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A B S T R A C T   

Conservation efforts and sustainable use of natural populations often seek to reach or maintain viable abundance 
levels for a target population. Yet, this goal can be undermined by a number of events resulting from out-of- 
equilibrium dynamics, including large and sudden changes in abundance. The dynamical properties of such 
temporal changes are valuable indications about population’s capacity to cope with environmental changes. 
Correctly identifying past or anticipating impending occurrences of temporal abrupt shifts in ecological systems 
is thus of major importance to adjust conservation and management strategies. Despite many available abrupt 
shift detection methods, few offer the possibility to compare and agree on the best model among linear, 
nonlinear, or abrupt models. By combining several existing methods, we develop an approach that classifies any 
timeseries to a trajectory type – no change, linear, nonlinear (quadratic), abrupt – and confirms the occurrence of 
potential abrupt shifts. We assessed the classification performances using a set of simulated data for which we 
had deterministic predictions for each type of trajectories. We used various levels of noise and perturbation 
events to make the simulations more realistic. This classification can be of particular interest when comparing 
dynamics of many populations across space or time. We show this by applying this classification approach to 
three different temporal datasets commonly used in conservation: catch tonnage, bird index, and insect occu
pancy timeseries. With this tool, we hope to promote conservation and management practices that explicitly take 
into account the likelihood of out-of-equilibrium trajectories and especially abrupt shifts in ecological systems.   

1. Introduction 

A common goal in conservation is to sustain viable abundance levels 
for populations and maintain them at a certain equilibrium despite the 
increase of prominent – and sometimes unpredictable – pressures on 
organisms (Wiens and Hobbs, 2015). However, natural populations are 
dynamical systems characterized by temporal changes that can be strong 
and persistent (Scheffer et al., 2001) – or fluctuations that can be peri
odic or completely irregular (Bjørnstad and Grenfell, 2001). Moreover, it 
is generally assumed that populations respond to environmental con
ditions and anthropogenic disturbances in a predictable and gradual 
manner, although equilibrium and predictable situations are rarely 
encountered in nature (Hastings et al., 1993; Clark and Luis, 2020). 
Instead, population dynamics are often out-of-equilibrium, driven by 
stochastic events, and their fluctuations are hard to predict (Dennis 
et al., 2001; Hsieh et al., 2005). If conservation strategies ignore the out- 
of-equilibrium and nonlinear nature of dynamics that are pervasive 
across taxa (Clark and Luis, 2020), or are unable to prioritize the least 

stable populations, they face a high risk of failure in sustaining viable 
populations. 

Sudden, high amplitude, and large-scale shifts have been docu
mented for a long time in ecological systems (Folke et al., 2004). The 
causes of such abrupt shifts are not unique and can arise in systems 
responding linearly to a sudden change in the environmental conditions, 
or from systems crossing a critical limit leading to a different equilib
rium (Scheffer et al., 2001). The latter case is often called “regime shift” 
as the abrupt transition corresponds to deeper structural and composi
tional changes and leads to persistent change that can even be irre
versible. Systems subject to regime shifts or other out-of-equilibrium 
dynamics may appear unstable and unpredictable (Mori, 2011), and 
given the intensifying climate change those dynamics would apply to an 
increasing number of natural systems (Garcia et al., 2014). Shifts to
wards a degraded equilibrium – e.g., lake eutrophication (Carpenter 
et al., 1999), collapse of fisheries (Levin and Möllmann, 2015) – could be 
deleterious for ecological and socio-economical processes (Biggs et al., 
2018). The recent history of ecological science has spectacular examples 
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of the detrimental effects of overlooking potential abrupt shifts, notably 
in fisheries management with the emblematic case of the Atlantic cod 
(Gadus morhua) (Möllmann et al., 2021) or the large ecosystem shift in 
the Black Sea (Daskalov et al., 2007). Despite the considerable impli
cations of abrupt shifts, practical implementation of programs aimed at 
documenting and predicting shifts into biodiversity monitoring remain 
scarcely performed (Hewitt and Thrush, 2019). 

Detecting abrupt shifts (also called changepoints or breakpoints 
depending on the field of study) has been a growing and trans
disciplinary topic during the last few decades. As a result, a wealth of 
methods has been developed and applied in earth and biological sci
ences especially in climatology (Feng et al., 2010), paleontology (Bag
niewski et al., 2023), as well as in ecology (Andersen et al., 2009; 
Bestelmeyer et al., 2011). The majority of the methods are designed to 
detect shifts in the mean of a focal variable, among which various ap
proaches can be distinguished (Rodionov, 2005). Some of the methods 
involve curve fitting (Fong et al., 2017), parametric or nonparametric 
tests (Ross, 2015), Bayesian statistics (Lindeløv, 2020a), or other ap
proaches (Boulton and Lenton, 2019). Some methods are suitable to 
detect multiple shifts, by testing all possible numbers and combinations 
of shifts (Bahlai and Zipkin, 2020), or require to indicate the number of 
shifts expected (Lindeløv, 2020a; Zeileis et al., 2002), while other can 
only detect a single one (Fong et al., 2017). A summary of the most 
recent breakpoint methods implemented in R can be found in Supple
mentary Table S1, whereas a complete overview is given by Lindeløv 
(2020b). 

In ecology, like in other disciplines, the challenging task of detecting 
and locating abrupt changes has drawn a lot of attention (Andersen 
et al., 2009), especially abrupt changes in the mean value of a focal 
variable. However, knowing the location of a shift does not cover all 
aspects of the properties of a trajectory that could be useful to inform 
conservation strategies. Qualitative classifications of timeseries based 
on whether abrupt shift occurred in the past could be especially relevant 
for risk assessment of surveyed populations (Williams et al., 2011) and 
may prove easier to interpret than fully quantitative frameworks not 
suited to detect shifts – like generalized additive models (Buckland et al., 
2005; Ficetola and Denoël, 2009). Given the wealth of abrupt shift 
detection methods, the number of practical studies trying to compare, 
validate, or integrate the outcome from different algorithms is surpris
ingly low (see Blöcker et al., 2023 for an example of integrated used of 
several models). Similarly, there is very little work on proper compari
son of abrupt shift models with alternative non-abrupt models or cross- 
validation with other methods (Beaulieu and Killick, 2018). For 
instance, breakpoints might be detected in portions of the timeseries 
where only smooth nonlinear change is occurring, and thus abusively 
identified as a shift. Some comparative frameworks for classifying 
timeseries have already been developed for specific (Berdugo et al., 
2022; Vert-pre et al., 2013) or more general (Rigal et al., 2020) systems, 
but come with a certain number of limitations. First, indications of un
certainty regarding the choice of the model or the timing of shift are 
rarely provided by classical methods (Vert-pre et al., 2013). Second, 
empirical timeseries usually available in conservation have often limited 
length, and abrupt shift detection frameworks are not always practically 
applicable or relevant for too short timeseries. Yet, the minimal length of 
applicability or relevance for most abrupt shift detection methods is 
rarely specified (Hewitt and Thrush, 2019). Last, when new classifica
tion and breakpoint detection methods are introduced they are not al
ways thoroughly evaluated against simulated data (Shi et al., 2022). 
This prevents any detailed evaluation of the performances of the 
methods to detect abrupt shift dynamics in controlled conditions. Even 
when simulated data are used, abrupt shifts are often generated by post 
hoc transformations of non-abrupt timeseries (e.g., adding a constant or 
a trend), which may prove poorly realistic (Topal et al., 2016). 

The goal of this paper is to develop a classification of timeseries into 
abrupt and non-abrupt (constant, linear, nonlinear) trajectories with 
immediate application for conservation. To do so, we combined existing 

methods to propose a classification of trajectory shapes focusing espe
cially on the detection of abrupt shifts. We assessed the performance of 
our trajectory classification approach using simulated population 
timeseries and estimated the classification reliability with three inde
pendent metrics. Finally, we applied our classification approach to 
empirical examples representative of a large fraction of ecological 
timeseries relevant for conservation. 

2. Methods 

2.1. Trajectory classification 

2.1.1. Four different trajectory shapes 
The shape of a timeseries trajectory (i.e. the overall pattern of fluc

tuations over time) reflects the state of the study system (e.g., popula
tion, resource, climate), but describing the overall trajectory over a 
given time period can be challenging. Here, we assigned any timeseries 
(e.g., abundance, biomass) to a trajectory shape based on three prop
erties of the best-model fitted on the timeseries: i) linearity, ii) trend, and 
iii) abruptness. 

Trajectories best-fitted by a linear model with or without a signifi
cant slope were classified either as “linear” or “no change” respectively. 
Nonlinearity was assessed using a model of second order polynomial 
following Rigal et al. (2020), and such timeseries were classified as 
“quadratic”. If a timeseries was best-fitted by a step change (suggesting 
the possibility of a regime shift), it was classified as “abrupt”. Thus, 
based on whether a timeseries was better described by linear/nonlinear, 
with/without a significant trend, abrupt/nonabrupt, we were able to 
define four trajectory shapes, i.e. “no change”, “linear”, “quadratic”, and 
“abrupt” (Fig. 1A). 

2.1.2. Description of the classification procedure 
We classified timeseries following a sequence of three operational 

steps: 1) model choice, 2) model validation, and 3) classification 
reliability. 

Step 1: Model choice 
To choose among the four possible trajectory shapes considered, we 

followed a comparative approach. The classification started by modeling 
the relationship between the state variable and time (1) using different 
models associated with the four different shapes (Fig. 1B). 

y(t) = f (t) + ε(t) (1)  

with y the state variable, f a function that can be linear, quadratic, or 
abrupt, both vary with time t, and ε(t) the error term of the model. 

According to the trajectory shape the function f followed one of the 
forms (2)–(5): 

f (t) = α0 + ε(t) (2)  

f (t) = α1t+α0 + ε(t) (3)  

f (t) = α2t2 + α1t+α0 + ε(t) (4)  

f (t) = α0 + β0I(t > e)+ ε(t) (5)  

with α0, α1, α2, β0 coefficients of the models and e the threshold 
parameter with I(t > e) = 1 when t > e and 0 otherwise. Four statistical 
models were fitted on each timeseries. Linear models without and with 
slope were associated with “no change” (2) and “linear” (3) shapes 
respectively, second order polynomial model with “quadratic” (4) 
shapes, and step model with “abrupt” (5) shapes. Linear and polynomial 
models were fitted using lm functions in R, and step model with only one 
breakpoint using the chngpt R package (Fong et al., 2017). 

We selected the most parsimonious model for each timeseries by 
comparing values of the Akaike Information Criteria corrected for small 
sample size (AICc) of each fit. The values of AICc were computed using 
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the ‘AICc’ function from the MuMIn package (Bartoń, 2023). The best 
model was the one with the lowest AICc defined as follows (6): 

AICc = − 2log(L)+ 2k+
2k(k + 1)
N − k − 1

(6)  

with L the likelihood of the data given the parameters, k the number of 
parameters, and N the length of the timeseries. The number of param
eters varies according to the shape associated with the model. There is 
only one parameter for “no change” shape (intercept), two for “linear” 
shape (intercept and slope), and three for both “quadratic” (intercept, 
first and second order coefficients) and “abrupt” (two step values and 

the location of the breakpoint). We used AICc instead of AIC as recom
mended when the length of the timeseries is low (N/k < 40 according to 
Burnham and Anderson (2004) which is the case for most available 
ecological timeseries. 

Step 2: Model validation 
According to the best model obtained in step 1, the classification of 

the timeseries was confirmed in two alternative sub-steps, step 2a or step 
2b (Fig. 1B). 

Step 2a: Breakpoint validation 
If step 1 found an “abrupt” shape as the best model, step 2a aims at 

validating the existence and location of the breakpoint using the asdetect 

Fig. 1. Trajectory shapes (or classes) with associated properties (A) and trajectory classification step by step (B). Four models are fitted to the timeseries (including 
threshold regression, second order polynomial and linear models) for which corrected Akaike Information Criteria (AICc), AICc weights (wAICc), and normalized 
root mean square error (NRMSE) are computed (step 1, see main text for details). According to the best trajectory found in terms of AICc, the shape is validated either 
with another breakpoints detection method (step 2a) or by checking the significance of the coefficients (step 2b). To classify a timeseries as “abrupt”, break dates 
detected by both methods need to be congruent and not too close to the start or the end. For “abrupt” trajectories, an optional extra step aims at finding multiple 
breakpoints (step 2c). The reliability of the classification is then assessed by a leave-one-out procedure (LOO, step 3) that consists in repeating steps 1 and 2 on the 
original timeseries to which one timepoint is omitted sequentially. From these, the most influential points can be detected and the proportion of LOO trajectories the 
same shape as the full timeseries can be computed. 
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package (Boulton and Lenton, 2019), which is an abrupt shift detection 
method independent to the one used in step 1. This step is aimed at 
improving the reliability of the classification as “abrupt” by reducing the 
risk of spurious classifications as “abrupt” (false positive rate). 

To identify breakpoints, asdetect is based on searching for anomalous 
rates of change in a timeseries. The method started by separating the 
timeseries into sections of predetermined length and fitted linear 
regression models through each section. An anomalous rate of change is 
defined as a gradient that is more than three median absolute deviations 
(corrected for asymptotically normal consistency) away from the me
dian gradient. On a “detection timeseries” the same length as the orig
inal timeseries, a value of one was added or subtracted (depending on 
the direction of the anomaly) for each timepoint involved in an anom
alous section. This process was repeated for all whole number section 
lengths ranging from five timepoints for the regression to be meaningful 
up to one third of the total length of the timeseries to have at least three 
values to compute the median absolute deviation. The “detection 
timeseries” was then divided by the number of section lengths used to 
give the proportion that a timepoint was considered part of an abrupt 
shift. Whether an abrupt shift was detected or not was based on the 
maximum absolute value of the detection timeseries above a given 
threshold. If those maxima spread over successive timepoints then the 
location of the shift was chosen as the integer part of the median date. 
The temporal range of such flat maxima was regarded as uncertainty of 
the breakpoint date. We set the detection threshold to 0.15, meaning 
that the breakpoints needed to be involved in anomalous sections in at 
least 15 % of the section lengths. This threshold is low compared to 
previous uses of asdetect (e.g., 0.4 in Boulton et al., 2020) but is 
reasonable since the breakpoint algorithm was not used alone but as a 
validating method aimed to be conservative enough. 

Unlike the step change model from step 1, the asdetect method was 
able to detect multiple breakpoints on the same timeseries. To avoid 
uncertain shifts due to lack of hindsight, we discarded breakpoints 
within five timepoints from the start or the end of the timeseries. If at 
least one breakpoint was detected, the agreement with the step change 
was checked and the difference between both breakpoints needed to be 
five timepoints or less to be accepted. Note that all those thresholds and 
limits values can be easily adjusted by the user. If none or incongruent 
breakpoints were found with the asdetect method, the trajectory shape 
with the second lowest AICc was chosen. 

Step 2b: Significance of the polynomial models 
If step 1 found a smooth shape as best-fitted model or the breakpoint 

was not validated in step 2a, step 2b validated the degree of complexity 
of the model (i.e. linear or quadratic). This was done by checking the 
significance of the higher order coefficient (p-value<0.05) associated 
with the model found in step 1 (i.e. significance of the second order 
coefficient for “quadratic” shapes or of the slope for “linear” shapes 
following Rigal et al. (2020). At the end of step 2b, the trajectory 
retained corresponded to the one with the lowest AICc and the highest 
significant order. 

Step 2c: Search for multiple breakpoints 
If an “abrupt” shape was found and validated, an optional step 2c 

searched for additional abrupt shifts in order to refine the description of 
trajectories preceding and following the first identified shift found in 
step 2a. To do so, the classification steps (1-2a-2b) were repeated on the 
parts of the timeseries before and after the shift (included in both parts 
of the timeseries), if they were long enough (15 timepoints or more). 
Even if no additional breakpoint was found, this step allowed to specify 
the trajectory before and after the shift. 

Step 3: Classification reliability 
We used three different indices to assess the reliability of the clas

sification generated by the workflow presented above. One measure for 
the relative support of data for each fitted model i is the AICc weight 
(wAICci) (Hobbs and Hilborn, 2006), which required to calculate the 
difference Δi of AICc between each model i to the best one (7): 

Δi = AICci − min(AICc) (7) 

The weight for each model ranges from zero to one and was calcu
lated as follows (8): 

wAICci =
e− 0.5Δi

∑4
j=1e− 0.5Δj

(8) 

We used the wAICc to check how better was the best model compared 
to the rest. 

To assess the reliability of the classification and identify the time
points that were most influential on the definition of the trajectory shape 
we implemented a leave-one-out cross validation procedure (LOO). The 
procedure consisted in repeating the classification steps (1-2a-2b) on the 
original timeseries while one timepoint was removed each time for all 
timepoints of the timeseries. For each of the four trajectory shapes, we 
computed the proportion of LOO timeseries attributed to each trajec
tory. The proportion of the best shape found for the complete timeseries 
gave an indication of the robustness of the classification to specific 
points. 

Lastly, we computed the root mean square error normalized by the 
standard deviation (NRMSE) for each model as an absolute measure of 
goodness-of-fit. The NRMSE is comprised between zero and one with 
low values indicating that the model explains most of the variation. 

For the “abrupt” trajectories, we also computed the standardized 
measure of the abruptness, as the difference in the mean before vs. after 
the breakpoint divided by the average standard deviation before and 
after the breakpoint (Bathiany et al., 2020). 

2.2. Simulated timeseries 

2.2.1. Building trajectory shapes 
We built a library of simulated biomass timeseries to test the clas

sification on timeseries for which we knew the “true” underlying tra
jectories (Fig. 2). To do so, we generated timeseries using a discrete 
Ricker-type population model (Ricker, 1954). This is a widely used 
model for population dynamics for a variety of organisms that can 
exhibit different types of bifurcations frequently found in ecological 
systems (Dakos et al., 2017). The model simulated the biomass of a 
population driven by a logistic growth and a mortality term. Overall, we 
produced eight deterministic trajectory scenarios that corresponded to 
four distinct trajectory shapes that we aimed at classifying (Fig. 2). The 
total length of timeseries was set to 100 timepoints. To match realistic 
trajectories, we considered three sources of stochasticity: demographic 
stochasticity, environmental stochasticity, and a jump process. Ecolog
ical timeseries are of limited length and this length constraint could have 
an impact on the classification performances. To test the effect of 
timeseries length while keeping the trajectory shapes unchanged, we 
subsampled one point out of two and up to five consecutive timepoints 
from the “complete” 100 timepoints timeseries we generated timeseries 
of length 50, 33, 25, and 20 points. In total, the timeseries library 
generated consisted of eight mortality scenarios, each for 12 noise level 
combinations, repeated 100 times independently, from which five 
different timeseries lengths have been produced. This corresponded to a 
library of 48,000 timeseries. We also tested the effect of five different 
types of data transformation on our classification approach. The 
parameter values of the full model and the deterministic scenarios, 
together with the default values of the classification approach, can all be 
found in Supplementary Table S2. Further details about the population 
model, stochasticity, data transformation, and subsampling processes 
are given in Supplementary text S1. 

2.2.2. Assessment of performances 
Knowing the expected trajectories allowed to tell whether the shapes 

were correctly classified or not. The performances of the classification 
were quantified by building confusion matrices, which are contingency 
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tables that display the frequency distribution of the classification results 
(predictions in rows) according to expected classes (in columns). A bi
nary classification (e.g., abrupt vs. smooth) can lead to four outcomes 
depending on whether the prediction is correct (true positive, TP, or true 
negative, TN) or incorrect (false positive, FP, or false negative, FN). 
Correct predictions are located in the diagonal of the matrix. More 
formally, we calculated the true positive rate TPR = TP/(TP + FP), and 
false positive rate FPR = FP/(TP + FP), which are measures of sensitivity 
and specificity of the classification. When in our case we consider four 
classes, we have four pairs of TPR and FPR associated with each of the 
classes when considering the other three as negative. Confusion matrices 
were generated using the ‘confusionMatrix’ function from the caret 
package (Kuhn, 2008). 

We estimated the effect of adding the breakpoint validation step 
compared to the model choice alone in terms of classification perfor
mances. We also tested different detection thresholds in the asdetect 
method on the classification performances for abrupt vs. smooth 
timeseries. To do so, we built Receiver Operating Characteristic (ROC) 
curves that represent the performances of a binary classifier in terms of 
TPR and FPR for different thresholds. One curve was drawn for each 
timeseries length by running the classification for all possible thresholds 
between zero and one with a 0.01 increment and only considering the 
outcome as abrupt or smooth. 

2.3. Empirical timeseries 

We tested our classification approach on empirical timeseries of 
various types and organisms. Three datasets were chosen for illustrative 
purposes because they had long enough timeseries, they were relevant 
for conservation, and were readily available online. The first dataset 
consists in worldwide timeseries for fish stocks and were downloaded 
from the RAM Legacy Stock Assessment Database (https://www.raml 

egacy.org/database/, RAMLDB v4.61) that gathers current and histori
cal timeseries for various variables including catch, biomass, and mor
tality (Ricard et al., 2012). We applied the classification to catch 
timeseries with a length of 25 years or more and no missing years. The 
second dataset involves European common bird indices with timeseries 
ranging from 1980 to 2021 from the PanEuropean Common Bird 
Monitoring Scheme (Brlík et al., 2021). The third dataset comprised the 
odonate occupancy index from Britain from 1980 to 2012 (Termaat 
et al., 2019). 

All simulations and analyses were performed with R (version 4.2.1) 
(R Core Team, 2022). The code and data of the classification approach 
can be downloaded at https://github.com/matpelissie/abrupt_shifts 
_ecological_timeseries_classification. The code also includes an Rshiny 
app for users to test the classification on their own timeseries. 

3. Results 

3.1. An example of a classification output 

The classification of one or several timeseries was performed by our 
function ‘traj_class’. This wrapper function took as input a list of 
timeseries and gave as output the best trajectory shape found for each of 
them and the main descriptive properties related to the different models 
(model coefficients, associated p-values, number and location of 
breakpoints, relative support of each model given by AICc weights, 
NRMSE, and LOO scores). Most of those properties were displayed on a 
summary figure (Fig. 3) that showed the four different fitted models in 
four different panels. The panel with the best shape (“abrupt” in the 
illustrated example) was highlighted in blue (Fig. 3D). The trajectory 
found was “abrupt” because this model had the lowest AICc among the 
four compared (AICc = 173.45) and the locations of breakpoints 
detected (at t = 49 for chngpt in blue, and at t = 48 for asdetect in red) 

Fig. 2. Examples of simulated timeseries covering the four different trajectory shapes, “no change” (A), “linear” (B), “quadratic” (C), and “abrupt” (D). The solid 
black line show examples of biomass timeseries with low demographic stochasticity (σr = 0.025) and the solid blue line in the small panels show timeseries of 
maximum mortality rate F driving the biomass trajectories. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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were less than five timepoints apart. To examine the reliability of the 
best trajectory choice the value of the AICc weight, LOO score, and 
NRMSE were also displayed on each panel. In this example, both wAICc 
and LOO were equal to one for the “abrupt” trajectory, which indicates 
the abrupt model had far more support than the others and no particular 
timepoint affected the trajectory classification. Timepoints that if 
removed in the LOO process led to a different classification are high
lighted by orange dots in the corresponding panel. In this example, as 
the removal of any individual timepoint still led to an “abrupt” trajec
tory, all orange dots were located in the “abrupt” trajectory panel 
(Fig. 3D). The NRMSE for the “abrupt” trajectory was 0.38 meaning that 
38 % of the variation remained unexplained by the model. 

3.2. Trajectory classification performance on simulated timeseries 

Classification with only AICc comparison (step 1) on long timeseries 
(100 timepoints) yielded “abrupt”, “quadratic”, and “linear” timeseries 
most often correctly classified with 94 %, 96 %, and 96 % correct 
classifications respectively, but far less for “no change” timeseries with 
53 % correct classification while 43 % were misclassified as “abrupt” 
(Fig. 4A). This overall picture remained for shorter timeseries 

(Fig. 4B–C), but with a decrease in the proportion of “linear” timeseries 
correctly classified with 70 % and 73 % correct classification, while 20 
% and 17 % were misclassified as “abrupt” for timeseries length of 50 
and 20 points, respectively. For 20 points timeseries, the proportion of 
“no change” timeseries correctly classified was higher than for longer 
timeseries with 84 % correct classification. 

Classification with both AICc comparison and the breakpoint vali
dation (step 2a) reduced the proportion of “no change” timeseries mis
classified as “abrupt” from 43 % to 9 %, 43 % to 14 %, and 12 % to 2 % 
for timeseries length of 100, 50, and 20 points, respectively (Fig. 4D–F). 
However, it increased only marginally the proportion of “no change” 
timeseries correctly classified from 53 % to 70 %, 51 % to 69 %, and 84 
% to 91 % for timeseries length of 100, 50, and 20 points, respectively. 
Compared to AICc only (step 1), the proportion of correctly classified 
“abrupt” timeseries was slightly decreased at 90 % and 86 % (from 94 % 
and 93 %) for timeseries length of 100 and 50 timepoints, and more 
severely at 61 % (from 87 %) for timeseries length of 20 timepoints. In 
the case of the 20 points timeseries length, “abrupt” trajectories were 
misclassified as linear for 34 % of the timeseries with breakpoint vali
dation (Fig. 4F) compared to only 10 % without (Fig. 4C). 

The level of noise applied on simulated timeseries had overall a 

Fig. 3. Classification output in R with the example of a correctly classified “abrupt” simulated timeseries. Each of the four panels (A–D) describes the shape and trend 
of the trajectory: the same timeseries is shown (black line) with a different fit (solid blue line) and standard deviation (dashed lines for all panels except “abrupt” fit). 
In the “abrupt” panel D, the location of breakpoints is indicated by vertical dashed lines (in blue from chngpt – step 1, in red from asdetect – step 2a), the pink 
background corresponds to the uncertainty of asdetect breakpoints, and the distribution of breakpoint locations from Leave-One-Out (LOO) timeseries are repre
sented by colour bars. Timepoints that if removed in the LOO process result in a specific shape are highlighted by orange dots in the corresponding panel. The panel 
with the best shape is highlighted in blue. Panel subtitles show AICc score, AICc weight (wAICc), LOO, and normalized root mean square error (NRMSE). Trajectory- 
specific values are also displayed: the intercept of the “no change” model (6.6), the slope (− 4.2e-2) and associated p-value (<0.001) of the linear model, the second 
order coefficient (− 5.1e-5) and associated p-value (0.659) of the quadratic model, the location of breakpoints (in blue from chngpt at t = 49, in red from asdetect at t 
= 48) and abruptness (the standardized magnitude of the abrupt shift equal to − 4.35 here). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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limited effect on the proportion of correct classifications especially for 
long timeseries (100 timepoints) regardless whether the breakpoint 
validation (step 2a) was used (Supplementary material, Fig. S1) or not 
(Supplementary material, Fig. S2). Increasing the standard deviation of 
demographic stochasticity from 0.001 to 0.075, in the absence of 
random jumps, which was enough to lead to significant qualitative 
timeseries noise (see examples in Supplementary material, Fig. S3) 
decreased the proportion of correctly “classified” abrupt trajectories 
from 97 % to 78 %, from 96 % to 67 %, and from 83 % to 43 % for 
timeseries length of 100, 50, and 20 points, respectively (Supplementary 
material, Fig. S1). However, the magnitude of random jumps had hardly 
any influence on classification performances with the proportion of 
“abrupt” trajectories correctly classified from 97 % to 96 %, from 96 % 
to 95 %,and from 83 % to 70 % for timeseries length of 100, 50, and 20 
timepoints, respectively (Supplementary material, Fig. S1). “Abrupt” 
trajectory shape was the most sensitive shape to noise level, especially 
for shorter timeseries for which only half of the timeseries were correctly 
classified at the highest noise levels. In addition, the proportion of 
quadratic timeseries misclassified as linear tend to increase with noise 
especially for shorter timeseries while the opposite is not observed. 

The effect of the detection threshold from the breakpoint validation 
step on the classification of abrupt vs. smooth trajectories is summarized 
on ROC curves for different timeseries length (Supplementary material, 
Fig. S4). Using the classification with the asdetect breakpoint validation 
was relevant only for timeseries above 25 timepoints. With the param
eters chosen, the asdetect method required at least 15 timepoints to be 
used (to compute median absolute deviation from at least three sections 
of length five), and thus for timeseries below 25 timepoints we advise 

not to use the validation method and consider only the outcome from 
step 1, which can be done by specifying the argument in the function. 
The values of wAICc, LOO, and NRMSE scores help to assess the reli
ability of each classification. Their distribution according to whether the 
timeseries were correctly classified or not is provided in supplementary 
material (Supplementary material, Fig. S5). 

We performed all classifications on “raw” (untransformed) times
eries. Testing classification results with three types of data trans
formations (rescaling, standardization, scaling by the mean) were 
identical to the “raw” timeseries. Only the absolute values of AICc were 
different, but wAICc, LOO, and NRMSE remained unchanged compared 
to the “raw” timeseries. However, logarithm and square root trans
formations changed the classification results as well as the wAICc, LOO, 
and NRMSE (Supplementary material, Fig. S6) and slightly improved the 
proportion of correct classification for “abrupt” timeseries. 

Timeseries with two step changes were also simulated and classified. 
In most cases the trajectory selected was either “linear” or “quadratic” 
but not “abrupt” (Supplementary material, Fig. S7). 

3.3. Empirical ecological timeseries 

We applied our classification on three empirical examples for 
timeseries of fish catch, bird abundance, and odonate occupancy indices 
of >25 years (one timepoint per year). The three datasets contained 
timeseries classified as “abrupt”, “quadratic”, and “linear” (Fig. 5). The 
values of one in both wAICc and LOO scores in tuna and wheatear 
timeseries (Fig. 5A–B) indicated good support for their respective 
“abrupt” and “quadratic” trajectory compared to other trajectories 

Fig. 4. Confusion matrices for simulated timeseries classified with step 1 – AICc only (A–C), or steps 1 and 2a – AICc + asdetect (D-F). For each row, the different 
matrices correspond to different timeseries length, 100 (A, D), 50 (B, E), or 20 (C, F) timepoints. Expected trajectory classes are in columns and predictions are in 
rows, numbers are the proportions by reference (expected) classes. For instance, in panel A for complete timeseries (100 points) classified with step 1 only, 53 % of 
the timeseries simulated to be “no change” were correctly classified, 1 % was misclassified as “linear”, 3 % as “quadratic”, and 43 % as “abrupt”. The diagonal in each 
matrix corresponds to the proportion of correctly classified timeseries. 
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considered. In the case of the damselfly timeseries (Fig. 5C), the wAICc 
score was 0.65, which indicated that the fit from other shapes, notably 
“quadratic”, were almost equally good. For the tuna timeseries, the 
distribution of breakpoints from LOO timeseries was unimodal and 
consistent with the location of both chngpt and asdetect from the com
plete timeseries suggesting no other shift in the timeseries. The NRMSE 
scores are below 0.5, which indicates the models explained most of the 
variation of the timeseries. Additional examples of classified timeseries 
with multiple breakpoints or smooth trajectories are provided in sup
plementary material (Supplementary material, Fig. S8). 

4. Discussion 

In this article, we develop a simple and straightforward classification 
of ecological trajectories based on their shape and trend to describe 
ecological dynamics in a meaningful way for developing conservation 
strategies. Our approach takes into account the transient and persistent 
changes that ecological systems out-of-equilibrium and in non- 
stationary environments experience (Ryo et al., 2019; Wolkovich 
et al., 2014) by accounting for abrupt and nonlinear shapes in addition 
to the typically used linear ones. As shown before (Gonzalez et al., 2023; 
Rigal et al., 2020), such temporal descriptions of ecological trajectories 
can contribute to decision-making in conservation and biodiversity as
sessments for identifying populations with highest need of conservation 
and for tracking the effects of conservation measures. We validated the 
classification performance and the limits of our approach against real
istic simulated population timeseries. We also showcased the generality 
of our classification approach with examples of empirical population 
timeseries of different data types and origins. 

In contrast to most breakpoint detection methods, the main feature 
of our classification approach is that it detects abrupt shifts along a 
trajectory and compares it to linear and nonlinear alternatives. 
Compared to other nonlinear fitting methods alone (e.g., GAMs Ficetola 
and Denoël, 2009), our approach focuses on providing the most preva
lent shape of a trajectory rather than aiming at maximizing model fit. 
Thus, the fitted model trajectories of our classification are not meant to 
reflect the system’s “equilibrium”, as the observed timeseries result from 
changing environmental conditions that likely involve delays leading to 
transient and out-of-equilibrium dynamics in addition to sources of 
process and measurement error (Dornelas et al., 2013). Instead, our 
classification approach aims to describe such out-of-equilibrium trajec
tories through model comparison of the most parsimonious trajectory 
shapes. Such best-guess description of a population’s dynamics is a 
prerequisite to effective conservation measures. For instance, acknowl
edging the occurrence of abrupt shifts enables to prevent future 

collapses in order to adapt conservation accordingly. The interpretation 
of a given trajectory shape depends on the system considered (see 
Supplementary material, Table S3 for potential ones) and using organ
ism lifespan or generation time as time unit could improve the inter
pretation of the trajectories (Bestelmeyer et al., 2011). The structure of 
the classification approach allows the user to understand the reason for 
the trajectory found through visual and informative outputs. The main 
output (Section 3.1) provides the user with means to assess the quality of 
the classification by displaying the alternative shapes tested and through 
scores indicative of the level of confidence. In addition, high flexibility is 
allowed to control the classification steps. For instance, the detection 
threshold could be increased to remain rather conservative in the 
detection of “abrupt” trajectories, or conversely, the validation step 
could be skipped to minimize the risk of missing abrupt shifts. By testing 
the classification on a library of simulated timeseries, we were able to 
clarify the limits of our approach (Section 3.2). With the default set of 
classification parameters, the timeseries with no change were the most 
often misclassified, meaning that a slight trend or shift could sometimes 
be found from noise. Still, we consider this high sensitivity to be more in 
line with the precautionary principle that should prevail in conservation 
management (Cooney, 2004). Our tests show that the classification is 
reliable for timeseries of at least 25 timepoints, with the possibility to 
use it for shorter lengths without the breakpoint validation step (step 
2a). This lower bound is congruent with those already suggested to 
detect tipping points with confidence of at least 15 to 20 years (Hewitt 
and Thrush, 2019). We also evidenced that the classification is rather 
robust to noise input and only some kinds of usual data transformation 
have an impact on the classification output. 

Yet, we do not expect our classification to be suitable to any type of 
timeseries. Our aim is to remain rather simple and only single break
point models are supported. In the case of multiple shifts or high- 
frequency periodicity, other methods could be more relevant depend
ing on the question asked. Notably, the Bayesian mcp method infers the 
location of breakpoints with segment specific regression models but the 
number of breakpoints needs to be known a priori (Lindeløv, 2020a). In 
case of timeseries exhibiting a clear seasonal component, the proposed 
classification could be preceded by an appropriate deseasoning step, but 
we advise to compare the result with other methods like bfast (Verbesselt 
et al., 2010) or bayesian version Rbeast (Zhao et al., 2019) that are 
specifically suited for such cases as they look for breakpoints in periodic 
systems after decomposing the signal into trend, seasonal, and noise 
components. In general for our classification, poor model fit would be 
evidenced by high normalized root mean square error (NRMSE) indi
cating that the model explains little variation, low AICc weight meaning 
that other models describe equally well or better the timeseries and low 

Fig. 5. Three empirical timeseries classified either as “abrupt”, “quadratic”, or “linear” following our classification approach, namely, (A) Atlantic bluefin tuna 
(Thunnus thynnus) catch in Eastern Atlantic (source: RAM Legacy Data Base), (B) Northern wheatear (Oenanthe oenanthe) abundance in Europe (source: EBCC/ 
BirdLife/RSPB/CSO), and (C) Red-eyed damselfly (Erythromma najas) occupancy in Britain (source: Termaat et al., 2019). The location of breakpoints is indicated by 
vertical dashed lines (in blue from chngpt, in red from asdetect), the pink background corresponds to the uncertainty of asdetect breakpoints, and the location of 
breakpoints from LOO timeseries are represented by colour bars. Timepoints highlighted by orange dots indicate that if removed in the LOO process the best tra
jectory would remain the same as the complete timeseries. Animal silhouettes come from https://www.phylopic.org/. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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Leave-One-Out score suggesting that the trajectory found is not robust to 
the removal of individual timepoints. The warning values of each score 
depends on the trajectory shape considered (Supplementary material, 
Fig. S5). In such case, the classified trajectory should be treated with 
caution. In addition, our classification approach is designed to describe 
not only the location of breakpoints but the full extent of timeseries, thus 
all changes along the timeseries are likely to influence the trajectory. 
Lastly, in our classification approach, only one type of breakpoints is 
targeted, referred to as the “step” threshold effect (Fong et al., 2017). We 
acknowledge the existence of other types of breakpoints (e.g., change of 
slope, change in variance) but assume that most detectable abrupt shifts 
in ecological systems are best approximated with abrupt step-changes. 
Still, our classification could be adapted to integrate more specific tra
jectory types by adding other nonlinear or breakpoint fitting methods. 

The main interest of the proposed trajectory classification approach 
also remains in the possibility to be applied to a large number of 
timeseries without necessary analyzing each of them individually. 
Consequently, the approach we develop can foster a more systematic 
identification of abrupt dynamics in timeseries for conservation science 
(Biggs et al., 2018) and even beyond. As an example, in fisheries science, 
management practices still largely rely on fixed target indicators (so- 
called biological reference points) to trigger management actions, which 
may prove unreliable under changing conditions (Silvar-Viladomiu 
et al., 2021). Thus, considering trajectory classification for some of the 
main stock variables (e.g., abundance and productivity) could comple
ment the classical stock assessment procedure. This could be a way 
forward to include regime shift and non-equilibrium perspectives into 
fisheries stock assessment, that are currently largely overlooked (King 
et al., 2015). More generally for populations monitored over mid- to 
long-term a nonlinear classification would allow to evidence transient 
dynamics (e.g., trend inversions, inflection points) that could for 
instance warn about the early stages of a larger decline or the onset of 
population recovery. Such nonlinear changes are transitory and could be 
detected only after they started to be noticeable (Andersen et al., 2009). 
A valuable advance would be to explore the delay in the detection of 
such change using a classification like the one we develop here when the 
timeseries is updated on a regular basis. 

Out-of-equilibrium dynamics and nonlinearity are ubiquitous from 
populations of most taxa (Clark and Luis, 2020) and up to the scale of 
ecosystems (Guichard and Gouhier, 2014). The trajectory classification 
approach we developed here could help to promote conservation and 
management practices that explicitly take into account nonlinear re
sponses and the likelihood of abrupt shifts in ecological systems. Yet, the 
dynamics of an ecological system can’t be only summarized by 
describing the shape of a single timeseries. A more complete description 
could be reached by considering trajectories of multiple system com
ponents in parallel. This could apply to understanding dynamics across 
space for spatially-structured communities (Pedersen et al., 2020) or to 
considering trajectories of environmental drivers that influence the 
ecological trajectories (Gonzalez et al., 2023; Spake et al., 2022). Inte
grating a multiple trajectory classification in our approach could 
represent a way forward for improving the monitoring and management 
of ecological systems. 
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