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Abstract. In the face of continuous cyberattacks, many scientists have
proposed machine learning-based network anomaly detection methods.
While deep learning effectively captures unseen patterns of Euclidean
data, there is a huge number of applications where data are described in
the form of graphs. Graph analysis have improved detecting anomalies
in non-Euclidean domains, but it suffered from high computational cost.
Graph embeddings have solved this problem by converting each node in
the network into low dimensional representation, but it lacks the ability
to generalize to unseen nodes. Graph convolution neural network meth-
ods solve this problem through inductive node embedding (inductive
GNN). Inductive GNN shows better performance in detecting anomalies
with less complexity than graph analysis and graph embedding methods.

Keywords: anomaly detection, convolutional graph neural network, in-
ductive graph learning, graph embedding, graph analysis, link prediction

1 Introduction

Anomaly detection is any method for finding events that don’t match a given ex-
pectation. In the face of continuous cyberattacks, many scientist have proposed
machine learning-based network anomaly detection methods [1] such as one-class
support vector machines (OSVM), autoencoders (AE), and isolation forests (IS).
These methods have proven to be very effective in detecting anomalies [2] and
they discover hidden patterns in Euclidean data [3] where they are being plotted
in n-dimensional linear space. However, there is an increasing number of applica-
tions where data are expressed in the form of graphs [4]. Unlike the n-dimensional
grid-like Euclidean space data (images, audio and text), network data represent
irregular non-Euclidean domains [5]. A graph can be used as an effective tool to
describe and model the complex structure of network data. A graph G(V, E) is
typically defined as a set of vertices indicated by V, and edges indicated by E
between different vertices [4]. Graph-structured data are used to model complex
systems, ranging from social media networks [6], traffic networks [7] to financial
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nets [8]. Consequently, detecting anomalies from graphs has become an impor-
tant research problem [9]. We obtain rich information from the graph relation
structures which provide a natural way to understand links between entities
[5]. Graph analysis [4] is used for advanced quantitative characterisation and
control of large-scale networks, but traditional methods suffer from high compu-
tational cost and excessive memory requirements. Graph embedding [4] methods
are effective in transforming high-dimensional graphs into low-dimensional rep-
resentation of dense and continuous vector spaces, keeping the graph structure
properties. However, generating new representations using graph embedding at
each analysis and updating all node embeddings is costly. Therefore, scientists
proposed to update the embeddings according to the changes incrementally in-
stead of relearning the whole embeddings again. Graph convolutional neural
networks can address the graph embedding problem by dealing with graphs in-
crementally using an inductive node embedding model [10]. This incremental
computation ensures its efficiency since each new node only needs to sample and
aggregate its neighbor’s features. The main objective of this research is to further
investigate an anomaly detection system that is suitable for detecting anomalies
incrementally having the best performance. To accomplish this objective, the
research addresses the following question:

e How can inductive node embedding graph convolutional neural networks (in
short Inductive GNNs) improve the prediction performance in anomaly detection
over the traditional graph analysis and graph embedding methods?

The paper is organised as follows. Section 2 introduces the state of the art,
Section 3 identifies the requirements for the schemes under evaluation. Section
4 defines the process for anomaly detection using Inductive GNNs, Section 5
presents its implementation. Section 6 provides the evaluations and Section 7
discusses the implications of these evaluation. Section 8 concludes this work.

2 State of the art

In this section we present the use of graph analysis and embedding for detecting
anomalies. We discuss the benefits and limits of the methods, and how Inductive
Node Embedding Graph Convolutional Neural Networks can address them.
Graph analysis [4] is a process for analyzing data in graph structures, in a
Non-Euclidean Space using data points as nodes and relationships as edges.
There is an increasing number of applications where data are represented as
a graph with complex relationships and inter-dependency between objects. In
other words, analyses are increasingly going from Euclidean (e.g., images, audio
and text) to non-Euclidean space with higher number of dimensions. However,
to perform analysis on non-Euclidean space, graph analysis methods have came
into that can help improving the quantitative understanding and the control
of complex networks. Graph analysis methods, such as connectivity analysis,
community detection analysis and centrality analysis, are largely based on ex-
tracting handcrafted graph topological features of nodes and edges directly from
the adjacency matrices. In our work, we use the Speaker-Listener Label Propa-



Anomaly detection using Inductive GNNs 3

gation Algorithm (SLLPA) [11]. SLLPA is an improvement of the Label Prop-
agation algorithm that is capable of detecting multiple communities per node.
When applied to large-scale network analysis, these methods may suffer from
high computational cost and excessive memory requirements as a result of high-
dimensionality [12]. In addition, hand-engineered features are often task-specific
and cannot bring identical performance when re-used for other tasks [4].

Graph embedding [4] techniques have shown an important role for the ca-
pacity of transforming high-dimensional sparse graphs into low-dimensional
representations, dense and continuous vector spaces. The main purpose of
graph embedding methods is to encode nodes into a latent vector space and
to pack every node’s properties into a vector with a lower dimension. Graph
embedding methods integrate three complementary domains [13]: matrix factor-
ization, random walk, and neural network methods [13]. In this paper we focus
on Random walk-based methods, in particular Node2Vec [14] and fast random
projection (FastRP) [15]. Node2Vec is a node embedding method that measures
a vector illustration of a node where the neighborhood is sampled using random
walks [14]. FastRP is a scalable and performant algorithm for preserving simi-
larity between nodes and their neighbors. This means that two nodes that have
similar neighborhoods should be assigned similar embedding vectors [15]. The
limitations of graph embedding methods are:

1. They cannot easily scale up to large network embeddings and only consider
local connections.

2. The model should be able to generate embeddings for some target nodes as
soon as new information has been made available.

3. The generation of a representation using graph embedding at each time and
updating all the node embeddings is costly.

Graph Neural Networks (GNNs) [5] are a significant stride to operate pre-
cisely on graph-structured data, and a promising method for solving above lim-
itations. The features of the neighbours of a graph node are aggregated and
passed as a message to that node. After different aggregation iterations, the
feature vector of a node extracts the structural information from the node’s
neighborhood [9]. The final result, i.e., the aggregated information obtained at
each node, is referred to as the node embedding. GNNs have non-linear activa-
tion functions and parallelization skills, which can solve the data non-linearity
and the computational complexity problems, respectively [16]. Graph neural net-
works (GNNs) are classified into 4 categories: recurrent graph neural networks
(RecGNNs), convolutional graph neural networks (ConvGNNs), graph autoen-
coders (GAEs), and spatial-temporal graph neural networks (STGNNs) [5]. Al-
though GNNs have established outstanding performance in many graph mining
tasks [6,7,17], it remains unclear how to accomplish their potentiality for Graph
Anomaly Detection [16].

Convolutional Graph Neural Networks (ConvGNNs) acquire the movement of
convolution from grid data (Euclidean structure) to graph data (non-Euclidean
structure) [5]. ConvGNNs play an important role in building up many other com-
plex GNN models [5]. They fall into two categories, spectral-based and spatial-
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based. Spectral based approaches specify graph convolutions by proposing filters
from graph signal processing [18]. Spatial-based approaches perform graph con-
volutions locally on each node where weights can be easily shared across differ-
ent locations and structures [19]. In recent years, some ConvGNNs methods for
learning over graphs have been proposed. These methods do not scale to large
graphs or are designed for whole-graph classification [20-22]. However, an induc-
tive node embedding method is needed to adopt sampling so as to provide a fix
number of neighbors for each node [22]. In the next section we introduce and de-
fine Inductive GNNs. Inductive GNNs are an inductive way to iteratively update
the node embeddings. It follows an embedding propagation schema where the
embedding of a node is recursively updated by aggregating values propagated
from its neighboring nodes. Inductive GNN apply node feature information to
achieve node embeddings on unseen nodes or graphs [23]. Rather than train-
ing individual embeddings for every node, the algorithm learns a function that
achieves embeddings by sampling and aggregating features from a node’s re-
gional neighborhood [22]. This means that inductive GNNs are able to update
the embeddings according to the changes incrementally instead of relearning the
embeddings whole again. It performs graph convolutions according to (1):

) = o(WE - fu (D, {hED, Vu € Sy (v)}) (1)

where A = z,, frx() is an aggregation function, Sy (v) is a random sample of
the node v’s neighbors [5].

3 Requirements

The first step for identifying the right model to detect anomalies using Induc-
tive GNNs is to define the requirements of such a model. The model aims at
detecting anomalies in graphs using graph convolutional neural network meth-
ods. These requirements are derived from the literature [22,5,10,24,25] and
from our experience, Detecting anomalies using Inductive GNNs model should
have the following requirements:

— Transferability: The nodes embeddings can be fed into downstream Machine
Learning methods [24].

— Scalability: Generation of the embeddings should be as fast and scalable as
possible. This is measured according to two properties: 1) Dimensionality [5]:
Dimensions of the embedding play a fundamental role in the selection of the
approach to be applied. 2) Inductive embedding generation [22]: Iterative
generation of node embedding as soon as new information have been made
available without retraining the node embedding of all the graph again.

4 Anomaly detection using Inductive GNNs

In this section we see how to use Inductive GNNSs for graph anomaly detection.In
particular, Inductive GNNs based methods for detecting anomalies can update
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the embeddings according to the changes incrementally instead of relearning the
embeddings whole again. Moreover, we compare Inductive GNNs with graph
analysis and graph embedding algorithms such as FastRP and Node2vec to eval-
uate their relative anomaly detection capabilities.

The steps needed to detect anomalies according to the above requirements
are the following ones:

1. Load a dataset as a csv, json, or pcap extension inside the graph database.
The standardized data format of the dataset should include the following
properties: IP address, start timestamp, end timestamp, PKseqID, and a la-
bel attack to determine if this node is normal or anomalous. These properties
represent the node in the graph.

2. Create the graph composed of nodes and edges. In our work we represent
a node as an event. The edges represent a relationship between two events
and they are constructed according to the following conditions:

(a) Events should have the same source IP address.

(b) The difference between the end timestamp and start timestamp between
each event should be less than 20 sec.

When these two conditions are satisfied between two different events a rela-

tionship ”Connected-To” is created as an edge between them.

3. Apply different Graph Data Science methods on the graph.

(a) Apply Graph Analysis: community detection, centrality, and similarity
algorithms.

(b) Apply Graph embedding algorithms: Node2Vec and FastRP.

(¢) Apply Graph Convolutional Neural Network: Inductive GNNs.

4. To detect anomalies in the graph, apply the output of Inductive GNNs on
the output of Graph Analysis and Graph Embedding to compare the re-
sults. Anomaly detection should there exhibit better performance and more
accurate results than the traditional methods.

Our model consists of three parts, as shown in Figure 1: Input, process, and
output. The input of our model is the dataset that is converted into graph
and stored in a graph database. The process consists in applying graph analysis,
graph embedding and Inductive GNNs methods on the graph. The output shows
that the performance of detecting anomalies using Inductive GNNs on graph
analysis and graph embedding is improved according to the performance and
accuracy.

5 Implementation

We consider 2 datasets for the evaluation: BoT-IoT [26] and UNSW-NBI5 [27].
They are created by designing a realistic network environment in the Cyber
Range Lab of UNSW Canberra. In order to have some statistics on these datasets
we implemented ”Data Summary” (data_sum), a Python application that ex-
tracts the total number of records and the number of attack records inside a
dataset. The number of records of BoT-IoT is 72,388,626 and the number of at-
tack records is 30,668,045. The types of attacks are: DDoS, DoS, OS and Service
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Fig. 1: Process for detecting anomalies using Inductive GNNs

Scan, Keylogging and Data exfiltration. The number of records of UNSW-NB15
dataset is 540,044 and the number of attack records is 164,673. The types of at-
tacks are: Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance,
Shellcode and Worms.

Neo4j* is an in memory graph handling environment that offers an integrated
graph database for persistence so there is no need to recreate the graph each
time it changes [28]. Moreover, Neo4j offers a graph data science library that
can be used for our process to apply graph analysis, graph embedding, and
Inductive GNNs methods, in particular the GraphSAGE library which is the
reference implementation. Detecting anomalies using GraphSAGE is performed
through cypher graph query language [29] which is used to query the Neodj
graph database for creating, storing, performing graph data science libraries.

The hyperparameter used in Neo4J GraphSAGE implementation are: dimen-
sion d = 64, sample normalization vector S = [25,10], and aggregator function.
GraphSAGE provides in particular GraphSAGE-Mean and GraphSAGE-Pool
aggregation strategies. The mean operator aggregates the neighbours’ vectors
by computing their element-wise mean. The pooling aggregator, instead, uses
the neighbours’ vectors as input to a fully connected layer before performing the
concatenation, and then it applies elementwise max-pooling operation.

6 Evaluation

In this section, we perform a set of experiments to evaluate the performance
of anomaly detection using Inductive GNNs model compared to different graph
analysis and graph embedding algorithms. The evaluation of anomaly detection
is performed for the two core target properties: Transferability, and Scalability.

* https://neodj.com/
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To evaluate the Transferability of detecting anomalies using Inductive
GNNs, we challenge the model for its capability to be fed into downstream
Machine Learning applications. We apply the K-Nearest Neighbors (KNN) algo-
rithm on the output training of GraphSAGE. KNN computes a distance value
for all node pairs in the graph and creates new relationships between each node
and its k nearest neighbors [30]. This operation leads to a new relationship
called ”SIMILAR-GraphSAGE”. This relationship is used as an output of Graph-
SAGE and it is used for comparing the results of using SLLPA (graph analysis
method) and FastRP (graph embedding) to SLLPA-GraphSAGE and FastRP-
GraphSAGE methods as shown in Figures 2 and 3. First we compare Graph-
SAGE to graph analysis (SLLPA method). Then we compare GraphSAGE to
graph embedding (FastRP method). SLLPA is used to cluster the graphs accord-
ing to attack and normal events. Figures 2a and 2b shows the clustering using
SLLPA method and clustering using SLLPA on GraphSAGE output respectively.
Label 0 on the event means that the event is normal (blue) and label 1 means
that the event is an attack (green). The result in Figure 2a shows two clusters
containing 6 attack events (2 in the first cluster and 4 in the second one), while
the results in Figure 2b shows two clusters containing 14 attack events all in the
same cluster. Moreover, Figures 3a and 3b show the embedding using FastRP
method and embedding using FastRP on GraphSAGE output respectively. The
red events in the figures are the attack events and the yellow events are the
normal ones. The result in Figure 3a show the detection of 7 attack event, while
the result in Figure 3b show the detection of 9 attack events.

1 . o sty ]
1 1 . . . L] : oo
® ® L P 1 . ° ) ° .
(a) SLLPA (b) SLLPA-GraphSAGE

Fig. 2: Comparing the dynamicity of graph analysis (SLLPA) to graph neural
network (GraphSAGE implementation)

The generation of the embeddings should be as fast and scalable as possible.
Scalability is measured according to two main properties: 1) Inductive embed-
ding generation [22] and 1) Embedding Dimensions [5]. The model should be
able to generate embeddings in an iterative way as soon as new information has
been made available without re-running the embedding all over again. To eval-
uate the scalability according to inductivity we use Link prediction method to
compute the time and F1 score for graph analysis, graph embedding, and graph
convolutional neural network methods. Link prediction is a common machine
learning task applied to graphs [31]: training a model to learn, between pairs
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(a) FastRP (b) FastRP-GraphSAGE

Fig. 3: Comparing the dynamicity of graph embedding (FastRP) to graph neural
network (GraphSAGE implementation)
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(a) Computational time for graph analysis (b) Computational time for graph analysis
(SLLPA, SLLPA-GraphSAGE) and graph (SLLPA, SLLPA-GraphSAGE) and graph
embedding (FastRP, FastRP-GraphSAGE) embedding (FastRP, FastRP-GraphSAGE)
for BoT-IoT dataset for UNSW-NB15 dataset

Fig.4: Computational time for graph analysis (SLLPA, SLLPA-GraphSAGE)
and graph embedding (FastRP, FastRP-GraphSAGE) for BoT-IoT and UNSW-
NB15 datasets

of nodes in a graph, where relationships should exist. Moreover, this method is
used to calculate the precision, recall, and F1-Score. The F1-Score is the har-
monic mean of Precision and Recall, this score is widely exploited since it is a
trade-off among the previous metrics and consent to have a better understanding
of the predictive performance of the model. Table 1 and Table 2 show the value
of the precision, recall, F1-Score, and duration of time for applying link predic-
tion on SLLPA, Node2Vec, FastRP, GraphSAGE-Mean, and GraphSAGE-Pool
for BoT-IoT and UNSW-NB15 respectively. GraphSAGE-Pool has the highest
F1-score 0.807, 0.751, and the less time duration 0.15, 0.08 ms in both BoT-IoT
and UNSW-NB15 datasets respectively.

Dimensions of the embedding play a fundamental role in the selection of the
approach to be applied. To evaluate the Scalability according to dimensionality
we use different embedding dimensions. The embedding dimensions represent
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Link prediction Precision Recall F1-Score Time duration
SLLPA 0.748 0.757 0.752 0.77
Node2Vec 0.742 0.757 0.749 0.54
FastRP 0.749 0.755 0.752 0.54
GraphSAGE- 0.755 0.76 0.757 0.22
Mean

GraphSAGE-Pool 0.798 0.817 0.807 0.15

Table 1: Link Prediction Performance on SLLPA, Node2Vec, FastRP,
GraphSAGE-Mean, and GraphSAGE-Pool for BoT-IoT dataset

Link prediction Precision Recall F1-Score Time duration
SLLPA 0.743 0.738 0.74 0.65
Node2Vec 0.742 0.751 0.7464 0.26
FastRP 0.751 0.743 0.7469 0.16
GraphSAGE- 0.7516 0.745 0.748 0.17
Mean

GraphSAGE-Pool 0.7516 0.7517 0.751 0.08

Table 2: Link Prediction Performance on SLLPA, Node2Vec, FastRP,
GraphSAGE-Mean, and GraphSAGE-Pool for UNSW-NB15 dataset

the dimension of the generated node embeddings as well as their hidden layer
representations. We have chosen the following dimensions d = 1, d = 10, d =
20, d = 40, d = 64, and d = 128. Figures 5c¢ and 5d shows the computational
time with respect to different embedding dimensions for Node2Vec, FastRP,
GraphSAGE-Mean, and GraphSAGE-Pool. GraphSAGE-Pool has the best time
0.04 ms and 0.02 ms in both BoT-IoT and UNSW-NB15 datasets respectively.

7 Discussion

The evaluation of Transferability shows that using Inductive GNNs we can
get more anomalies detected. The accuracy of clustering is also being improved,
since we are getting one cluster for the normal events and one different cluster
for the attack events. Moreover, although using SLLPA-GraphSAGE method is
detecting more anomalies than FastRP-GraphSAGE, Figures 4a and 4b show
that computational time for FastRP-GraphSAGE is 0.06 ms, 0.17 ms less than
the computational time using SLLPA-GraphSAGE 0.42 ms, 0.45 ms in both
BoT-IoT and UNSW-NB15 datasets respectively. Thus using inductive Node
Embedding to detect anomalies have less complexity than using graph analysis.

The evaluation of Scalability from the Table 1 and Table 2 shows that
GraphSAGE-Pool is preferable since it has the higher F1-Score with less compu-
tational time than the other methods. Figures 5a and 5b show that Link predic-
tion on GraphSAGE-Pool provides the best complexity score in terms of com-
putational time. Thus having new information in the graph gives more accurate
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Fig.5: Scalability of GraphSAGE (mean and pool) compared to SLLPA,
Node2Vec, and FastRP

result and better performance when using GraphSAGE-Pool. The evaluation of
scalability according to different dimensions shows that having a greater dimen-
sion offers a greater precision, but is more costly to operate over. However, when
comparing the complexity of Node2Vec and FastRP to Inductive GNNs one can
notice that Inductive GNNs is more scalable and faster. GraphSAGE-Pool shows
some slight improvement in its performance compared to GraphSAGE-Mean.

8 Conclusions and Perspectives

Detecting anomalies using inductive Node Embedding with Convolutional Graph
Neural Networks proves to comply with the requirements for scalability and
transferability. Experiments shows that inductive embedding graph convolu-
tional neural networks improve the performance of detecting anomalies compared
to graph analysis and graph embedding. This proposal opens a great challenge
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for the capability of detecting anomalies on heterogeneous and dynamic graphs.
Heterogeneous graphs have many different types of vertices and many types of
edges, and they make the process of calculating embeddings more complicated.
Dynamic graphs are the graphs where their nodes/edges may change over time.
For this, we should propose new Inductive Node Embedding GNN that is able
to detect anomalies on heterogeneous and dynamic graphs.
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