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Abstract— Even after 12 years of services, Bitcoin remains
the leading electronic money system and the most influential
player in the crypto-currency market. For each block, the
underlying distributed proof-of-work consensus, which requires
a great deal of computing power ( used by miners) to solve a
difficult mathematical problem, rewards the first miner who
solves the problem and shares the solution with the rest of the
network. Two main problems regarding this consensus can be
easily highlighted: (1) the computational power spent by the
miners is wasteful since only one of them will be rewarded,
and (2) miners with a much lower computational capacity can
almost never solve the mathematical problem, and thus cannot
earn a reward. Also the historical players in the system see
their reward greatly diminished if a new player with a high
computational capacity suddenly enters the game.

This paper proposes a substantial amendment to the existing
Bitcoin consensus by using the wasted computation to adjust
the difficulty of each miner that did provide computation effort
overtime. Therefore, anytime a miner justifies of its work
toward the consensus hence the network, without reaching the
solution, then its difficulty will decrease accordingly for next
blocks.

The impact of this adjustment is threefold: (1) It allows to
”recycle” part of the energy previously spent in the computation
of a previous block, which makes the system less energy
consuming as a whole; (2) It also reduces the calculation time
of a block and thus speeds up the validation of transactions;
(3) It increases the loyalty of the actors by favoring the old
miners who have been investing in the system for a long time,
compared to a new entrant with a high computing power, who
would monopolize all the rewards otherwise.

I. INTRODUCTION

In November 2008, the first fully decentralized crypto-
currency, bitcoin, was introduced by an unidentified person
or group acting under the pseudonym Satoshi Nakamoto [23].
Although this article is not the starting point of the
Blockchain technology - proposed by Haber and Stronetta
in 1991 [13] - it is however the one that will make it
known to the general public by using it as an immutable
and decentralized storage medium for transactions operated
in Bitcoin [28]. New transactions are included by adding
blocks to the blockchain. Each block is added by a single
node determined by the system, recognized by consensus by
all other nodes in the network as being able to add a new
block of transactions to the blockchain. To date, Bitcoin is
the most widely adopted and trusted economic system built
on a peer-to-peer network, enabling online payments directly
from one party to another without a single fiduciary entity.

The Bitcoin consensus is based on a proof-of-work (PoW)
protocol[12], [14] that protects the network from denial-
of-service (DoS) and double-spending attacks. In a PoW
protocol, nodes (called ”miners”) compete to add a block
to the current chain by trying to solve a difficult asymmetric
mathematical problem.1 The Bitcoin blockchain rewards the
miner for adding a block to the current chain.

However, the main problem with PoW is that it requires a
significant amount of computing power. Currently, Bitcoin’s
power consumption is estimated to be about 77.78 TWh per
year2 (about the annual energy consumption of Chile), and
much of this power consumption is considered wasted by
miners trying to solve the mathematical problem without
success.

Some previous work has attempted to reuse or reduce
the power consumption of bitcoin, by proposing alternative
consensus mechanisms [2].

Permacoin [21], based on the proof of Retrievability [15]
is a blockchain technology that requires users to commit both
computational power and storage for the purpose of creat-
ing a platform for distributed archival data storage. Other
blockchain solutions such as Foldingcoin [7], Golem[8]
or Gridcoin[9] offer crypto-currencies whose mathematical
problems are coupled with complex scientific calculations.
Thus, miners are rewarded according to the amount of
scientific calculations they have performed. Other recent
works, such as Proof of Deep Learning [6] use the computing
power of miners on deep learning algorithms.

Other previous work proposes rewarding the loyalty of
miners. Initially, Proof-of-Stake [24] (PoS) was proposed
to replace the mechanisms based on computing power with
another, based on the active use of one’s capital. It makes
use of the blockchain asset in question, for example tezzies
(XTZ) or EOS (EOS) on the Tezos [10] and EOS smart-
contract platforms. Because of this, it is not possible to
simply plug in and start mining like with PoW. You have
to buy it or earn it in some way. Thus, blockchains in PoS
are always subject to fundraising in order to make an initial
distribution of the native asset. The holders of the asset in
question have the possibility to put in sequestration a part
or even the totality of their capital with the objective to

1An asymmetric mathematical problem is a mathematical problem that is
difficult to solve but whose solution is easy to verify.

2https://digiconomist.net/bitcoin-energy-consumption
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participate directly in the validation of the blocks or else
to vote for an actor who will do it for them according to
the implementations of this system. For example, Peercoin
[17] relies on proof-of-stake based consensus, amending it
with a randomization concept called ”age of the coin”. The
miner who is allowed to add a block is selected based on a
number derived from the product of the number of coins by
the number of days the coins have been held. Thus, older
and larger coin sets have a higher probability of signing and
closing the next block. Coins that have not been spent for
at least 30 days can compete for the next block. Peercoin
incentivizes nodes to stack coins and reward them based
on their seniority. The result is a model where nodes are
encouraged to stack their coins rather than spend them.

The Proof-of-Activity [3] (PoAc) mechanism combines
the two mechanisms PoW and PoS. Initially, PoAc starts
with the mining process, in which different miners try to
outbid each other with more computing power to find a new
block. Once this new block is found, which unlike PoW
only contains a header and the miner’s wallet address, the
system switches to the proof-of-stake mechanism. Based on
the header, a new random group of validators is selected to
validate the new block. In this mechanism, the more stakes
a validator has, the more chances he has to validate the new
block. Once all validators have signed the new block, it is
given the status of a complete block. Since the PoA system
marries PoW and PoS, it draws some criticism for its partial
use of both. It still takes too much energy to mine blocks
during the PoW phase, and coin hoarders are still more
likely to get on the sign-up list and accumulate more coin
rewards. In [4] authors propose a flexible version of PoAc
with tunable parameter for PoW and PoS. TwinsCoin [11]
is an example of public blockchain crypto-currencies using
a consensus based on both PoW and PoS.

Proof-of-Elapsed-Time [1] (PoET) is another blockchain
network consensus mechanism proposed by Intel in 2016
as another alternative to PoW that prevents high resource
utilization and energy consumption; it keeps the process
more efficient by following a fair lottery system that
spreads the chances of winning equally across network
participants, giving every node the same chance. Under
PoET, each participating node must wait for a randomly
chosen period; the first to complete its waiting time wins
the right to add the new block. Each node in the blockchain
network generates a random wait time and sleeps for that
specified duration. PoET is often used on permissioned
blockchain [25] networks to decide the mining rights or
block winners on the network. Permissioned blockchains are
networks that require any potential participant to identify
themselves before they are allowed to join.

In this paper, we propose a new consensus protocol,
namely Proof of Experience (PoE), to reward miners based
on the amount of computational work they have provided
over a given period of time (e.g., over the past few months).
Proof of Experience is an extension of the Bitcoin consensus
in which a miner’s unsuccessful computational work can

be turned into experience. The more experience a miner
accumulates over time, the less computational capacity they
will need to add incoming blocks.

Currently, in the PoW protocol, a miner with a larger
computational capacity than others is more likely to add
blocks. Therefore, let’s consider a crypto-currency use case
in which a miner with a small computational capacity who is
working for the long-term stability of the blockchain would
like to reap the benefits of its loyalty.

Indeed, early backers or emerging blockchain services or
technologies are the backbone of the infrastructure and its
sustainability as a potential success. Once the blockchain
network has reached a momentum that attracts larger miners
with heavy computing capabilities, the miners who provided
early support may find themselves drowned in the mass
and excluded from the reward process. When this happens,
many blockchain technologies lose their early adopters and
believers, who often help launch commercial achievements
and service reliability.

The loss of these adopters and believers can have a
significant negative impact on this technology. Being the first
to believe in a crypto-currency, they are also the first to use
it and be the standard bearers for it. On the other hand, new
entrants are more opportunistic, interested in the gain that a
technology can bring them, more than the technology itself.
These new entrants can quickly turn away from a technology
if a more profitable competing technology emerges. To allow
a crypto-currency to be sustainable over time, it is therefore
essential to be able to retain its early adopters and believers.

PoE provides a protocol to reduce the influence of large
miners/pools of miners that will rise through the attraction
of potential reward. It also balances the loyalty of the miners
against the computing power.

Another motivation for the PoE protocol is to boost
network distribution by attracting miners with smaller com-
putational capabilities, which allows location and identities
to be spread over a large centralized pool. A miner with
reduced computational power can still compete using its
loyalty, without having to waste all the effort involved in
distributed consensus, leading to network security.

Although other consensus systems, such as PoET [1], [5],
achieve the ”one CPU one vote” goal originally proposed
in Nakamoto’s Bitcoin paper, these are mostly restricted to
permissioned or private blockchains, which is not public
accessible and require relative trust of the nodes involved.
Moreover, they put the same probability of winning on both
the old lazy miners and those who actively participate in
block calculations.

In the PoE protocol, the previous computational work
can be derived into experience, in order to benefit from a
reduced difficulty when solving the mathematical challenge
of incoming blocks. Indeed, the experience reduces the
difficulty of the nonce that must be solved to legitimize the
addition of a block, thus increasing the probability of rewards
for the miner.

Compared to other solutions and consensus proposed,
PoE can reconcile many advantages that are not found or



partially in other solutions. It only requires a minor but
clever adaptation of PoW, and thus is completely suitable
for both public and private blockchains. It does not take into
consideration the amount of pieces available, already spent,
used, or burned as it is the case in other consensus systems,
such as PoS, PoAc, PoU [18] or PoB [16]. These systems
tend to favor the richest players and/or those who make the
most transactions, and can induce a sense of inequity, as
adopters and believers are not necessarily those who own the
most assets in the system. These systems tend to favor the
richest players and/or those who make the most transactions,
and can induce a sense of inequity, as adopters and believers
are not necessarily those who own the most assets in the
system. Moreover, consensus systems based on quantities of
money induce changes in the behavior of the actors (saving,
spending) in order to maximize the gains, which seems to us
to be counterproductive in such a system. In this sense PoE
allows to free itself from these behaviors biases by the very
fact of its conception. PoE is also more robust to different
attacks well identified on these blockchain networks (double
spending, cloning attack).

II. PROTOCOL

In the PoE protocol, we propose a modification of the
existing Bitcoin consensus. This modification is not a com-
plete redesign of the Bitcoin protocol, but an ingenious
adaptation of PoW to make it more equitable and less energy
intensive. The PoE model uses the same transaction model
(based on unspent transaction output, UTXO), the same
signature system (based on the elliptic curve[22]) and the
same asymmetric mathematical problem as Bitcoin’s PoW.
This problem consists of finding a 32-bit number called
nonce such that the concatenation of the block header (i.e.
the block without transaction list) and the nonce produces
a hash less than or equal to the target. The target is a
256-bit number, shared by all Bitcoin miners, that varies
every 2016 blocks depending on the overall computational
capacity of the network. Every time the overall computing
capacity increases, the target decreases, just as when the
overall computing capacity decreases, the target increases.
The difficulty of finding a valid nonce depends on the value
of the target. The lower the target is, the higher the difficulty
is.

Note that in such a protocol, the SHA-256 hash func-
tion returning a 256-bit number is used. Also note that
in this document we distinguish between PoW (i.e., the
nonce problem) and PoE (the proof that a miner worked
for the previous blocks). The term work means that a miner
provides computational power while trying to solve the nonce
problem.

In PoE, the miner’s experience is represented by the work
it has done previously. The more work a miner does for
the network is the lower the difficulty level will be. In fact,
there are two types of targets in PoE: (1) the global target,
which is the maximum value of a target, shared by all miners
(corresponding to the Bitcoin target), and (2) the local target,
specific to each miner: when a miner mines for the very first

time, his target is equal to the global target. However, by
working for the network, each miner can reduce the global
target and calculate his own local target. For each block, each
miner calculates his own local target based on the previous
PoW he reached - even if the computed nonce produces a
hash higher than the global target.

In PoE, as in PoW, each miner tries to compute the next
block bi to earn the reward. To compute the next block bi,
a miner m must perform the following operations:

1) Target computation: m computes its own target tm
based on the global target and its previous work.

2) Header construction: m constructs the PoW of the
block and computes a nonce such that the hash of the
PoW concatenated to the nonce returns a hash less than
or equal to tm.

3) Transactions selection: m adds transactions from its
transaction pool to the current block.

4) Block sharing: m computes the final hash of the block
and shares the block over the network.

In order to stabilize the network, as in the case of Bitcoin,
miners always work on the longest chain. When a new block
is sealed, it is communicated to all other active nodes.

In this section, we present the block structure used in the
PoE protocol. Thus, it will be demonstrated how to compute
the target and to disseminate it on the network. The last parts
of this section are devoted to the validation of the blocks and
to the study of special cases (e.g., fork).

A. Block structure

For a better understanding, it is encouraged to assimilate
the following Table I which describes each entry within a
block.

In the Bitcoin blockchain, the header contains all the
information of the block (but not the transaction stack of the
block but rather its root Merkle [19], [20]). The challenge
of mining is to find a nonce such that the hash of the header
will be less than or equal to the target that is broadcast by the
network. With PoE, there is a clear distinction between the
PoW itself and the header, i.e., the header contains the PoW
but the proof is not executed on the entire header. Compared
to Bitcoin blocks, a PoE block contains a pool of nonces, the
ID of the miner computing the block and a local target. The
other entries are not changed (see figure 1). These changes
are needed to facilitate the calculation of the local target.
With this change, a miner m1 can prove his experience on
a set of blocks B = {b1, . . . , bn} to a miner m2 by simply
revealing his public key or ID, and the ordered sequence
of nonces computed for each block (corresponding to the
nonces pool in Figure I). The block indexes of B are fixed
and known to the two exchanging miners so that m2 can
reconstruct the n headers, recompute the hashes to finally
determine the local target of m1.

The global target and nonce pool are not included in the
header since lightweight nodes (i.e., nodes that download
block headers only to validate the authenticity of transac-
tions) do not require these fields to validate transactions.



Field Description
Version Version of the block.
Previous Block Hash The block hash of the block that this block is being built on top of. This is what “chains” the blocks

together.
Merkle Root All of the transactions in this block, hashed together. Basically provides a single-line summary of all the

transactions in this block.
Timestamp When a miner is trying to mine he add the time at which the block header is being hashed.
Bits A 32-bit number corresponding to a shortened version of the Target. The target is a 256-bit number that

miners must find a hash such that this hash is lower than or equal to the target. The conversion between
bit and target is described in Appendix.

Nonce The field that miners change in order to try and get a hash of the block header (a block hash) that is
below the target.

Miner ID The ID of the miner that create the block.
Pool of nonces In this field, the miner write the previous nonces that he have find for some previous blocks (see Section

II-B for more details).

TABLE I
FIELDS CONTAINED IN BLOCKS.

Header:

Version
Previous hash block

Merkle root
Timestamp

Target (global)
Nonce (32-bit)

Transactions

PoW:

Header:

Version
Previous hash block

Miner ID
Nonce (64-bit)

Merkle root
Timestamp

Target (local)

Target (global)
Pool of nonces

Transactions

Fig. 1. Structure of Bitcoin blocks on the left compared to the structure
of PoE blocks on the right. Gray rectangles correspond to fields where the
PoW is executed.

B. Local target

This part is devoted to the computation of the local target
for a given miner based on its previous work. In order to add
a block, a miner must find a nonce such that concatenating
this nonce with the hash of the previous block and its
identifier or unique address (derived from its public key)
produces a hash less than or equal to its local target. In
addition, the miner must prove his previous experience by
adding a pool of nonces corresponding to his previous work.
Each nonce of this pool corresponds to a computational
effort on a previous block of the blockchain, effort produced
during the process of adding said block. The local target of
this pool varies according to the work that the miner has
previously performed. When a miner m shares a block, the
others miners must be able to recalculate that the hash is
valid from the given nonce and to verify its local target -
that is to say, to recheck that it corresponds to the previous
computational effort: the pool of nonces contained in the

blocks thus corresponds to an ordered set of nonces that the
miners use to reconstruct the PoW of the previous blocks
and thus recalculate the local target of m according to the
hashes obtained.

Ideally, the calculation of the block target should consider
all blocks since genesis. However, the computation time
might be too long and the size of the nonces pool (contained
in the blocks) too large. In order to reduce the computation
time and to limit the size of the blocks, we do not consider
all the blocks but only a significant part (i.e. a sample) of the
last previous blocks. The considered sample can be described
by a function, and is considered here as a parameter of our
protocol, as explained in the following.

1) Sample from previous blocks: The sample of previous
blocks corresponds to a set of blocks that a miner considers
to calculate the target of a block (both to exploit and to verify
a block in the consensus phase). Let S = {s1, s2, . . . , sn}
(with s1 < s2 < · · · < sn) be a set of positive integers,
and let m1 be a miner writing bi the ith block of the chain.
To compute m1’s local target for bi, a miner m2 (possibly
m1) considers m1’s work on blocks bi−sj , ∀sj ∈ S. Using
such process a miner can estimate the work of a miner on
sn blocks by checking only n blocks.

The elements and size of this set can be fixed and shared
by all the miners of the network or calculated dynamically
(in this case, the function which calculates it must be
deterministic and known by all the miners). An example of a
fixed set can be S = {x | x is a odd number ∧ x ∈ J1, 100K}.
In this case the size and the elements of S are fixed and
known by all actors of the network, thus, miners can compute
the local target of a block without computing S. Now if we
consider the set S = {x | x = i − 100k, ∀k ∈ J1, i/100K},
with i the number of the current block, the elements and
size of this set are not fixed. Then,Then, each time a miner
computes the local target, it must compute the previous set.

Considering the ith block bi, the size of the set (i.e. |S|)
corresponds to the number of blocks evaluated to compute
the local target of bi, and the position of the current block
minus the largest value of the set (i.e. i − sn) corresponds



to the number of the oldest evaluated block. Thus, the miner
who starts mining will get the full benefit of his experience
after working continuously for sn blocks. We present the set
S chosen in subsection III-A.

2) Local target computation: This section is dedicated to
the local target computation function. This function is used
by miners both to compute their own target, and to compute
others during the process of validating or invalidating a
block when they receive one. As said before, each miner
has a different target for the same block bi depending on the
previous work provided. The more previous work a miner
provides, the easier the work required for the next block will
be. In fact, there is an overall target in the network (as in
Bitcoin) that decreases for each miner based on his previous
work on the chain. In this section, we define the function
determining the target of a block bi for a given miner m
as a function of his work on previous blocks in the given
set B = {bj | j = i − sk, sk ∈ S} with an arbitrary set S
of positive integers. The inputs/outputs of this function are
defined as follows:

Input: given a set S = {s1, s2, . . . , sn} (with s1 <
s2 < · · · < sn) of positive integer, a set of nonces
N = {x1, x2, . . . , xn} (i.e. a pool of nonces), the miner
ID of the miner m and a current block bi.
Output: a 256-bit number corresponding to the local
target tm of the miner m for the block bi.

Note that the set of nonces N is the set of best nonces
found by the miner m (i.e. the nonces producing the lowest
hash). The set of nonces is ordered: the nonce xk corresponds
to the nonce found for the PoW of block bi−sk .

To compute the local target, a miner m′ (possibly m′ = m)
must recreate and then verity the work of m for each block
of B. Thus, ∀sk ∈ S, m′ creates the PoW of ms for block
bi−sj by concatenating the following elements:
• the hash of block bi−sj−1 as previous hash block,
• the miner ID of m (contained in the block bi),
• the nonce xsj in the nonces pool of block bi.
Thus with only |B|(= n) hashes, m′ can compute and

evaluate the work done by m for all blocks of B. This work
evaluation adjusts m’s local target for the block bi and then
this block becomes easier to add.

Note that if the target computation function only uses the
evaluation of the work provided by the previous blocks, the
chain may be vulnerable to a double-spending attack. In fact,
over time, the miner with the highest computational resource
on the network may end up with the largest target (i.e., the
easiest PoW to find). If this miner is malicious, it can create
a local fork, then create a chain that is longer than the rest
of the network and force its way onto that chain. In such
a case, a double-spending attack is carried out, so that the
transactions in progress since the fork are lost and all the
work (thus the experience) of the other miners too.

In order to protect the network against the double spending
attack, another parameter is used to calculate the target.
This parameter is the number of blocks a miner has added
recently. For example, if a miner adds eight blocks in the

last ten blocks, the function that calculates the target must
decrease that miner’s local target for the next few blocks so
that the blocks become harder to add. Any miner can control
this effectively by dynamically storing the miner ID of the
last few blocks.

The most critical aspect of PoE consensus is how to
adjust the local target based on a miner’s work and the
number of recently added blocks? There are many functions
to adjust this, and each will have a direct impact on the
behavior of the network. The subsection III-B presents a
model used to calculate the target, which we then tested
through simulations.

C. Creation of a nonces pool

Let S = {s1, s2, . . . , sn} (with s1 < s2 < · · · < sn)
be the positive integers considered to create the sample of
blocks.

Property 1: Consider that a miner m locally stores the
nonce that produces the smallest hash for each block between
the current block bi and the block bi−sn . Then a miner can
create its nonce pool in constant time O(|S|).

Proof: Consider that m stores its nonces in an array
of size sn. For each jth block bj , m stores the corre-
sponding nonce in the indexed array j modulo sn. Thus,
foreverysk ∈ S, m accesses the nonce of block bi−sk by
accessing the index of array i − sk modulo sn. Then m
creates its nonce pool for block i+1 by accessing |S| times
to its array.

D. Block Verification

Let m′ be a miner which receives a block bi constructed by
miner m. In order to validate bi, m′ must check the following
conditions:
• m has correctly computed its local target for block bi

(based on its experience that the nonces pool of the
block produces).

• The hash of the PoW is less than or equal to the local
target.

• The transactions are valid (this step is exactly the same
for the Bitcoin blockchain).

If all these conditions are validated, then the block is valid
and m′ adds it to its chain.

The only change between a Bitcoin block check with or
without the PoE protocol is the calculation of the local target
of bi for ms. The time for this verification depends on the
chosen function.

E. Special cases

This part is devoted to the behavior of PoE in two
particular cases of the blockchain: the beginning of the chain
and the fork.

1) The beginning of the chain: Considering the set of
samples S = {s1, s2, . . . , sn} (with s1 < s2 < · · · < sn),
we consider the beginning of the chain as the chain before
the snth. Then at the beginning of the chain, there are blocks
needed to calculate the local target which does not exist. In
this case, the calculation of the target is executed only with



the existing blocks. Thus, miners working from the first block
will take full advantage of their experience on the (sn + 1)

th

block of the chain.
2) Fork: As with bitcoin, a fork can occur in the PoE

protocol when two or more miners find and share a block at
nearly the same time. The fork is resolved when blocks are
added to one of the chains, and then when that chain becomes
longer than the others. Thus, considering that miners always
work on the longest chain, they will work for that chain and
blocks that are not in the longest chain are dropped by the
network. These blocks are called ”orphan blocks”. To the
network, orphan blocks do not exist, so the work the miner
has done for them cannot be verified. For this reason, the
work provided for the orphan blocks cannot be used for the
calculation of the local targets and unfortunately this work
is lost for the miners.

III. DISCUSSIONS

This section presents a relevant sample and target function
test scenario to illustrate PoE. Note that this section only
analyzes the theoretical aspects of our protocol, and requires
more extensive testing for full validation. The protocol
proposed in section II is currently under development.

A. Sample of blocks

In order to simplify the calculation of the local target,
the set S is fixed. This set is known by all the actors of
the network. This set is defined in such a way that miners
who do not work regularly will be strongly penalized. For
example, let us consider the set S = {10k |∀k ∈ J1, nK}
(with n an arbitrary integer) which does not penalize miners,
even if they only work 1 time out of 10, as long as they
work regularly. A set that we find particularly interesting to
consider as a sample of blocks to check for PoE, is a set built
on a Golomb ruler [26], [27] : a Golomb ruler is a set of
marks located at integer positions along an imaginary ruler,
such that the distance between any two marks is pairwise
distinct. The order of a Golomb ruler is the number of
its marks, and the length of a ruler is the largest distance
between any two pairs of marks. A set of positive integers
A = {a1, a2, . . . , an} (with a1 < a2 < · · · < an) is a
Golomb ruler of order n and length an − a1 if and only if:
∀i, j, k, l ∈ {1, 2, . . . , n} ai − aj = ak − al ∧ i 6= j ⇐⇒

(i = k) ∧ (j = l).
Property 2: Considering that S = {s1, s2, . . . , sn} (with

s1 < s2 < · · · < sn) is a Golomb ruler, for any pair of
blocks (bi, bj) (with i < j), there exists at most one block
bc that uses both bi and bj to calculate its target.

Proof: Consider that bi and bj are used to compute the
local target for block bc. Then there exist sk, sl ∈ S such that
c− sl = i and c− sk = j. By contradiction, let us consider
that bi and bj are used again to compute the local target of
the block bc+d (with d > 0). Then there are sk′ , sl′ ∈ S such
that c+ d− sl′ = i and c+ d− sk′ = j. Thus sk = sk′ − d
and sl = sl′ −d, then we have d = sk′ − sk = sl′ − sl (with
sk 6= sk′ ) such that sk 6= sl and sk′ 6= sl′ then S is not a
Golomb ruler.

A = {0, 1, 4, 6}

0 1 4 6

1 3 2

4

5

6

A = {0, 1, 3, 8}

0 1 3 8

1 2 5

3

7

8

Fig. 2. Two examples of Golomb rulers, on the left a Golomb ruler of
order 4 and length 6, on the right a Golomb ruler of order 4 and length 8.
Note that the Golomb ruler on the left is optimal (i.e. its length is minimal
considering its order) but it is not necessary for us to have an optimal ruler.

Consider that S is a Golomb ruler, according to Property 2,
for any pair of blocks (bi, bj) (with i 6= j), there exists at
most one block that uses bi and bj to compute its target. By
this property, a miner who tries to cheat by mining only a
few blocks is penalized because a pair of mined blocks is
used at most once in computing the target.

Considering the ith block bi, the order of the Golomb ruler
(i.e. |S|) corresponds to the number of blocks evaluated to
compute the target of bi, and the current block position minus
the biggest value of the ruler (i.e. i− sn) corresponds to the
number of the oldest block evaluated.

For the following tests, let us consider the following
Golomb ruler of order 212 and length 41 911 (see Figure
3) that can be found on Lloyd Miller’s web page3 (this ruler
is exposed in Appendix). Considering the Bitcoin blockchain
in which a block is added every 10 minutes on average, this
ruler allow to check the work of a miner for the last 292 days
(approximately 10 months) by processing only 212 blocks
(i.e. executing 212 hashes).

The size of a block is then increased due to the pool
of nonces, the public address or ID of the miner and the
local target it contains. The average block size in bitcoin
in February 2020 is 1.105 MB4. The nonces pool consists
of 212 nonces, each corresponding to a 32-bit number (4
bytes). The size of the nonces pool is therefore 844 bytes.
The miner ID is a number of 256 bits (32 bytes) and the
bits corresponding to the local target are a number of 32 bits
(4 bytes). Then PoE, with a S set of size 212, increases the
block size by 880 bytes ( a 0.08% increase). If we consider
the Bitcoin chain from the genesis block to March 8, 2020
(currently 267 GB), this change increases the chain size by
about 547 MB (about a 0.2% increase). If we only consider
the headers (for lightweight nodes), we only consider the
miner ID. Thus, by the same arguments, the size of the chain
for lightweight nodes corresponds to 69.70 MB (currently
49.78 MB for the Bitcoin chain). This is an increase of 14%.

As we can see from Figure 3, the marks in the proposed
Golomb rule are distributed equitably and uniformly. How-
ever, for equivalent work, a miner who has worked on older

3http://www3.telus.net/millerlf/g3-records.html
4urlhttps://ycharts.com/indicators/bitcoin average block size

http://www3.telus.net/millerlf/g3-records.html


Fig. 3. Golomb ruler of order 212 and length 41 911.

blocks must gain more experience than those who have only
worked on recent blocks. It may be interesting to test the
Golomb rule with a weighting on the corresponding set. With
this weighting, the older a block is, the more impact said
work will have on the target calculation.

B. Target computation function
As said before, there are many functions that can be used

to compute the local target tm of a block bi for a miner
m. The function proposed here is based on a global target
tg such that the work on previous blocks increases and the
number of recently added blocks decreases. In the following,
a target is represented by its greatest power of 2. Let the
global target equal tg = 2G, with G an integer such that
1 < G < 255. Note that G is recomputed by all miners every
2016 blocks to adjust the global target so that one block is
produced every 10 minutes (as in Bitcoin). The proposed
local target calculation function is defined as follows:
tm = 2G × 2f(α) × 2−g(β) = 2G+f(α)−g(β),

with α the evaluation of the work of m and β the number
of blocks recently added by m. The functions f and g are two
monotonuous increasing functions. They are used to adjust
the target of m according to α and β.

Let bi+1, the (i + 1)th block of the chain, be the block
on which we compute the local target. The value of α is
an estimate of the work done by m for all the blocks B =
{bi−sj | sj ∈ S} (with bi the ith block of the chain). In
order to evaluate this work, for all bk ∈ B blocks, a miner
recreates the PoW and recomputes the hk hash found by m
(as described in subsection II-B) to create the set of Hm

hashes. Note that finding a hash less than 2n is half the
work of finding a hash less than 2n−1. Then, for each hash
hk ∈ Hm, we count the number of 0 (named h

|0|
k ) before

the first 1 (from left to right) and add 2h
|0|
k to α. Thus, α

corresponds to a sum of 2h
|0|
k of all hk ∈ H . Then:

α =
∑

hk∈Hm

2h
|0|
k .

The value of β is based on the number of blocks added
by m in the last sn blocks (i.e. in the last 10 months). The
value of each block is balanced, i.e. it is weighted according
to its seniority. The newer the block, the heavier it is. For
example, if bj is the jth block, we can weight the blocks
with the function w(bj) = max{0, sn − (j − i)} (with i
the number of the current block). With this weighting, a
block starts with a weight of sn and decreases one after
another for each block to reach 0 after sn blocks. Consider
the set Bm = {blocks added by m in the last sn blocks},
the variable β corresponds to the sum of the weights of the
blocks added by m :

β =
∑

bj∈Bm

w(bj).

Property 3: Consider that a miner m locally and dynami-
cally stores the ID of the miner who added the block between
the current block bi and the block bi−sn . The miner m
computes Bm′ the set of blocks added by m′ in the last
sn blocks (possibly m = m′) in constant time O(sn).

Proof: Consider that m stores the miner ID of the last
blocks in an array of size sn. For each jth block bj , m stores
the corresponding miner ID in the array indexed j modulo
sn. Thus, by traversing this array, m creates the set Bm′ in
sn comparisons between the miner ID of m′ and the miner
IDs contained in the array.

Further tests are needed to determine the functions f and
g even if they are monotonically increasing functions.

IV. TESTS

In this section, we propose some local target computation
functions to reduce the influence of a miner joining the
network with high computing power. To test the effectiveness
of our functions, we implemented a simplified version of the
Bitcoin protocol. This version contains no transactions, no
asymmetric block signatures and low - the objective is mainly
to simulate and prove the feasibility of our approach, not to
propose a finalized version of PoE - . Tests are performed
with the Python 3 language5 and running on four Raspberry
Pi 2 model B6, one laptop (Asus R511L7) and one graphic
card (MSI Geforce GTX 1080 Ti GAMING X 11G8), all
connected on local network by a switch (Cisco Catalyst
29509).

In order to evaluate the influence of a miner joining the
network with significant computing power, we defined a test
protocol as follows :

• All but the most powerful miner have been working
since the beginning of the network to accumulate expe-
rience.

• After sn blocks, the miners reach the maximum expe-
rience they can have with their computing power (with
sn the maximum value of the used sample S). The

5https://www.python.org/download/releases/3.0/
6https://www.raspberrypi.org/products/

raspberry-pi-2-model-b/
7https://www.topachat.com/pages/detail2_cat_est_

ordinateurs_puis_rubrique_est_wport_puis_ref_est_
in10090896.html#fiche-technique

8https://www.msi.com/Graphics-Card/
GeForce-GTX-1080-Ti-gaming-x-11G/Specification

9https://www.cisco.com/c/dam/global/fr_fr/assets/
documents/pdfs/datasheet/switching/Cat2950_fr_v3.
pdf

https://www.python.org/download/releases/3.0/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.topachat.com/pages/detail2_cat_est_ordinateurs_puis_rubrique_est_wport_puis_ref_est_in10090896.html#fiche-technique
https://www.topachat.com/pages/detail2_cat_est_ordinateurs_puis_rubrique_est_wport_puis_ref_est_in10090896.html#fiche-technique
https://www.topachat.com/pages/detail2_cat_est_ordinateurs_puis_rubrique_est_wport_puis_ref_est_in10090896.html#fiche-technique
https://www.msi.com/Graphics-Card/GeForce-GTX-1080-Ti-gaming-x-11G/Specification
https://www.msi.com/Graphics-Card/GeForce-GTX-1080-Ti-gaming-x-11G/Specification
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sixth miner (with the highest computing power) starts
working for the network.

The objective of this protocol is to observe the evolution
of the percentage of blocks that each miner adds to the
chain, and to measure the influence of the sixth miner on
the network when he joins the system.

Before presenting our functions and results, we need to
determine the computational power that each of our miners
has on the network. This power is expressed as a percentage
of the overall network power. To do this, we use the
following protocol : the six miners work at the same time
on the network with a consensus without proof of experience
(only with proof of work). The percentage of blocks added
by each miner corresponds to the percentage of its power
compared to the total power of the network. The results we
obtain are presented in the following table: II.

Device Percentage of recorded blocks

Laptop 34,2

Graphic card 52,2

Raspberry 1 3,5

Raspberry 2 3,4

Raspberry 3 3,1

Raspberry 4 3,6

TABLE II
PERCENTAGE OF RECORDED BLOCKS BY EACH MINER OF THE NETWORK

WITHOUT PROOF OF EXPERIENCE (ON 5370 BLOCKS).

As we observe, the miner with the most computing power
is the one with the graphics card. In the following tests,
the graphics card will be our sixth miner and will enter the
network from the sn + 1th block.

As said before, many functions can be used to calculate
the local target. However, we are looking for a function with
which the incoming miner has very little influence on the
network and reaches its full potential only after working on
sn blocks (in our protocol, starting from the 2sth

n block). For
obvious reasons of time (more than twenty months of testing
for each function with the S212 sample and ten minutes per
block), we use an average time of one minute between each
block and the S61 = [si + 1 si ∈ A61] sample (with s1 <
s2 <, . . . , < s61), a sample based on Golomb’s rule A61 of
order 61 and size 3134 :
A61 = {0, 4, 28, 44, 94, 300, 371, 409, 513, 544, 611, 632,

689, 745, 763, 775, 804, 836, 984, 987, 1083, 1105, 1125,
1242, 1251, 1265, 1409, 1442, 1626, 1652, 1662, 1677, 1679,
1749, 1754, 1833, 1928, 1965, 2008, 2118, 2157, 2203, 2211,
2279, 2314, 2476, 2536, 2588, 2601, 2702, 2721, 2766, 2829,
2929, 2935, 2936, 2984, 3018, 3065, 3123, 3134}.

Let tm be the local target of the miner m for the block bi,
the ith of the chain. The first function we present is based
on a bonus/malus system. The more a miner has worked, the
more bonus he has. The number of malus increases according

to the number of blocks the miner has added recently. The
function we propose is the following :

• Reconstruct the proofs of work of the set of blocks
corresponding to the sample, then compute the set H ,
the set of hashes of their proofs of work.

• In the last 256 blocks of the chain, for each block
bj added by m, add to the set Malus the value
256− (bi − bj). For example, if m added the previous
block and another block 102 blocks ago, we add to
Malus the value 255 (=256-1) and 154 (=256-102).
Thus, each block recorded by a miner costs him a malus,
dynamically weighted by the inverse of his age. In other
words, the more recently a block was added, the higher
its weight.

• Compute Sum =
∑
H +

∑
Malus, the sum of the

hashes of H plus the sum of the malus.
• Compute M = Sum/|S|. At this point, we computed

the average work done by the miner m on the sample
S to which we added a malus based on the recently
recorded blocks.

• Let Tmax and Tg be the value of the maximum target
of the network and the value of the current global
target respectively, compute tm = Tg + (Tmax −M).
This calculation allows us to invert the average we just
calculated so that the more a miner works, the higher
his local target is.

• It is important that the computed target is always
between Tmax and Tg , so the function returns Tmax
if tm > Tmax, Tg if tm < Tg and tm otherwise.

With this function, the more a miner works for the
network, the higher his local target is. On the other hand,
the more recent blocks he adds, the lower his local target is.
This malus avoids a runaway situation in which a miner with
more computing power than another would have a simpler
and simpler target which would decrease the chances of the
other miner to add a block.

The behaviors of miners on a network using the previously
proposed function are observable in the appendix, Figure 4.

In the 3135 blocks, we observe a certain stability, the
laptop registers between 70% and 80% of the blocks of
the chain and each raspberry between 5% and 10%. When
the graphics card enters the network, it directly reaches its
full potential and then the network balances with the same
proportions as for the network without proof of experience.
This behavior is explained by the fact that the bonus given
for the experience of the miners does not compensate for the
malus that is given when they add a block. Thus, when the
graphics card starts mining, all the miners in the network
have a local goal equal to the global goal (exactly as in a
network without proof of experience).

To address this problem, we added a dynamic weighting to
the blocks based on their age. This new function is the same
as the previous one except that for each block corresponding
to the element si of the sample S its hash is weighted by
dlog10(si)e. Thus, the previous block will have a weight of
1, while the block added 2128 blocks ago will have a weight



of 3. The behavior of the miners with this new function is
presented in appendix, Figure 5.

In this new function, we observe at first that the proportion
of blocks recorded by the laptop increases more and more at
the expense of raspberrys. This behavior can be explained by
a too low malus compared to the bonus given to the laptop, it
is a runaway as described above. However, with this function,
when the graphics card joins the network (at block 3135), it
has very little power on the network, it must wait for more
than 1500 blocks before starting to add blocks and the full
experience (3135 blocks) to reach its full potential.

From our point of view, the behavior of the miners
resulting from the second function is ”better” than the first
one in spite of the runaway observed in the first 3135 blocks,
and allows to show that PoE allows to favor the miners
working for the network for a long time compared to the new
entrants, despite a more important computing power. The
objective will be to test other functions in order to remove
this runaway.

V. CONCLUSION AND PERSPECTIVES

This paper proposes an empowering evolution of the Proof
of Work protocol in which the miner’s loyalty is preserved
by rewarding and capitalizing on his previous work, thus his
experience.

Experiments conducted on real devices allow us to demon-
strate the feasibility of the Proof-of-Experience mechanism:
we were able to privilege the historical nodes of the system
by ”reusing” their energy by adapting the difficulty level, and
we were able to make the network less energy consuming.
We have shown through these experiments that the addition
of a new node with a large computational power does not
immediately lead to a monopolization of all the rewards
of the network: the historical actors manage to maintain a
percentage of rewards for a certain time despite this new
actor, which reinforces the loyalty of the actors. In addition
to being feasible, our protocol is intended to be adaptive:
the ability with which old nodes can compete with new
entrants depends on a target computational function that can
be adjusted according to the desired behavior.

Future work consists of further testing of the proposed
sample and the target computational function to adjust these
parameters based on the observed results.

We have focused here on the loyalty problem, proposing a
consensus system that by design will be less energy intensive
and faster - we do not make the associated mathematical
problem harder for new players, but easier for old ones -
. Another extension work consists in testing other couples
of sample/target computation functions in order to compare
them with some parameters such as target computation time,
block size, verification time, energy saved compared to a
POW consensus, and also to get a better behavioral analysis
of the network participants. Ideally, we would like to provide
a feature for each type of application (e.g., one feature
favoring recent work and another more dedicated to past
work and history).

Another possible improvement for proof of experience will
be to introduce a special type of transaction that can propa-
gate experience from one miner to another. This modification
would allow miners to change their public and private key
pair to monetize their experience or simply port their legacy
to a new account.
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APPENDIX

Bits is just a shorthand version of the Target. Bits is a 32-
bit number (i.e. a 4-byte number), the first byte correspond
to an exponent that gives the size of the target in bytes and
the other three bytes correspond to the initial three bytes of
the target. See the following example for more details:

Bits:
0x 18 06 96 F4

The red byte corresponds to the exponent and the blue
bytes correspond to the initial three bytes of the target.

Target:
0x 06 96 F4 00 00 00 00 00 00 00 00 00

The Golomb ruler of order 212 and length 41 911 used as
sample for tests:
S = {0, 6, 298, 333, 458, 823, 868, 1096, 1305, 1487,

1637, 2136, 2279, 2360, 2413, 3057, 3520, 3542, 3575, 3990,
4268, 4433, 4507, 4578, 4938, 4957, 5104, 5186, 5355, 5834,
6312, 6387, 6699, 6943, 6981, 7048, 7821, 7919, 7937, 8438,
8600, 8774, 9162, 9457, 9586, 9846, 9932, 10021, 10167,
10232, 10240, 10607, 10706, 11420, 11538, 11592, 11615,
11695, 12522, 12556, 12732, 12789, 13179, 13748, 13759,
14736, 14830, 15362, 15430, 15454, 15455, 15481, 15633,
15718, 15914, 16002, 16163, 16953, 17077, 17208, 17397,
17493, 17615, 17631, 17710, 17962, 18088, 18102, 18208,
18347, 18430, 18630, 18662, 18952, 19012, 19458, 19468,
20240, 20403, 20520, 20624, 20633, 20992, 21364, 21693,
21908, 22038, 22059, 22066, 22173, 22251, 22327, 22574,
24059, 24397, 24399, 24715, 24805, 25401, 25421, 25675,
25745, 26316, 26320, 26363, 26504, 26619, 26716, 27299,
27443, 27458, 27663, 27795, 28065, 28101, 28192, 28292,
28506, 28712, 28768, 28999, 29193, 29198, 29235, 29532,
29785, 29825, 30388, 30437, 30524, 30585, 31636, 31649,
31695, 31804, 31816, 31953, 31997, 32308, 32371, 32881,

32922, 33138, 33501, 33672, 33744, 33773, 34013, 34199,
34238, 34322, 34524, 34652, 34829, 34859, 35280, 35342,
35390, 35741, 36152, 36183, 36339, 36356, 36509, 36751,
36941, 37052, 37164, 37455, 37653, 37817, 37919, 38198,
38707, 38915, 39291, 39343, 39662, 39720, 40016, 40124,
40266, 40504, 40507, 40573, 40943, 41007, 41301, 41502,
41728, 41778, 41911}.
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Fig. 4. Average number of blocks recorded by each miner during the creation of the chain (first function).
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Fig. 5. Average number of blocks recorded by each miner during the creation of the chain (second function).
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