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Abstract

The relation between quantities resulting from fracture energetics and those describing the geometrical
structure of a surface is of fundamental importance in investigating the physical nature of a fracture.
Since the Mandelbrot's works, fractal geometry has been extensively applied to characterize the
roughness of fracture surfaces and to correlate it with mechanical properties. We will ®rst make a survey
of several experimental methods to determine the fractal dimension, Df, according to the roughness of
fracture surfaces. Then we will discuss the experimental results reported in the bibliography and the
relations inferred to correlate the fractal dimension of fracture surfaces with mechanical properties.
These results show that a general conclusion cannot easily be drawn. Some works report a positive
variation of fracture toughness along with Df and others a negative one. To other researchers, there is
no correlation and the fractal dimension of the fracture surface is a universal constant. The discrepancy
between these results is related to the methods used to calculate the fractal dimension. Theoretical and
experimental problems exist and have to be solved before correlating the fractal dimension to
mechanical behaviour. # 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

As early as 1947, Kostron [1] reported that the measured values for the size and area
fractions of microstructural features depend on the magni®cation used to examine the
materials. It is also now well known that the length of a coastline is dependent on the
magni®cation [2]. But extensive studies on these phenomena in the ®eld of materials sciences
are more recent and were developed after the works of Mandelbrot [3] who introduced the
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fractal concept. Many topics in materials sciences, computers or mechanics like percolation [4],
di�usion [5], roughness [6] or fracture, have been studied through fractal analyses. These
developments are generally associated with quantitative fractography using image analysis
which is a powerful tool to study fractographic images [7] associated with mathematical
morphology such as dilation for example. Numerous researchers have reported on the fact that
fracture surfaces are self-similar and can be analysed by fractal geometry [8, 9]. We will ®rst
present and discuss di�erent methods to evaluate the fractal dimension. We will then present
results found from our bibliography concerning correlations between mechanical properties
and fractal dimension. These results are discussed and two possible conclusions are drawn:
®rstly, the fractal dimension is correlated with mechanical properties and the question consists
in explaining the relation we obtained from a physical point of view [10, 11]; secondly, the
fractal dimension is universal for all fracture paths [12]. These two possibilities have been
reported by many papers published over the last 10 years. However we wonder about the
adequacy of the methods used to calculate the fractal dimension.

2. Determination of the fractal dimension

2.1. De®nitions

Generally, all the objects studied in mathematics or physics are continuous, linear and
smooth, but Nature shows us that such is not always the case. Natural objects are generally
rough and discontinuous. As shown in Fig. 1, the Von Koch ¯ake is a typical fractal object
which cannot be described with Euclidean geometry. Firstly, when the number of iterations
tends to be in®nite, the total length increases inde®nitely, whereas the surface is ®nite.
Secondly, the Von Koch ¯ake is self-similar: each part of this object is the same as the whole
for all ranges of scale investigated. In this case, we can determine simply the fractal dimension,
Df , which characterizes in fact the irregularity of the object. Df is a decimal number which
exceeds the Euclidean dimension E. For the Von Koch ¯ake shown in Fig. 1, in which the
initiator generates four patterns (N= 4) with a ratio r for the new fractal generator (r = 1/3)
the fractal dimension is found to be:

Df � lnN

ln 1=r
� ln 4

ln 3
� 1:2619: �1�

Through this example, we can see that the fractal dimension Df exceeds the Euclidean
dimension, E, which is unity. Df will take place for a curve between Df = 1 (smooth line) and
Df=2 (Euclidean dimension of surfaces). The dimension increases as tortuosity increases. In
the same way, the fractal dimension of a surface varies between 2 and 3. To avoid problems
resulting from the comparison of di�erent values, we prefer to use the fractal dimensional
increment D(D= DfÿE) which corresponds to the decimal part of the fractal dimension and
which varies between 0 and 1.
It is very interesting to see that the theory about non-integer dimension is based on

mathematical objects and analyses developed 80 or 100 years ago (Hausdor�, Minkowski, etc.),
but the applications in the ®eld of materials sciences are only recent (15 years). The fact that
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when a material is fractured by impact loading, the fracture surface that is formed is irregular,
was found to be statistically self-similar over two orders of magni®cation by di�erent
authors [8, 9] and it can be considered fractal.
The mathematical aspects will not be introduced here but the reader should consult

Tricot [13] who explained the di�erent approaches carried out by Hausdor�, Besicovitch,
Bouligand, Minkowski, Borel and Cantor at the outset of the century. The methods used to
determine the fractal dimension are based on the concept of recovery. To resume, it is
interesting to note that the fractal increment of a G set is generally given by the equation:

D�G� � lim
E40

1ÿ lnL�GE�
ln E

� �
�2�

where L is a measure of the G set and E the measure length.
Three main methods are generally applied to analyse the fractal dimension of the fractured

surface of a material. Firstly, in the `Vertical Section Method', the fractured specimens are
mounted in epoxy resin and cut to reveal the vertical sections through the fractured surfaces.
They were then polished carefully and the fractal dimension of the pro®le was calculated by
means of the compass or the Minkowski method. Secondly, the roughness of the fractured
surface is measured by pro®lometer analyses (pro®lometer, confocal microscopy, etc.) and
then, the fractal dimension of the pro®le can be determined for example with the box counting
or the Variation method. Thirdly, the sample can be coated and polished parallel to the crack
plane and then, the Slit Island Method (S.I.M.) can be used. We will then explain all these
methods.

2.2. The compass method

Let C be a curve, N the number of sub-parts in which the initial curve is divided and r the
length of each sub-part (Fig. 2). The measured length L(r) of the curve will be L(r) = N(r).r
and the fractal dimension is obtained from the slope of the ln(N(r)) versus ln(1/r) curve using a
least-squares ®tting procedure.

D � lim
r40

1ÿ ln�N�r��
ln�1=r�

� �
�3�

as N(r) = L(r)/r, and if we assume through a heuristic argument that a linear relation exists

Fig. 1. Example of the Von Koch ¯ake with its generator, initiator and after three iterations.
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between ln(N(r)) and ln(1/r), the following relation is obtained:

ln�L�r��0D ln�r�: �4�
Underwood and Banerji [11] proposed to normalise length L:

L�r� � L0r
ÿD �5�

or

ln�L�r�� � ÿD ln�r� � ln�L0�: �6�
Obviously the dimensional equation is not respected: the left shows a Length while the other
side shows a LengthÿD. To overcome this di�culty, Huang et al. [14] proposed the following
correction:

L � L0
1�DrÿD �7�

where r= L0, L= L0, but since D is variable, L 1+D
0 has no physical meaning. This theoretical

point of view must be improved.
This method must also be avoided because of a Mandelbrot paper [15] in which he explains

the importance of the yardstick value. If the value is too small or too great, the fractal
dimension can often be wrong and meaningless. The Minkowski method will then be preferred.

2.3. The Minkowski method

When a surface pro®le G is covered by discs of radius r [7], we obtain a `sausage' named the
`Minkowski sausage' (Fig. 3). This sausage has an area A(Gr) and a fractal increment D:

D � lim
r40

1ÿ lnA�Gr�
ln�r�

� �
: �8�

If the pro®le is fractal, the log±log plot of the sausage area versus the disc radius is generally
reported to be linear and independent of the scale (Fig. 4). Keustermans [16] gives three pieces
of advice for a fractal analysis. Firstly, the pro®le can have locally a morphology which is not
the same as for the average pro®le. Secondly, rmax must be small vis-aÁ -vis the length of the

Fig. 2. Compass method. The polygonal line associated with the AB curve is composed by segments of the same
length r.
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pro®le (for example rmax<L/6). Finally, two or three decades of magni®cation are necessary to
verify the fractal hypothesis. Many authors [8, 11, 17] obtained a log±log plot with a sigmoõÈ dal
appearance instead of a linear curve, and a variable D. The deviation from the linearity could
be explained by a di�erence between the characteristic size for the micro and macrostructure in
relation with the fracture size. Furthermore, according to these authors, the fractal dimension
varies. However, these results can be explained by the non-respect of Keusterman's
precautions. This method is often used because it is simple to perform through image analysis.
However, some problems can appear in image analysis, and we will now describe physical

problems met when calculating the fractal dimension using this technique.

(i) The material investigated and the resin used to embed it do not have the same hardness. As
a consequence polishing leads to a di�erence between the two levels and microscopic
observations give a bad resolution and a crack pro®le less tortuous than in reality. It has
been proved that the lack of resolution is equivalent to ®ltering the pro®le by a low pass
®lter, and decreases the calculated fractal dimension.

(ii) When the Minkowski sausage method or another technique based on image analysis are
applied, we have to transform digitalized images de®ned in grey level into binary ones.
Value `true' de®nes the material and value `false' de®nes resin. We obtain all the grey level
at the interface and the threshold used to scatter grey level image to binary one introduces

Fig. 3. Example of Minkowski sausage.

Fig. 4. Example of log±log plot between log (area of the sausage) and log (disk radius).
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an artefact in the interface: the threshold used to get a binary image de®nes a crack pro®le
that is not the right one.

(iii) The Minkowski fractal dimension is obtained by covering pro®les with balls of radii r and
the fractal dimension is obtained by studying the convergence of a limit function when r
decreases. With digitalized images, when r decreases, the discretization e�ect increases
because the balls could not be considered as circular. So an artefact is introduced. We
studied fractal curves (Knopp and Weierstrass function) [13] with an image analyser
(512 � 512 pixels) and applied the Minkowski algorithm. It could be observed (Fig. 5) that
the theoretical fractal dimension is never obtained. For the highest fractal dimension, the
maximal error is over 30% of the range of the fractal dimension, without microscopy
artefacts.

2.4. The box counting method

This method applies simply when data ®les of pro®le roughness are obtained by
pro®lometering techniques, confocal microscopy [18] or back-scattered electron [8]. Fig. 6
shows schematically the method used to obtained the fractal dimension. If NZ is the number of

Fig. 5. Plot of the theoretical fractal dimension of the Knopp and Weierstrass function calculated by the Minkowski
method with image analyser on a 512*512 pixels image. The straight line de®nes nil error.

Fig. 6. Box counting method. A grid covered the curve and the log (number of squares) is plot versus log (Z).
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square boxes of size Z required to cover the length of the line, the area obtained is NZZ
2 and

the fractal increment is:

D � lim
Z40

1ÿ lnNZZ2

ln Z

� �
: �9�

With the data ®le, this method can simply give the fractal dimension but it is not very precise.

2.5. The Variation method

Introduced by Tricot et al. [13, 19±21], the Variation method is based on the Z-oscillation
(Fig. 7). For a G-curve parametred by z(t) in [a, b], one can de®ne the oscillation as:

oscZ�t� � sup
jtÿt0j�Z

�z�t0� ÿ z�t�� ÿ inf
jtÿt0j�Z

�z�t0� ÿ z�t��: �10�

An Z-oscillation is associated with a given t. The box area is replaced by the variation:

varZ�z� �
�b
a

oscZ�t� dt �11�

and the fractal dimension increment D is given by:

D � lim
Z40

1ÿ ln varZ�z�
ln Z

� �
: �12�

We have tested this method on mathematical curves used to simulate a fractal surface pro®le
as Weierstrass±Mandelbrot, Knopp or Brownian motion with well known fractal dimension. A
complete study of those curves will soon be published but we will only present here three
remarks. At ®rst, there is a problem at the borders. When the Z-oscillation is calculated, a 2Z
large window is considered. Or, when t < a + Z or t>bÿ Z, oscillations are not de®ned.
Dubuc et al. proposed [20] to take the calculated value for a + Z if points are located in [a,

Fig. 7. Z-oscillation of z(t) used in the variation method.
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a + Z] and the calculated value for bÿ Z if points are located in [bÿ Z, b]. It seems however

more appropriate to calculate the fractal dimension with the points which are in [a + Z, bÿ Z]
only. The second problem is related to the choice of the Zmax value as arises in the Minkowski

method. If Zmax is too high, the local oscillations can be neglected. However, for a curve with a

high fractal dimension which presents many irregularities, we cannot neglect them. The choice

of Zmax will therefore depend on the irregularity of the pro®le. Finally, the number of points

used to calculate the Z-oscillation is a very important parameter. 1000 points are generally

needed in a 2Z interval to obtain a precision in the Z-oscillation calculus of 1%. So, if we use a

®le of 1024 points (for example obtained by confocal microscopy) and if we suppose that

pro®le looks like a Weierstrass graph, 1024 � 1000 points are needed to limit the calculated

error to less than 1%. It is very di�cult with an experimental pro®le on a metallic fracture

sample to record such a high number of points. Therefore, the method has to be improved and

we proposed a method to calculate the fractal dimension avoiding these artefacts: this method,

called the ANAM method [22], is based on the minimization of the autocorrelation by taking

the average of the local di�erence of the pro®le on the whole interval Z. We introduced the K a
Z

function de®ned as:

Ka
Z �

1

bÿ a

Z x�b

x�a

1

Z2

Z Z

t1�0

Z Z

t2�0

����z�t� t1� ÿ f�tÿ t2� ja dt1 dt2

� �1=a
dt �13�

which gives the fractal increment:

D � lim
Z40

1ÿ lnKa
Z

ln Z

� �
�14�

by linear regression of log K a
Z vs log Z for di�erent Z values.

However, as fractal curves are not derivable over all the de®nition interval, it is then di�cult

to estimate the error. As discretization implies errors which rise exponentially with the fractal

dimension, the number of points we need to calculate A(Gr) with a given approximation rise

exponentially with the fractal dimension. It is then necessary to modelize the error so the
following relation is stated [23]:

VARZ � dZD � e

Z
; �15�

where d and e are two constants. Applied to the ANAM method, we obtain:

Ka
Z � d 0ZD � e0

Z
: �16�

We have to ®nd D, d 0, e 0, which minimize this function by non-linear regression. In fact, there

is no mathematical reason, except for the discretization phenomenon, so that VARZ or K a
Z is a

function with a 1/Z term. By statistical analysis, we take coe�cient e or e 0 only if its value is

signi®cantly di�erent from 0 (Student's test). Applied on the Weierstrass Mandelbrot curves

with 1000 points, the ANAM method gives better results than the Variation one and the

correction of the discretization error improves both (Fig. 8).
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On the other hand, when a pro®le is recorded by confocal microscopy, a noise is
superimposed on the material signal (Fig. 9). For example, if a white noise is added to the true
signal, the fractal dimension tends to approach the white noise fractal dimension (i.e. 2). We
have just shown that the convergence criteria used to calculate the fractal dimension were
computed at di�erent scales. The results we obtained depend on the scale used:

. small scaleÐhigh frequency artefact (e.g. noise);

. large scaleÐlow frequency artefact (e.g. perpendicularly of the sample to the measure
instrument).

The calculation of the fractal dimension of the crack pro®le is calculated by a least square
regression applied to a function that depends on the scale versus the scale. So we do not
measure the intrinsic crack fractal dimension but the fractal dimension on a set of di�erent
phenomena and the result depends on the di�erent scale where the fractal dimensions are

Fig. 8. Plot of the theoretical fractal dimension of the Weierstrass function versus the computed fractal dimension.

Fractal dimensions are computed by Variation and ANAM methods with or without error correction. The straight
line de®nes nil error.

Fig. 9. Example of pro®le obtained by confocal microscopy and analysed with a computer.
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calculated. We objectively believe that the fractal dimensions commonly reported in the
bibliography are not the right ones for crack pro®les and correspond to a number that depends
on the experimental method, on the low and high frequency noise and to some extent on the
crack pro®le itself. As a consequence, before computing a fractal dimension, all noises have to
be studied. A correction was proposed by Lange et al. [18] who introduced a light smoothing
to diminish the noise, but the roughness of the pro®le is a�ected by the degree of smoothing. It
then seems di�cult to correlate fractal dimension with mechanical characteristic through this
method.

2.6. The slit island method (SIM)

This method, proposed by Mandelbrot et al. [10] to measure the fractal dimension of
fracture surfaces, consists of a ®rst attempt to correlate the fractal dimension with the
mechanical properties of fractured materials. Since this ®rst work, there has been considerable
research and this method has been widely used. The SIM starting point is based on the
assumption that the fractal dimension of a coastline of geometrically similar islands, resulting
from the intersection of the fractured surface by a plane is Df=D 0fÿ1, if the fractal dimension
of the surface is D 0f.
Experimentally, the surfaces of the fractured specimens are electrolytically plated with nickel

or chromium in order to preserve the details of the fractured surface, mounted in a resin and
then polished parallel to the fracture plane. After etching, the etched material appears like grey
`islands' surrounded by bright areas of nickel called `lakes' . The islands contain `lakes within
islands' and `islands within lakes' but generally only the former are taken into account [10].
The distribution of islands and lake areas and that of islands and lake perimeters of random
sections exhibit hyperbolic distributions analogous to those found in geographic islands and
lakes [24].
In The Fractal Geometry of Nature [25], Mandelbrot extends the relationship between the

perimeter and area for a regular geometric ®gure to irregular ones. The theoretical base of the
method considers that the ratio:

C�r� � �SPi�r��1=D0f
�SAi�r��1=2

�17�

is a constant, independent of the shapes and the sizes of the islands and independent of the
length of the yardstick r used to measure the perimeter Pi(r) and the area Ai(r) of the ith island
(in spite of the fact that the area is ®nite but the perimeter length should be in®nite because the
perimeter is fractal).
Usually, the perimeter and area of the islands (generally 100 islands or more) are measured

by using an electronic planimeter, by digitizing the island perimeter on a computer, or by
quantitative image-analysis algorithms. The length of the coastlines of the slit islands is
generally measured with a ®xed scale for each successive section.
The fractal dimension increment D is calculated by plotting the variation of the logarithm of

the area (in ordinate) versus the logarithm of the perimeter, for all the islands of each layer
examined. D is obtained from the slope 2/Df of the straight line obtained by linear regression
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analysis. Di�erent magni®cations are used to obtain length measurements over a wide range of
scales (typically 2±4 order of magnitude for the perimeter range) and imply the fractal
character of the fractured surface. Mandelbrot et al. [10] claimed that `such linear relationships
among all variable data while covering such a broad range of sizes are almost unique in
metallurgy'. For Charpy specimens of 300 grade maraging steel, heat treated between 300 and
4308C and tested at room temperature, Mandelbrot et al. [10] obtained a negative relation

Table 1
Main usual results of relations between the fractal increment and the mechanical properties

Material

investigated

Mechanical

properties

Testing

variable

Mechanical

properties range

D range Method D Variation

M.P.
(D)

Ref.

300 Maraging
steel

Charpy Tempering 35±160 (J) 0.1±0.27 SIM ÿ 10

AISI 4340 Fracture X Tempering X 0.072±0.091 VSM + R X 11
HSLA steel Charpy T, test 5±35 (J) 0.01±0.53 SIM + 28
HSLA steel Charpy T, test 5±35 (J) 0.012±0.036 P O 28

30CrMnSiNi2 KISCC Tempering 19±57 (MPa
����
m
p

) 0.08±0.12 VSM + R + 77
4340 steel Bend. Cor. T. Q.,Method X 0.594±0.753 SIM X 26
4340 steel Bend. Cor. T. Q., Method X 0.063±0.55 VSM X 26

24SiMnCrNi2A KIC Tempering 90±150 (MPa
����
m
p

) 0.12±0.22 SIM ÿ 37
30CrMnSiNi2A KIC T, Test 60±105 (MPa

����
m
p

) 0.11±0.18 SIM ÿ 37
Dual phase CVN Tempering 4.9±8.2 (J) 0.2±0.8 SIM ÿ 38
Dual phase Fatigue

(DKth)

Martensite % 8±17 (MPa
����
m
p

) 0.09±0.22 SIM + 41

Al-SiC KIC Material 8.7±36 (MPa
����
m
p

) 0.084±0.248 R 55
Resin/C. comp. Bending Carbon ®bre % 1.2±1.6 (MPa

����
m
p

) 0.1±0.38 SIM ÿ 39

Al alloy KQ Heat treatment 28.5±45 (MPa
����
m
p

) 0.18±0.25 Cor. function = 78
7475 Al alloy Tensile Grain diameter X 0.143±0.362 VSM X 79
Ti Alloy 6211 Tensile Method X 0.087±0.126 VSM X 8

Ti Alloy 6211 Tensile Method X 0.171 SEM pro®le X 8
Ti Alloy 6211 Tensile Method X 0.32 SIM X 8
TA6V2XZr DTE Zr % 180±380 (ft.lb) 0.41±0.46 SIM O 17
TA6V2XZr DTE Zr % 180±380 (ft.lb) 0.03±0.11 VSM O 17

Ti Alloy Tensile Tempering 900±950 MPa 0.78±0.91 SIM O 44
Cement KIC Material 0.38±0.59 (MPa

����
m
p

) 0.085±0.117 Confocal + R + 18
Concrete KIC Material 800±1300 (Psi

���������
inch
p

) 0.065±0.12 P + BC ÿ 40

Concrete KIC Material 1.6±5.16 (MPa
����
m
p

) 0.033±0.06 VSM O 64
Ocala chart KIC Tempering 1.05±1.55 (MPa

����
m
p

) 0.15±0.32 SIM/R + 43
Alumina

+ glass ceramic

KIC Material 1.6±3.9 (MPa
����
m
p

) 0.05±0.31 SIM + 42

Dental porcelains KIC Material 0.74±0.8 (MPa
����
m
p

) 0.16±0.33 P + V ÿ 80
AlN ceramic, glass KIC Material 0.6±3.6 (MPa

����
m
p

) 0.024±0.145 R + 47

Method used to calculate the fractal dimensionÐSIM: Slit Island; VSM: Vertical Section; R: Richardson plot; P:

Pro®lometry; SEM: Secondary Electron Intensity Brightness Pro®le; V: Variation; B.C.: Box Counting. Relation
between mechanical properties and fractal incrementÐ(X): not de®ned; (O) no correlation; (ÿ) mechanical proper-
ties decrease as fractal dimension increases; (+): mechanical properties increase as fractal dimension increases; (=)
no variation
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between the impact energy and the fractal dimension increment (the energy decreases as D
rises). These results and others provided by other work are shown in Table 1.
These results are surprising. Normally one expects exactly the opposite trend as it is

generally agreed that during fracture a rougher surface (a more tortuous path) is associated
with an increase in the energy absorbed and then leads to a higher toughness of the material.
Numerous objections were made and a number of publications questioned the applicability of
the SIM.
Firstly, the results obtained by the SIM di�er from those obtained via other techniques. For

example, Pande et al. [17] found a D variation between 0.41 and 0.46 with the SIM and
between 0.03 and 0.1 with the vertical section method although the variations between D and
the dynamic tear energy are similar. Krupin [26] obtained di�erent values for SIM (between
0.594 and 0.753) and the vertical section method (0.063 and 0.55) and the results are not
correlated. One reason advanced by Huang et al. [27] is that perhaps the di�erent methods
describe the roughness from di�erent orientations. Another argument used by Ray et al. [28]
concerned the errors associated with the measurement of D. By statistical analyses of the linear
regression, two fractal dimensions can be distinguished only if their di�erence is at least 0.05.
Regarding this situation, the values reported by Pande et al. [8] are not signi®cant. Secondly,
Ray et al. [28], using SIM, found some relationship between impact energy and fractal
dimension but no correlation using the Richardson method. This result is physically
meaningless and di�cult to interpret. Thirdly, the fractal dimension is often found to be
yardstick dependent [14, 29±31], so the D determined by the SIM is not the intrinsic one.
Particularly Lung and Zhang [32] showed that the fractal dimension de®ned by the perimeter±
area method on the Von Koch ¯ake depends on the generator. All those authors concluded
that non linear variation between the logarithm of the perimeter and the logarithm of the area
exists and therefore the fractal dimension can be evaluated by SIM only with short yardsticks.
Meisel [33] answered these objections and showed, on fractal constructions, that when
excluding too long (where there was a tendency to dispersion) or too short yardsticks, the
fractal dimension found by the SIM has an intrinsic value.
Finally, some propositions have recently been made to improve the method proposed by

Mandelbrot et al. [10]. Mu et al. [30] assumed that the perimeter of the island is directly
proportional to its maximum diameter and that fractal dimension can be obtained with the
slope of the straight line representing the variation of the logarithm of the perimeter versus the
logarithm of the maximum diameter for a constant yardstick length. The results obtained by
this method are close to those obtained by the perimeter±area method when r is small enough.
Another interesting feature is put into relief by Mu et al. [30] using the square grid method to
obtain various yardsticks. The fractal dimension measured by the perimeter±maximum
diameter method is yardstick independent over a wide range, but two values of D are found:
one for long yardsticks and another for short ones. These results could be explained in terms
of multifractals and need further explanation.
The choice of lakes within islands is questioned by Huang et al. [27]. The results obtained

for the variation of the impact toughness of CC 45 steel versus the fractal dimension showed
that di�erent conclusions may be drawn. For `lakes within islands', a negative correlation was
found as in the usual works on steels, but if `islands within lakes' are considered, the
correlation becomes positive. The authors explained those surprising results by the fact that in
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ductile fracture, the plastic deformation creates dimples on the surface so that each island of
the fracture surface does not correspond to a lake of the matching surface.
The main criticism of the SIM concerns the self-similarity of the islands in fracture section

which is a prerequisite condition. If the structure is self-a�ne rather than self-similar then D
can take two or more values [34]. Mandelbrot [25] de®ned a fractal as `a shape made of parts
similar to the whole in some way' and in other words, C(r) in Eq. (17) and D

0
f must be

constant. In a recent work, Imre [35] shows that if the islands have a distribution of the form
factor, the SIM can not be applied. For example, if the term C(r) and the perimeters of the ith
islands are correlated by a power function C(r) = P d

i , then:

logPi�r� � �Df � d�logAi: �18�
The apparent fractal dimension is Df+d, and then the perimeter±area relation does not hold.
It can also be seen that if the area of the islands is constant and the perimeter varies, then an
in®nite fractal dimension can be found. This restriction applied also to the perimeter±
maximum diameter method developed by Mu et al. [30]. Preliminary observations of the
distribution or constancy of form factors and D are required in a certain scaling range
(probably two orders of magnitude) before applying the SIM method [36]. However, the
determination of the self-similarity is di�cult to resolve. Pande et al. [17] claimed that the
condition is not veri®ed because the ratio of the length to the breadth of the islands is not size
invariant, but Meisel [33] did not agree with these analyses. According to this author, the ratio
length versus breadth is characteristic only for similar Euclidean ®gures but is not required for
self-similar fractal curves. All those criticisms and notes show that the SIM is not a method
which gives simple and indisputable results.

3. Discussion of the results and correlation between fractals and mechanical properties

As previously stated for the Slit Island Method, many correlations are made in the scienti®c
review between the toughness characterized by KIC or the impact energy (CVN) and the fractal
dimension. Does a correlation exist between toughness and D? Are these correlations relevant?
This paragraph aims to review the latest works.
We must ®rst study the experimental correlations. All investigators found that the materials

exhibit self-similar fracture behaviour and that fracture is fractal. The methods used to
determine the fractal dimension are SIM, confocal microscopy, vertical section, etc. and are
reported in Table 1 with the results obtained and the materials investigated. Three conclusions
can be drawn.

(i) Mandelbrot et al. [10] were the ®rst to correlate the impact energy obtained by the Charpy
impact test and D. It was shown that with increasing toughness, the fractal dimension
exhibits a decreasing trend. As always with the slit island analyses Mu and Lung [37], Su
et al. [38], Lin and Lai [39], Saouma et al. [40], Wang et al. [41] ®nd the same correlation
as Mandelbrot between, GIC, KIC, DKth or the impact energy and D.
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The origin of the negative correlation between the toughness of the material and the fractal
dimension of the fractured surfaces can be associated with the choice of the yardstick used to
measure the perimeter and the area [28] in the Slit Island Method. For CrMnSiNi2A and
Z = 1.85 mm they ®nd a negative correlation between KIC and D, and the correlation becomes
positive for Z = 0.08 mm and Z = 0.15 mm.
(ii) The above results are all the more questionable as the contrary can be expected. Unlike

the previous works, Ray and Mandal [28] found a positive correlation between the fractal
dimension of a microalloyed steel specimen broken at subambient temperatures and CVN.
Mecholsky et al. [42, 43] found such a positive correlation for ceramic materials. A general
relation was obtained for aluminas and glass-ceramics:

KC � Ea0D1=2 � K0 �19�

where E is the elastic modulus, a0 is a characteristic atomic dimension and K0 corresponds to
the toughness value for the hypothetical material with a smooth fractured surface and depends
on the `families' investigated. One other form obtained by these authors is:

ln�KIC� � a� b ln�D�: �20�

(iii) Pande et al. [8, 17], and Richards and Dempsey [44] ®nd no correlation between the
mechanical properties and D. Bouchaud et al. [12] ®nd a fractal dimension increment of 0.2 for
an aluminium alloy not withstanding the heat treatment and exclude systematic variations of
the fractal dimension with the fracture toughness, as obtained by Mandelbroot et al. [10].
Is this disappearance related to the materials investigated (Table 1) or is it more

fundamental? Theoretical approaches were made to answer this question. Di�erent models
have been proposed over the past 10 years to account for the variation of the toughness with
the fractal dimension of the fracture surface. Some basic considerations can be made.
In Irwin's approach to fracture mechanics, the conventional critical crack extension force is

written:

GIC;0 � 2g �21�
where g represents the e�ective energy per surface unit (surface energy gs+strain energy gp).
If the fracture surface is fractal, then the crack area af is greater than the smooth one a0:

af � a0r
1ÿDf �22�

where, as seen before, r is a dimensional measurement scale called the yardstick.
The actual critical crack extension force becomes:

GIC;f � 2g�af=a0� � GIC;0r
1ÿDf �23�

and

KIC;f � KIC;0r
�1ÿDf�=2: �24�
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Different conclusions can be drawn from these relations:

(i) By considering g to be constant, Mu and Lung [37] obtained a linear relation as follows:

ln�KIC� � ln�KIC;0� � �1ÿDf�ln�ri� �25�
where ri, the yardstick length would be equal to the smallest length of a step of crack
propagation. A linear and negative correlation is then obtained between the logarithm of
fracture toughness and the fractal dimension and corresponds to experimental results on 30
MnSiNi2A and 24 SiMnCrNi2Mo steels under di�erent heat treatments. The anisotropic
behaviour and the corrosion in¯uence were introduced latter by Jiang et al. [45]. If we
suppose that the smallest yardstick for crack propagation is in direct relationship with the
grain size:

r � kd �26�
where k = 1 corresponds to transgranular fracture and 0 < k < 1 to intergranular fracture,
so:

GIC;f � 2gsd
1ÿDfk1ÿDf �27�

and shows the in¯uence of rolling on crack propagation [46].

Such theoretical negative correlation was also obtained by Lung and Zhang [32] by analysing
the distance between two large inclusions and the number of grains over the distance.
(ii) Tanaka [47] recently studied the toughness of SiC, AlN ceramics, soda lime glass and

WC-Co by indentation tests. The cracks were introduced by a Vickers diamond pyramid
indentor and modelled by means of an initiator and a generator with respect to the Von Koch
¯ake construction as described in Fig. 1. As a result of the theoretical approach, the logarithm
of the indentation fracture toughness was expressed as follows:

lnKIC � 0:5 ln gs � ��1ÿ Df�=2�ln Er �28�
where Er is the ratio of the lower and upper limits of the scale length between which a crack
exhibits a fractal nature, Emin is assumed to be roughly equivalent to atomic spacing for brittle
materials and Emax is related to the crack path or some microstructural features such as the
grain size. As Er<1 this relation shows an increase in the fracture toughness when the fractal
dimension rises, i.e. the fractured path becomes more tortuous. This relation is in fairly good
agreement with the author's results and comply very well with the experimental data from
Mecholsky et al. [42, 43].
Jiang et al. [48] modelled the micro-roughness of ductile fractured surfaces by introducing

the coe�cient M:

M � h=W �29�
where h is the depth and W the width of the microvoids, and considering this geometry as
fractal. As JIC is related to M by Thomson and Ashby [49] they found a relation between JIC
and the fractal dimension of the surface:
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JIC � s0
3

ln
4�1ÿD

ÿ1
f
� ÿ 1

12fp

" #
l*0 �30�

where s0 is the tensile strength of the material, fp is the volume fraction of voids and l *
0 a

characteristic distance. This relation shows that the toughness rises when the fractal dimension
increases. If the true fracture area is fractal, it is greater than the conventional one (the
fracture surface is commonly assumed to be a simple two-dimensional ¯at object), and Irwin's
critical crack extension force is rising.

(iii) For Nagahama [50] Eq. (20) can be representative of both a positive or a negative
correlation, whence the coe�cients a and b depend on the fracture path. If b> 0, the fracture
will be ductile and corresponds to the results of Mu et al. [39], if b > 0, the fracture is brittle
and corresponds to the results of Mecholsky [42, 43]. This empirical relation is consistent with
theoretical Eq. (25) where, if log r>0 or log r< 0, we ®nd the experimental trend obtained,
respectively, for ductile and brittle fracture.

(iv) Lei and Chen [51] discussed the Mu and Lung model [37] and have shown that Eq. (20)
is invalid because KIC,f<KIC,0, and no correlation can be found. The fractal dimension is a
measure of the entropy and thus is a state function. Since the crack propagation is a non-
reversible process, the entropy increases during the crack propagation and the fractal
dimension of the fracture path is not constant.

Another interesting approach by Li [52] considers that all toughening mechanisms like
plastic deformation are just means of increasing the area of the fracture surface, and the
toughness can still be the surface energy.

(v) In the last type of model the fractal dimension is found to have a universal value. The
variation of the toughness with the fractal dimension is in contradiction with the model from
De Arcangelis et al. [53] which predicts that the fractal dimension increment is independent of
the microstructure (close to 0.1). In the same way, material failure was studied by Termonia
and Meakin [54] by means of a molecular model based on the kinetic theory of fracture. It was
shown that in a wide range of materials, the fractal dimension increment is found to have a
universal value D= 0.27. By observing the results recorded in Table 1, it can be seen that the
fractal dimension increments are generally close to 0.2, with small variations apart from this
mean value.

We will try to summarize the origin of the fractal character. Firstly, the self-similarity of the
fracture surface was observed by di�erent authors [8, 10, 55] and the linearity of the log±log
plot obtained with di�erent methods proves it on many decades of magni®cation.

Then, Mandelbrot et al. [10] wrote that, if the growth and coalescence of voids for example
for ductile fracture, were independent of their neighbors, we would have a percolation. It is the
same reasoning for the crack propagation, but, if it was a percolation, we would have a
universal value for the fractal dimension. To these authors the model is too crude and the
resulting process di�ers from the usual percolation. It was the starting point of di�erent
researchers. Some authors developed another model based on the crack branching. The crack
branching irregularities in brittle materials depends on microstructure, mechanical behaviour,
specimens, etc. Those irregularities can be modelized by fractal geometry and this new
approach provides simplicity in the investigation of crack growth [56]. Hermann developed a
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vectorial model [57] and explained that the origin of fractality is the competition between
di�erent directions of propagation. His model is roughly equivalent to experimental cracks.

A more simple model was developed by Xie [58]. If we consider the pb angle between the

branches and the initial crack, we obtain:

log
K

K0

� �
�

log�3� ÿ log 2 cos pb
2

� �
2

: �31�

If the branching angle pb is small, the amount of strain energy dissipated by crack branching is
small. So, the rise of toughness by crack branching can be explained through fractal geometry.

This branching angle should be dependant on the density of microcracks [59]. These
conclusions are contested by Lei and Chen [51, 60], however the model seems to be good [61]
and the experimental results show that the increase or decrease in toughness are linked with
microstructure and crack branching. A decrease in toughness can be explained by the great
in¯uence of the micromechanism. The mechanic equations also need to be de®ned in a non-
integral dimensional space.

This approach was improved by Chelidze [62] by taking account of anisotropy e�ects and by
modelizing the growth by percolation. It explains the large energy consumption of

heterogeneous materials when compared to single-crystal values. All these approaches are very
recent and so, more conclusions are actually not possible.

The microstructure of materials has a great importance on the fracture surface. Wang et
al. [41] studied the fatigue in dual-phase steels and concluded that the fractal dimension Df

varies parabolically with volume fraction of martensite which is in keeping with the
fractographic features. Hornbogen [63] said that martensitic alloys in which the microstructure
is fractal, provides cleavage planes. So if the microstructure, like martensite, is fractal, so will
be a-priori the obtained fracture surface, and relations may be developed [64±66] between the

fractal dimension and microstructural features such as grain size, grain boundary pro®le,
inclusion volumes, etc. Keustermans [16] summarizes all these experiments. By taking for
example eutectic or dendritic alloys, he concluded that microstructures are correlated, at least,
with the self-similarity of the surface. The relation between fractal dimension and
microstructure is clear, but a correlation between the fractal dimension and the toughness is
di�cult to establish. Davidson [55] explained the lack of correlation in aluminium alloys

reinforced with SiC by the fact that the fracture toughness is mainly related to the work done
within the plastic zone during the growth process. Very little work was expended on the
formation of the surface as compared to the work dissipated by plastic zone. Plasticity is a
volumic damage with D>> 0 and cleavage fracture is a surfacic damage which gives D10, but
the results they obtained for the fractal increment varies between 0.1 and 0.2. It can be seen
that the variations are generally small while the errors on the fractal dimension measurements
rather important. This topic has been much debated upon [31, 67, 68], but the results are not

su�cient to conclude about a correlation, more particularly because of the lack of
experimental results. It seems cleverer to observe the evolution of the fractal dimension on a
pro®le with the crack propagation than on the whole surface. So Keustermans [16] and
Dauskardt et al. [69] concluded that a universal correlation between tenacity and D is illusive.
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However D is a good indicator of the in¯uence of the microstructure and of the di�erent
fracture modes on the surface's roughness.
The proposition of a universal value proposed by Mandelbrot et al. was resumed by di�erent

authors: Bouchaud et al. [12, 70, 71], Silberschmidt [72], MaÊ loy et al. [73] and Schmittbuhl et
al. [74]. They wrote that no correlation between fractal dimension and fracture morphology
exists: the fractal increment is then a universal value. This value was however con®rmed by
numerical simulations [75, 76], but does not agree with some results presented before.
Bouchaud said that the result suggests that the crack propagation exhibits scaling laws at large
length scales. All these works show that self-a�ne fracture surfaces obtained by crack-
propagation seem to be a more interesting point of view than self-similarity. This is con®rmed
by Gouyet [5]. Still, today there are no other arguments to con®rm this hypothesis of self-
a�nity and of universal value.

4. Summary and conclusions

It is often reported that the fractal geometry, introduced by Mandelbrot is of great
importance for the understanding of the fracture mechanic process. In fact, its main merit is
that the self-similarity of the observed surfaces proves that the mechanisms involved in the
fracture process are generally scale independent. These observations imply that the
macroscopic scale is related to the atomic one. However, many problems arise when we wish to
correlate the fractal dimension of the fractured surfaces with the mechanical properties.
At ®rst the methods themselves are suspicious. Table 1 shows that the results depend on the

method used to calculate the fractal dimension. The di�erences obtained between two
techniques are generally greater than the variations with the mechanical properties; and the
algorithms developed are not precise enough to give the right fractal dimension of known
fractal pro®les [22].
Secondly the variations of fractal dimension obtained with similar techniques are in some

cases of the same order of magnitude as the measurement errors. So a great number of pro®les
have to be taken in order to calculate a fractal dimension. Our experiments con®rm that the
correlation is problematic and perhaps illusive because of the complexity of the mechanism and
the lack of precision of the method.
Thirdly, when the pro®le of fractured specimens is recorded, experimental errors are masked.

These errors correspond to a noise superimposed onto the material signal when using confocal
microscopy or backscattered electron in SEM, or ®ltering when using pro®lometer technique or
image analyses. It is then obvious that the fractal dimensions obtained with confocal microscopy
are greater than the results obtained by the Minkowski sausages. For these reasons it seems that
further research is necessary to improve the theoretical method and the derived algorithms
before drawing correlations between the mechanical properties and the fractal dimension.
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