
HAL Id: hal-04541711
https://hal.science/hal-04541711

Submitted on 11 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph based analysis of the Bucharest transport
network

Guillaume Ducoffe

To cite this version:
Guillaume Ducoffe. Graph based analysis of the Bucharest transport network. Romanian Journal
of Information Technology and Automatic Control, 2024, 34 (1), pp.59-68. �10.33436/v34i1y202406�.
�hal-04541711�

https://hal.science/hal-04541711
https://hal.archives-ouvertes.fr


Romanian Journal of Information Technology and Automatic Control, Vol. 34, No. 1, 59-68, 2024 59 

https://doi.org/10.33436/v34i1y202406 

Graph-based analysis of the  
Bucharest transport network 

Guillaume DUCOFFE 

National Institute for Research & Development in Informatics – ICI București, Romania 

guillaume.ducoffe@ici.ro 

Faculty of Mathematics and Computer Science of the University of Bucharest, Romania 

guillaume.ducoffe@fmi.unibuc.ro 

Abstract: Thanks to the European recovery instrument "NGEU", there are several opportunities to finance 

new infrastructures in the EU member states. For this reason, based on graph theory, a preliminary analysis 

of the transport network in Bucharest is proposed, which may be of interest in a future study regarding some 

funding proposals. This network includes the entire transport system of Romania’s capital. The main three 

contributions of this article are as follows: the analysis of the structural vulnerabilities of the network, the 

study of the global geometric properties of this network, and the identification of the main transport stations, 

by using several centrality indices, the existence of some correlations between these indices being 

highlighted. 

Keywords: Network analysis, Network geometry, Centrality indices, Graph theory. 

Analiza bazatǎ pe grafuri a  
rețelei transporturilor în Bucureşti 

Rezumat: Datoritǎ instrumentului european de redresare ,,NGEU’’, existǎ diferite oportunitǎți de finanțare a 

unor infrastructuri noi în statele membre UE. Din acest motiv, pornind de la teoria grafurilor, se propune o 

analizǎ preliminarǎ a rețelei transporturilor din Bucureşti, analiză ce ar putea fi de interes într-un viitor studiu 

al unor propuneri de finanțare. Aceastǎ rețea include întregul sistem de transport al capitalei României. 

Principalele trei contribuții ale acestui articol sunt următoarele: analiza vulnerabilităților structurale ale rețelei, 

studiul proprietǎților geometrice globale ale acestei rețele și identificarea stațiilor principale de transport, prin 

folosirea mai multor indici de centralitate, fiind evidențiatǎ existența unor corelații între aceşti indici. 

Cuvinte cheie: Analiza rețelelor, Geometria rețelelor, Indicii de centralitate, Teoria grafurilor. 

1. Introduction 

Bucharest has the fourth largest transportation system in Europe. Its modernization is often 

cited as a top objective by the Mayorship of Bucharest. Recently, there has been increased funding 

for the renovation of such critical infrastructures, including the program ,,Anghel Saligny” in 

Romania, and the European Union Recovery Instrument ,,NGEU”. In this paper, existing relations 

between the public transport stations in Bucharest are examined, using tools from Graph Theory 

(Barabási, 2016). The scope of this study is to identify inherent vulnerabilities and some important 

features of the Bucharest lines of transport, to be taken into account in future funding decisions. 

Other crucial aspects, such as geographical data, population density and the degradation of current 

infrastructures and fleets are not considered in the present work.   

There is a broad literature on transport networks in Romania and around the world (Bordea 

& Anghel, 2005; Mhalla & Dutilleul, 2023). In particular, the road network of Bucharest has been 

extensively studied in the context of natural hazards, such as earthquakes, and their impact on 

transportation (Ruscǎ et al., 2014; Toma-Danila, 2018; Toma-Danila et al., 2020). In the road 

network of Bucharest, vertices and edges represent road intersections and individual road segments, 

respectively (there are 50,412 edges). By contrast, the network generated by public transport lines: 

with vertices for stations, and edges for direct connections, has received less attention. Transport 

sub-networks in Bucharest, including its subway network (Dragu et al., 2011; Ştefǎnicǎ et al., 

2013) and geographic information on its tram network (Andrei & Luca, 2021), have been studied in 

separate prior works. A SWOT analysis for the whole public transport system in Bucharest was 

proposed in (Bugheanu, 2015). However, in these previous studies, graph-based metrics for the 
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Bucharest transport network and its sub-networks have not been analyzed, or only the study of 

some connectivity properties was considered.  

Contributions. In this paper, a graph representation of the Bucharest transport network is 

analyzed. There are two different transport operators in Romania’s capital, namely: Metrorex for its 

subway system, and the Bucharest Transport Company – STB for buses, trolleybuses, and trams. 

Information on both sub-networks is publicly available on the respective websites of their 

operators, but it can also be found on applications such as Moovit (2024), which is more suitable 

for data scraping techniques. For each operator, a graph is created: where nodes represent the 

stations, and there are links representing the direct connections between the stations. This way, 

each line is mapped to either a path or a cycle in the graph representation. There are 5 and 107 lines 

in both sub-networks, respectively. Stations in the same sub-network are identified by their names. 

As such, a station can be mapped to one or more physical locations. In some rare cases (8 cases 

encountered for the STB sub-network), a line can have two consecutive stops with the same name. 

This results in a loop in the graph representation. Similarly, there are multiple edges, because of 

different lines sharing a common road. Multiple edges are removed from the final representations. 

Finally, both sub-networks are combined in one graph, as follows: stations are identified by their 

names, and there is an additional set of links that represent possible transfers - by foot - between 

subway stations and ground stations. The links for transfers were deduced from a manual 

inspection of the geographic neighbourhood of all subway stations. Overall, the resulting graph 

(see Figure 1) has 887 vertices and 1,482 edges. 

 
Figure 1. Illustration of Bucharest transport network (own research) 

The edges of the graph are left unoriented. Indeed, there are not so many cases in which the 

line between two terminal stations differs in its both directions. Furthermore, the variable length of 

direct connections between the stations was not accounted for (i.e. the graph is unweighted). From 

a user’s perspective, the hop distance (number of transport connections) is considered, by 

opposition to the total travel time. Edge directions and weights could be included in a future work.  

The remainder of this paper is as follows. Section 2 presents an analysis of the structural 

vulnerabilities of the network. Section 3 describes the global geometric properties of the network. 

In Section 4, the rankings of the nodes obtained using different centrality indices are compared. 

Finally, Section 5 outlines the conclusion of this paper. 

2. Structure and vulnerabilities 

Two classic distributions for networks (for degrees and for hop distances, respectively) are 

reported and briefly discussed in sub-sections 2.1. and 2.2. In sub-section 2.3., potential structural 

vulnerabilities are evaluated using connectivity properties. 

2.1. Degree distribution 

The degree distribution is included in Table 1. See Figure 2 for an illustration of the number 

of vertices of a given degree.  
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Table 1. Degree distribution for the Bucharest transport network 

degree 1 2 3 4 5 6 7 8 9 10 11 12 13 15 18 20 24 

number 

of 

nodes 

8 440 167 103 59 40 27 17 9 5 4 1 3 1 1 1 1 

 

 
Figure 2. Number of vertices of a given degree (own research) 

It can be observed that half of all stations belong to a unique public transport line (their 

degree is two at most), with eight of these stations being terminal points (their degree is one). The 

average degree is 3.34. The latter suggests that an arbitrary station should appear on at most two 

different lines. However, there are also some hubs in Bucharest city center, as it can be checked 

from the h-index: the maximum value h such that there are h nodes of degree at least h. There are  

12 nodes whose degree is at least eleven, and so the h-index of the network equals 11. At present, it 

is unclear which distribution is followed by the degree. Experiments, using standard regression 

techniques, suggest that it is not a power-law distribution. 

The clustering coefficient of a node measures the density of edges in its neighbourhood. In 

the Bucharest transport network, the maximum clique size is four. Furthermore, there are only two 

cliques of size four, and 145 triangles. Hence, the clustering coefficient of most nodes is null (for 

72% of the nodes), or very close to zero, which is as expected in a public transport network. In 

particular, the maximum value 1 is reached for only 27 nodes. Similarly, the k-core of a graph is its 

largest subgraph, excluding loops, whose minimum degree is at least k. The core number of a node 

is equal to the largest k such that it belongs to the k-core. For every station in the Bucharest 

transport network, the core number ranges between 1 and 3. The only vertices of core number 1 are 

the 8 terminal points (degree-one nodes). There is 19% of all nodes with core number 3. The 

nonexistence of a k-core, for k > 3, is evidence against a core/periphery structure (Seidman, 1983).  

2.2. Hop distance distribution 

The hop distance distribution is reported in Table 2. See Figure 3 for an illustration of the 

number of pairs of vertices at a given distance.  

Table 2. Distance distribution 

hop 

distance 

1 2 3 4 5 6 7 8 

number of 

pairs 

1,474 4,601 11,986 26,922 50,482 74,290 82,312 68,541 

hop 

distance 

9 10 11 12 13 14 15  

number of 

pairs 

42,596 20,053 7,122 2,012 461 79 10 
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Figure 3. Number of pairs of vertices at a given distance (own research) 

It can be observed that the number of pairs of vertices at unit distance is lower than the 

number of edges, which is because there are loops in the network. The maximum hop distance and 

the average hop distance are 15 and 6.8, respectively. Therefore, any station can be reached after 

fifteen stops at most, and the average number of stops on a shortest trip is around seven.  

The eccentricity of a node is its largest hop distance to the other nodes. The eccentricity 

distribution is reported in Table 3. 

Table 3. Eccentricity distribution 

eccentricity 9 10 11 12 13 14 15 

number of 

nodes 

22 134 252 258 168 45 8 

 

The radius (minimum eccentricity) is R = 9. As it was mentioned previously, the diameter 

(maximum hop distance) is D = 15. In particular, the tree-like relation D = 2R – 3 holds. This 

relation is coherent with a situation in which for most nodes v in the network, their shortest trip to a 

furthest station should go through a center node (i.e. a node of minimum eccentricity), similarly to 

what happens in tree networks. Since there are few center nodes (24), a high level of congestion at 

some of these nodes may be anticipated. Further evidence for the inherent vulnerability of the 

Bucharest public transport system to congestion is given in Section 3, where the hyperbolicity of a 

graph is introduced. 

2.3. Separators and cuts 

It has been reported in the literature that the tram sub-network of Bucharest is disconnected 

(Andrei & Luca, 2021). By contrast, in the Bucharest transport network, all types of public 

transports are taken into account, and the resulting graph is connected. A cut vertex is a vertex 

whose removal disconnects the graph. Since there are eight terminal points (degree-one nodes), 

there are as many cut vertices. However, these are the only cut vertices in the network, thus 

showing that the network is essentially biconnected (up to the removal of terminal points). 

The treewidth is a well-studied connectivity parameter in Graph Theory. By and large, the 

treewidth of a network is the least k such that it can be recursively disconnected using separators of 

size at most k, in a tree-like fashion (Robertson & Seymour, 1984). Calculating the treewidth is 

computationally expensive, but there exist efficient heuristics such as the Minimum Degree 

Algorithm (Tinney & Walker, 1967). Applied to the Bucharest transport network, the output of this 

heuristic is a treewidth upper bound of 43 (an improved upper bound of 40 could be achieved using 

the treewidth_min_fill_in function of the Python NetworkX library). The latter result suggests a 

good resilience of the network, in the sense that a relatively large number of nodes need to be 

removed in order to disconnect the network in two large halves (some small sections of the network 

are much easier to disconnect, though).  
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3. Underlying geometry 

Roughly, some important observed properties of real networks, such as scale-freeness, can 

be linked to the special features of an abstract manifold, with which the topological architecture of 

a network is identified. The latter is the premise of Network geometry: an emerging sub-field of 

Network science, for which a good survey can be found in (Boguňá et al., 2021). Overall, these 

geometric aspects are relevant in the study of traffic congestion (Chepoi et al., 2017), and 

geometric embeddings of networks that are used for greedy routing schemes (Kleinberg, 2007) - 

with applications to traffic and transportation planning - and for Machine Learning (Gu et al., 

2021). There are also algorithmic applications for such geometric features to the design of efficient 

algorithms for facility location problems on networks (Ducoffe et al., 2022). In what follows, three 

global parameters of graph metrics are discussed and reported. 

A graph is called planar if it can be drawn in the Euclidean plane in such a way that its edges 

only intersect at their common endpoints. The properties discussed further on are not related to 

planarity. In fact, the experiments carried out show that the Bucharest transport network is far from 

planar. Indeed, it should be noted that a graph is planar if and only if it does not contain a so-called 

Kuratowski subgraph (a subdivision of the complete graph K5 or of the complete bipartite graph 

K3,3). Furthermore, the left-right planarity test can be used in order to output a Kuratowski 

subgraph in a nonplanar graph (De Fraysseix & Rosensthiel, 1982). By iteratively removing such 

output until the graph becomes empty or planar, a collection of node-disjoint Kuratowski subgraphs 

can be greedily computed. For the Bucharest transport network, a collection of 21 disjoint 

Kuratowski subgraphs was computed, the union of which contains 46% of all the vertices. This 

could be expected since both the subway transport system and the ground transport system are 

considered, leading to several edge intersections in the natural embedding of the network in the 

plane according to the geographic coordinates of the stations.   

3.1. Network curvature 

The notion of global curvature can be defined as follows for any network (in fact, for any 

metric space): a graph is called δ-hyperbolic if for every 4-tuple u,v,x,y of vertices, the two largest 

distance-sums amongst d(u,v)+d(x,y), d(u,x)+d(v,y), and d(u,y)+d(v,x) differ by at most 2δ. The 

hyperbolicity of a graph is the lowest value δ such that it is δ-hyperbolic (Gromov, 1987). In 

particular, trees are 0-hyperbolic, and the hyperbolicity is a measure of how similar an arbitrary 

graph metric is to tree metrics. The hyperbolicity of a network can be computed by a direct 

inspection of all its 4-tuples of vertices. However, this naive algorithm did not terminate on the 

Bucharest transport network after one day of computation. A faster practical algorithm was 

proposed by Cohen et al. (2015), thanks to which it could be verified that its hyperbolicity was 

equal to 4. By comparison, the maximum theoretical value for the hyperbolicity in a network of 

diameter D = 15 is 7. A network is called strongly hyperbolic if its hyperbolicity is upper bounded 

by the base-two logarithm of its diameter (Alrasheed & Dragan, 2017). The Bucharest transport 

network is strongly hyperbolic, which is evidence for inherent core congestion in the system 

(Chepoi et al., 2017). 

3.2. Vapnik-Chervonenkis dimension 

The Vapnik-Chervonenkis dimension (for short, VC-dimension) is a well-studied parameter 

for measuring the complexity of set systems, including that of concept classes in Machine Learning 

(Blumer et al., 1989) and, more relevant to this work, of graphs. For every vertex v, its closed 

neighbourhood N[v] contains v and all its neighbours. A vertex subset X is called shattered if and 

only if for every of its subsets Y, there exists a vertex v such that X ∩ N[v] = Y. The VC-

dimension of a network is the maximum cardinality of its shattered subsets. Efficient algorithms 

are known for some facility location problems on networks of bounded VC-dimension (Ducoffe et 

al., 2022), with applications to transport networks. It follows from a simple counting argument that 

in any shattered subset of d vertices, the degree of each vertex must be at least 2d-1 – 1. In  the 

Bucharest transport network, the largest d such that there exist d vertices of degree at least 2d-1 – 1 
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is d = 4, which is an upper bound to its VC-dimension. By comparison, the maximum theoretical 

value dmax for the VC-dimension of an n-node network is at most log(n), which for n = 887 leads to 

dmax = 9. 

3.3. Helly number 

Another well-studied invariant for measuring the complexity of set systems is the so-called 

Helly number. For networks, the Helly number is the least integer k such that, in every family F of 

k-wise intersecting disks (of arbitrary centers and radii), there is a vertex contained in every disk of 

F. Since the Euclidean space Rd has Helly number d+1, the Helly number of a network may be a 

useful indicator for its embedding in an Euclidean space of smallest dimension, with applications to 

the design of routing protocols, and so, in traffic and transportation planning. Furthermore, there 

exist efficient algorithms for some facility location problems on networks of bounded Helly 

number (Ducoffe, 2023). For computing the Helly number of a network, Gilmore’s condition can 

be used: more specifically, the Helly number is at most k if and only if for every (k+1)-set S of 

vertices, the family of all disks with at least k vertices in S has a nonempty common intersection  

(Berge, 1973). The runtime of Gilmore’s algorithm grows exponentially with k. It could not be run 

on the Bucharest transport network, already for k < 5. Therefore, the following strategy was used in 

order to quickly exclude small values of k: a random sample S of k+1 vertices is drawn, a random 

sample U of at most √n vertices is drawn, then it is checked whether all disks with center in U and 

at least k vertices in S have a nonempty intersection. Doing so, it was possible to assert that the 

Helly number of the Bucharest transport network must be at least 5. Gilmore’s condition was tested 

in full for k=5 in order to confirm that the Helly number of this network is indeed 5. 

4. Centrality indices 

Centrality indices are partial rankings of the nodes, in order to estimate their relative 

importance in a network according to various criteria (Koschützki et al., 2005). In this section, 

some classic centrality indices are introduced. These centrality indices were computed for each 

node in the Bucharest transport network, in order to identify the main stations. Statistical 

comparisons between the results obtained, for different centrality indices, are reported.  

4.1. Definitions 

The following centrality indices have been considered in this study: 

• Degree centrality: nodes are ranked according to their degrees. In particular, the most 

important nodes are those of maximum degree; 

• Harary centrality: nodes are ranked according to the inverse of their eccentricities. In 

particular, the most important nodes are the centers, whose eccentricity equals the 

radius; 

• Closeness centrality: nodes are ranked according to the inverse of their average 

distance to the other nodes. The most important nodes with respect to closeness 

centrality are sometimes called medians; 

• Betweenness centrality: The betweenness of a node v is the sum, over every pair of 

vertices (x,y) such that x ≠ v ≠ y, of the fraction of shortest (x,y)-paths going through 

v. Nodes are ranked according to their betweenness values; 

• Katz centrality: Every walk of length k has weight αk, for some 0< α < 1, and the 

centrality score of a node v is defined as the sum, over all k, of the weights of all its 

walks of length k to the other nodes. In particular, all walks are taken into account, not 

just the shortest paths; 

• Eigenvector centrality: nodes are ranked according to the coordinates of the unique 

nonnegative eigenvector of unit 1-norm that is associated to the largest eigenvalue of 
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the adjacency matrix. Very roughly, the latter is a refinement of degree centrality,  

in which the higher the degree of a neighbour, the more it contributes to the  

centrality score.  

Since the importance of a node is measured differently for these centrality indices, it is not 

clear a priori whether the rankings obtained for the nodes should be similar.  

4.2. Results 

The centrality indices of all nodes in the Bucharest transport network were computed. The 

rankings obtained for the nodes were compared using Pearson correlation coefficient (Pearson, 

1895). These results are reported in Table 4. 

 

Table 4. Statistical comparison between centrality indices, using Pearson correlation coefficients 

 Degree Harary Closeness Betweenness Katz Eigenvector 

Degree  p = .41 p = .53 p = .78 p = .94 p = .54 

Harary p = .41  p = .86 p = .42 p = .52 p = .36 

Closeness p = .53 p = .86  p = .58 p = .68 p = .55 

Betweenness p = .78 p = .42 p = .58  p = .8 p = .55 

Katz p = .94 p = .52 p = .68 p = .8  p = .72 

Eigenvector p = .54 p = .36 p = .55 p = .55 p = .72  

 

All p-values (not reported in the table) were below 2.4E-28. Overall, all the centrality indices 

considered are positively correlated (p > 0 ). There is a moderate degree of correlation in all cases 

(p ≥ .3 ) and a strong correlation in most cases ( p ≥ .5 ). In particular, there is almost a perfect 

correlation between degree centrality and Katz centrality. Roughly, it implies that all rankings 

considered for the nodes can be approximated by a simple inspection of the degree sequence. 

5. Conclusion 

The conducted experiments suggest that the Bucharest transport network is quite resilient 

(i.e. the treewidth is large), but that it is inherently vulnerable to traffic congestion (i.e. it has 

bounded hyperbolicity). A few high-degree hubs are identified, with evidence that most of the 

traffic is inward-oriented, as supported by the positive correlations between various centrality 

indices. Finally, although this network is far from planar, as it could be expected, it has a nontrivial 

geometry, as supported by the boundedness of some abstract geometric parameters (VC-dimension, 

Helly number). The latter could be exploited for traffic and transportation planning, and 

algorithmically in order to solve some facility location problems on the network more efficiently. 

Recently, the security aspects of some transport systems have been considered (Predescu et al., 

2023). These aspects could be analyzed for the Bucharest transport network in a future work.  
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