start with the simpler case of isolated obstacles, namely
when the solid part YS is strictly included in the cell Y (the general case is presented afterwards).
Consider a domain YM , strictly contained in Y , such that ∂YM is smooth and encloses YS as
presented in Figure 5.

YS

YM

YF

Figure 5: Schematic description of the domain YM around YS
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Then for a given u ∈ H1(Y )d, there exists v ∈ H1(YM \ YS)d, q ∈ L2(YM \ YS)/R satisfying:
−∆v +∇p = −∆u in YM \ YS ,

div v = divu+
1

|YM \ YS |

∫
YS

divu in YM \ YS ,

v = u on ∂YM ,
v = 0 on ∂YS .

This problem is well posed, since the compatibility condition can easily be checked on the data,
namely ∫

YM\YS

div v =

∫
∂(YM\YS)

v · n.

Now, a restriction operator R is constructed as follow: for any u ∈ H1(Y )d,

Ru =


u in Y \ YM ,
v in YM \ YS ,
0 in YS .

Clearly, R is linear continuous from H1(Y )d to its subspace of functions vanishing on YS , satis-
fying

∥Ru∥H1(Y ) ≤ C∥u∥H1(Y ), (19)

and such that, if u = 0 in YS , then Ru = u, and, if divu = 0 in YS , then divRu = divu
in Y . Then the operator Rε is defined by applying the mapping (18) to the operator R and,
with standard scaling properties, it comes from (19):

∥Rεu∥2L2(Ωε) + ε2∥∇(Rεu)∥2L2(Ωε) ≤ C
(
∥u∥2L2(Ω) + ε2∥∇u∥2L2(Ω)

)
,

which implies that Rε satisfies all four properties of Lemma 4.7.

We now turn to the case of connected obstacles, namely when YS touches the cell bound-
ary ∂Y as presented in Figure 3b. The construction of Rε is slightly more involved. First, we
define a linear continuous operator Qε ∈ L

(
H1

0 (Ω)
d;H1

0 (Ω
ε)d

)
by

−∆(Qεu) = −∆u in Ωε ∩ Cε
1 ,

Qεu = 0 on ∂Ωε ∩ Cε
1 ,

Qεu = u on ∂Cε
1 ,

Qεu = u in Ω \ Cε
1 ,

(20)

where Cε
1 is defined by Assumption 2.1 as the union of entire cells inside Ω. Clearly, Qεu = u

if and only if u|Ωε∈ H1
0 (Ω

ε)d. Thanks to the definition of Cε
1 and Cε

2 , there exists a smooth
cut-off function ζε such that ζε(x) = 1 on ∂Cε

1 , ζ
ε(x) = 0 in Cε

2 and ∥∇ζε∥L∞(Cε
1) ≤ C

ε . One
can rewrite (20) for the new unknown wε = Qεu− ζεu as

−∆wε = −∆((1− ζε)u) in Ωε ∩ Cε
1 ,

wε = 0 on ∂Ωε ∩ Cε
1 ,

wε = 0 on ∂Cε
1 .

(21)

Multiplying (21) by wε leads to an a priori estimate, which, combined with the Poincaré in-
equality (Lemma 4.6), implies that there exists a constant C, which does not depend on ε, such
that, for any u ∈ H1

0 (Ω)
d, we have:

∥Qεu∥L2(Ωε) + ε∥∇(Qεu)∥L2(Ωε) ≤ C
(
∥u∥L2(Ω) + ε∥∇u∥L2(Ω)

)
.
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Then, for each cell Y ε
i , we define a linear operator Qi, from H1(Y )d to its subspace of functions

vanishing on YS , as follows: for any u ∈ H1
0 (Ω)

d,(
Qi

(
u ◦ (πε

i )
−1

))
◦ πε

i = Qεu in Y ε
i .

Recall from Assumption 2.1 that we defined two sets of indices I1 and I2, corresponding to the
cells Y ε

i which cover Cε
1 and Cε

2 , respectively. Define a third set I0 = {i ∈ Zd s.t. Y ε
i ∩ Ω ̸= ∅},

so that I2 ⊂ I1 ⊂ I0. We now define a family of restriction operators Ri, depending on which
set I2, I1, I0 the index i belongs to.

For i ∈ I2 (meaning that the corresponding cell contains a solid obstacle), Ri is defined, for
any u ∈ H1(Y )d, by

−∆Riu+∇p = −∆u in YF ,

divRiu = divu+
1

|YF |

∫
YS

divu in YF ,

Riu = Qiu+ ϕk

(∫
Σk

(u−Qiu) · ek
)
ek on Σk ∩ YF ,

Riu = 0 on ∂YS ,

(22)

where (Σk)1≤|k|≤d are the 2d faces of the unit cube (Σk and Σ−k are opposite faces), with unit
normal vector ek, and (ϕk)1≤|k|≤d is a family of smooth, non-negative functions, compactly

supported in the periodic repetition of YF , satisfying∫
Σk

ϕk = 1, ϕk |Σk
≡ ϕ−k |Σ−k

and ϕk |Σk′
≡ 0 if k ̸= k′.

The existence of such a family of functions ϕk is guaranteed by the assumptions on the unit cell
in Subsection 2.1, which imply that the surface measure of Σk ∩ YF is non-zero (see [1] for more
details). Problem (22) is well posed, since the data of the trace of Riu belongs to H1/2(YF )

d

and the compatibility condition on the divergence data is satisfied, namely∫
YF

divRiu =

∫
∂YF

Riu · n.

For i ∈ I1 \ I2 (meaning that the corresponding cell does not contain a solid obstacle but
one of its face may touch an obstacle), Ri is defined, for any u ∈ H1(Y )d, by

−∆Riu+∇p = −∆u in Y,
divRiu = divu in Y,

Riu = Qiu+ ϕk

(∫
Σk

(u−Qiu) · ek
)
ek on Σk,

Riu = u on Σ̃k,

(23)

where Σk are the faces of the cell which touch an obstacle and Σ̃k are the faces of the cell which
do not touch any obstacle. Problem (23) is well posed, since the data of the trace of Riu belongs
to H1/2(Y )d and the compatibility condition on the divergence data is satisfied, namely∫

Y
divRiu =

∫
∂Y

Riu · n.

For i ∈ I0\I1 (implying that the corresponding cell does not contain a solid obstacle and none
of its face touches an obstacle), Ri is simply defined as Riu = u. Note that this case corresponds
to cells Y ε

i which are cut by the boundary ∂Ω. Inside such a cell, with a possibly wild geometry,
it is not clear that a Stokes problem of the type of (23) satisfies a priori estimates, independent
of the geometry (this is precisely why the two sets of indices I1 and I2 have been introduced).
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A similar estimate to (19) holds true for all operators Ri with a constant C independent of i
and ε.

Finally, the restriction operator Rε ∈ L
(
H1

0 (Ω)
d;H1

0 (Ω
ε)d

)
is defined, for any u ∈ H1

0 (Ω)
d,

by
Rεu =

(
Ri

(
u ◦ (πε

i )
−1

))
◦ πε

i in Y ε
i .

It is easy again to check that Rε would satisfy all four properties of Lemma 4.7. Note however
that, here, the definition of Rε is not local in each cell since they are all coupled through the
operator Qε.

We now state a key lemma for our analysis. It was already presented in [11] in two dimensions
for the case when YS is strictly included in Y . It was also stated as Theorem 14.2 in [5] for the
general case of any YS and any space dimension but its proof was rather technical, decomposed
in several exercices. Here, we present a new and detailed proof, using different arguments.

Lemma 4.9. For any q ∈ L2
0(Ω

ε) there exists vdε ∈ H1
0 (Ω

ε)d such that

div vdε = q on Ωε and |vdε|H1(Ωε) ≤
C

ε
∥q∥L2(Ωε) (24)

where C > 0 is a constant independent of ε.

Proof. For any q ∈ L2
0(Ω

ε) we still denote by q its extension by zero inside the obstacles Bε.
One can easily check that its average on Ω still vanishes and thus q ∈ L2

0(Ω) with q = 0 on Bε.
Using [9, corollary 2.4], there exists a (non unique) w ∈ H1

0 (Ω)
d such that

divw = q on Ω and ∥w∥H1(Ω) ≤ C∥q∥L2(Ω).

Since q = 0 on Bε, we have
divw = 0 in Ω \ Ωε.

Using the restriction operator Rε defined in Lemma 4.7, we have

div (Rεw) = q in Ωε.

Considering ε < 1 in the fourth property of Lemma 4.7, it follows

∥Rεw∥L2(Ωε) + ε∥∇Rεw∥L2(Ωε) ≤ C∥w∥H1(Ω)

and consequently
ε∥∇(Rεw)∥L2(Ωε) ≤ C∥w∥H1(Ω) ≤ C∥q∥L2(Ωε).

Therefore, vdε = Rεw is a solution of (24).

4.3 Correction of the boundary condition

In this section, we build a divergence-free field which satisfies a given boundary condition. Recall
the definition of the curl∗ operator, proposed in [6].

Definition 4.10. The operator curl∗ is defined as:

curl∗ : C1(Rd)d(d−1)/2 −→ C0(Rd)d

A 7−→

 i−1∑
j=1

∂Aji

∂xj
−

d∑
j=i+1

∂Aij

∂xj


1≤i≤d

where A = (Aij)1≤i<j≤d ∈ Rd(d−1)/2.
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A simple computation shows that the image of this curl∗ operator is divergence-free, namely
div curl∗A = 0 for any A ∈ C1(Rd)d(d−1)/2. This is an expected property since curl∗ is an
extension, to any dimension d, of the standard curl operator in 2-d and 3-d. We now state a
preliminary lemma, also adapted from [6]

Lemma 4.11. Let Ω ⊂ Rd be a bounded connected open set with a smooth boundary of class

C3,α, for some 0 < α < 1. Let g in C1,α
(
Ω
)d

with g · n = 0 on ∂Ω. Then there exists A in

C2,α(Ω)d(d−1)/2 such that

curl∗(A) = g on ∂Ω and A = 0 on ∂Ω.

In other words, the vector field curl∗(A) is divergence-free and its trace on ∂Ω coincides with g.

Proof. [6, Lemma 1] ensures that there exists A ∈ C2,α(Ω)d(d−1)/2, with A = 0 on ∂Ω, such
that

∇Aij = (gjni − ginj)n on ∂Ω,

where n is the outward unit normal vector, gi and ni are respectively the ith coordinates of g
and n in the canonical basis of Rd. It remains to check that curl∗(A) = g on ∂Ω. Indeed, we
have on ∂Ω:

(curl∗A)i =
i−1∑
j=1

(ginj − gjni)nj −
d∑

j=i+1

(gjni − ginj)nj

=
d∑

j=1, j ̸=i

gin
2
j −

d∑
j=1, j ̸=i

gjnjni =
d∑

j=1

gin
2
j = gi,

where we used the assumption that g · n = 0 on ∂Ω.

The next step is to localize in the vicinity of the boundary ∂Ω the divergence-free field which
lifts a given boundary condition. To do this, we introduce the following classical cut-off function
as in [3, 11].

Definition 4.12 (Cut-off function). For a small enough constant c > 0, define a neighborhood
of the boundary ∂Ω, denoted by Oε := {x ∈ Ω : dist(x, ∂Ω) ≤ cε} (band of width cε near ∂Ω).
Then we choose a cut-off function θε ∈ C∞(Ω) such that θε(x) = 1 in Oε/2, θε(x) = 0 in Ω\Oε,
and

∥∇θε∥L∞(Ω) ≤ C

ε
, ∥∇2θε∥L∞(Ω) ≤ C

ε2
.

The main result of this section is the following lemma.

Lemma 4.13. For any g ∈ C1,α
(
Ω
)d

with div g = 0 in Ω, g · n = 0 on ∂Ω, there exists
vbε ∈ H1(Ω)d such that supp vbε ⊂ Oε := {x ∈ Ω : dist(x, ∂Ω) < cε} and

vbε = g on ∂Ω, div vbε = 0 in Ω and |vbε|H1(Ω) ≤
C√
ε
∥g∥C1,α(Ω)

where C > 0 is a constant independant of ε.

Remark 4.14. Lemma 4.13 was already proved in [11] in two dimensions. Here, we extend this
result to any dimension.
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Proof. Let g ∈ C1,α
(
Ω
)d

with div g = 0 in Ω, g ·n = 0 on ∂Ω. By virtue of Lemma 4.11, there

exists a function A ∈ C2,α(Ω)d(d−1)/2, such that curl∗(A) = g on ∂Ω. Define:

vbε = curl∗(θεA),

where θε is the cut-off function introduced in Definition 4.12. Obviously, div vbε = 0 in Ω. Then,
vbε = g on ∂Ω since, in the vicinity Oε/2 of ∂Ω, we recall that θε ≡ 1. Finally, it remains to
bound |vbε|H1(Ω). We write

curl∗(θεA) = θεcurl∗(A) + Γ(A,∇θε),

where Γ(A,∇θε) is defined as:

Γ(A,∇θε)i =

i−1∑
j=1

Aji
∂θε

∂xj
−

d∑
j=i+1

Aij
∂θε

∂xj
.

It follows therefore:

|vbε|H1(Ω) ≤ ∥θε∇curl∗(A)∥L2(Oε) + ∥∇θεcurl∗(A)∥L2(Oε) + ∥∇Γ(A,∇θε)∥L2(Oε)

≤ C

(√
ε∥∇∇A∥L∞(Oε) +

1√
ε
∥∇A∥L∞(Oε)

)
+ ∥∇Γ(A,∇θε)∥L2(Oε),

since meas(Oε) ≤ cε, and

∥∇Γ(A,∇θε)∥L2(Oε) ≤ C
(
∥∇θε∥L∞(Oε)∥∇A∥L2(Oε) + ∥∇∇θε∥L∞(Oε)∥A∥L2(Oε)

)
≤ C

(
1

ε
∥∇A∥L2(Oε) +

1

ε2
∥A∥L2(Oε)

)
≤ C

(
1√
ε
∥∇A∥L∞(Ω) +

1

ε
√
ε
∥A∥L∞(Oε)

)
.

We observe now that any point x ∈ Oε can be connected to a point x′ ∈ ∂Ω by a segment of
length not greater than cε lying in Oε. Recalling that A(x′) = 0 and using a Taylor expansion at
order 1 with integral remainder gives |A|(x) ≤ cε∥∇A(z)∥L∞(Oε). Consequently, ∥A∥L∞(Oε) ≤
cε∥∇A∥L∞(Oε) and

∥∇Γ(A,∇θε)∥L2(Oε) ≤
C√
ε
∥∇A∥L∞(Oε),

which concludes the proof.

4.4 Representation of divergence-free fields

A key ingredient in the proof of Theorem 4.1 is a representation of periodic divergence-free and
zero-mean fields as the image of a differential operator, the range of which is always divergence-
free. This representation is given by the following.

Lemma 4.15. Let g ∈ L2
#(Y )d be periodic, satisfying∫

Y
gdy = 0, divy g = 0 in Y.

There exists a (non-unique) periodic solution φ ∈ H1
#(Y )d ∩H2

#(Y )d to the problem{
−∆yφ+∇y divy φ = g in Y,
y → φ(y) Y − periodic,

(25)
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which satisfies, for some constant C > 0,

∥φ∥H2
#(Y ) ≤ C∥g∥L2

#(Y ).

Furthermore, for any ψ ∈ H2
#(Y )d, it holds that

divy (−∆yψ +∇y divy ψ) = 0 in Y.

Remark 4.16. More generally, the identity

div (−∆ψ +∇divψ) = 0 in Rd,

holds true for any vector field ψ ∈ (H2(Rd))d.

Proof. Using Fourier series the periodic solution φ and the periodic right-hand side g are written
as

φ(y) =
∑
ξ∈Zd

φ̂(ξ)e2iπξ·y, g(y) =
∑
ξ∈Zd

ĝ(ξ)e2iπξ·y,

where ĝ(0) = 0 and ĝ(ξ) · ξ = 0 for any ξ ∈ Zd, because of the assumptions on g. Then, (25)
becomes:

4π2|ξ|2φ̂− 4π2(ξ · φ̂)ξ = ĝ. (26)

By writing (26) under matrix form, we have:

Aφ̂ = ĝ, A(ξ) = 4π2
(
|ξ|2Id − ξ ⊗ ξ

)
.

We easily see that ker(A) = span(ξ). Since A is symmetric, we have Im(A) = ker(A)⊥ = {u ∈
Rd s.t. u · ξ = 0} and ĝ ∈ ker(A)⊥. Now, if we restrict the matrix A to its image, it is reduced
to |ξ|2Id. Consequently, its inverse is simply given by |ξ|−2Id which gives the following solution:

φ̂ =
ĝ

4π2|ξ|2
for any ξ ̸= 0,

which is unique, up to the addition of a multiple of ξ. In other words, we obtained a solution φ(y)
of (25) which is unique up to the addition of a constant and of a periodic gradient. Now, recalling
that ξ is an integer vector, we note that:

|φ̂| = |ĝ|
4π2|ξ|2

≤ C|ĝ|, |ξφ̂| ≤ C|ĝ|, |ξξφ̂| ≤ C|ĝ|,

which allows to conclude that φ belongs to H2
#(Y )d.

In view of the proof of Theorem 4.1, Lemma 4.15 is applied to the solution ωi of the cell
problem (6). More precisely, introduce

ωi
′ = ωi − |YF |⟨ωi⟩ = ωi −

∫
Y
ωi,

which satisfies 
divy ωi

′ = 0 on Y,
ωi

′ is Zd − periodic,
ωi

′ has zero mean over Y.

According to Lemma 4.15, there exists a periodic function ψi ∈ H2
#(Y )d such that:

−∆yψi +∇y divy ψi = ωi
′ in Y. (27)

In particular, since ωi ∈ H1
#(Y )d, then ψi ∈ H3

#(Y )d. This regularity cannot be improved since,
although ωi is smooth inside YF , it is not in the full cell Y . In particular, it implies that, at
least for large dimension d, ψi and ∇yψi may not belong to L∞(Y ). This lack of regularity
requires special care in the next subsection.
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4.5 Proof of Theorem 4.1

Inspired by the approximation (13) of the two-scale asymptotic expansion, namely uε ≈ ε2u2+
ε3u3, the main idea is to compare the velocity uε with ε2u2 + ε3u3. The difficulty is that the
velocity correctors u2,u3, built in Section 3, do not satisfy the boundary condition, i.e. u2,u3

do not vanish on ∂Ω, and are not divergence-free. To satisfy this Dirichlet boundary condition
for an approximation of uε, we introduce a cut-off function ηε as in [11].

Definition 4.17. For a small enough constant c > 0, define a neighborhood of the boundary ∂Ω,
denoted by Oε := {x ∈ Ω : dist(x, ∂Ω) ≤ cε} (band of width cε near ∂Ω). Then we choose a
cut-off function ηε ∈ C∞(Ω) such that ηε and all its derivatives vanish on ∂Ω, while ηε(x) = 1
on Ω \Oε and

∥1− ηε∥L2(Ω) ≤ C
√
ε, ∥ηε∥L∞(Ω) = 1, ∥∇ηε∥L∞(Ω) ≤

C

ε
, ∥∇∇ηε∥L∞(Ω) ≤

C

ε2
.

If we simply multiply the approximation ε2u2 + ε3u3 by the cut-off function ηε, of course
the Dirichlet boundary condition will be satisfied on ∂Ω but the divergence of the product is not
under control. Therefore, a more clever use of ηε is required. It turns out that only u2 needs a
special treatment. Recall from (7) that

u2(x, y) =
1

ν
ωi(y)

(
fi(x)−

∂p∗

∂xi
(x)

)
.

The main idea is to decompose ωi as

ωi = ωi
′ + |YF |⟨ωi⟩,

and to use (27) to replace ωi
′ by its representation as derivatives of the periodic function ψi.

Then, the cut-off function is inserted inside this differential representation as

(−∆+∇div ) (ηεψi),

which has the advantage of being divergence-free and vanishing on the boundary ∂Ω. We shall
not apply the cut-off function to the other (non-oscillating) term

1

ν
|YF |⟨ωi⟩

(
fi(x)−

∂p∗

∂xi
(x)

)
≡ |YF |u(x),

where u is divergence-free (because it is the Darcy velocity) and satisfies u · n = 0 on ∂Ω.
To correct this boundary condition we apply Lemma 4.13 to g = |YF |u. The assumptions of
Lemma 4.13 are satisfied, by its definition (9), the Darcy velocity u belongs to C1,α(Ω)d, satisfies
divu = 0 in Ω and u · n = 0 on ∂Ω. Thus Lemma 4.13 ensures that there exists vbε ∈ H1(Ω)d

supported in Oε such that:

div vbε = 0 on Ω, vbε = |YF |u on ∂Ω,

|vbε|H1(Ωε) ≤ C√
ε
∥u∥C1,α(Ω)

(28)

The key observation is that, because of our construction of Ωε, where obstacles are removed
from Ω only if the entire cell is included in Ω, all solid obstacles are uniformly away of the
boundary ∂Ω by a distance of the order of ε. Therefore, in the choice of the cut-off function ηε

(see Definition 4.17), one can choose the constant c small enough so that no obstacles are
contained or intersect the neighborhood Oε of the boundary ∂Ω, where the support of the
derivatives of ηε is restricted.
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Based on the asymptotic expansion of order 3 for the velocity, ε2u2 + ε3u3, we define the
following velocity estimator:

uε,3(x) =
ε2

ν
|YF |⟨ωi⟩

(
fi(x)−

∂p∗

∂xi
(x)

)
− ε2vbε

+
ε4

ν
(−∆+∇div )

(
ηε(x)ψi

(x
ε

))(
fi(x)−

∂p∗

∂xi
(x)

)
+

ε3

ν
γij

(x
ε

)
ηε(x)

∂

∂xj

(
fi(x)−

∂p∗

∂xi
(x)

)
− vdε,

(29)

where vbε, defined in (28), corrects the boundary condition of the first term above and vdε ∈
H1

0 (Ω
ε)d is going to be defined in the proof of Lemma 4.18 to correct the divergence-free condition

of uε,3. Recall that ψi is defined by (27), ωi by (6), γij by (12) and all functions are extended
by 0 inside the obstacles so that uε,3 is well defined on the whole Ω. Similarly, we define
an estimator for the pressure, which is exactly the asymptotic expansion at first order of the
pressure (no need of using a cut-off function), as:

pε,1 = p∗ + εp1, (30)

where p∗ is the homogenized pressure, solution of the Darcy problem (10) and p1 is defined by
(7).

Lemma 4.18. There exists vdε ∈ H1
0 (Ω

ε)d such that the velocity estimator uε,3, defined by
(29), satisfies:

uε,3 = ε2u2 + ε3u3 − vdε in Ω \Oε, (31)

uε,3 = 0 on ∂Ω, (32)

uε,3 = 0 on ∂Bε, (33)

divuε,3 = 0 in Ω, (34)

and
|vdε|H1(Ωε) ≤ Cε

3
2 ∥f −∇p∗∥H2(Ω)∩C1,α(Ω), (35)

with C independent of ε.

Proof. To check (31), simply recall that ηε ≡ 1 in Ω \Oε. Thus by virtue of (27) the second line
of (29) simplifies and, combined with the first line, yields ε2u2, since vbε is supported in Oε.
Similarly, the third line of (29) coincides with ε3u3 in Ω \Oε.

To check (32), we recognize that the first line of (29) vanishes on ∂Ω by construction of vbε,
while the second and third line vanish too because ηε and all its derivatives vanish on ∂Ω, as
well as vdε by definition.

By construction of the cut-off function and Assumption 2.1 on the solid obstacles which
stay away from the boundary ∂Ω, we have ηε ≡ 1 in the vicinity of Bε. Therefore uε,3 =
ε2u2 + ε3u3 − vdε on ∂Bε. Furthermore, since ωi and γij vanish on YS , as well as vdε on ∂Bε

by definition, we deduce that (33) holds true.
It remains to compute the divergence of the estimator uε,3 and to prove (34) and (35).

The first line of (29) is divergence-free by construction and recall that div (−∆ + ∇div ) = 0.
Therefore,

divuε,3(x) =
ε4

ν
(−∆+∇div )

(
ηε(x)ψi

(x
ε

))
·∇(fi − ∂ip

∗)(x)

+
ε3

ν
div

(
γij

(x
ε

)
ηε(x)

∂

∂xj
(fi − ∂ip

∗)(x)

)
− div vdε,
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where, for the sake of clarity, the partial derivative with respect to xi is simply denoted by ∂i,
An easy computation shows that:

(−∆+∇div )(ψi

(x
ε

)
ηε(x)) =

1

ε2
ηε(x)(−∆y +∇y divy )ψi

(x
ε

)
+

2

ε
(∇ηε(x) ·∇yψi

(x
ε

)
− divy ψi

(x
ε

)
∇ηε(x)) + (−ψi

(x
ε

)
∆ηε(x) +∇∇ηε(x)ψi

(x
ε

)
),

which leads to
divuε,3 = Lε +Gε − div vdε,

where Lε is made of terms of order 2:

Lε =
ε2

ν
ηε(x)(−∆y +∇y divy )ψi

(x
ε

)
·∇(fi − ∂ip

∗)(x)

+
ε2

ν
ηε(x) divy γij

(x
ε

) ∂

∂xj
(fi − ∂ip

∗)(x),

and Gε consists of the remaining terms of order 3 and 4:

Gε =
ε3

ν

(
∇ηε(x) divy ψi

(x
ε

)
−∇yψi

(x
ε

)
∇ηε(x)

)
·∇(fi − ∂ip

∗)(x)

+
ε3

ν
γij

(x
ε

)
·∇ηε(x)

∂

∂xj
(fi − ∂ip

∗)(x) +
ε3

ν
γij

(x
ε

)
ηε(x) ·∇ ∂

∂xj
(fi − ∂ip

∗)(x)

+
ε4

ν

(
−ψi

(x
ε

)
∆ηε(x) +∇∇ηε(x)ψi

(x
ε

))
·∇(fi − ∂ip

∗)(x).

(36)

Recalling that divy γij = −ωi · ej + ⟨ωi · ej⟩ and (−∆y +∇y divy )ψi = ωi − |YF |⟨ωi⟩, one can
check that Lε vanishes since:

Lε =
ε2

ν
ηε(x)(ωi − |YF |⟨ωi⟩) ·∇(fi − ∂ip

∗)(x)− ε2

ν
ηε(x)(ωi − ⟨ωi⟩) ·∇(fi − ∂ip

∗)(x)

=
ε2

ν
ηε(x)(1− |YF |)⟨ωi⟩ ·∇(fi − ∂ip

∗)(x) = 0,

in view of the homogenized equation (10). Therefore, the estimator divergence simplifies as

divuε,3 = Gε − div vdε

and we now prove the following bound

∥Gε∥L2(Ωε) ≤ Cε
5
2 ∥f −∇p∗∥H2(Ω)∩C1,α(Ω). (37)

Indeed, the third term of Gε in (36) is bounded by Cε3∥(fi − ∂ip
∗)∥H2(Ω) since ∥ηε∥L∞(Ω) = 1

and γij ∈ Hm+2(YF )
d ⊂ L∞(YF )

d by Sobolev embeddings (note that this bound is slightly
better than (37) and it is the only term in (36) to involve the H2-norm). All other terms
in (36) feature derivatives of ηε and have thus compact supports in Oε. In all those terms we
bound (fi − ∂ip

∗) by its C1,α-norm. Although γij is bounded in L∞(YF )
d for the second term

of (36), it is not clear that it is the case for ψi and ∇yψi, at least for any space dimension.
Therefore, we rely on another argument that we explain on the first term of (36) (the other ones
being treated similarly). Since ∥∇ηε∥L∞(Ω) ≤ Cε−1, this first term is bounded in L2(Ωε) by

Cε2∥(fi − ∂ip
∗)∥C1,α(Ω)

(∫
Oε

|∇yψi

(x
ε

)
|2dx

)1/2

≤ Cε2∥(fi − ∂ip
∗)∥C1,α(Ω)

(
nOεεd∥∇yψi (y)∥2L2(YF )

)1/2
, (38)
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where we used the periodicity of ∇yψi and nOε = O(ε−d+1) is the number of cells Y ε
i which

cover Oε. This implies exactly the bound (37). Finally, remark that Gε has zero mean on Ωε

since ∫
Ωε

div (uε,3 + vdε) =

∫
∂Ωε

(uε,3 + vdε) · n = 0,

because uε,3 and vdε vanish on ∂Bε and ∂Ω, Consequently, to prove (34) we can rely on
Lemma 4.9 which ensures that there exists vdε ∈ H1

0 (Ω
ε)d such that

div vdε = Gε and |vdε|H1(Ωε) ≤
C

ε
∥Gε∥L2(Ωε) ≤ Cε

3
2 ∥f −∇p∗∥H2(Ω)∩C1,α(Ω),

which proves (34) and (35).

Now that all terms in the velocity estimator (29) are well defined, we turn to the estimates for
the residuals of the homogenization process. Define the velocity residual Ruε and the pressure
residual Rpε by:

Ruε = uε − uε,3, Rpε = pε − pε,1,

where the estimators uε,3 and pε,1 are given respectively in (29) and (30).

Lemma 4.19. The velocity and pressure homogenization residuals verify:
−ν∆Ruε +∇Rpε = Fε + divHε in Ωε,

divRuε = 0 in Ωε,
Ruε = 0 on ∂Bε,
Ruε = 0 on ∂Ω,

(39)

where the source terms are bounded by:

∥Fε∥L2(Ωε) ≤ Cε∥f −∇p∗∥H2(Ω)∩C1,α(Ω), (40)

∥Hε∥L2(Ωε) ≤ Cε
3
2 ∥f −∇p∗∥H2(Ω)∩C1,α(Ω), (41)

with C independent of ε.

Proof. Obviously, divRuε = 0 in Ωε and Ruε = 0 on ∂Bε ∪ ∂Ω. We decompose the velocity
residual as Ruε = (uε − ε2u2) + (ε2u2 − uε,3) which leads to the first line of (39), where:

Fε = −ν∆(uε − ε2u2) +∇(pε − pε,1) and Hε = −ν∇(ε2u2 − uε,3).

To prove estimate (40) for Fε, we compute:

Fε = f −∇p∗ + (∆yωi −∇yπi)
(x
ε

)
(fi − ∂ip

∗)(x) + 2ε∇yωi

(x
ε

)
∇(fi − ∂ip

∗)(x)

+ ε2ωi

(x
ε

)
∆(fi − ∂ip

∗)(x)− επi

(x
ε

)
∇(fi − ∂ip

∗)(x)

and, rearranging the terms,

Fε = (∆yωi −∇yπi + ei)
(x
ε

)
(fi − ∂ip

∗)(x)

+ 2ε∇yωi

(x
ε

)
∇(fi − ∂ip

∗)(x)− επi

(x
ε

)
∇(fi − ∂ip

∗)(x)

+ ε2ωi

(x
ε

)
∆(fi − ∂ip

∗)(x).

(42)

The first term in (42) actually vanishes because of the cell equation (6). The next three terms
above are of order ε or higher. To bound the fourth term requires the H2 regularity of (fi−∂ip

∗),
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while its C1,α regularity is sufficient for all other terms. In the end, we deduce the bound (40)
from (42).

Next, to prove estimate (41) for Hε, we rewrite:

uε,3 − ε2u2 =
ε2

ν
(1− ηε(x))(|YF |⟨ωi⟩ − ωi

(x
ε

)
)(fi − ∂ip

∗)(x)− ε2vbε − vdε

+
ε3

ν
ηε(x)γij

(x
ε

)
∂j(fi − ∂ip

∗)(x)

+
ε3

ν

(
∇ηε(x) divy ψi

(x
ε

)
−∇yψi

(x
ε

)
∇ηε(x)

)
(fi − ∂ip

∗)(x)

+
ε4

ν

(
−ψi

(x
ε

)
∆ηε(x) +∇∇ηε(x)ψi

(x
ε

))
(fi − ∂ip

∗)(x).

(43)

The gradient of (43), equal to Hε up to a ν-factor, is:

∇(uε,3 − ε2u2) = −ε2∇vbε −∇vdε −
ε2

ν
∇ηε(|YF |⟨ωi⟩ − ωi) (fi − ∂ip

∗)

− ε

ν
(1− ηε)∇yωi (fi − ∂ip

∗) +
ε2

ν
(∇ηε∇y divy ψi −∇y∇yψi∇ηε) (fi − ∂ip

∗)

+
ε3

ν
(∇∇ηε divy ψi −∇yψi∇∇ηε) (fi − ∂ip

∗)

+
ε3

ν
(−∇yψi∆ηε + (∇∇ηε)∇yψi) (fi − ∂ip

∗)

+
ε4

ν
(−ψi∇∆ηε +∇(∇∇ηε)ψi) (fi − ∂ip

∗)

+
ε2

ν
(1− ηε)(|YF |⟨ωi⟩ − ωi)∇ (fi − ∂ip

∗) +
ε3

ν
∇ηεγij∂j (fi − ∂ip

∗)

+
ε3

ν
(∇ηε divy ψi −∇yψi∇ηε)∇ (fi − ∂ip

∗)

+
ε4

ν
(−ψi∆ηε + (∇∇ηε)ψi)∇ (fi − ∂ip

∗)

+
ε2

ν
ηε∇yγij∂j (fi − ∂ip

∗) +
ε3

ν
ηεγij∇∂j (fi − ∂ip

∗) .

(44)

We bound (44) in the same way as for the estimate of Gε. The first two terms of (44) are
bounded by (28) and (35). The last term of (44) is the only one requiring the H2-regularity of
(fi − ∂ip

∗): for all other terms the C1,α-regularity of (fi − ∂ip
∗) is sufficient. By Lemma 3.3 the

cell solutions ωi, γij and the gradient ∇yωi belong to L∞(Y ). This is not the case for ψi and
its derivatives (at least for any space dimension d): therefore we rely on a similar trick as in (38)
for all terms involving ψi. Using the bounds (4.17) on the cut-off function ηε, it follows that
the terms in the first five lines of (44) are of order ε3/2. The terms of the three following lines
are of order ε5/2 and eventually in the last line the terms are respectively of order ε2 and ε3.
We do not detail the bounds except for the seemingly higher order term

∥ ε
ν
(1− ηε)∇yωi (fi − ∂ip

∗) ∥L2(Ωε) ≤ Cε∥1− ηε∥L2(Ωε)∥∇yωi∥L∞(Y )∥(fi − ∂ip
∗)∥C1,α(Ω)

≤ Cε3/2∥(fi − ∂ip
∗)∥C1,α(Ω)

because of (4.17). In the end, we deduce estimate (41).

Remark 4.20. We cannot have a better estimate due the presence of boundary layers. Indeed,
the lower order

√
ε is due to the boundary condition uε = 0 on ∂Ω, which worsens the ap-

proximation near the boundary. Technically, this is taken into account by the introduction of
the cut-off function ηε in the proof. This term satisfies the bound |ηε|H1(Ω) ≤ C√

ε
, which is the

origin of the
√
ε-order in the estimate.
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Since the residual Ruε is divergence-free and belongs to H1
0 (Ω

ε)d, it can be used as test
function, leading to

ν

∫
Ωε

∇Ruε ·∇Ruε = ν

∫
Ωε

∇Ruε ·∇Ruε −
∫
Ωε

RpεdivRuε

=

∫
Ωε

Fε ·Ruε −
∫
Ωε

Hε ·∇Ruε

≤ ∥Fε∥L2(Ωε)∥Ruε∥L2(Ωε) + ∥Hε∥L2(Ωε)|Ruε |H1(Ωε).

Using estimate (40) and the Poincaré inequality in a perforated domain (Lemma 4.6), it follows:

∥Fε∥L2(Ωε)∥Ruε∥L2(Ωε) ≤ Cε2∥f −∇p∗∥H2(Ω)∩C1,α(Ω)|Ruε |H1(Ωε).

Then, using (41), we conclude that:

|Ruε |H1(Ωε) ≤ Cε
3
2 ∥f −∇p∗∥H2(Ω)∩C1,α(Ω). (45)

Now, writing uε − ε2u2 = Ruε + uε,3 − ε2u2, using (45) and (41) yields:

|uε − ε2u2|H1(Ωε) ≤ |Ruε |H1(Ωε)+∥Hε∥L2(Ωε) ≤ Cε
3
2 ∥f −∇p∗∥H2(Ω)∩C1,α(Ω),

which is precisely the H1-estimate (16). The L2-estimate (17) is then a consequence of the
Poincaré inequality in perforated domains (Lemma 4.6). To prove the remaining pressure es-
timate (15), recall that pressure is always defined up to a constant and choose the original
pressure pε, the homogenized pressure p∗ and the pressure estimator pε,1 with zero mean in Ωε

(if it is not the case, it suffices to consider pε,1 = p∗ + ε(p1 −
∫
Ωε p1)). Lemma 4.9 ensures the

existence of v ∈ H1
0 (Ω

ε)d such that div v = pε − pε,1. Then by integration by parts:∫
Ωε

(pε − pε,1)
2 =

∫
Ωε

(pε − pε,1)div v = −
∫
Ωε

Fε · v +

∫
Ωε

ν∇(uε − ε2u2) ·∇v

≤ Cε
3
2 ∥f −∇p∗∥H2(Ω)∩C1,α(Ω)|v|H1(Ωε) ≤ Cε

1
2 ∥f −∇p∗∥H2(Ω)∩C1,α(Ω)∥pε − pε,1∥L2(Ωε),

using the estimate in Lemma 4.9. Thus,

∥pε − p∗∥L2(Ωε) ≤ ∥pε − pε,1∥L2(Ωε) + ∥pε,1 − p∗∥L2(Ωε) ≤ Cε
1
2 ∥f −∇p∗∥H2(Ω)∩C1,α(Ω),

since (pε,1 − p∗) is of order ε as seen from (30), which concludes the proof of Theorem 4.1.
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