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Gegenbauer Graph Neural Networks for
Time-varying Signal Reconstruction

Jhon A. Castro-Correa, Jhony H. Giraldo, Mohsen Badiey, Fragkiskos D. Malliaros

Abstract—Reconstructing time-varying graph signals (or graph
time-series imputation) is a critical problem in machine learning
and signal processing with broad applications, ranging from
missing data imputation in sensor networks to time-series fore-
casting. Accurately capturing the spatio-temporal information
inherent in these signals is crucial for effectively addressing
these tasks. However, existing approaches relying on smoothness
assumptions of temporal differences and simple convex opti-
mization techniques have inherent limitations. To address these
challenges, we propose a novel approach that incorporates a
learning module to enhance the accuracy of the downstream
task. To this end, we introduce the Gegenbauer-based graph
convolutional (GegenConv) operator, which is a generalization of
the conventional Chebyshev graph convolution by leveraging the
theory of Gegenbauer polynomials. By deviating from traditional
convex problems, we expand the complexity of the model and
offer a more accurate solution for recovering time-varying graph
signals. Building upon GegenConv, we design the Gegenbauer-
based time Graph Neural Network (GegenGNN) architecture,
which adopts an encoder-decoder structure. Likewise, our ap-
proach also utilizes a dedicated loss function that incorporates
a mean squared error component alongside Sobolev smoothness
regularization. This combination enables GegenGNN to capture
both the fidelity to ground truth and the underlying smooth-
ness properties of the signals, enhancing the reconstruction
performance. We conduct extensive experiments on real datasets
to evaluate the effectiveness of our proposed approach. The
experimental results demonstrate that GegenGNN outperforms
state-of-the-art methods, showcasing its superior capability in
recovering time-varying graph signals.

Index Terms—Graph neural networks, Gegenbauer polynomi-
als, graph signal processing, time-varying graph signals

I. INTRODUCTION

The accumulation of complex unstructured data has expe-
rienced a tremendous surge due to the noteworthy advance-
ments in information technology. Undertaking the task of
representing and analyzing such data can present a formidable
challenge. Nevertheless, Graph Signal Processing (GSP) and
Graph Neural Networks (GNNs) have emerged as promising
areas of research that have demonstrated remarkable potential
for unstructured data in recent years [1]–[4]. GSP and GNNs
adopt a data modeling approach wherein data is represented
as signals or vectors residing on a collection of graph nodes.
This framework encompasses the incorporation of both feature
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information and the inherent relational structure of the data.
This approach offers novel insights into data manipulation,
effectively bridging the domains of machine learning and
signal processing [5], and has profound implications across
diverse fields, including semi-supervised learning [3], node
classification, link prediction, graph classification [6]–[9],
clustering [10], computer vision [11]–[13], recommendations
in social networks [14], [15], influence propagation [16] and
misinformation detection [17], materials modeling [18], and
drug discovery [19], among others.

Sampling and reconstructing (or imputing) graph signals
have become crucial tasks that have attracted considerable
interest from both the signal processing and machine learning
fields in recent times [1], [20]–[26]. However, there is a
lack of research on the reconstruction of time-varying graph
signals1 despite its numerous applications in sensor networks,
time-series forecasting, and infectious disease prediction [23],
[27]–[29]. Prior research has primarily concentrated on ex-
panding the concept of smoothness from static graph signals
to those that evolve over time, as evidenced by Qiu et al.
[30]. Furthermore, the rate of convergence of optimization
techniques employed in reconstruction has been analyzed in
several works [23], [28]. Nevertheless, these optimization-
based methods heavily depend on rigid assumptions about
the underlying time-varying graph signals, which can pose
limitations in real-world applications. For example, some
previous approaches in GSP assume that the graph Fourier
transform of the signals are bandlimited [1], i.e., the projection
of the signal into the spectrum of the graph can be represented
with few components. However, in real-world scenarios, this
bandlimitedness assumption is often not satisfied; the signals
typically consist of components spanning the entire spectrum
of the graph and are often corrupted by noise. This non-
bandlimitedness fact also has profound implications regarding
the sample complexity in problems of semi-supervised node
classification for example [12], [31].

From the perspective of GNNs, their applications to the re-
construction of time-varying signals is a relatively unexplored
area that holds immense potential. The ability of GNNs to
capture both spatial and temporal dependencies within graph-
structured data makes them well-suited for handling time-
varying signals observed over interconnected entities, where
the temporal evolution is as crucial as the spatial relationships.
However, existing GNN works lack simultaneous exploration
of both spatial and temporal relationships in time-varying

1The recovery or regression of time-varying graph signals can be viewed
as a matrix completion problem where each column (or row) corresponds to
a specific time and each row (or column) corresponds to a vertex of a graph.
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graph signals, highlighting the need for a comprehensive
investigation into GNNs’ application in the challenging task
of reconstructing time-varying signals [3]–[5].

In this work, we delve into the fundamental concepts of
GNNs, emphasizing their convolution mechanism on static
graphs, as well as their potential for capturing evolving pat-
terns in time-varying signals. We deviate from the classical
convex optimization problems proposed in the GSP commu-
nity for reconstructing time-varying graph signals. Instead, we
introduce a Gegenbauer-based graph convolutional operator
to build a novel time Graph Neural Network (GegenGNN)
architecture to solve the task. Our algorithm is based on
the theory of Gegenbauer polynomials and generalizes the
popular Chebyshev graph convolutional operator in GNNs [2].
In GegenGNN, the time series data for each node is trans-
formed into latent vectors, which are subsequently decoded
to reconstruct the original graph signal evolving over time.
Our architecture consists of a sequence of Gegenbauer graph
convolutions and linear combination layers. To incorporate
both spatial and temporal information, GegenGNN utilizes
graph convolutions and employs a specialized loss function
that combines a Mean Squared Error (MSE) term with Sobolev
smoothness regularization, as described in [23]. Our formula-
tion departs from the convexity and mathematical guarantees
typically associated with classical GSP methods, prioritizing
improved performance and seamless deployment of the GNN
in practical scenarios. We thoroughly evaluate our algorithm in
challenging and highly dynamic environmental datasets [32],
where GegenGNN outperforms state-of-the-art GNN and GSP-
based methods.

In this paper, we significantly expand and enhance our
previous study [24] by introducing a novel Gegenbauer-based
graph Convolutional (GegenConv) operator and presenting a
more advanced GNN architecture that generalizes our pre-
liminary work. Moreover, we offer a more comprehensive
and detailed explanation of our methodology, accompanied by
an extensive experimental evaluation that sheds light on new
insights and discoveries. The main contributions of this paper
can be summarized as follows:
1) We introduce the GegenConv operator based on the theory

of Gegenbauer polynomials and graph spectral filtering.
GegenConv is a generalization of the popular Chebyshev
graph convolutional operator [2] used in GNNs. We use
Gegenbauer polynomials to approximate spectral filters that
are strictly localized in K-hops from the central vertex.

2) We propose a scalable implementation leveraging the
properties of Gegenbauer polynomials and their efficient
computation through recursion formulas (Eq. (14)-(15)), a
crucial aspect when performing message passing in the
convolutional layer. The filtering operation’s complexity
is linear with respect to the filter’s support size K and
the number of edges, sharing the same complexity as the
conventional ChebNet.

3) We present the GegenGNN architecture, a GNN that incor-
porates the GegenConv operator. GegenGNN encodes the
time series of each node into latent vectors and utilizes a
cascade of Gegenbauer graph convolutions with increasing
order and linear combination layers for signal recovery. Our

architecture is regularized with a specialized loss function
and considers the spatio-temporal properties of the data
without relying on strict prior assumptions.

4) We conduct extensive evaluations on challenging and dy-
namic environmental datasets, showcasing that GegenGNN
outperforms state-of-the-art GNN and GSP-based methods,
demonstrating its superior performance in the reconstruc-
tion of time-varying graph signals. In the ablation study
conducted in Section V-F, we empirically demonstrate
that incorporating an extra parameter from Gegenbauer
polynomials in GegenGNN enables superior performance
compared to ChebNet in reconstructing time-varying graph
signals under identical conditions. The code of our work
is freely available under the MIT license2.

The remaining sections of the paper are organized as fol-
lows. In Section II, we provide an overview of the related work
on time-varying signal reconstruction. Section III introduces
the preliminary concepts that are relevant to our work. In Sec-
tion IV, we present the detailed architecture and methodology
of the GegenGNN model. Section V presents the experimental
framework, including the datasets used, evaluation metrics,
and results. We also conduct ablation studies to analyze the
impact of different components of our model and discuss
the limitations of our approach. Finally, in Section VI, we
summarize our findings and present concluding remarks.

II. RELATED WORK

The problem of sampling and reconstruction of static signals
has been addressed from both the GSP [21], [22], [33]–
[39] and machine learning [2], [40] perspectives. In the GSP
context, Pesenson [41] introduced the concept of Paley-Wiener
spaces in graphs, which establishes that a graph signal can be
uniquely determined by its samples in a specific set of nodes
known as the uniqueness set. Consequently, if a graph signal is
sampled according to its uniqueness set, a bandlimited graph
signal can be reconstructed perfectly. However, in real-world
datasets, graph signals are typically approximately bandlimited
instead of strictly bandlimited, making the assumption of
strict bandlimitedness unrealistic. To overcome this limita-
tion, several approaches have been proposed that leverage
the smoothness assumption of graph signals [42]–[44], where
smoothness is quantified using a Laplacian function. Similarly,
other studies have explored the use of Total Variation [45] or
extensions of the concept of stationarity in graph signals [46],
[47] for reconstruction purposes.

In the realm of time-varying graph signals, researchers
have investigated the concept of joint harmonic analysis to
establish connections between time-domain signal processing
techniques and GSP [48]. Additionally, some studies have put
forward reconstruction algorithms that assume the bandlimited
nature of signals at each time instance [45], [49]. However,
these methods often fail to fully exploit the inherent temporal
correlations present in time-varying graph signals. In an effort
to address this limitation, Qiu et al. [30] introduced an
approach that captures temporal correlations by utilizing a
temporal difference matrix applied to the time-varying graph

2https://github.com/jcastro295/GegenGNN

https://github.com/jcastro295/GegenGNN
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signal. However, this method suffers from slow convergence
due to its reliance on the Laplacian matrix for the optimization
problem. Specifically, the Hessian associated with their prob-
lem may exhibit a wide range of eigenvalues, leading to poor
condition numbers. More recently, Giraldo et al. [23] extended
the work presented in [30] and proposed the integration of a
Sobolev smoothness function to improve both the convergence
rate and accuracy of time-varying graph signal reconstruction.

Many conventional GSP methods incur scalability problems
due to the computation of eigenvalue decomposition, slow
convergence, poor-conditioned matrices, or complex matrix
operations. In order to overcome these issues and relax the
smoothness constraints found in conventional GPS algorithms,
researchers have tended to move into GNN modules that allow
for more flexibility for static and time-varying data living on
graphs. Recently, several GNNs have been successfully used
for time series imputation [39], and to capture time series re-
lations for traffic and multivariate forecasting [50]–[52]. Even
though these methods have paved the way for exploring new
avenues in the reconstruction of time-varying graph signals,
they primarily focus on capturing positive correlations between
time series with strong similarities. This is achieved by lever-
aging the capabilities of GNNs in modeling temporal dynamics
and capturing complex relationships in graph-structured data.
However, many of these prior studies heavily relied on existing
graph convolutional operators, whereas our paper introduces
a novel convolutional operator that generalizes and improves
upon previous methods for time-varying signal reconstruction.

The GegenConv operator introduced here, uses the math-
ematical properties of Gegenbauer polynomials to effectively
handle high-dimensional and nonlinear relationships, signifi-
cantly enhancing its ability to capture nuanced variations in
time-varying signals. This feature makes GegenGNN a viable
option for dynamic graph-based reconstruction tasks in diverse
scientific contexts.

III. PRELIMINARIES

A. Notation
In this paper, sets are denoted by calligraphic letters, such

as V , with their cardinality represented as |V|. Matrices are
denoted by uppercase boldface letters, such as A, while
vectors are represented by lowercase boldface letters, such as
x. The identity matrix is denoted as I, and 1 represents a vector
consisting of ones with appropriate dimensions. The pseudo-
inverse of a matrix A is defined as A†, while A ⪰ 0 denotes
a positive semidefinite matrix. The Hadamard and Kronecker
products between matrices are respectively denoted by ◦ and
⊗. Transposition is indicated by (·)T. The vectorization of
matrix A is represented as vec(A), and diag(x) denotes the
diagonal matrix with entries {x1,x2, . . . ,xN} as its diagonal
elements. The ℓ2-norm of a vector is expressed as ∥ · ∥2.
The maximum and minimum eigenvalues of matrix A are
respectively denoted as λmax(A) and λmin(A), while the
Frobenius norm of a matrix is represented by ∥·∥F .

B. Graph Signals
We use the notation G = (V, E) to represent a graph,

where V = {1, 2, . . . , N} denotes the set of nodes, and

E ⊆ {(i, j) | i, j ∈ V; and i ̸= j} represents the set of edges.
Each element in E indicates a connection between vertices
i and j. The graph structure is represented by the adjacency
matrix A ∈ RN×N . For any (i, j) ∈ E , a positive value A(i, j)
signifies the weight associated with the connection between
nodes i and j. This study focuses on connected, undirected,
and weighted graphs. The degree matrix D ∈ RN×N can be
described as a diagonal matrix denoted as D = diag(A1),
where each element D(i, i) on the diagonal represents the sum
of edge weights connected to the ith node. For the purpose
of this study, we define the combinatorial Laplacian matrix
as L = D − A. The Laplacian matrix L is a positive semi-
definite matrix with eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λN ,
along with their corresponding eigenvectors u1,u2, . . . ,uN .
A graph signal is a function that assigns real values to a set
of nodes, represented as x : V → R. In the case of a static
graph signal, it can be expressed as a vector x ∈ RN , where
x(i) corresponds to the value of the graph signal at the ith
node. The graph Fourier operator is defined by the eigenvalue
decomposition of the Laplacian matrix L = UΛUT, where
U = [u1,u2, . . . ,uN ] and Λ = diag(λ1, λ2, . . . , λN ). Each
eigenvalue λi corresponds to a frequency associated with the
ith eigenvalue [1]. The Graph Fourier Transform (GFT) of a
graph signal x is defined as x̂ = UTx, while the inverse GFT
is given by x = Ux̂.

C. Reconstruction of Smooth Time-varying Graph Signals

The reconstruction of graph signals plays a fundamental
role in the field of GSP [20], [21]. To address the challenges
of signal reconstruction and sampling in graph domains,
smoothness assumptions have been widely employed. The
concept of smoothness in graph signals has been formalized
through the notion of local variation [53]. To capture the idea
of global smoothness, we can introduce the discrete form
of the p-Dirichlet operator [53]. It characterizes smoothness
by defining Sp(x) ≜ 1

p

∑
i∈V |∇ix|p2, where ∇ix represents

the local variation of a graph signal. Therefore, we have the
following expression:

Sp(x) =
1

p

∑
i∈V

∑
j∈Ni

A(i, j)[x(j)− x(i)]2


p
2

, (1)

where Ni represents the set of neighbors of node i. When
p = 2, we obtain the graph Laplacian quadratic form given by
S2(x) =

∑
(i,j)∈E A(i, j)[x(j)− x(i)]2 = xTLx [53].

For time-varying graph signals, some studies assumed that
the temporal differences of the signals are smooth [23], [30].
Let X = [x1,x2, . . . ,xM ] ∈ RN×M be a time-varying graph
signal, where xs ∈ RN is a graph signal in G at time s. The
smoothness of X is given by:

S2(X) =

M∑
s=1

xT
sLxs = tr(XTLX). (2)
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Similarly, let Dh be the temporal difference operator defined
as follows:

Dh =


−1
1 −1

1
. . .
. . . −1

1

 ∈ RM×(M−1). (3)

Thus, by utilizing Dh, we obtain the temporal difference signal
XDh = [x2 − x1,x3 − x2, . . . ,xM − xM−1]. Representing
the signal as the difference between consecutive temporal
steps leads to improved smoothness properties in the signal,
resulting in higher smoothness levels for S2(XDh) as opposed
to S2(X) [23].

In GSP, several studies have proposed to recover time-
varying graph signals as follows:

min
X̃

1

2
∥J ◦ X̃−Y∥2F + f(X̃), (4)

where J ∈ {0, 1}N×M denotes the sampling matrix, Y ∈
RN×M represents the matrix of observed values, and f(X̃) is
a regularization function. From a machine learning standpoint,
the first term in (4) corresponds to the MSE loss between the
observed values and the reconstructed values, while the second
term serves as a regularization component specifically tailored
for time-varying signals.

The optimization problems that have been derived from (4)
exhibit appealing mathematical properties, such as convexity
[30] and fast convergence [23]. However, in practical appli-
cations, the solution to this optimization problem is subject
to certain limitations. For instance, the performance of the
solution obtained from (4) may degrade when applied to real-
world datasets that do not align with the underlying smooth-
ness assumption. Furthermore, for each new batch of data, the
optimization problem needs to be solved again. To overcome
these limitations, we propose GegenGNN, which incorporates
a learnable module. This module relaxes the strict smoothness
assumption and enables adaptation to datasets that deviate
from the conventional notion of smoothness. Additionally,
once the parameters of GegenGNN are learned, our algorithm
demonstrates good computational performance.

D. Learning Graphs from Data

When the graph structure is not readily available for the
given task, we need to infer a meaningful graph from the
data. The classical approach for this problem is the k-Nearest
Neighbors (k-NN) method with a Gaussian kernel [1]. Learn-
ing graphs from data has been extensively studied in the
literature, with contributions from the signal processing and
machine learning communities [54]–[57]. In this paper, we
either use the k-NN approach or adopt the smoothness as-
sumption to infer the underlying graph structure from the data.
We employ Graph-Based Filters (GBFs) within a regularized
maximum-likelihood framework, as defined in [58].

Let h(L) = Uh(Λ)UT be a GBF such that (h(Λ))ii =
h(λi), for all i. By selecting h(λ) as a monotonically de-

creasing function, such that h(λ1) ≥ · · · ≥ h(λN ) > 0, we
can learn L by solving the following optimization problem:

L = argmin
L⪰0,β

tr
(
hβ(L)

†S
)
− log|hβ(L)

†|+γ∥L∥1

subject to L1 = 0, (L(i, j)) ≤ 0 i ̸= j,
(5)

where γ denotes a regularization parameter, β represents
the (unknown) parameter for a specific type of GBF hβ(·),
and S is the sample covariance calculated using n samples xi

for i = 1, 2, . . . , n. Readers are referred to Table I in [58] for
details of different GBFs.

IV. GEGENBAUER GRAPH NEURAL NETWORK

In this section, we introduce the GegenGNN architecture,
which leverages Gegenbauer polynomials for graph convolu-
tions. Our main objective is to reconstruct time-varying graph
signals, and the overall framework is illustrated in Figure 1.
The input to our architecture is the graph Laplacian matrix L,
which can be constructed using the k-NN algorithm or learned
from data, as discussed in Section III-D. We process a sampled
version of the time difference signal (J◦X)Dh as input, encode
it using Gegenbauer-based convolutions, and then decode the
reconstructed signal X̃. To facilitate the reconstruction process,
we incorporate a specialized regularization term that accounts
for the time dependency of the data, as elaborated upon in
subsequent sections.

A. Spectral Graph Convolution

The spectral approach in GSP offers a precise localization
operator on graphs by employing convolutions that involve a
Kronecker delta in the spectral domain [1]. The convolution
theorem [59] states that convolutions are linear operators that
can be diagonalized in the Fourier basis, which is represented
by the eigenvectors of the Laplacian operator. As described in
[2], a graph signal x ∈ RN can be filtered by a non-parametric
filter gθ as follows:

y = gθ(L)x = Ugθ(Λ)UTx, (6)

where θ ∈ RN represents a vector of Fourier coefficients.
However, due to their intrinsic properties, non-parametric
filters are not localized in space and have a computational
complexity of O(N).

To overcome the limitations of non-parametric filters, lo-
calized filters can be constructed using ζ-order polynomials,
such that gθ(Λ) =

∑ζ−1
k=0 θkΛ

k. However, even with these
localized filters, the complexity remains high at O(N2) when
multiplying with the Fourier basis U to filter the signal x,
as expressed by y = Ugθ(Λ)UTx [2]. Fortunately, this issue
can be overcome by directly parameterizing gθ(L) using the
truncated expansion

gθ(L) =

ζ−1∑
k=0

θkP
(α)
k (L̂), (7)

where θk ∈ Rζ is a vector of polynomial coefficients, and
P

(α)
k ∈ RN×N is a polynomial of k-order evaluated at the

scaled Laplacian L̂ = 2L/λmax(L) − I. For the computation
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Time-varying dataset and graph construction GegenGNN architecture
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Fig. 1. Pipeline of our Gegenbauer-based Graph Neural Network (GegenGNN) for recovering time-varying graph signals. The graph construction is performed
using either k-nearest neighbors or learned from time-varying data. GegenGNN is an encoder-decoder architecture, with the graph Laplacian matrix L and
the time difference signal XDh serving as inputs. Each layer of GegenGNN is powered by a cascade of Gegenbauer-based convolutions, which are then
merged by a linear combination layer. Our method incorporates the Sobolev smoothness term to account for time dependence in the graph signal.

of gθ(L), P
(α)
k (L̂) can be represented using orthogonal or

non-orthogonal bases such as monomial [60], Chebyshev [2],
Bernstein [61], or Jacobi [62] polynomials. Most importantly,
P

(α)
k (L̂) can be computed recursively, allowing for efficient

calculations.
In this paper, we adopt the Gegenbauer basis as a means to

efficiently approximate the Laplacian matrix. The utilization of
the Gegenbauer basis is motivated by its ability to extend the
domain of the Chebyshev basis by incorporating an additional
parameter α, while maintaining a comparable computational
complexity for recursive computation since both polynomial
recursions can be computed in O(ζ|E|) operations.

B. Gegenbauer Polynomials

The Gegenbauer polynomials C
(α)
k (z) of degree k are

orthogonal on the interval z ∈ [−1, 1] with respect to the
weight function (1−z2)α−1/2 and are solutions to the Gegen-
bauer differential equation (1 − z2)y′′ − 2(µ + 1)y′ + (v −
µ)(v + µ + 1)y = 0 [63]. Gegenbauer polynomials are a
generalization of Chebyshev and Legendre polynomials to
a (2α + 2)–dimensional vector space and are proportional
to the ultraspherical polynomials P

(α)
k (z). We can represent

Gegenbauer polynomials in terms of the Jacobi polynomials
J
(λ,β)
k (z) when λ = β = α− 1

2 by:

C
(α)
k (z) =

Γ
(
α+ 1

2

)
Γ(2α)

Γ (k + 2α)

Γ
(
k + α+ 1

2

)J (α−1/2,α−1/2)
k (z),

(8)
where Γ is the gamma function Γ(k) = (k − 1)! ∀ k > 0.
Thus, we can define the basis functions for the Gegenbauer
polynomials using the following recurrence relation

C
(α)
0 (z) = 1, C

(α)
1 (z) = 2αz. (9)

For k ≥ 2, we have that:

C
(α)
k (z) =

2z(k + α− 1)

k
C

(α)
k−1(z)

− (k + 2α− 2)

k
C

(α)
k−2(z),

(10)

where k ∈ N is the coefficient representing the kth-term
Gegenbauer polynomial and α > −1/2. By setting the
parameter α in C

(α)
k to a positive integer, we can compute

Chebyshev (kinds I & II) and Legendre polynomials, as these
are special cases of the Gegenbauer polynomials. Chebyshev
polynomials of the kind I used for the spectral convolution
operator introduced in [2] can be derived in terms of C(α)

k as:

Tk(z) =


1

2
lim
α→0

k + α

α
C(α)

n (z) if k ̸= 0

lim
α→0

C
(α)
0 (z) = 1 if k = 0,

(11)

whereas, Chebyshev polynomials of kind II can be easily
computed by setting α = 1 as

Uk(z) = C
(1)
k (z) (12)

Analogously, the Legendre polynomials can be derived by
assigning to α a value of 1/2 as follows

Lk(z) = C
(1/2)
k (z). (13)

Similar to the work in [2] with the Chebyshev basis, we
can define a polynomial filtering operation (Eq. (7)) for
spectral convolutional using Gegenbauer polynomials basis for
graphs using the normalized Laplacian matrix as gθ(L̂) =∑ζ−1

k=0 θkC
(α)
k (L̂) [62].

C. Computation of the Gegenbauer Basis

By utilizing the recursive formula for the Gegenbauer
basis, we can efficiently calculate all of the basis vectors in
O(ζ|E|) time and perform ζ message-passing operations. The
recurrence relations in Eqs. (9)-(10) can be used to quickly
compute the C

(α)
k (L̂) basis as follows:

C
(α)
0 (L̂)XW = XW,

C
(α)
1 (L̂)XW = 2αL̂XW.

(14)
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For k ≥ 2, we have:

C
(α)
k (L̂)XW =

(
2L̂(k + α− 1)

k
C

(α)
k−1(L̂)X

− (k + 2α− 2)

k
C

(α)
k−2(L̂)X

)
W,

(15)

where W is the linear projection with learnable parameters.
We omit the bias term in (15) for simplicity. GegenGNN
demonstrates the capability to efficiently extract higher-order
information of ζ-hops from the data. This efficiency is
achieved through the recursive calculation of the Gegenbauer
polynomials, which provides computational efficiency and
versatility compared to other orthogonal bases. Further details
about additional orthogonal bases can be found in Appendix A
(see the Supplementary Material).

D. Graph Neural Network Architecture

GegenGNN is a generalization of the Chebyshev spectral
graph convolutional operator defined by Defferrard et al. [2]
(Eq. (11)), as the parameter α enables the use of orthogonal
basis in more complex domains. The propagation rule for
our Gegenbauer-based convolutional operator is defined as
follows:

Z(l) =

ζ−1∑
k=0

θ
(l)
k C

(α)
k (L̂)X(l)W(l), (16)

where W(l) is the matrix of trainable parameters for layer
l, θ

(l)
k is the vector of Gegenbauer coefficients for layer

l, and C
(α)
k (L̂) is computed recursively using the relations

in (14)-(15). To fully harness the power of the Gegenbauer
polynomial filters, we employ the filtering operation in (16)
to propose a novel cascaded-type convolutional layer for our
architecture. This layer consists of two components: 1) a
cascade of Gegenbauer graph filters with increasing order, and
2) a linear combination layer, as depicted in Fig. 2.

To provide a more detailed description, we precisely outline
the propagation rule for each layer of GegenGNN as follows:

H(l+1) =

ζ−1∑
ρ=0

µ(l)
ρ Z(l)

ρ , (17)

where H(l+1) is the output of layer l+1, ζ is a hyperparameter,
µ
(l)
ρ is a learnable parameter, and Z

(l)
ρ is recursively computed

for each branch ρ as in (16). A single layer in the GegenGNN
architecture is composed by a cascade of ζ Gegenbauer filters
of increasing order 0, 1, . . . , ζ − 1 as in (17), where the input
of the first layer is (J ◦ X)Dh. Finally, our loss function is
such that:

L =
1

|T |
∑

(i,j)∈T

(X(i, j)− X̃(i, j))2

+λ tr
(
(X̃Dh)

T(L+ ϵI)X̃Dh

)
,

(18)

where X̃ is the reconstructed graph signal, T is the training
set, with T a subset of the spatio-temporal sampled indexes
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Fig. 2. Convolutional layer of GegenGNN. Each layer of GegenGNN
consists of a cascade of Gegenbauer-based convolutions of increasing order
ρ = 0, . . . , ζ−1. The outputs from all ζ convolutions are then merged using
a linear combination layer, which includes learnable parameters µρ.

given by the sampling matrix J, and ϵ ∈ R+ is a hyperpa-
rameter. The term tr

(
(X̃Dh)

T(L+ ϵI)X̃Dh

)
is the Sobolev

smoothness [23].
Our GegenGNN is designed as an encoder-decoder net-

work, utilizing a loss function that combines mean squared
error (MSE) and Sobolev smoothness regularization. The
initial layers of GegenGNN encode the term (J ◦ X)Dh

into an H-dimensional latent vector, which is then decoded
to reconstruct the time-varying signal using the final layers.
This architecture enables the extraction of spatio-temporal
information by leveraging a combination of GNNs, tempo-
ral encoding-decoding structure, and the regularization term
tr
(
(X̃Dh)

T(L+ ϵI)X̃Dh

)
, where the temporal operator Dh

is employed. The parameter λ in (18) controls the trade-off
between the Sobolev smoothness term and the MSE loss.
Figure 1 visually illustrates the pipeline of GegenGNN applied
to a graph representing the sensor network deployed on the
New Jersey coast during the Shallow Water experiment 2006
(SW06) [32], [64].

V. EXPERIMENTAL EVALUATION

We compare GegenGNN with Natural Neighbor Interpola-
tion (NNI) [65], Time-Varying Graph Signal Reconstruction
(TGSR) [30], Time-varying Graph signal Reconstruction via
Sobolev Smoothness (GraphTRSS) [23], Graph Convolutional
Networks (GCN) [3], ChebNet [2], Graph Attention Networks
(GAT) [66], Transformer [67], GCN powered by Hierarchi-
cal Layer Aggregations and Neighbor Normalization (GCN-
DHLA) [6], Graph Neural Networks with High-Order Poly-
nomial Spectral Filters (FFK-GCNII) [8], and Multiresolution
Reservoir Graph Neural Network (MRGNN) [68].

A. Implementation Details

In this study, we implemented GegenGNN, GCN, ChebNet,
GAT, and Transformer architectures using the PyTorch and
PyG libraries [69]. Similarly, we adapted GCN-DHLA, FFK-
GCN, and MRGNN using the same libraries, relying on
the original implementations by the authors. For the imple-
mentation of NNI, TGRS, and GraphTRSS, we utilized the
MATLAB® 2023a (code provided in [23]). To ensure fair
comparisons, we extensively optimized the hyperparameters
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TABLE I
SUMMARY OF THE DATASETS USED IN OUR EXPERIMENTS.

SW06 PM 2.5 Sea-surf. Intel

# Nodes 59 93 100 52
# Edges 626 298 299 90
Graph type Learned k-NN k-NN k-NN
Dimensions 3-D 2-D 2-D 2-D
# samples 1, 000 220 600 600

of the baseline methods using the same strategy employed for
GegenGNN (see Appendix B in the Supplementary Material
for further details of the search spaces in the hyperparameters
tunning). This approach allows for a meaningful evaluation
and benchmarking of GegenGNN with other GNN models for
the problem of time-varying graph signal reconstruction. All
the methods compared in this paper involve different numbers
of trainable parameters, leading to varying memory require-
ments for training. For detailed information about the number
of parameters for each model, please refer to Appendix C
(see the Supplementary Material). Moreover, each approach
presented in this study depends on a distinct set of multiple
hyperparameters, thereby expanding the search space, as is the
case of GegenGNN in Appendix D (see the Supplementary
Material).

In our experiments, we set the number of epochs to 2, 000
for training the models to ensure consistent evaluation. For
some datasets, we utilized a k-NN algorithm based on the node
locations, connecting each node in the graph to its k nearest
neighbors that capture the spatial relationships between the
nodes. In other cases, we employed a data-driven approach
to learning the graph structure directly from the dataset itself,
leveraging the inherent patterns and relationships present in
the data to construct the graph. This approach aligns with the
methodology outlined in [23].

B. Datasets

GegenGNN, along with state-of-the-art algorithms, under-
goes evaluation on a diverse set of datasets comprising four
real-world datasets, including 1) the Shallow Water Experi-
ment 2006 (SW06) [70], 2) the mean concentration of Par-
ticulate Matter (PM) 2.5 [30], 3) the Sea-surface temperature,
and 4) the Intel Berkeley Research lab dataset. A summary of
the datasets is presented in Table I

SW06 dataset: The data utilized in this study were ob-
tained from the Shallow Water acoustic and oceanographic
experiment 2006 (SW06), conducted off the coast of New
Jersey from mid-July to mid-September in 2006 [32]. During
the experiment, a network of acoustic and oceanographic
moorings was deployed in two intersecting paths: one along
the 80-meter isobath, parallel to the shoreline, and another
across the shelf starting from a depth of 600 meters and
extending towards the shore to a depth of 60 meters. A cluster
comprising 16 moorings, each equipped with sensors, was
placed at the intersection of these two paths. These sensors
captured the three-dimensional temperature changes in the wa-
ter column and detected the presence of internal waves (IWs)

during the experiment. The variations in water column density
caused by these waves had an impact on the propagation
of acoustic sound speed [70]. The majority of environmental
sensors deployed in the study area consisted of temperature,
conductivity, and pressure sensors, enabling the measurement
of physical oceanographic parameters throughout the water
column. For this research, temperature data in Celsius obtained
from 59 thermistors located at the cluster in the intersection
were utilized. The specific time frame of interest spanned from
August 6, 17:39, to August 15, 00:00 UTC, 2006. The location
of the VLA farm can be seen in Figure 3.

California daily mean PM2.5 concentration. In our analysis,
we utilized a publicly available dataset provided by the US
Environmental Protection Agency (EPA) that contains infor-
mation on the daily mean PM2.5 concentration in California.3.
This dataset includes measurements collected from 93 obser-
vation sites over a period of 200 days, starting from January
1, 2015. The dataset has a size of 93 × 200. It is important
to note that not all sites recorded valid data every day, and
the percentage of valid data varied from approximately 90%
to 45% across these sites. The valid data points in the dataset
range from 0.1µg/m3 to 102.7µg/m3.

Sea-surface temperature dataset. The sea-surface temper-
ature dataset utilized in our study was obtained from the
Earth System Research Laboratory 4. This dataset consists of
monthly measurements spanning from 1870 to 2014, with a
spatial resolution of 1◦ latitude ×1◦ longitude. We specifically
focused on the Pacific Ocean region, ranging from 170◦ west
to 90◦ west and 60◦ south to 10◦ north. In accordance with
[30], we randomly selected 100 points within this region for
analysis. The dataset covers a time period of 600 months. The
temperature data within the selected points range from −0.01
◦C to 30.72 ◦C, with an average value of 19.15 ◦C.

Intel Lab dataset. The dataset used in this study was obtained
from the Intel Berkeley Research Laboratory, where 54 sensors
were deployed 5. The dataset consists of temperature readings
recorded between February 28 and April 5, 2004. It includes
timestamped topology information and provides measurements
of humidity, temperature, light, and voltage values. The data
was captured at a frequency of once every 31 seconds. For the
purposes of this research, only the temperature data measured
in Celsius within the research laboratory were utilized.

C. Evaluation Metrics

In this study, we employ different metrics to compare
and evaluate the performance of the algorithms presented
here. For a ground truth vector x with N time steps and
its reconstruction x̃, we compute the Root Mean Square
Error (RMSE), which measures the overall error magnitude as√

1
N

∑N
i=1(x̃i − xi)2. We also calculate the Mean Absolute

Error (MAE), which considers error without accounting for
the direction and is given by 1

N

∑N
i=1|x̃i − xi|. Additionally,

3https://www.epa.gov/outdoor-air-quality-data
4https://psl.noaa.gov/
5http://db.csail.mit.edu/labdata/labdata.html

https://www.epa.gov/outdoor-air-quality-data
https://psl.noaa.gov/
http://db.csail.mit.edu/labdata/labdata.html


IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 8

-1
50

-1
40

-1
30-1
20

-1
10

-1
10

-1
1
0

-1
0
0

-1
00

-9
0

-90

-9
0

-90

-90

-9
0

-8
0

-8
0

-8
0

-8
0

-80

-8
0

-8
0

-80

-8
0

-80

-8
0

-80

-8
0

-8
0

-8
0

-8
0

-8
0

-8
0

-8
0

-80

-80

-8
0

-8
0

-80

-70

-7
0

-7
0

-7
0

-7
0

-7
0

-70

-70

-7
0

-70

-70

-70

-7
0

-70

-70

-70

-70

03

04

05
06

07

08

09
10

11

12
13

1415
16

17

18

19

2021

22

23

24
25

26

27
28

30

31

32

33

34
41

44

45

46

SHRU4

54

L
a

ti
tu

d
e

Longitude

Fig. 3. Location of the SW06 experiment. The sensors were deployed in
a three-dimensional fashion designed to study the wavefront of gravitational
nonlinear internal waves (IWs).

we use the Mean Absolute Percentage Error (MAPE) to assess
errors relative to the magnitude of estimated values, and it is
computed as 1

N

∑N
i=1

|x̃i−xi|
x̃i

.

D. Experiments

This section provides details on the experimental frame-
work. In this work, we follow a random sampling strategy in
all experiments using different sampling densities m for each
dataset. We compute the reconstruction error metrics on the
non-sampled nodes for a set of sampling densities m. In our
study, we divided each dataset into separate development and
testing sets. The sampled values were used for the development
set, while the non-sampled values were reserved for testing.
For instance, if m = 0.1, the development set corresponds
to 10% of the data and the testing set to 90%. To tune the
hyperparameters, we employed a Monte Carlo cross-validation
setting with 5 different folds over the development set. We
performed 300 repetitions for Monte Carlo on each fold.
For each combination of hyperparameters in the Monte Carlo
setting, we split the development set into 70% for training
and 30% for validation. This allowed us to train the model
with different hyperparameter settings and evaluate the model
performance. After identifying the optimal model based on
the validation results, we proceeded to train the resulting
model using the selected hyperparameters. The trained model
was then evaluated on the testing data for 15 repetitions
with different seeds, ensuring a thorough assessment of its
performance.

For GAT and transformer architectures, we used a fixed
graph construction method. We connected all nodes in the
dataset (excluding self-loops) and allowed the networks to
learn the attention coefficients during the training stage. This
means that the connectivity pattern of the graph was not
predetermined but learned by the models themselves. By
adopting this approach, we aimed to leverage the expressive
power of attention mechanisms in capturing the dependencies
between nodes in the graph by adaptively assigning weights
to different nodes based on their relevance to the task at hand.

For all datasets except for the SW06 experiment, we
constructed graphs G using the k-NN approach with the
Euclidean distance between node locations and a Gaussian
kernel as in [23]. Regarding the PM 2.5 concentration, the
sampling densities m are {0.1, 0.15, 0.2, . . . , 0.45}. For the
sea-surface temperature, the sampling densities are specified
as {0.1, 0.2, . . . , 0.9}, while for the Intel Lab dataset, they are
set to {0.1, 0.3, 0.5, 0.7}. In all three datasets, we establish a
connection between the graph’s nodes by setting k = 5 in the
k-NN algorithm. For the SW06 experiment, we also consider
the sampling densities in the set {0.1, 0.2, . . . , 0.9}. However,
the SW06 experiment involved sensors placed in a three-
dimensional (3D) environment, where the horizontal distances
between sensors were in the order of kilometers and the
vertical distances were in meters. In such a scenario, a k-NN
approach alone does not capture the temperature fluctuations
in the underwater sensor network. To address this issue, we ap-
plied a graph inference approach that tackles the Graph System
Identification (GSI) problem using a regularized maximum
likelihood (ML) criterion, as explained in Section III-D. This
approach allows us to incorporate temperature fluctuations.

E. Results and Discussions

Figure 4 illustrates the performance of GegenGNN com-
pared to baseline methods across all four datasets, using the
root mean squared error (RMSE) metric for different sampling
densities m. The range of m varies depending on the dataset.
It can be observed that GegenGNN consistently outperforms
existing methods in all cases. The optimal parameters for
GegenGNN for all the datasets are shown in Appendix D (see
the Supplementary Material). Moreover, Table II provides a
quantitative comparison by averaging the performance metrics
across all sampling densities for each dataset. To ensure a fair
comparison, all the networks in this study were implemented
with the same input and loss functions as GegenGNN. Notice
that by introducing a trainable GNN module, we relax the
prior assumption of smooth evolution and achieve better
performance.

Several factors contribute to the success of GegenGNN on
real-world datasets. First, its ability to capture spatio-temporal
information enables it to effectively model the dynamics of
graph signals. Second, the encoding-decoding structure allows
for effective data representation and reconstruction. Lastly,
the powerful learning module provided by the cascade of
Gegenbauer graph convolutions enhances the model’s perfor-
mance. The experimental results demonstrate the superiority
of GegenGNN in reconstructing time-varying graph signals
in real-world scenarios where ideal conditions of smoothness
are not assured. Appendix E provides a comparison of the
convergence between GegenGNN and the baselines (see the
Supplementary Material).

F. Ablation Studies

We have performed ablation studies to evaluate the perfor-
mance of our architecture and illustrate how the inclusion of
additional parameters improves its performance in comparison
to the baseline architectures. Specifically, we examined the
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Fig. 4. Comparison of GegenGNN with several methods from the literature was performed on four real-world datasets. The evaluation was based on the root
mean square error (RMSE) metric, considering different sampling densities m.

TABLE II
QUANTITATIVE COMPARISON OF GEGENGNN WITH THE BASELINES IN ALL DATASETS USING THE AVERAGE ERROR METRICS.

Method SW06 Experiment PM 2.5 Concentration Sea-surface Temperature Intel Lab Data
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

NNI (Kiani et al. [65]) 3.621 2.634 0.172 4.944 2.956 0.593 0.772 0.561 0.067 0.661 0.291 0.015
GraphTRSS (Giraldo et al. [23]) 1.334 0.881 0.064 3.824 2.204 0.377 0.357 0.260 0.029 0.056 0.023 0.001
TGSR (Qiu et al. [30]) 0.732 0.449 0.032 3.898 2.279 0.394 0.360 0.263 0.030 0.069 0.037 0.002
GCN (Kipf and Welling [3]) 1.125 0.848 0.065 4.452 2.834 0.623 1.219 0.924 0.181 1.220 0.857 0.046
ChebNet (Defferard et al. [2]) 0.825 0.495 0.038 3.963 2.331 0.416 1.036 0.657 0.113 0.947 0.500 0.027
GAT (Velivckovic et al. [66]) 3.742 3.057 0.227 6.266 3.998 0.958 8.295 7.197 1.483 2.503 1.778 0.093
Transformer (Shi et al. [67]) 1.276 0.927 0.070 5.625 3.090 0.639 5.546 4.420 1.085 0.449 0.302 0.016
GCN-DHLA (Fan et al. [6]) 0.593 0.504 0.037 4.087 2.586 0.519 0.194 0.330 0.049 0.121 0.020 0.001
FFK-GCNII (Zeng et al. [8]) 4.228 1.555 0.118 8.538 6.210 0.806 10.894 2.657 0.354 6.900 0.205 0.110
MRGNN (Pasa et al. [68]) 0.636 0.530 0.039 3.875 2.363 0.453 0.331 0.448 0.057 0.081 0.018 0.001

GegenGNN (ours) 0.585 0.494 0.036 3.822 2.149 0.389 0.180 0.167 0.024 0.052 0.013 0.001

The best and second-best performing methods on each dataset are shown in red and blue, respectively.

effects of the extra parameter α introduced by the Gegenbauer
polynomial, as well as the time-dependence data assessment
by the specialized loss term implemented in the GegenGNN
architecture.

1) Impact of the Gegenbauer parameter α: The appropriate
values for the hyperparameters depend on the specific task,
dataset characteristics, and the desired balance between model
complexity and accuracy. To investigate the expressivity and
generalization capabilities of our architecture, we conducted
two separate case studies. In the first case, we optimized the
GegenGNN model for any value of α, allowing for a flexible
range of Gegenbauer convolutions. In the second case, we
fixed α = 0 in our GegenGNN architecture, resulting in
an architecture with convolutional operators powered by a
cascaded Chebyshev polynomial (TimeGNN [24]). Through
hyperparameter tuning, as described in Section V-D, we ob-
tained the summarized results presented in Table III. The
results demonstrate the impact of considering the parameter
α in the GNN model. By allowing α to vary, the network
generalizes on the Chebyshev convolutional operator, leading
to improved performance across various tasks. This improve-
ment is achieved while maintaining the same time complexity
of O(ζ|E|) for the convolution operation. By selecting the
appropriate value of α, we can leverage the benefits of the
extended search domain and achieve superior performance
in time-varying signal reconstruction. In consequence, the
choice of α significantly impacts the behavior of the Gegen-

TABLE III
ABLATION STUDY FOR THE α PARAMETER OF GEGENGNN.

Parameter α
SW06 Experiment PM 2.5 Concentration

RMSE MAE MAPE RMSE MAE MAPE

0 0.809 0.547 0.040 3.926 2.331 0.483
[−0.5, 1.5] 0.585 0.494 0.036 3.822 2.149 0.389

Parameter α
Sea-surface Temperature Intel Lab Data
RMSE MAE MAPE RMSE MAE MAPE

0 0.599 0.459 0.054 0.533 0.372 0.020
[−0.5, 1.5] 0.180 0.167 0.024 0.052 0.013 0.001

The best results are shown in bold.

bauer polynomials and, subsequently, the model’s expressive
power. Smaller α values yield rapidly oscillating functions,
capturing fine-grained data patterns, while larger values result
in smoother functions emphasizing broader trends. Thus, a
selective range of α should be determined based on the nature
and smoothness of the data, to then determine the optimal
value using cross-validation techniques.

2) Time-dependency study: In this section, we conducted a
thorough investigation to assess the effectiveness of the spe-
cialized loss function in capturing the temporal dependency of
the dataset. To evaluate its impact, we performed experiments
on two representative and challenging datasets: SW06 and
Sea-Surface temperature. These datasets were selected due to
their real-world nature and the complex dynamics observed in
open environments. In our analysis, we explored four different
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TABLE IV
ABLATION STUDY FOR TIME-DEPENDENCY ASSESSMENT OF GEGENGNN.

ϵ Dh Reg. MSE SW06 Experiment Sea-surface Temperature
RMSE MAE MAPE RMSE MAE MAPE

✗ ✗ ✗ ✓ 1.208 0.979 0.075 0.587 0.453 0.050
✗ ✗ ✓ ✓ 0.906 0.646 0.049 0.574 0.445 0.051
✗ ✓ ✓ ✓ 0.814 0.551 0.041 0.540 0.415 0.046
✓ ✓ ✓ ✓ 0.585 0.494 0.036 0.180 0.167 0.024

The best results are shown in bold.

scenarios to compare the performance of our architecture. 1)
We utilized the Sobolev smoothness term in its original form
with λ > 0. 2) We set the parameter ϵ in the Sobolev term
to zero, effectively removing its influence. 3) We excluded
the differential temporal operator Dh from the analysis. 4)
We completely omitted the Sobolev smoothness regularization
term and relied solely on the MSE as the error metric. The
results of our experiments are summarized in Table IV. From
the results obtained on the SW06 and Sea-surface temperature
datasets, we observe that the model utilizing the MSE and
complete Sobolev term in its loss function outperforms the
other variations. These findings imply that our regularization
term for capturing time-dependency in the data is signifi-
cantly enhancing the performance of the GegenGNN model.
The specialized loss function addresses time-dependency by
integrating the Sobolev smoothness term with the temporal
difference operator Dh. Notice that when using the Sobolev
norm it is important to keep the ϵ term in Eq. (18) small to
avoid perturbing the Laplacian matrix L. The appropriate value
for this term should be chosen via cross-validation methods.

G. Limitations

Based on the experiments conducted, we observe that the
Gegenbauer layers used in GegenGNN incur a comparable
computational overhead to Chebyshev convolutions, outper-
forming both GCN and attention-based models in terms of
efficiency when reconstructing time-varying signals. However,
it is important to note that GegenGNN has a primary limitation
related to hyperparameter tuning. This limitation arises from
the introduction of the additional Gegenbauer parameter, α.
While the inclusion of this parameter allows the network to
search for richer orthogonal basis functions compared to the
Chebyshev polynomial-based architecture proposed in [2], it
also introduces an added burden during the hyperparameter
optimization process due to the presence of extra parameters.

VI. CONCLUSIONS

In this paper, we proposed a new GNN architecture called
GegenGNN, which utilizes cascaded Gegenbauer polynomial
filters in its convolutional layers. In Section IV, we pro-
vided a formal introduction to GegenGNN and presented
implementation details. GegenGNN incorporates a specialized
loss function to capture the temporal relationship of time-
varying graph signals. We apply our architecture to the task
of reconstructing time-varying graph signals and evaluate its
performance on four real-world datasets that deviate from

conventional smoothness assumptions. Our experimental re-
sults demonstrate that GegenGNN outperforms other state-
of-the-art methods from both the GSP and machine learning
communities when it comes to recovering time-varying graph
signals. This highlights GegenGNN’s ability to extract high-
order information from data using a cascade of Gegenbauer
filters. The superior performance of our method on real-
world datasets suggests its potential for addressing practical
challenges such as missing data recovery in sensor networks
or weather forecasting. To assess the contribution of the
Gegenbauer parameter α and the specialized temporal loss
function in our architecture, we conducted several ablation
studies. Our findings indicate that the additional components
introduced by GegenGNN play a crucial role in the recovery
of time-varying signals.

Exploring the potential of GegenGNN opens up numerous
promising research avenues for graph-based signal forecasting,
multimodal learning, and fusing information from diverse
sources. Another possible research direction is exploring novel
types of efficient graph filters that enhance the model per-
formance without adding excessive computational complexity.
Moreover, GegenGNN is a generalizable architecture that can
be extended to different domains, including traditional graph
machine learning tasks such as node and graph classification.
Beyond its temporal analysis focus demonstrated in this work,
GegenGNN can find practical applications in other fields,
including recommender systems, computational biology, or
temporal analysis.
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his B.Sc. and M.Sc. degrees in Electronics Engi-
neering from Universidad de Antioquia, Colombia in
2016 and 2018, respectively. His research interests
include the fundamentals and applications of graph
neural networks, computer vision, machine learning,
and graph signal processing. He has worked on
image and video processing, supervised and semi-

supervised learning, hypergraph neural networks, and on sampling and recon-
struction of graph signals. He regularly reviews papers for top conferences
and journals.

Mohsen Badiey received the Ph.D. degree in ap-
plied marine physics and ocean engineering from
the Rosenstiel School of Marine and Atmospheric
Science, University of Miami, Miami, FL, USA, in
1988. From 1988 through 1990, he was a Post-
doctoral Fellow at the Port and Harbor Research
Institute, Ministry of Transport in Japan. After his
postdoctoral research, he became a faculty member
at the University of Delaware, Newark, DE, USA,
where he currently is a Professor of Electrical and
Computer Engineering and joint Professor in Phys-

ical Ocean Science and Engineering. From 1992 to 1995, he was a Program
Director and Scientific Officer at the Office of Naval Research (ONR) serving
as the team leader to formulate long-term naval research in the field of the
field of acoustical oceanography. His research interests are physics of sound
and vibration, shallow water acoustics and oceanography, Arctic acoustics,
underwater acoustic communications, signal processing and machine learning,
seabed acoustics, and geophysics. Dr. Badiey is a Fellow of the Acoustical
Society of America.

Fragkiskos D. Malliaros is an Assistant Professor at
Paris-Saclay University, CentraleSupélec and asso-
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