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Estimation of a Causal Directed Acyclic Graph
Process using Non-Gaussianity

Aref Einizade, Jhony H. Giraldo, Fragkiskos D. Malliaros, and Sepideh Hajipour Sardouie,

Abstract—Numerous approaches have been proposed to dis-
cover causal dependencies in machine learning and data mining;
among them, the state-of-the-art VAR-LiNGAM (short for Vector
Auto-Regressive Linear Non-Gaussian Acyclic Model) is a desir-
able approach to reveal both the instantaneous and time-lagged
relationships. However, all the obtained VAR matrices need to
be analyzed to infer the final causal graph, leading to a rise in
the number of parameters. To address this issue, we propose
the CGP-LiNGAM (short for Causal Graph Process-LiNGAM)
method, which has significantly fewer model parameters and
deals with only one causal graph, i.e., directed acyclic graph
(DAG), for interpreting the causal relations by exploiting Graph
Signal Processing (GSP). Besides, the Graph Shift Invariance
and Uniqueness of the proposed approach are also studied
and shown. Experimental results demonstrate the superiority
and robustness over the state-of-the-art methods, especially in
a high amount of noise. Besides, the real-world applicability and
interpretability of the proposed approach are shown in learning
effective brain connectivity during sleep, and the compatibility
of obtained causal directed brain graphs with the previous sleep-
related neuroscientific studies is investigated.

Index Terms—Causal Discovery, Graph Signal Processing
(GSP), Causal Graph Process (CGP), Linear Non-Gaussian
Acyclic Model (LiNGAM), Directed Acyclic Graph (DAG).

I. INTRODUCTION

Causal Discovery (CD) [1], [2] of time-series data, also
known as Dynamic CD (DCD), has gained significant attention
due to its capability to reveal causal relationships between
observational data. A wide variety of DCD methods have been
proposed based on different points of view. For a compre-
hensive survey, please refer to [3] and the references therein.
Two popular and well-known types of causal dependency
order are instantaneous and time-lagged ones which are mostly
addressed by Structural Equation Model (SEM) [2], and
Vector Auto-Regressive (VAR) ones [2], respectively. Among
the SEM-based approaches, the popular Linear Non-Gaussian
Acyclic Model (LiNGAM) addresses the identifiability issue
by assuming the exogenous disturbances are non-Gaussian
[4]. Besides, the state-of-the-art VAR-LiNGAM method [5]
has been proposed to reveal both the instantaneous and time-
lagged dependencies. As well as the desirable advantages
of the VAR and VAR-LiNGAM, having a high number of
free model parameters and the need for interpreting all VAR
matrix coefficients to infer the final causal graph are still major
drawbacks [6].
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On the other hand, in most recording systems of time series,
the interacting sensors, such as brain regions [7], geographic
temperature locations [6], etc., can be considered the nodes of
a meaningful underlying (and possibly directed) causal graph.
For example, the learned graphs from brain signals can reveal
the directed interactions between latent brain sources [5], [8],
[9]. These graphs are rarely known in real machine learning
applications and need to be carefully learned/estimated from
observational data [3], [7]. Building upon this causal graph,
the different recorded measurements on different nodes (in
one time index) can be interpreted as a graph signal, which
provides utilizing Graph Signal Processing (GSP) tools [10],
[11], [6], [12] in different areas such as image [13], [14], [15]
and video [16], [17] processing.

Recently, a GSP-based method named Causal Graph Pro-
cess (CGP) [6] has been proposed to address the mentioned
drawbacks of the VAR by modeling the VAR coefficient
matrices with graph polynomial filters; however, this model
can not model the instantaneous dependencies. To address the
mentioned issues, in the proposed (graph) shift invariant [6]
CGP-LiNGAM analysis, the discovery of causal relationships
relies on only one and shared underlying Directed Acyclic
Graph (DAG) [6] to reveal both the instantaneous and time-
lagged dependencies, unlike almost all of the other VAR-based
approaches, such as VAR-LiNGAM [5] and DYNOTEARS
[18], [19], [20], which need analyzing all the obtained VAR
matrix coefficients to infer the underlying causal graph.

From the viewpoint of real-world applicability, the GSP
tools have gained great attention in a wide range of ap-
plications, especially brain imaging and analysis [21]. The
flexibility of GSP concepts and tools to describe direct or
indirect connections makes it a powerful choice for processing
brain signals or inferring brain connectivity, which plays an
important role in clinical diagnosis, especially during sleep
[22]. However, to the best of our knowledge, the inference of
sleep-related effective brain connectivity from a GSP point of
view has not been addressed, and the current work aims to
investigate it.

The main contributions of the present paper are summarized
as follows:

• The proposed CGP-LiNGAM reveal both the instanta-
neous and time-lagged dependencies and is related to
only one and shared underlying Directed Acyclic Graph
(DAG) [6] (significantly fewer parameters, based on the
analysis presented in Section (III-D)) unlike the state-of-
the-art VAR-LiNGAM [5] and DYNOTEARS [20].

• We present closed-form iteration-based solutions in Sec-
tion III, which facilitate applicability and reproducibility.
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• The proposed model has the desired property of Graph
Shift Invariance (GSI) [23] as will be shown in Theorem
2. Besides, the non-Gaussianity of the exogenous dis-
turbances guarantees the identifiability of the proposed
model [5], as will be proved in Theorem 3.

• Based on the experimental analysis in Sections IV-A,
IV-B and IV-C, the CGP-LiNGAM performs more ac-
curately and robustly in causal graph recovery and pre-
diction tasks compared to the VAR-LiNGAM [5], and
DYNOTEARS [20].

• In Section IV-D, the efficiency of the proposed approach
over both the generic LiNGAM [4] and CGP [6] in
handling both the instantaneous and lagged causal effects
is illustrated.

• Based on the additional presented analysis in Section
IV-E, the CGP-LiNGAM method is also robust in the
case of not known CGP (VAR) order [24].

• In addition to the mentioned numerical analysis, the
learning effective brain connectivity during sleep [22],
[8] will be investigated in Section IV-F to show the real-
world applicability and neuroscientific compatibility of
the inferred brain graphs.

The notations (.)⊤, ⊗, (.)†, ∥.∥p, and x̂ stand for the trans-
pose operator, Kronecker product, Moore-Penrose pseudo-
inverse of a matrix, the p-norm of a vector, and the estimation
of the true entity x, respectively.

II. BACKGROUND AND RELATED WORK

The observation matrix X = (x(0), x(1), ..., x(K − 1)) ∈
RN×K is provided to us by recording K-length signals on N
sensors/nodes. Firstly, the GSP background is briefly outlined.

A. GSP background

A directed graph G = (V,A) is characterized by its vertex
set V = {v1, ..., vN} and its adjacency matrix A ∈ RN×N . If
Aij ̸= 0, the ith node is a parent of the jth node, and the jth
node is a descendant of the ith node [2]. We call a node pure
parent if it is not the descendant of any other nodes. A graph
signal x = (x1, ..., xN )⊤ ∈ RN×1 is a mapping x : V → R,
assigning the ith vertex the value of xi [10]. A L-order graph
polynomial filter is also defined as [6]:

P (A, c) = c0I + c1A + ...+ cLAL, (1)

where I denotes the identity matrix of size N , and c =
(c0, ..., cL)

⊤ contains the scalar filter coefficients.
In the following, the related work to the current study is

briefly described.

B. LiNGAM

In an (instantaneous w.r.t. the current time sample k, where
k = 0, ...,K − 1) SEM (2), assuming the exogenous dis-
turbance e is non-Gaussian, the underlying DAG A can be
uniquely recovered by the LiNGAM analysis [4].

x(k) = Ax(k) + e(k). (2)

C. VAR

The VAR modeling of time-series X for k = 0, ...,K− 1 is
defined as:

x(k) =
M∑
i=1

Rix(k − i) + e(k), (3)

where M denotes the VAR order, and {Ri}Mi=1 are VAR
coefficient matrices [5]. From the Granger [25] analysis point
of view, to recover the underlying causal graph A′ modeling
the causal relationships, one considers A′

ij = 0, if R(ij)
k = 0

for all k [26], [6], implying the conditional independence
between the time-series at each node described by a Markov
Random Field (MRF) with adjacency structure A′ [6], where
A′

ij and R(ij)
k denote the (i, j)th element of A′ and Rk,

respectively.

D. VAR-LiNGAM

In this method, both the instantaneous and time-lagged
dependencies are modeled using the combination of (2) and
(3) as [5]:

x(k) =
M∑
i=0

Rix(k − i) + e(k). (4)

In this method, R0 is considered the adjacency matrix
of an underlying DAG, and the exogenous disturbance e is
assumed to be non-Gaussian to guarantee the identifiability
[5]. Then, similar to the VAR model (3), the sparsity pattern
of all {Ri}Mi=0 must be analyzed to recover the true underlying
causal graph A′ [5].

E. Causal Graph Process (CGP)

An M -order CGP model has the following form [6]:

x(k) =
M∑
i=1

Pi(A, c)x(k − i) + e(k), (5)

where Pi(A, c) =
∑i

j=0 cijAj implements a graph filtering
operator and c collects the scalar polynomial coefficients as
(1 ≤ i ≤M and 0 ≤ j ≤ i):

c = (c10, c11, ..., cij , ..., cMM )⊤. (6)

III. THE PROPOSED CGP-LINGAM APPROACH

In our CGP-LiNGAM framework, the instantaneous
(LiNGAM) and time-lagged (CGP) parts share one underly-
ing DAG adjacency matrix A. To recover both these causal
dependencies, our proposed framework is shown as follows:

x(k) = Ax(k) +
M∑
i=1

Ri︷ ︸︸ ︷
Pi(A, c) x(k − i) + e(k). (7)

The proposed model (7) can be rewritten as:

x(k) =
M∑
i=1

R̃ix(k − i) + ẽ(k), (8)
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where the following theorem helps to recover R̃i in (8), and

R̃i = (I− A)−1Ri; ẽ(k) = (I− A)−1e(k). (9)

The following theorem shows that how the pair matrices R̃i

and R̃j commute, for i, j = 1, 2, ...,M .

Theorem 1. (Commutativity). In the model (8), given that A
is the adjacency matrix of a DAG, R̃i and R̃j commute, i.e.,
R̃iR̃j = R̃jR̃i, for i, j = 1, 2, ...,M .

Proof: If A is the adjacency matrix of a DAG, I − A is
invertible [4], [5] and also ∀i : |λi(A)| < 1. In fact, due to
the strict lower triangularity of A, ∀i : λi(A) = 0. Therefore,
the infinite sum of the geometric series

∑∞
r=0 Ar is summable,

and equal to (I− A)−1 as [27]:

(I− A)−1 =

∞∑
r=0

Ar. (10)

Then, the VAR coefficient matrices {R̃i}Mi=1 in (8) commute
because they can be stated as (infinite) graph polynomial
filters:

R̃i = (I− A)−1Ri =

[ ∞∑
r=0

Ar

] i∑
j=0

cijAj


=

∞∑
r=0

i∑
j=0

cijAr+j . ■

(11)

The next theorem outlines the property of the Graph Shift
Invariance (GSI) for the proposed CGP-LiNGAM model (7).

Theorem 2. (Graph Shift Invariance). In the proposed CGP-
LiNGAM model (7), if the new input x′ is the graph filtered
version of the initial input x induced by the graph filter
hc′(A) = P (A, c′), i.e., x′(k) = hc′(A)x(k); k = 1, ...,K,
the new input x′ still can be described by the CGP-LiNGAM
model (7) with the same parameters {A, c}.

proof : Firstly, to use brief notations in the proof, we denote
hc(A) = P (A, c). Then, due to the commutativity of two
arbitrary graph filters hc(A) and hc′(A) [6] and also since
the multiplication of hc(A) and hc′(A) is a new graph filter
hc′′(A) [23], based on the definition of x′, one can write:

x′(k) = hc′(A)x(k)

= hc′(A)

[
Ax(k) +

M∑
i=1

hci(A)x(k − i) + e(k)

]

= [hc′(A)A]x(k) +
M∑
i=1

[hc′(A)hci(A)]x(k − i) +

e′(k)︷ ︸︸ ︷
hc′(A)e(k)

= A[hc′(A)x(k)] +
M∑
i=1

hci(A)[hc′(A)x(k − i)] + e′(k)

= Ax′(k) +
M∑
i=1

hci(A)x′(k − i) + e′(k).

(12)

Therefore, the new input x′ still can be described by the
CGP-LiNGAM model (7) with the same underlying DAG A
and graph filter matrix coefficients {hci(A)}Mi=1. ■

The proposed CGP-LiNGAM algorithm is summarized in
Algorithm 1, but in the following, the proposed three-step ap-
proach for recovering {R̃i}Mi=1, A, {Ri}Mi=1, and c is presented
in detail. However, from the proposed CGP-LiNGAM model
(7), it can be seen that the main goal is recovering the model
parameters {A, c}, and the intermediate variables {R̃i}Mi=1 and
{Ri}Mi=1 are described only for the sake of clarity.

A. Recovering {R̃i}Mi=1

Based on Theorem 1, the commutativity terms are included
in the following multi-convex optimization [6] to obtain the
(possibly sparse) graph polynomial filters

{
R̃i

}M
i=1

as:

ˆ̃Ri = argmin
R̃i

1

2

K−1∑
k=M

∥∥∥∥∥x(k)−
M∑
i=1

R̃ix(k − i)

∥∥∥∥∥
2

2

+ λ1∥vec(R̃1)∥1

Subject to: R̃iR̃j = R̃jR̃i; i, j = 1, ...,M .
(13)

An alternating optimization to (13) is expressed as:

ˆ̃Ri = argmin
R̃i

1

2

K−1∑
k=M

∥∥∥∥∥x(k)−
M∑
i=1

R̃ix(k − i)

∥∥∥∥∥
2

2

+ λ1∥vec(R̃1)∥1 + λ3

∑
i ̸=j

∥R̃iR̃j − R̃jR̃i∥2F ,
(14)

where, with the definitions

Xm = (x(m), x(m+ 1), ..., x(m+K −M − 1)), (15)

and

r̃i = vec(R̃i), (16)

(14) can be rewritten as (with the details [28] in the Appendix
(Section VI)):

ˆ̃ri = argmin
r̃i

∥Ψir̃i − ỹi∥22 + λ1∥r̃1∥1, (17)

where 0 is a all-zero array with appropriate size, and

Ψi =(√
2

2
B⊤
i ,
√
λ3Φ

⊤
1 , ..,

√
λ3Φ

⊤
i−1,

√
λ3Φ

⊤
i+1, ..,

√
λ3Φ

⊤
M

)⊤

,

(18)

ỹi =

(√
2

2
y⊤
i , 0⊤, . . . , 0⊤

)⊤

, (19)

Bi = X⊤
M−i ⊗ I, Φi = R⊤

i ⊗ I− I⊤ ⊗ Ri,

yi = vec(XM )− vec

 M∑
j=1 ̸=i

R̃jXM−j

 .
(20)
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Algorithm 1 : CGP-LiNGAM

Input: X ∈ RN×T , M, {λi}3i=1

Output: Causal DAG A ∈ RN×N , Polynomial coefficients c
1: Initialize: the iteration index t = 1, R̂

(0)
= 0

2: while Convergence do
3: for i = 1 : M do
4: Estimate R̃

(t)

i by fixing {R̃(t−1)

j }Mj=1̸=i, and using
CVX [31] in (13) or (14), or using LASSO[29]/
closed-form solutions in (21)

5: end for
6: t← t+ 1
7: end while: return {R̃i}Mi=1 and ẽ in (8)
8: Estimate R0 = A using LiNGAM analysis [4] on ẽ
9: Obtain the causal effect matrices {Ri = (I− A)R̃i}Mi=1

10: Solve for c in (23) by l-1 minimization, e.g., LASSO [29]

Afterwards, the unique (identifiable) [6] closed-form solu-
tions to (14) are expressed as:

ˆ̃ri ̸=1 = Ψ†
i ỹi, i = 2, ...,M , (21)

and ˆ̃r1 can be obtained using standard l-1 minimization ap-
proaches in (17), such as LASSO [29]. Note that the proposed
steps of (17) and (21) for i = 1, ...,M are repeated until
convergence (please refer to Lines 2-7 in Algorithm 1).

B. Recovering A
By recovering {R̃i}Mi=1, the residual ẽ is also obtained from

(8), and the relation ẽ(k) = (I− A)−1e(k) can be rewritten:

ẽ(k) = Aẽ(k) + e(k), (22)

which is an SEM, and, due to the non-Gaussianity of the
exogenous disturbance e, the underlying DAG A can be
uniquely (identifiable) inferred using the LiNGAM analysis
[4], [5] on ẽ exploiting FastICA [30] approach as will be
shown in Theorem 3.

C. Recovering {Ri}Mi=1 and c
By recovering {R̃i}Mi=1 and A, the graph polynomial filters

{Ri = (I − A)R̃i}Mi=1 are obtained, and, inspired from the
CGP model [6] (i.e., Ri = Pi(A, c) =

∑i
j=0 cijAj), the

polynomial coefficients c are estimated by minimizing the
following convex optimization using standard l1-regularized
least squares methods, such as LASSO [29]:

ĉi = argmin
ci

1

2

∥∥∥vec(R̂i)−Qici
∥∥∥2
2
+ λ2∥ci∥1, (23)

where Qi =
(
vec(I), vec(Â), ..., vec(Â

i
)
)

, and ci =

(ci0, ci1, ..., cii)
⊤ [6] for i = 1, ...,M . Concisely, our proposed

CGP-LinGAM algorithm is summarized in Algorithm 1. The
following theorem describes the needed mild assumptions for
the CGP-LiNGAM (7) to be uniquely recovered.

Theorem 3. (Uniqueness). In the CGP-LiNGAM (7) with
known AR order M , given that A is the adjacency matrix of
an underlying DAG, the exogenous noise e is non-Gaussian,
and under the mild conditions c10 = 0 and c11 = 1, the model
parameters {A, {ci}Mi=1} can be uniquely recovered.

proof : It has been shown [6] that, under very mild condi-
tions, i.e., c10 = 0 and c11 = 1, in the CGP model (5), A and c
can be uniquely described without ambiguity. Therefore, with
multi-convexity of (13), the only remaining step for checking
uniqueness and identifiability is the LiNGAM step (22). In
this step, precisely, a classic Independent Component Analysis
(ICA) method, i.e., FastICA in LiNGAM [4], is used, which,
under the Non-Gaussianity of the exogenous noise e, the obtain
DAG A is unique and identifiable [4]. ■

D. Number of learnable model parameters

In the CGP-LiNGAM (7), the underlying DAG A has
N(N−1)

2 free parameters (because of the technically being
lower triangular), and c ∈ R

M(M+3)
2 , compared to the VAR-

LiNGAM [5] (4), which needs N(N−1)
2 +MN2 free parame-

ters to describe the model. On the other hand, in real applica-
tions, usually N ≫ M [5], [6], so the CGP-LiNGAM (with
combined N(N−1)

2 +M(M+3)
2 free parameters) is considerably

parsimonious compared to the VAR-LiNGAM.

E. Complexity Analysis of CGP-LiNGAM (Algorithm 1)

For a specific i and an convergence iteration in Line 4,
optimization (14) is naively dominated by the matrix-matrix
product of {R̃iR̃j}Mj=1 ̸=i with O((M − 1)N3), and matrix-
vector product of {R̃jx(k−j)}K−1,M

k=M,j=1 with O((K−M)N2)
complexity [6]. As a result, the overall complexity of one
convergence iteration is O(M2N3 + KMN2). In Line 8,
the computational complexity of the LiNGAM analysis typ-
ically O(KN3 + N4) [32]. The matrix-matrix products of
{(I−A)R̃i}Mi=1 in Line 9 take total complexity of O(MN3).
In Line 10, the minimization (23) for each i is dominated
by multiplications Q⊤

i Qi ∈ R(i+1)×(i+1) and Q⊤
i vec(R̃i) ∈

R(i+1)×1, which take O((i + 1)2) operations [6], and, com-
bined complexity of O(M(

∑M
i=1 (i+ 1)2)) ≈ O(M4). All

in all, assuming M ≪ K, the total (worst-case and naive)
computational complexity of Algorithm 1 is approximately
O(KMN2 + KN3 + N4 + M4). Note that the (possible)
sparsity of the underlying DAG can severely reduce the
complexity [6].

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we provide experimental analysis in two
categories: 1) ablation study: analyzing the performance of the
CGP-LiNGAM in different situations, 2) comparison study:
comparing the performance of the CGP-LiNGAM with that
of the state-of-the-art, i.e., VAR-LiNGAM [5]. The underlying
DAG A and also the non-Gaussian exogenous disturbance e
are generated as described in [4]. Note that, to have sparse
DAGs, we generate A (with N = 5) with just one pure
parent. The generated data were divided into three parts of
the train, validation (to find the optimal hyperparameters using
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Fig. 1: (a-c) The average of the performance evaluation metrics over thirty Monte-Carlo realizations, by varying the number
of samples K and the CGP-order M in the spans of {300, 500, 700, 900} and {2, 5, 7, 10}, respectively. (d-f): An example
average (M = 7) to the graph structures (Figure 1, (d:f)) over Monte-Carlo realizations. (g): Comparison of the graph recovery
performance of the proposed CGP-LiNGAM method with the celebrated VAR-LiNGAM [5]

grid search) and test (to evaluate the prediction based on the
optimized model) [6].

A. Ablation Study

We vary the number of samples K and the CGP-order
M in the spans of {300, 500, 700, 900} and {2, 5, 7, 10},
respectively, to study the effect of these changes on the
recovery performance. The polynomial coefficients c are
generated as 2i+jcij ∼ 0.5[U(−1,−0.45) + U(0.45, 1)] to
model coefficient decay with distance to the current time
sample [6]. Besides, to evaluate the quality of the recover-
ies, we consider the following scale-free metrics SNRA =
20 log(∥A∥F /∥Â− A∥F ), errc = ∥ĉ− c∥2/∥c∥2, and

errϵ = E
[
1

N
∥x(k)− f(Â, ĉ,X′

k−1)∥22
]

− E
[
1

N
∥x(k)− f(A, c,X′

k−1)∥22
]

,
(24)

where f(A, c,X′
k−1) = Ax(k) +

∑M
i=1 Pi(A, c)x(k − i), and

errϵ models the prediction error on the test data [6]. Also,
the expectations E{.} in (24) are approximated by the sample
mean over time samples. The average of the mentioned metrics
and also an example average (M = 7) to the graph structures
over thirty Monte-Carlo realizations are illustrated in Figure 1
(a:c), and (d:f), respectively. Note that although the underlying
true graphs are acyclic, the plotted averaged ones can have

cycles. From these results, it can be admitted that, on average,
the graph recovery is superior in small values of M , i.e., M =
2, in case of having enough time samples, i.e., K = 900.
Besides, the higher the number of the time samples K, the
lower the prediction error errϵ [6]. Also, the errc is small
and robust against the changes of M if the number of time
samples is not very small. i,e, K > 300.

B. Comparison with State-of-the-art VAR-LiNGAM [5]

In this subsection, we compare the graph recovery per-
formance of the CGP-LiNGAM with the celebrated VAR-
LiNGAM in Figure 1 (g) by varying K and M in the spans
of {200 : 600} and {2 : 9}, respectively. The polynomial
coefficients c are generated as 2i+jcij ∼ N (1, 0.01). It is well
illustrated in this figure that the CGP-LiNGAM is more robust
and also superior compared to the VAR-LiNGAM, especially
in a small number of time samples K, i.e., K ≤ 500, and also
in high values of causal dependency M , i.e., M ≥ 5.

C. Comparison with State-of-the-art DYNOTEARS [20]

The graph recovery results of the CGP-LiNGAM
and DYNOTEARS [20] methods in different CGP
order M ∈ {2, 5, 7} and across time samples
K ∈ {500, 1000, 2000, 5000} are shown in Figure 3. It
can be seen that a similar trend of improving the graph
recovery with increasing the sample size K is observed in
this figure for both methods; however, the DYNOTEARS
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Fig. 2: Comparison of the graph recovery performance over
100 realizations for each K with the generic CGP [6] and
LiNGAM [4] approaches.
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Fig. 3: Comparison of the graph recovery performance with
the DYNOTEARS [20] method.

[20] has clearly failed to successfully recover the true DAGs,
while the CGP-LiNGAM has estimated them with high
quality. The DYNOTEARS model can be stated as [20]:

x(k) = Ax(k) +
M∑
i=1

W(i)x(k − i) + e(k), (25)

where only A has been assumed to be an acyclic graph, and
{W(i)}Mi=1 are unconstrained coefficient matrices (like VAR-
LiNGAM [5]) leading to an increased number of learnable
parameters to N(N−1)

2 +MN2, in comparison to the proposed
method which has significantly reduced N(N−1)

2 + M(M+3)
2

learnable ones, because often M ≪ N [5], [6].

D. Comparison with CGP [6] and LiNGAM [4]

In this subsection, we experimentally demonstrate the effec-
tiveness and superiority of the proposed CGP-LiNGAM model
(7) over each of the CGP [6] (5) and LiNGAM [4] (7). In this
way, similar to the generation scheme of Subsection IV-B and
with settings M = 2 and K ∈ {300, 400, 500, 600, 700, 800},

2 3 4 5 6

(a)

0

20

40
M-true = 3, K = 500

2 3 4 5 6

(b)

0

20

40
M-true = 3, K = 750

2 3 4 5 6

(c)

0

20

40
M-true = 3, K = 1000

RMSE
A

2 3 4 5 6

Estimated M

(d)

0

0.1

0.2
K=500

K=750

K=1000

Fig. 4: (a)-(c): The histograms of the estimated M , in each
K ∈ {500, 750, 1000} based on minimum nAIC (26), (d):
The averaged RMSEA = ∥Â−A∥F

∥A∥F
over realizations of each

selected M .

we generate 100 realizations for each K, and the averaged
DAG recovery performances are illustrated in Figure 2. Based
on these results, it can be admitted that the individual models
CGP (5) and LiNGAM (7) are not sufficient to fully describe
the CGP-LiNGAM realizations, which shows the asymptotic
efficiency of the proposed CGP-LiNGAM model (7) for ac-
curate DAG recovery with an increase of the data samples
K. Note that the CGP model is not specified for DAGs, and
this is probably the main reason for lower DAG recovery
performance rather than the LiNGAM approach, in which the
DAGness is accounted for efficient recovery.

E. Choosing optimal CGP-order M

In most real applications, the CGP/VAR-order M is con-
sidered a fix or a prior known [6], [5]. However, due to
some uncertainty conditions, e.g., existing high amount of
noise, choosing it optimally can considerably boost the re-
covery/modeling performance [24]. In this way, to investigate
the possibility of correct selection of M , we generate fifty
Monte-Carlo realizations similar to Section IV-B with CGP-
order Mtrue = 3 and the number of time samples K ∈
{500, 750, 1000}. Then, in each K, the normalized Akaike’s
Information Criterion (nAIC) (26) [24] is calculated in the
span of M ∈ {2 : 6} and the CGP-order M leading to
minimum nAIC is considered as the estimation of Mtrue.

nAICM̂ = log

(
det

(
1

K

K∑
k=1

ê(k)ê(k)⊤
))

+
2np

K
, (26)

where det(.) denotes the determinant operation, ê is the
estimated disturbances corresponding to M̂ and the number
of the estimated parameters np = N(N−1)

2 + M̂(M̂+3)
2 . Figure

4 (a)-(c) show the histograms of the estimated M , in each
K. These results show that, in almost every K, Mtrue is
successfully recovered. Moreover, in Figure 4 (d), the averaged
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Fig. 5: The averaged effective brain connectivity corresponding to REM and Non-REM (NREM) sleep stages for each Delta,
Theta, Alpha, and Beta sub-bands. Generally, it can be seen that the REM connectivity is significantly more active (having
more and stronger edges), especially in the left temporal and frontal regions (specified as dashed circles in this figure), rather
than the NREM ones.

RMSEA = ∥Â−A∥F

∥A∥F
over realizations of each selected M is

plotted, which shows that, even in selected wrong M cases,
i.e., M ̸= Mopt, the graph recovery remains fairly robust.

F. Real Data: Learning Brain Connectivity during Sleep

To explore the usage and performance of the proposed CGP-
LiNGAM method on real-world applications, we analyze its
application in learning effective (directed) brain connectivity
during sleep, which has been widely studied by neuroscientists
for detecting a wide range of sleep disorders and measure the
quality of sleep [22], [33], [9]. In this way, we have selected
200 thirty-second multi-channel sleep epochs of Subject 01
in the public and well-known MASS-SS3 dataset [34], in
which each sleep epoch was scored as Wake, N1, N2, N3, or
REM (sleep stages) based on the AASM [35] sleep staging
standards. We considered 20 Electroencephalogram (EEG)
signals (with a sampling frequency of 256 Hz) as the input data
to the proposed CGP-LiNGAM model (7). The main goal is
to infer the effective brain connectivity from each epoch and
associated with the well-known sub-band frequencies Delta
(< 4 Hz), Theta (4-7 Hz), Alpha (8-15 Hz), and Beta (16-
31 Hz), which is a well-studied approach for processing brain
connectivity during sleep [8].

Note that after obtaining the brain connectivity for each
sleep stage, the appropriate threshold to binarize the averaged
graphs was determined via a statistical procedure as follows.
We considered each pair of graphs for each pair of sleep stages,
subtracted from each other, and then binarized this obtained
subtracted graph across a span thresholds {0 : 0.2 : 1}.

Afterward, we selected the final threshold, which led to the
most statistical significance performed by t-test procedure.
Figure 5 illustrates the averaged effective brain connectivity
corresponding to REM and Non-REM (NREM) sleep stages
for each Delta, Theta, Alpha, and Beta sub-bands. Firstly, from
these results, it can be seen that the REM connectivity is
significantly more active (having more and stronger edges),
especially in the left temporal and frontal regions (specified
as dashed circles in this figure), rather than the NREM ones.
Secondly, in Delta and Theta bands, the directed connections
from occipital to parietal and central regions have been in-
creased for the REM stage. Regarding the Alpha and Beta sub-
bands, respectively, more activity between the left parietal and
frontal regions to the frontal and central ones are observed. It
is worth noting that these findings are majorly supported by the
previous neuroscientific studies on the estimation of effective
brain connectivity during sleep [8], which shows the real-
world interpretability aspect of the proposed CGP-LiNGAM
approach.

V. CONCLUSION

In this paper, we proposed the CGP-LiNGAM method to
reveal both the instantaneous and time-lagged causal relation-
ships in time series by considering the node-specific time sam-
ples as graph signals on underlying causal DAGs. Compared
to the state-of-the-art VAR-LiNGAM, our method has signifi-
cantly fewer parameters, deals with only one underlying causal
graph, and performs more robustly against a low number of
time samples and a high degree of causal dependency. Our
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future research direction is extending the CGP-LiNGAM to
the time-varying graphs [36], [37]. Besides, the compatibility
of the inferred effective brain connectivity during sleep with
sleep-related neuroscientific studies illustrates the real-world
applicability and interpretability of the proposed approach.

VI. APPENDIX (SIMPLIFICATIONS OF EQ. (14)

Due to the convexity of (14) w.r.t R̃i (by fixing {R̃j ̸=i}Mj=1)
[6], and with the definitions Xm = (x(m), x(m+1), ..., x(m+
K−M−1)) and r̃i = vec(R̃i), the closed-form solutions can
be obtained as:

ˆ̃Ri = argmin
R̃i

1

2

∥∥∥∥∥∥XM −
M∑
j=1

R̃jXM−j

∥∥∥∥∥∥
2

F

+ λ1∥vec(R̃1)∥1

+ λ3

∑
j ̸=i

∥∥[R̃i, R̃j ]
∥∥2
F

= argmin
R̃i

1

2

∥∥∥∥∥∥∥∥∥∥
vec

(
R̃iXM−i

)
−

yi︷ ︸︸ ︷
vec

XM −
M∑

j=1̸=i

R̃jXM−j


∥∥∥∥∥∥∥∥∥∥

2

2

+ λ1∥vec(R̃1)∥1 + λ3

∑
j ̸=i

∥∥vec (R̃iR̃j

)
− vec

(
R̃jR̃i

)∥∥2
2
.

(27)

Then, using the relation vec(ABC) = (C⊤ ⊗A)vec(B) [28]:

ˆ̃ri = argmin
r̃i

1

2

∥∥∥∥∥∥∥
Bi︷ ︸︸ ︷

(X⊤
M−i ⊗ I) r̃i − yi

∥∥∥∥∥∥∥
2

2

+ λ1∥r̃1∥1

+ λ3

∑
j ̸=i

∥∥∥∥∥∥∥∥
Φj︷ ︸︸ ︷

(R̃
⊤
j ⊗ I− I⊤ ⊗ R̃j) r̃i

∥∥∥∥∥∥∥∥
2

2

= argmin
r̃i

∥Ψir̃i − ỹi∥22 + λ1∥r̃1∥1.

(28)

REFERENCES

[1] Judea Pearl. Causality. Cambridge university press, 2009.
[2] Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of

causal inference: foundations and learning algorithms. The MIT Press,
2017.

[3] Charles K Assaad, Emilie Devijver, and Eric Gaussier. Survey and
evaluation of causal discovery methods for time series. Journal of
Artificial Intelligence Research, 73:767–819, 2022.

[4] Shohei Shimizu, Patrik O Hoyer, Aapo Hyvärinen, Antti Kerminen,
and Michael Jordan. A linear non-gaussian acyclic model for causal
discovery. Journal of Machine Learning Research, 7(10), 2006.

[5] Aapo Hyvärinen, Kun Zhang, Shohei Shimizu, and Patrik O Hoyer.
Estimation of a structural vector autoregression model using non-
gaussianity. Journal of Machine Learning Research, 11(5), 2010.
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