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Abstract

Online Unsupervised Domain Adaptation (OUDA) for
person Re-Identification (Re-ID) is the task of continu-
ously adapting a model trained on a well-annotated source-
domain dataset to a target domain observed as a data
stream. In OUDA, person Re-ID models face two main chal-
lenges: catastrophic forgetting and domain shift. In this
work, we propose a new Source-guided Similarity Preserva-
tion (S2P) framework to alleviate these two problems. Our
framework is based on the extraction of a support set com-
posed of source images that maximizes the similarity with
the target data. This support set is used to identify fea-
ture similarities that must be preserved during the learning
process. S2P can incorporate multiple existing UDA meth-
ods to mitigate catastrophic forgetting. Our experiments
show that S2P outperforms previous state-of-the-art meth-
ods on multiple real-to-real and synthetic-to-real challeng-
ing OUDA benchmarks.

1. Introduction
Person Re-Identification (Re-ID) is the task of recogniz-

ing a person of interest (i.e., query) across a set of images
taken by non-overlapping cameras (gallery) [43]. Person
Re-ID has attracted a lot of interest because of the rising
need for public safety and intelligent surveillance systems.
Recently, the accuracy of Re-ID models has significantly
improved when using supervised deep learning [39]. How-
ever, the performance of these approaches drastically de-
creases when they are deployed in data that visually dif-
fer from the training dataset [30]. Since collecting data
for every new environment is not practical, previous studies
have introduced Unsupervised Domain Adaptation (UDA)
for person Re-ID [13, 14, 38].

UDA methods combine a well-annotated dataset (source
domain) and an unlabeled dataset corresponding to the
target domain, aiming to train a model that can perform
well in the new environment. Despite progress in recent
years [13, 14], UDA for person Re-ID suffers from three
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Figure 1. In OUDA for person Re-ID, the images of the target
domain are available as a stream of data, and past images cannot be
stored. Two main challenges should be addressed: 1) catastrophic
forgetting and 2) domain shift.

main issues that prevent its practical use. First, when col-
lecting the target data required to adapt the model, images
are generally gathered as a stream that continually sends
photos from various cameras/locations. Consequently, col-
lecting a large target dataset may take time and delay de-
ployment. In addition, in UDA, the model is frozen af-
ter deployment and does not benefit from the new data,
which are continuously captured. Finally, numerous coun-
tries have adopted privacy regulations that forbid technol-
ogy providers to store images of individuals. Thus, collect-
ing a large target dataset is not possible.

Since deploying algorithms that conform with policies
of data privacy protection has become a legal obligation in
a growing number of countries, the Online Unsupervised
Domain Adaptation for person Re-Identification (OUDA-
Rid) setting was introduced in [32] to address the limita-
tions of traditional UDA techniques. In the OUDA-Rid
framework, we operate under the assumption that we have
access to annotated source data as well as unlabeled tar-
get data. However, in contrast to traditional UDA settings,
the target dataset is treated as an online stream of data,
aligning with the constraint that camera-captured images



cannot be stored. In addition to complying with privacy-
protection regulations, this setting also enables the person
Re-ID model to be continuously updated as new target data
becomes available, thereby improving its adaptability to
changes in the target domain.

The performance of existing UDA methods for OUDA-
Rid shows significant drops in performance regarding the
offline setting [32]. This drop can be explained by the two
main difficulties of OUDA-Rid illustrated in Fig. 1: catas-
trophic forgetting and domain shift. Catastrophic forgetting
appears when the model only observes a few target identi-
ties, and consequently, the model tends to forget previously
learned identities. Domain shift is a change in the data dis-
tribution between the source and target domains. Address-
ing the domain shift is especially challenging in the online
setting since, at every training step, we observe only a small
and possibly biased subset of the target domain.

In this work, we consider that these two difficulties
must be addressed jointly since mitigating catastrophic for-
getting can lead to target representations that better cap-
ture the full target distribution, and consequently facilitate
source-target distribution alignment. We introduce a unified
Source-guided Similarity Preservation (S2P) framework for
OUDA-Rid that addresses these two challenges jointly. We
take inspiration from replay-based strategies [1, 3] to intro-
duce a Knowledge Distillation (KD) mechanism. By trans-
ferring the knowledge acquired with a teacher model to a
student model, the KD [19] method enables the learning
of more robust and generalizable features. However, un-
like existing replay-based approaches, we do not store any
target image to conform to the privacy protection require-
ment. To this end, we extract a support set composed of
source images that are similar to the previously seen im-
ages of the target. This support is thus used to regularize
the learning process and alleviate catastrophic forgetting.
Our framework combines both explicit source-target dis-
tribution alignment and pseudo-labeling to address domain
shift. S2P can easily integrate almost any existing UDA ap-
proaches [13,14] and readily outperforms all state-of-the-art
methods for OUDA-Rid in several challenging conditions in
real-to-real and synthetic-to-real tasks. Our main contribu-
tions can be summarized as follows:
• We introduce a novel S2P algorithm that uses source-

guided similarity preservation to jointly alleviate the
catastrophic forgetting and domain shift while respecting
the privacy protection requirements.

• S2P can easily incorporate almost any existing UDA ap-
proach. In particular, we present the integration of the
MMT [13], SpCL [14] and IDM [5] methods into our
framework, which achieve remarkable results in the UDA
setting.

• We perform extensive experiments1 in real-to-real

1Code available: https://github.com/ramiMMhamza/S2P

and synthetic-to-real OUDA tasks with four datasets.
S2P readily improves previous state-of-the-art UDA
methods for OUDA-Rid. A set of ablation studies vali-
date each component of our algorithm.

2. Related Work
UDA for person Re-ID. Existing methods can be divided
into domain translation-based and pseudo-labeling.

Domain translation-based methods [4, 15, 29] modify
the source domain images to resemble the appearance of
the target set with style transfer approaches [51]. Recent
research focuses on enhancing translation by preserving
self-similarity [8] or performing camera-specific transla-
tion [49].

Pseudo-labeling methods employ an iterative process al-
ternating between clustering and fine-tuning [6, 10, 28, 33,
42]. Fan et al. [9] proposed a simple and effective baseline
where the Re-ID model is fine-tuned using cluster indices
as labels. Several studies have expanded on this frame-
work, such as self-similarity grouping [12], Mutual-Mean
Teaching (MMT) [13], and Self-paced Contrastive Learn-
ing (SpCL) [14]. MMT adopts a teacher-student frame-
work where two student networks are jointly trained us-
ing pseudo-labels generated by themselves and soft pseudo-
labels generated by their mean-teacher networks. On the
other hand, SpCL takes a different approach by gradually
constructing more reliable clusters to refine a hybrid mem-
ory containing both source and target images. More re-
cently, the use of an Intermediate Domain Module (IDM)
[5] has also been explored as means to bridge the gap be-
tween source and target domains.

We adopt the pseudo-labeling framework as it has out-
performed previous techniques in almost all datasets [13,
14] and avoids the computational overhead of transfer-
based methods. Our S2P overall framework can incorpo-
rate existing pseudo-labeling methods toward better perfor-
mance in the OUDA setting.
Lifelong learning for Re-ID. Lifelong learning, also called
Continual Learning (CL) or incremental learning [21, 22,
35], is a field that aims at developing adaptive agents, like
the way humans learn throughout their lifetime. The main
problem of CL is catastrophic forgetting, meaning that the
model tends to forget the previously acquired knowledge.
Recently, several methods have been developed to solve this
issue in typical vision tasks [2, 46, 50]. We can categorize
existing lifelong learning approaches into three main cate-
gories: 1) teacher-student [27, 41], 2) regularization [44],
and 3) replay methods [40].

Few studies have tackled the problem of lifelong learn-
ing in person Re-ID. For instance, Pu et al. [31] proposed
an Adaptive Knowledge Accumulation (AKA) framework,
which is fully supervised. AKA addresses the domain-
incremental setting where each task corresponds to a dif-

https://github.com/ramiMMhamza/S2P
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(a) Overall Pipeline of S2P.
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(b) Construction of the support set via
similarly-based selection.

Figure 2. The pipeline of S2P. a) S2P incorporates knowledge distillation LKD , discrepancy LMMD loss functions, and a teacher model
to mitigate the catastrophic forgetting and domain-shift problems. b) Our algorithm employs a similarity-based selection to construct the
support set ξk from the source domain that maximizes the similarity with the target images.

ferent target domain. Huang et al. [20] also adopt an incre-
mental scenario, although storing images from the previous
task is permitted.

While previous methods in continual learning for person
Re-ID, such as [20, 31], have adopted a less restrictive set-
ting that allows keeping images from previous tasks, we fol-
low the more challenging and privacy-preserving OUDA-
Rid setting proposed in [32]. To address domain shift and
catastrophic forgetting in OUDA-Rid, we introduce two key
technical contributions: a source-guided knowledge distil-
lation strategy and an explicit domain alignment. Gong et
al. [16] introduced a technique based on landmarks that is
similar to our support set selection. However, these land-
marks were proposed to solve the domain gap in the context
of UDA with classical machine learning techniques, while
we have to also consider the catastrophic forgetting problem
in OUDA-Rid using end-to-end deep learning models.

3. Source-Guided Similarity Preservation

OUDA-Rid problem definition. In OUDA-Rid, we as-
sume having access to a well-annotated source domain
dataset S = {(xS

i ,y
S
i )}Ns

i=1, and an unlabeled target do-
main dataset T = {xt

i}Nt
i=1. Here, both domain images

are not necessarily drawn from the same distribution. We
consider that we have access to the target domain dataset
in the form of an ongoing stream of data. Following the
common batch-based approximation of the online learning
setting [11], we consider that we observe a sequence of NT

tasks {T 1∪T 2∪...∪T NT }. Each task T k, 1 ≤ k ≤ NT is a
set of images captured by several cameras and depicting an
unknown number of identities. To align with practical sce-
narios, we consider that each identity can be observed by
different cameras simultaneously. However, it is unlikely
for an identity to appear at widely separated time intervals

(e.g. different days). Therefore we can assume that identi-
ties do not overlap across different tasks, although this as-
sumption is not strictly required in our approach.

In the rest of this section, we present our S2P framework
to alleviate the two major challenges of the OUDA setting:
catastrophic forgetting and domain shift. First, our frame-
work integrates a teacher model that distills previously ac-
quired knowledge. The KD strategy of S2P is based on fea-
ture space similarity preservation and only requires images
from the source domain, hence respecting the privacy pro-
tection norms. Second, we minimize the discrepancy be-
tween the source domain and the target domain to reduce
the domain shift and further enhance the stability of the S2P.

3.1. Overview of the Approach

Fig. 2 shows the pipeline of our S2P framework. In ev-
ery task of the OUDA-Rid problem, the target labels are
not available and we assume that the identities are differ-
ent even if our S2P does not strictly require this assump-
tion. Furthermore, we construct a support set that plays the
role of a memory bank for source-guided knowledge distil-
lation. We could keep a few samples from previous tasks
if there were no privacy constraints. However, in S2P the
support set only includes images from the source domain.
We choose those images based on their similarities to pre-
viously seen images, ensuring a good approximation of the
previously learned feature spaces during continual learning.

In this work, we follow an overall training scheme that
was adopted by multiple UDA methods for Re-ID [13, 14].
More concretely, we use a student model that consists of
a feature extractor F(·). First, the student model is pre-
trained on source data S, and then fine-tuned on the unla-
beled target data T with three different loss functions:
• LKD: the knowledge distillation loss in the feature sim-

ilarity space is proposed to preserve the previously ac-



quired knowledge. To this end, a similarity-based selec-
tion strategy is applied to the source domain to construct
the support set, and a teacher model F̄(·) is added to the
main pipeline (Sec. 3.2).

• LMMD: the Maximum Mean Discrepancy (MMD) loss is
minimized to reduce explicitly the domain shift. In other
words, we want to construct a feature space that is domain
invariant and can regroup features from both the source
and the target domains (Sec. 3.3).

• LReID: this loss corresponds to the loss of the UDA
method that is integrated into our framework. This loss
is jointly minimized on the source domain S and the tar-
get domain images T together with their pseudo-labels.
The pseudo labels are estimated by a clustering algorithm
assigning each image to a cluster label (Sec. 3.4).

3.2. Source-Guided Knowledge Distillation

When learning a new task T k, the model must be up-
dated to better discriminate the appearance of the new in-
dividuals. However, the model should also preserve the
knowledge acquired on previous tasks T i ∀ 1 ≤ i ≤k − 1.
Therefore, we employ a teacher model that progressively
distills the knowledge to the student model. Distillation is
performed in the feature space over a set of source-based
support images. Since target images cannot be stored, we
propose to use images from the source domain as the sup-
port set. More precisely, we select images that are similar
to the images from the target domain seen in previous tasks.
This solution encourages the student model to project the
images into a common feature space, resulting in more dis-
criminant and task-invariant representations.
Support set collection. Fig. 2 (b) depicts the construction
of the support set in S2P. We construct the support set based
on the cosine similarity in the feature space between the
current target images and the source domain images. For
each image xt in the target task T k, we identify the image
ξx(x

t) and its corresponding identity label ξy(xt) from the
source domain that maximizes the cosine similarity in the
feature space:

(
ξx(x

t), ξy(x
t)
)
= argmax

(xs,y)∈S

F(xs) · F(xt)

∥F(xs)∥∥F(xt)∥
. (1)

Then, we add to the support set all the images from the
source that correspond to the selected identity ξy(xt):

ξk =
⋃

xt∈T k

{(xs,y) ∈ S,y = ξy(x
t)}. (2)

While learning a new task T k+1, ξk is used as a memory
that best approximates previously seen images.
Teacher-student framework. As a teacher, we need a
model that has accumulated knowledge from previous tasks
and can effectively guide the student’s learning on a new

task. We use the Exponential Moving Average (EMA) pa-
rameters update [24, 34] of the current model. At every it-
eration i, the parameters θ̄i of the teacher model are given
by:

θ̄i = αθ̄i−1 + (1− α)θ, (3)

where θ denotes the current parameters of the student model
and α ∈ [0, 1) is the weighting factor. At the first itera-
tion of our framework, θ̄0 is initialized using a model pre-
trained on the source dataset. Once the adaptation process
is performed on a specific task, only the teacher is used for
inference on the test set.
KD loss. Knowledge distillation commonly uses softened
softmax labels from the teacher in training the student net-
work [19, 27]. However, we argue that this formulation is
not suitable for Re-ID. In classification problems, the ab-
solute position of the samples in the feature space must be
preserved to remain compatible with the learned classifiers.
On the contrary, in Re-ID, we are interested only in pre-
serving the relative distance between samples. Therefore,
we employ a distillation loss that acts on similarity matrices
to offer the model more freedom to adjust the position of
the features in the learned space.

Assuming an input tensor X corresponding to a mini-
batch of n images from the support set {xi}ni=1, we use the
student network F to compute the feature representations
F = F(X) ∈ Rn×c, where c is the dimension of the feature
space. Similarly, we compute the features with the teacher
network F̄ = F̄(X) ∈ Rn×c. Then, we calculate the sim-
ilarity matrices S ∈ Rn×n and S̄ ∈ Rn×n containing the
pairwise scalar product between the current features of all
images in the current batch of the support set:

S = FFT, and S̄ = F̄F̄T
. (4)

Moreover, we minimize the Frobenius norm ∥ · ∥F between
the similarity matrices of the teacher and the student. The
source-guided knowledge distillation loss can thus be for-
mulated as follows:

LKD(S̄,S) =
∥∥∥∥ S̄
∥S̄∥

− S
∥S∥

∥∥∥∥2
F

. (5)

3.3. Source-Target Distribution Alignment

To achieve successful knowledge distillation over the
support set, it is crucial to ensure that the selected images
from the source domain are visually similar to the previ-
ously seen target images. To this end, we introduce an ad-
ditional training loss that explicitly aligns the source and
the target feature distribution. We use the Maximum Mean
Discrepancy (MMD) loss [17] to reduce the domain shift
by minimizing the discrepancy between the source and tar-
get domains. Formally, given an input batch of images
{xs

i}ni=1, {xt
j}nj=1 coming from both S and T k, we com-

pute the feature representations from both the teacher and



the student models: B̄ = (b̄i)
n
i=1,B = (bj)

n
j=1 ∈ Rn×c,

where:
b̄i = F̄(xs

i ), and bj = F(xt
j). (6)

As shown in [17], assuming a positive semi-definite kernel
K, the MMD loss can be empirically estimated as follows:

LMMD(B̄,B) =
1

n2

n∑
i,j=1

[K(b̄i,b̄j) +K(bi,bj)

− 2K(b̄i,bj)]. (7)

We follow the common practice and employ the Gaussian
kernel [26] with bandwidth parameter σ:

K(b̄i,bj) = exp

(
−
∥∥b̄i − bj

∥∥2
2σ2

)
, (8)

where we set the bandwidth σ to the estimated variance of
each minibatch as in [26].

3.4. Incorporating Pseudo-Labeling into S2P.

We now detail how we integrate three state-of-the-art
pseudo-labeling-based frameworks into S2P: MMT [13],
SpCL [14] and IDM [5].
MMT employs two networks F1 and F2 instead of a single
feature extractor F as discussed above. The classifier C1

for the feature extractor F1 is trained to predict the cluster-
ing labels obtained from F2 and vice-versa. Mean teacher
networks F̄1 and F̄2 are introduced. In addition to the cross-
entropy loss Lce, and the triplet loss Ltri introduced in the
strong baseline [9], the two networks F1 and F2 are also op-
timized using a soft classification loss Lsce and a soft triplet
loss Lstri with their mean networks [27]. Finally, LReID is
a weighted sum of the four aforementioned losses. To inte-
grate MMT into S2P, the two similarity matrices S1 and S2

are estimated using respectively F1 and F2 as student net-
works from a support set mini-batch. Similarly, two teacher
similarity matrices S̄1 and S̄2 are estimated from the two
mean teachers. The total knowledge-distillation loss is de-
fined as the sum of LKD(S̄1,S1) and LKD(S̄2,S2). In the
same way, LMMD is jointly optimized on the source and the
target domains in the feature spaces of both student-teacher
couples (F1, F̄1) and (F2, F̄2).
SpCL adopts a contrastive training scheme in the feature
space over a hybrid memory that is continually updated by
the estimated pseudo-labels. The hybrid memory stores
three types of feature representations: 1) the centroids for
every class of the source domain, 2) the centroids for ev-
ery cluster from the target domain, and 3) the feature rep-
resentations of the outliers. Finally, LReID is a contrastive
loss that jointly distinguishes classes, clusters, and unclus-
tered instances in the feature space of the hybrid memory.
For more details, the readers are referred to [14]. The inte-
gration of SpCL into our S2P is straightforward. We first

add the teacher model, which is the EMA of the fine-tuned
model. Then, for each new task, the support set is con-
structed to add LKD and LMMD to the S2P pipeline.
IDM is based on a module designed to generate interme-
diate domain representations by mixing the hidden repre-
sentations of the source and target domains. Network train-
ing is regularized with additional losses, which promote di-
versity among the domain variables and ensure that the in-
termediate domain lies between the source and target do-
mains. To integrate IDM into our S2P framework, we first
add a teacher model which is obtained through EMA over
the model’s weights, including the IDM module. Then, dur-
ing the optimization, we sum the two losses of S2P, LKD

and LMMD, to the IDM losses.

4. Experiments and Results
This section introduces the datasets used in the current

work, the evaluation protocol, the implementation details,
as well as the results and discussions of S2P. We compare
our algorithm against four state-of-the-art approaches for
UDA for person Re-ID: the strong baseline [9], MMT [13],
SpCL [14], and IDM [5]. Finally, we perform a set of ab-
lation studies to analyze each component of S2P, including
the construction of the support set, the choice of the teacher,
and the loss functions. In particular, we compare our KD
loss LKD with alternatives [36, 45] previously introduced
in the literature for similar tasks.
Datasets. We evaluate S2P on four widely used person Re-
ID datasets in domain adaptation:
• Market 1501 (M) [47] has 1, 501 identities captured by six

cameras. It includes 32, 668 images, with 12, 936 train-
ing images from 751 identities and 19, 732 test images
from the remaining 750 identities. The official protocol
matches 3, 368 query images to the test images.

• MSMT17 (MS) [38] includes videos from 15 cameras.
The training set has 32, 621 images of 1, 042 identities,
while the test set comprises 11, 659 query images and
82, 161 gallery images from 3, 060 identities.

• CUHK03 (C) [25] comprises 14, 097 photos of 1, 467
individual identities from six cameras, each identity is
recorded by two cameras. It includes both manual and au-
tomatic bounding boxes. We utilize manually-annotated
bounding boxes for training and testing.

• RandPerson (RP) [37] is a synthetic dataset containing
8, 000 identities and 1, 801, 816 images. We use a subset
of 132, 145 images from the original 8, 000 identities.

Evaluation protocol. We follow the experimental proto-
col introduced in [32]. We evaluate the performance of all
methods using the standard training/testing splits proposed
by the original authors for Market 1501 and MSMT17. In
CUHK03, we use a more challenging testing protocol pro-
posed in [48], which consists of splitting the dataset into
767 and 700 identities for training and testing, respectively.



Method MS → M MS → C M → MS RP → M
mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

Strong Baseline [9] 51.4±1.8 72.3±0.5 5.3±1.2 4.3±1.9 6.1±0.1 18.1±0.3 43.1±1.3 67.6±1.6

MMT [13] 65.8±0.1 83.7±0.1 32.2±1.6 32.2±2.4 15.1±1.9 36.9±0.1 58.7±0.7 77.5±0.1

SpCL [14] 53.5±0.4 76.0±0.3 15.6±3.1 15.7±1.7 14.7±0.2 36.7±2.3 50.5±2.8 72.1±3.5

IDM [5] 57.5±0.2 78.6±0.2 8.3±0.2 7±0.3 7.9±0.5 21.5±0.1 60.8±0.2 80.4±0.1

S2P-MMT (ours) 70±0.4 87.1±0.4 40.4±0.8 42.4±0.9 19.5±0.1 43.3±0.7 61.4±0.1 81±0.2

S2P-SpCL (ours) 69.1±0.1 87.1±0.1 34.3±0.3 35.1±0.5 20.2±0.1 46.1±0.2 59±0.1 80.5±0.2

S2P-IDM (ours) 71.3±0.1 88.0±0.1 17.5±0.5 16.6±0.5 14.2±0.3 33.9±0.2 70.2±0.2 86.1±0.4

Table 1. Performance of S2P and four state-of-the-art methods in the last task in three real-to-real and one synthetic-to-real OUDA-Rid
tasks. The best and second-best methods on each dataset are highlighted in bold and underlined, respectively.

RP is always used as a source dataset in this work.
We evaluate S2P for OUDA-Rid in several real-to-

real and synthetic-to-real configurations: MS→M, MS→C,
M→MS, and RP→M. These configurations are widely used
in the literature [13, 14, 37] and illustrate domain shifts of
diverse difficulties. For each configuration, we randomly
and uniformly split the training identities into five subsets,
corresponding to five tasks for OUDA-Rid, each having a
distinct set of identities. We also perform additional exper-
iments where we increase the number of tasks in the target
domain, which are detailed in the supplementary material
due to space limitations.

We adopt the commonly used metrics for evaluation in
Re-ID [13, 14]: mean Average Precision (mAP) and CMC
Rank-1 [47] accuracies. These metrics are computed on the
entire test set of the target domain after each task during the
online adaptation process. We report the average mAP and
Rank-1 over three repetitions with different seeds.
Implementation details. We follow the common practices
in the UDA person Re-ID field by adopting ResNet50 [18]
pre-trained on ImageNet [7] as a backbone. We employ the
features computed after the global average pooling layer.
We use DBSCAN for clustering, which is commonly em-
ployed in pseudo-labeling methods because it requires no
prior assumption on the number of clusters. For each new
task, Adam [23] optimizer is adopted with an initial learning
rate (LR) equal to 3.5e−4, a linear LR scheduler, and weight
decay of 5e−4 [13,14]. Same as [32], the number of epochs
per task is set to 20. For the EMA, we follow [13] and set
α to 0.999 to update the teacher model parameters. Finally,
all the images are resized to 256×128 before being fed into
the backbone (or backbones for MMT), and the batch size
was set to 64 corresponding to 16 different identities with 4
images per ID.

4.1. Quantitative Results

Comparison with the state of the art. Table 1 reports the
mAP accuracy and CMC Rank-1 score obtained at the end
of training with all methods in three real-to-real configura-

tions: MS→M, MS→C, M→MS, and one synthetic-to-real
RP→M. The reported metrics are computed at the end of
the adaptation process in each case. The low scores of the
strong baseline are due to the presence of the domain shift,
which cannot be appropriately addressed with this method.
The state-of-the-art UDA methods MMT, SpCL and IDM
struggle when deployed in the OUDA-Rid setting. The drop
in performances of MMT, SpCL and IDM is partially ex-
plained by the presence of catastrophic forgetting. Further-
more, MMT outperforms SpCL and IDM in almost all con-
figurations, showing that their student-teacher framework is
well suited to OUDA-Rid.

Table 1 shows that S2P-MMT, S2P-SpCL or S2P-IDM
outperforms all previous state-of-the-art UDA methods in
OUDA-Rid over all configurations. For example, S2P im-
proves the mAP of SpCL from 15.6 to 34.3 and from 14.7
to 20.2 in MS→C and M→MS, respectively.

As for IDM, our S2P significantly improves its perfor-
mances, from 8.3 to 17.5 and from 7.9 to 14.2, in the same
configurations: MS→C and M→MS. Finally, for MMT,
S2P improves the mAP, from 32.2 to 40.4 and from 15.1
to 19.5, in MS→C and M→MS, respectively. The gain for
SpCL and IDM is greater than for MMT because MMT al-
ready integrates a teacher in its knowledge distillation loss
function (soft cross entropy and soft triplet loss), whereas
SpCL and IDM are only optimized using hard pseudo la-
bels without any refinement.

Similarly, we can see that in the synthetic-to-real sce-
nario RP→M, S2P noticeably improves the performance of
the three state-of-the-art methods. S2P improves: from 58.7
to 61.4, from 50.5 to 59, and from 60.8 to 70.2 the perfor-
mances of MMT, SpCL, and IDM, respectively. These re-
sults demonstrate that S2P can be successfully deployed in
OUDA-Rid applications where we cannot have access to a
real and well-annotated dataset for the source domain2.
Continual behavior. To delve deeper into the analysis on
the continual behavior of the different methods, we com-

2Additional experiments in different configurations can be found in the
supplementary materials.



Figure 3. Comparison of S2P with four state-of-the-art methods in terms of mAP vs. task index in two different OUDA-Rid tasks,
MSMT→CUHK and RandPerson→Market.

pare in Fig. 3 the mAP at the end of each task before and
after incorporating the three state-of-the-art methods MMT,
SpCL and IDM into our S2P framework. For this analysis,
we choose two different configurations: MS→C (Fig. 3-a,
-b, and -c) and RP→M (Fig. 3-d, -e and -f). In general, the
low performances of the direct inference (i.e. the mAP at
task 0) and the strong baseline show that the chosen config-
urations are of varying degrees of difficulty.

Fig. 3 also shows the effect of catastrophic forgetting as
a drop in performance in new tasks in several situations. For
example, the strong baseline presents degradation of perfor-
mance in both configurations in new tasks. Similarly, SpCL
and IDM both lose accuracy when confronted with new in-
coming data due to catastrophic forgetting and domain shift
in the later tasks. For MS→C configuration: in b) the mAP
of SpCL goes from 20.5 in the second task to 13.5 in the
third task, while in c) the performance of IDM drops from
10.9 to 8.3 in the last task. Finally, for MMT we can notice
in a) that the performance reaches an undesirable plateau af-
ter the third task in the same configuration. This shows that
the knowledge acquired during the first stages of OUDA-
Rid is lost during the adaptation process. Furthermore, the
fluctuations of the mAP of SpCL and IDM in b), c), e) and
f) in Fig. 3 illustrate the inability of the models to main-
tain a general structure of the feature space that captures the
whole target domain distribution.

On the contrary, S2P-MMT, S2P-SpCL and S2P-IDM
show a steady improvement in performance on the two con-
figurations. Specifically, all the three methods achieve bet-
ter performance when learning later tasks when incorpo-
rated into our S2P framework and deliver consistent results
across the different configurations.

Moreover, it is clear from the learning curves across all
the different tasks that S2P successfully adapts UDA meth-
ods to the continual setting OUDA-Rid, resulting in a supe-
rior learning process evolution and a solid accumulation of
prior knowledge.

4.2. Ablation Studies

We perform three ablation studies about: 1) the loss
functions, 2) the knowledge distillation design, and 3) the
choice of the teacher model. We run those experiments
with S2P-SpCL as the pseudo-labeling method in OUDA-
Rid configurations, namely, MS→C and RP→M.
The impact of the two main losses of S2P. The two main
loss functions (KD and MMD) of S2P were introduced in
Sec. 3.2 and 3.3. In this ablation, we study the influence
of different configurations of the losses LMMD and LKD

in the performance of S2P as shown in Table 2. The per-
formance of the baseline significantly improves in almost
all the configurations by only integrating either the LMMD

or LKD. For example, the configuration MS→ M shows a
gain in performance. The mAP goes from 53.5 to 62.4 with
LMMD and from 53.5 to 65.1 with LKD for S2P-SpCL.
Furthermore, combining both losses leads to an additional
overall improvement in performance in all cases.
Knowledge Distillation Design. We delve into our knowl-
edge distillation mechanism focusing on two key factors:
the loss function and the selection of the support set.

Regarding the support set construction, our similarity-
based selection relies on a cosine similarity function ξ given
in Eq. (2). We explore two different approaches to compute
the support set as shown in Table 3. The first strategy em-
ploys all the images of the source domain S to construct



S2P-SpCL S2P-MMT

LMMD LKD
MS → M MS → C M → MS RP → M MS → M MS → C M → MS RP → M

mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

✗ ✗ 53.5 76.0 15.6 15.7 14.7 36.7 50.5 72.1 65.8 83.7 32.2 32.2 15.1 36.9 58.7 77.5
✓ ✗ 62.4 82.9 24.1 23.6 15.2 38.5 55.4 77.5 62.6 81.4 27.4 26.4 15.3 37 60.8 80.2
✗ ✓ 65.1 85.1 28.2 26.7 16 40 55.5 78.9 67 85.5 35.2 35.1 17.8 41.1 60.4 80.1
✓ ✓ 69.1 87.1 34.3 35.1 20.2 46.1 59 80.5 70 87.1 40.4 42.4 19.5 43.3 61.4 81

Table 2. Ablation study on the effectiveness of the LMMD and LKD loss functions using S2P-SpCL and S2P-MMT.

Dist. Support Set MS → C RP → M
Loss mAP Rank-1 mAP Rank-1

LKD Source Domain S 29.3 28.1 56.3 78.3
LKD Rank-1 NN 29.8 29.6 56.4 78.9
LKD Similarity-based ξ 34.3 35.1 59 80.5

LSP [36] Similarity-based ξ 26.5 25 55.4 78.8
LAT [45] Similarity-based ξ 26.4 25.6 55.5 78.8

Table 3. Ablation study on the design of our knowledge distilla-
tion mechanism using S2P-SpCL. We assess the impact of two key
factors: the loss function and the selection function of the support
set. See text for details.

the support set. The second (Rank-1 NN) selects only the
most similar image from the source domain to each previ-
ously seen image, without considering its identity’s other
images. The similarity-based selection strategy ξ shows the
best results in almost all cases as shown in Table 3. Fur-
thermore, we compare our LKD with two different losses
that are widely used in the literature: LSP [36] which uses
pairwise activation similarities to supervise the training of
the student model, and LAT [45] where only the activations
are used to compute a mean squared error between the stu-
dent and the teacher models. The results of Table 3 allow us
to draw the conclusion that our knowledge distillation de-
sign better suits the setting of OUDA-Rid and outperforms
both the other knowledge distillation losses and support set
selection strategies.

To qualitatively illustrate the construction of our support
set, in Fig. 4, we show some random samples of the support
set for MS→C and RP→M, where xt is the image in the
target domain and ξx(x

t) is its most similar image in the
source domain.
The choice of the teacher. As described in Sec. 3.2 for S2P,
knowledge distillation is performed with a teacher network
obtained via EMA updates. In this ablation study, we in-
vestigate alternative solutions for the choice of the teacher
model as shown in Table 4. We analyze three teacher mod-
els: 1) at the start of each task t, the teacher is frozen and
initialized by the weights of the fine-tuned model on the
previous task Ft−1; 2) the teacher is an EMA of the stu-
dent model, being updated only at the end of the previously
seen tasks F̄t−1; and 3) the mean teacher F̄ obtained via
EMA after each iteration (i.e., one mini-batch pass) as in

Source (MS) → Target (C) Source (RP) → Target (M)

xt

ξx(x
t)

Figure 4. The support set construction based on the similarities
between the source domain MS (RP respectively) and the target
domain C (M respectively).

Teacher Model MS → C RP → M
mAP Rank-1 mAP Rank-1

Task-specific Ft−1 14.3 14.9 28.7 57
EMA of task-specific F̄t−1 14.8 15.1 28.3 55.7

EMA of the student F̄ 34.3 35.1 59 80.5

Table 4. Ablation study on the choice of the teacher model for
Knowledge Distillation using S2P-SpCL.

Sec 3.2. The results in Table 4 suggest that the choice of
the teacher model is highly critical to alleviating the prob-
lem of catastrophic forgetting and that the proposed solution
outperforms other alternatives.

5. Conclusions
In this paper, we introduced a new Source-guided Sim-

ilarity Preservation (S2P) algorithm for the problem of
Online Unsupervised Domain Adaptation for person Re-
identification (OUDA-Rid). S2P jointly addresses catas-
trophic forgetting and domain shift with a knowledge dis-
tillation mechanism that respects data privacy regulations.
This mechanism is based on a support set composed of
source images similar to previously seen identities in the
target dataset. We also introduced an explicit source-target
distribution alignment and a pseudo-labeling strategy to
alleviate the domain shift. We performed extensive ex-
periments where S2P straightforwardly incorporates exist-
ing state-of-the-art UDA methods and consistently outper-
formed them by significant margins.



References
[1] Andreea Bobu, Eric Tzeng, Judy Hoffman, and Trevor Dar-

rell. Adapting to continuously shifting domains. In ICLR,
2018. 2

[2] Fabio Cermelli, Dario Fontanel, Antonio Tavera, Marco Cic-
cone, and Barbara Caputo. Incremental learning in semantic
segmentation from image labels. In CVPR, 2022. 2

[3] Hao Chen, Benoit Lagadec, and Francois Bremond. Unsu-
pervised lifelong person re-identification via contrastive re-
hearsal. arXiv preprint arXiv:2203.06468, 2022. 2

[4] Yanbei Chen, Xiatian Zhu, and Shaogang Gong. Instance-
guided context rendering for cross-domain person re-
identification. In ICCV, 2019. 2

[5] Yongxing Dai, Jun Liu, Yifan Sun, Zekun Tong, Chi Zhang,
and Ling-Yu Duan. IDM: an intermediate domain module
for domain adaptive person re-id. In ICCV, 2021. 2, 5, 6

[6] Guillaume Delorme, Yihong Xu, Stéphane Lathuilière, Radu
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Online unsupervised domain adaptation for person re-
identification. In CVPRW, 2022. 1, 2, 3, 5, 6

[33] Liangchen Song, Cheng Wang, Lefei Zhang, Bo Du, Qian
Zhang, Chang Huang, and Xinggang Wang. Unsupervised
domain adaptive re-identification: Theory and practice. Pat-
tern Recognition, 2020. 2

[34] Antti Tarvainen and Harri Valpola. Mean teachers are better
role models: Weight-averaged consistency targets improve
semi-supervised deep learning results. In NeurIPS, 2017. 4

[35] Cheng-Hao Tu, Cheng-En Wu, and Chu-Song Chen. Extend-
ing conditional convolution structures for enhancing multi-
tasking continual learning. In APSIPA ASC, 2020. 2



[36] Frederick Tung and Greg Mori. Similarity-preserving knowl-
edge distillation. In ICCV, 2019. 5, 8

[37] Yanan Wang, Shengcai Liao, and Ling Shao. Surpassing
real-world source training data: Random 3D characters for
generalizable person re-identification. In ACM MM, 2020.
5, 6

[38] Longhui Wei, Shiliang Zhang, Wen Gao, and Qi Tian. Per-
son transfer GAN to bridge domain gap for person re-
identification. In CVPR, 2018. 1, 5

[39] Chao Wu, Wenhang Ge, Ancong Wu, and Xiaobin Chang.
Camera-conditioned stable feature generation for isolated
camera supervised person re-identification. In CVPR, 2022.
1

[40] Chenshen Wu, Luis Herranz, Xialei Liu, Yaxing Wang, Joost
van de Weijer, and Bogdan C. Raducanu. Memory replay
GANs: learning to generate images from new categories
without forgetting. In NeurIPS, 2018. 2

[41] Fei Ye and Adrian G Bors. Lifelong teacher-student network
learning. IEEE TPAMI, 2021. 2

[42] Mang Ye, Jiawei Li, Andy J Ma, Liang Zheng, and Pong C
Yuen. Dynamic graph co-matching for unsupervised video-
based person re-identification. IEEE TIP, 2019. 2

[43] Mang Ye, Jianbing Shen, Gaojie Lin, Tao Xiang, Ling
Shao, and Steven C. H. Hoi. Deep learning for person re-
identification: A survey and outlook. IEEE TPAMI, 2022.
1

[44] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju
Hwang. Lifelong learning with dynamically expandable net-
works. In ICLR, 2018. 2

[45] Sergey Zagoruyko and Nikos Komodakis. Paying more at-
tention to attention: Improving the performance of convolu-
tional neural networks via attention transfer. ICLR, 2016. 5,
8

[46] Mengyao Zhai, Lei Chen, Frederick Tung, Jiawei He, Megha
Nawhal, and Greg Mori. Lifelong GAN: continual learning
for conditional image generation. In ICCV, 2019. 2

[47] Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jing-
dong Wang, and Qi Tian. Scalable person re-identification:
A benchmark. In ICCV, 2015. 5, 6

[48] Zhun Zhong, Liang Zheng, Donglin Cao, and Shaozi Li. Re-
ranking person re-identification with k-reciprocal encoding.
In CVPR, 2017. 5

[49] Zhun Zhong, Liang Zheng, Shaozi Li, and Yi Yang. Gener-
alizing a person retrieval model hetero- and homogeneously.
In ECCV, 2018. 2

[50] Wang Zhou, Shiyu Chang, Norma E. Sosa, Hendrik F.
Hamann, and David D. Cox. Lifelong object detection. arXiv
preprint arXiv:2009.01129, 2020. 2

[51] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In ICCV, 2017. 2


	. Introduction
	. Related Work
	. Source-Guided Similarity Preservation
	. Overview of the Approach
	. Source-Guided Knowledge Distillation
	. Source-Target Distribution Alignment
	. Incorporating Pseudo-Labeling into S2P. 

	. Experiments and Results
	. Quantitative Results
	. Ablation Studies

	. Conclusions

