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Abstract. Recent developments and tools integrated into the TAPaS code
are presented, enabling realistic scenario simulations of particle dynamics within
experimental tokamak magnetic equilibria. In particular, the enhanced capabilities
of TAPaS enable seamless coupling with external simulations, provided the metric
and equilibrium magnetic field of the external code are known. Coupling TAPaS
with the gyro-fluid code FAR3d, the transport and losses of energetic particles (EPs)
in the presence Alfvén eigenmodes (AEs) in DIII-D plasma discharge #159243 were
investigated using simple initialization of energetic particles in phase space. Detailed
analyses of prompt losses in the presence of collisions (and without it) were performed.
Then, further analysis that involves including the total electromagnetic perturbations
resulting from AEs activities was performed. The results indicate that, for the energies
and the initial conditions considered here, the presence of AEs enhances the particle
losses at the end of the different simulations conducted in this study.
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1. Introduction

In current and future fusion devices, energetic particles (EPs) play a crucial role. These
particles are generated either externally from sources such as neutral beam injection
(NBI) and ion cyclotron resonance heating (ICRH), or internally through nuclear fusion
reactions, resulting in 3.5 MeV alpha particles. It is imperative to adequately confine
EPs to facilitate the transfer of their energy to the thermal population via Coulomb
collisions, thereby sustaining fusion reactions. However, the presence of EPs in burning
plasmas can induce instabilities, specifically EP-driven instabilities, which can have a
detrimental impact on overall energy confinement.

EP-driven instabilities involve various phenomena, such as the fishbone instability
initially observed in the PDX tokamak [1], later analyzed in DIII-D plasma [2], and shear
Alfvén eigenmodes destabilized by super-Alfvénic EPs. These modes can lead to major
EP losses towards the plasma-facing components, as demonstrated for energetic beam
ions and byproducts of deuterium-deuterium fusion reactions in the DIII-D tokamak
[3, 4]. Shear Alfvén waves usually experience strong continuum damping in slab
and cylindrical geometries in the presence of non-uniform magnetic field, with the
exception of global Alfvén eigenmodes (GAE) in cylindrical geometry arising below
the minimum value in the Alfvén contiuum [5, 6, 7, 8]. However, in realistic toroidal
geometry with noncircular flux surfaces, gaps in the Alfvén continuum can be formed,
leading to the existence of eigenmodes that are not damped by the continuum. Those
include toroidicity induced Alfvén eigenmodes (TAE) [9, 10], ellipticity induced Alfvén
eigenmodes (EAE) [11, 12], noncircularity induced Alfvén eigenmodes (NAE) [13, 14],
reversed-shear Alfvén eigenmodes (RSAE)[15, 16], and beta-induced Alfvén eigenmodes
(BAE) [17] -for more details, see Refs. [18, 19] and references therein. Since modes inside
these gaps are not damped by the continuum, any external drive at the corresponding
frequencies can provide enough energy to trigger an instability. More specifically, the
motion of EPs can resonate with these modes and the gradients of the EP distribution
function in phase-space can result in their destabilization. This is why they can be
excited by alpha particles resulting from fusion reactions or by EPs generated through
NBI or ICRH -see Refs [20, 21, 22, 23, 24] and references therein. Moreover, the presence
of stochastic orbits resulting from turbulence and/or the onset of other MHD or kinetic
instabilities [25, 26, 27], such as tearing modes [28], ion-temperature gradients (ITG)
[29], or other interacting phenomena [30], can significantly alter the transport and losses
of EPs.

The dynamics of particles and more precisely EPs can be numerically analyzed
following two approaches. The first one implies solving in a self-consistent way the
equations for the EPs, the background plasma and the electromagnetic fields. This
can be accomplished using gyro-fluid models with corrections to take into account the
effects of EPs (see [31, 32, 16, 33, 34] and references therein), hybrid-MHD models,
where the background plasma is described using fluid equations and the effect of EPs
is included by means of a gyro-kinetic [35, 36] or a kinetic [?], and fully gyro-kinetic
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models [37, 38], where all the species are evolved using the gyro-kinetic formalism. The
second approach involves the use of passive-tracers codes, where the time-dependent
electromagnetic perturbations are externally imposed and the trajectories of EPs are
integrated but do not impact the evolution of the perturbations. Some of these codes are
ASCOT [39], LOCUST [40] or KORC [41]. TAPaS code [42] falls in this category and
can be easily coupled to solvers that evolve the dynamic of the background plasma. The
paper focuses on detailing the new updates implemented in TAPaS, and the application
of the new version of the code to conduct in-depth investigation of EP transport and
losses by considering the full-orbit trajectory of particles in the presence of arbitrary 3D
electromagnetic perturbations and experimental equilibria. In particular, the emphasis
is put on the impact of Alfvén Eigenmodes on the transport and losses of energetic
particles in DIII-D tokamak. In that context, EP generated by NBI are considered,
with energies of the order of ∼ 20 keV and the electromagnetic perturbation is obtained
by means of an external code (FAR3d [33, 43] in this work).

The remainder of the paper is structured as follows. Section 2 details the last
upgrades that have been implemented in TAPaS code, namely the full-orbit integration,
the use of generalized coordinates and magnetic geometry, the inclusion of collisions, the
initialization in 5D when considering a full-orbit approach and the general workflow. In
section 2.6, we discuss some numerical issues encountered next to the last magnetic
surface and near the magnetic axis. Section 3 is devoted to presenting the results of
the simulations using FAR3d code, which provides the electromagnetic perturbations to
be used in TAPaS in section 4. Finally, we give a summary and directions for future
research in section 5.

2. The new TAPaS code

The Toroidal Accelerated PArticle Simulator (TAPaS) code has undergone significant
updates since its initial version [42]. The previous version only integrated trajectories
in a 5-dimensional guiding-center coordinate system, whereas the current version now
possesses the capability to track particle dynamics in a 6-dimensional phase space (x,v),
where x = (x, y, z) and v = (vx, vy, vz) represent the position and velocity components of
the particle in the phase space, respectively. This enhancement allows for the resolution
of the particle gyro-motion, enabling the code to capture phenomena occurring on
timescales comparable to the gyro-motion time and on spatial scales smaller than the
particle Larmor radius.

Moreover, unlike the initial version of TAPaS, which assumed simplified concentric
and circular flux surfaces for numerical convenience and analytical solution for
electromagnetic perturbation, the updated version is capable of handling realistic
scenarios. This includes both 2D axisymmetric equilibria found in tokamak devices
and 3D equilibria present in stellarator devices. Consequently, magnetic equilibria
constructed using equilibrium codes such as VMEC [44, 45], DESC [46], and SIESTA
[47] can be seamlessly incorporated into TAPaS by reading the equilibrium fields from
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an external file. In this manner, the code accommodates a broader range of magnetic
equilibria.

Equilibrium codes and non-linear simulations employed to study plasma dynamics
in toroidal devices, such as FAR3d, often solve the relevant equations in Boozer
coordinates [48, 49]. However, the full-orbit version of TAPaS solves Newton’s
equations for each particle in a Cartesian coordinate system. Therefore, coordinate
transformations are applied to convert data between different coordinate systems
utilized by various codes. This allows the integration of TAPaS with other codes
that employ generalized toroidal coordinates, enabling comprehensive investigations of
plasma dynamics.

2.1. Integration of the equations of motion with the Boris algorithm

Assuming no collisions, the equations solved by the full-orbit version of TAPaS are

dxi
dt
= vi (1)

ms
dvi
dt
= eZs (Ei + ϵijkvjBk) (2)

where e the elementary charge, Zs and ms the atomic number and the mass of the
particle, respectively, xi = x, y, z, and vi = vx, vy, vz are the position and velocity
components of the particle, and ϵijk is the Levi-Civita symbol. Ei and Bi are the ith

components of the electric and magnetic fields at the particle position obtained, in this
paper, using FAR3d code. It should be noted that in the Cartesian coordinate system,
as used in TAPaS to integrate the previous equations, there is no distinction between
co-variant and contra-variant representations due to the orthogonality property of this
coordinate system. Therefore, the equations of motion presented in Eqs. (1) and (2) do
not differentiate between the two. Furthermore, the non-relativistic Newton equations
are employed in TAPaS due to the assumption that the velocities of particles under
consideration are much smaller than the speed of light. This assumption holds for most
phenomena observed in toroidal devices, except for the case of runaway electrons, where
relativistic effects must be taken into account as done in KORC [41].

The Boris method can be employed to numerically solve the equations of motion. It
is a second-order accurate leapfrog scheme generally used owing to its excellent long-term
accuracy and its ability to effectively resolve the gyro-motion of particles. One notable
advantage of the Boris method is its energy conservation property, particularly in cases
where only magnetic fields are present. It also exhibits good energy conservation even
in more general scenarios involving both electric and magnetic fields. This attractive
feature stems from its ability to conserve the phase space volume, making the Boris
algorithm a standard choice for particle pushing in particle-in-cell (PIC) codes utilized
in solving the Boltzmann-Maxwell system of equations in plasma physics [50]. It is to
be noted that both electric and magnetic fields can be obtained from any external code
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in any general coordinate system. Hence, before updating the position and velocity of
the particle, one must transform these fields to the Cartesian coordinate system.

To understand this scheme, let us begin by discretizing Eqs.(1) and (2) in time
using a central stencil

xn+1i − xni
∆t

= v
n+ 1

2
i (3)

v
n+ 1

2
i − v

n− 1
2

i

∆t
= eZsEi(x

n) + eZsϵijk
v
n+ 1

2
j + v

n− 1
2

j

2
Bk(x

n) (4)

where ∆t is the time step. Eqs.(1) and (2) are approximated at times tn+1/2 and tn,
respectively. It is worth noting that in the Boris method, the electromagnetic fields are
evaluated at the particle position at time tn.

The Boris method, along with its variations such as the Vay [51] and Higuera-Cary
methods [52, 53], focuses on finding accurate approximations for the velocity at time tn
in the right-hand side of Eq.(2). In the Boris scheme, the velocity is taken to be the
average of its values at tn+1/2 and tn−1/2. The electric field in Eq.(4) can be eliminated
by splitting the calculation into three steps: two acceleration steps due to the electric
field and one pure rotation due to the magnetic field. This is achieved by defining vn−

1
2

j

and vn+
1
2

j as follows

v
n− 1

2
j = v−j −

eZsEj

m

∆t

2
, v

n+ 1
2

j = v+j +
eZsEj

m

∆t

2
(5)

which leads, after substituting in Eq.(4), to

v+j = v
−

j + ϵjmnṽmsn (6)

where
ṽm = v

− + ϵmnlv
−

nQl, Ql =
eZsBl

m

∆t

2
, sn =

2Qn

1 +Q2
(7)

In the presence of both electric and magnetic fields, the Boris method consists of the
following steps:

(i) First half of electric acceleration, i.e. find v−j by solving the first equation of (5),

where vn−
1
2

j is known from the previous time steps.
(ii) Rotation step due to magnetic field. This step involves calculating v+j using Eq.(6),

where ṽm and sn are obtained from Eq.(7).

(iii) Second half of electric acceleration which involves finding v
n+ 1

2
j using the second

equation of (5), where electric field is estimated at the position of the particle at
tn.

2.2. Collision operator

Collisions are introduced in TAPaS by means of an operator acting either on particle
velocity (for the full-orbit version) or on guiding-centre velocity (for guiding-centre
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version). In both cases, the collision operator is decomposed into stochastic and
deterministic operators, which model the diffusion and the Coulomb drag, respectively,
for test particles colliding with background particles of mass mb, charge eZb, density nb

and temperature Tb. For the case of background electrons, we have b = e, whereas for
background ions b = i. For the full-orbit version, the equations governing the evolution
of the velocity in the presence of collisions are

dvcoll,det = −νsdt (8)

dvcoll, stoch = [
√
D∥

v ⊗ v

v2
+
√
D� (I −

v ⊗ v

v2
)] ⋅ dWv (9)

where Wv is a Wiener process in velocity space and I is the unit tensor in 3D.
In the deterministic part of the collision operator, νs represents the Coulomb drag

given by the expression

νs =∑
b

4nbCb (
mb

2kBTb
)
3/2 ψ (x)

x
(10)

with kB the Boltzmann constant, Cb given by the expression

Cb =
e2Z2

s e
2Z2

b logΛ

8πϵ20m
2
s

(11)

the variable x is defined by
x =

v
√
Tb/ (2mb)

(12)

and the function ψ is defined as

ψ (x) =
Φ (x) − xΦ′ (x)

2x2
(13)

with Φ the error function
Φ (x) =

2
√
π
∫

x

0
e−u

2

du (14)

In the stochastic part, D∥ and D� are the diffusion coefficients, calculated as follows

D∥ =∑
b

4nbCb (
mb

2kBTb
)
1/2 ψ (x)

x
(15)

D� =∑
b

2nbCb (
mb

2kBTb
)
1/2 Φ (x) − ψ (x)

x
(16)

The deterministic part is solved after each update of the velocity in the Boris
algorithm, using the same strategy as the one used in [41] for the radiative term of
runaway electrons. In practice, the deterministic equation is decomposed into the
effect of the Lorentz force dvL,det = eZs/ms (E + v ×B) and the effect of collisions
dvcoll,det = −νsdt. At each time step i, it is computed the velocity due to the Lorentz
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force at time step i + 1. The result of this computation is called vi+1
L . The effect of the

Coulomb drag is then computed as follows

vi+1
coll,det − v

i

∆t
= νs (x

i+1/2,vi+1/2)vi+1/2 (17)

with vi+1/2 = (vi+1
L + v

i) /2. The new velocity is then computed as

vi+1 = vi+1
L + v

i+1
coll,det − v

i (18)

The stochastic part is solved using the Euler scheme, with a time step larger than
the one used for the integration of the deterministic equations in order to reduce the
computational time. The Wiener process is generated taking into account that it must
have independent and Gaussian increments. Therefore, the increment dWv is generated
using a Box-Muller algorithm for each direction (x, y, z).

The collision operator has been tested initializing an ensemble of 106 particles at
the same position in real space with velocities localized around v∥ = 2 and v� = 2. The
initialization in velocity space is illustrated in Fig.1a. The colormap represents the
distribution function computed from the initial particles and the dashed lines represent
for the reference the Maxwellian distribution function. After ωc,0t = 107, the distribution
function is recomputed. The result is illustrated in Fig.1b. A very good agreement is
obtained. Such agreement becomes evident when plotting the distribution function for
a given value of µ and for a given value of v∥, which is shown in figures 1c and 1d,
respectively.

2.3. Initialization of particles

With respect to the previous version of the code, particles are not any longer described by
their weights. This is to avoid numerical noise when computing macroscopic quantities
such as density, temperature or fluxes. Therefore, all particles have the same statistical
weight. Nonetheless, in order to account for the initialization following distribution
functions in 6D, the possibility exists to initialize particles non uniformly in phase space
by means of the Metropolis-Hastings algorithm based on the Markov chain Monte-
Carlo method [54, 55, 56]. However, in some cases it is useful to initialize particles
in specific regions or uniformly in velocity and/or real spaces. In that case, the
Metropolis-Hastings algorithm is not employed and particles are simply initialized in an
equidistant grid. The initialization in real space occurs always in toroidal coordinates,
namely (ρ, θ,φ), with ρ a generalized coordinate with length dimensions, θ the intrinsic
poloidal angle and φ the toroidal angle. The initialization in velocity space occurs in
3D using the cartesian coordinates (vx, vy, vz). This choice is sometimes convenient
for specific studies. However, it does not provide enough physical insight. For this
reason, another possibility is to initialize particles in 5D using the initialization that was
already implemented in the previous version of TAPaS, depending on the set of selected
couple of variables in velocity space: (v∥, µ), (E,Λ), (E,λ) and (E,Pφ), where E is the
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Figure 1: Initial (top left) and final (top right) distribution function in (v∥, v�) computed
from TAPAS in the presence of collisions. As a reference, the Maxwellian distribution
is provided using contour plot. Also, in the same figure, the final distribution function
for a given value of µ (bottom left) and for a given value of v∥ (bottom right) are given
as a function of v∥ and µ, respectively. The Maxwellian distribution is given using dash
line.

kinetic energy, Λ = µB0/E and λ = v∥/v. For each of these choices, the computation
of (v∥, µ) is done first (this step is obviously not required when particles are initialized
using parallel velocity and magnetic moment). Then, a gyro-phase φc is selected using
a uniform distribution function U[0,2π[ (φc). The unit vector in the direction of the
magnetic field is computed at the real position (ρ, θ,φ) where the particle is initialized
and then transformed into cartesian coordinates b = bxex+byey+bzez. The angle between
b and ez is computed and called αb. Afterwards, a rotation of the basis {ex,ey,ez} in
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order to align ez with b is performed. The components of the new basis are simply

êx =R11ex +R21ey +R31ez (19)

êy =R12ex +R22ey +R32ez (20)

êz = b (21)

with R the rotation matrix

R =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b2y (1 − cosαb) + cosαb −by ⋅ bx ⋅ (1 − cosαb) bx sinαb

−by ⋅ bx ⋅ (1 − cosαb) b2x ⋅ (1 − cosαb) + cosαb by ⋅ sinαb

bx sinαb by ⋅ sinαb cosαb

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(22)

In the new basis, the vectors êx and êy constitute a basis of the plane perpendicular
to the magnetic field at the position (ρ, θ,φ) and therefore, the perpendicular velocity
can be expressed as

v� = v� (cosφcêx + sinφcêy) (23)

Taking into account that the vector expression of the parallel velocity is v∥b, the
initial velocity in cartesian coordinates reads

vx = v∥bx + v� (cosφcR11 + sinφcR12) (24)

vy = v∥by + v� (cosφcR21 + sinφcR22) (25)

vz = v∥bz + v� (cosφcR31 + sinφcR32) (26)

2.4. Generalized toroidal coordinates and coordinate transformations in TAPaS

TAPaS makes use of generalized coordinates (x1, x2, x3). For the case of toroidal
coordinates, x1 is usually a distance-like label for the magnetic surface, x2 represents
the position in the poloidal direction and x3 represents the position in the toroidal
direction. In a simplified geometry where flux surfaces are reduced to nested circular
and concentric torii, x1 would represent the minor radius or the distance from the surface
to the magnetic axis. However, one could also use a cylindrical coordinate system, in
which case x1 = R, x2 = φ and x3 = Z, or even a Cartesian coordinate system, where
x1 = x, x2 = y and x3 = z. The choice of the coordinate system will depend on the physics
to be analyzed. In practice, this will be given by the external code that provides the 3D
electromagnetic perturbations. In that sense, TAPaS has been developed in the most
general way so that the choice of the coordinates used by the external code (FAR3d
in the present work) is transparent to TAPaS and everything is handled by modules
applying the required transformations between three coordinate systems

(x, y, z)←→ (R,Z,φ)←→ (x1, x2, x3) (27)

In the present work, TAPaS is coupled to FAR3d, where Boozer coordinates are
used. Throughout the remainder of the paper, (ρ, θ, ζ) refer to this Boozer coordinate
system.



Transport and losses of energetic particles with the new full-orbit TAPaS code 10

Build Grids Find
Adjust the 

R-Z grid

Diagnostics

Toroidal CS

Cartesian CS

to to
Cartesian CS

Toroidal CS

Find fields 

at particle 

positions

(Interpolation)

Particle

 initialization

External

Simulation

Runge-Kutta method (RK4)

Figure 2: An illustration of the main steps implemented in TAPaS code.

In TAPaS, the equations of motion are solved in Cartesian coordinates. However, to
accurately update the coordinates of the particle in the generalized toroidal coordinate
system, suitable coordinate transformations are required. For this purpose, TAPaS
provides two grids: the toroidal grid and the cylindrical grid. The toroidal grid is
used to interpolate the fields at the particle position in toroidal geometry, while the
cylindrical grid is employed to transform the particle coordinates from Cartesian to
toroidal coordinates after pushing it in time with the Boris algorithm. Details of
these transformations are given in Appendix A. Defining the toroidal grid in TAPaS is
straightforward, as it involves specifying the number of points and the intervals in the
different directions. On the other hand, the cylindrical grid needs to be defined in a
manner that ensures an accurate approximation of the toroidal coordinates at its nodes.
Equilibrium codes, such as VMEC, are used to compute the flux surfaces represented
by R = R(ρ, θ) and Z = Z(ρ, θ) (assuming 2D equilibria). These flux surfaces can then
be inverted to determine the toroidal coordinates ρ(R,Z) and θ(R,Z) in the cylindrical
grid using the Newton-Raphson method.

2.5. TAPaS workflow

TAPaS is developed in FORTRAN and employs a hybrid MPI-OpenACC paradigm
for parallelization across multi-GPU nodes. The code utilizes MPI for domain
decomposition across nodes and OpenACC directives to offload computations onto GPU
accelerators within each node. LAPACK and parallel HDF5 libraries are required for
TAPaS. LAPACK is essential to solve eigenvalue problems, including the calculation of
parallel magnetic potential in certain cases. Meanwhile, parallel HDF5 libraries facilitate
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input/output operations. The primary steps in TAPaS can be summarized as follows:

(i) Initialization of parallel environment.

(ii) Reading input file.

(iii) The simulation first checks if it is a restart. If it is indeed a restart, the code proceeds
to read an HDF5 file containing all the necessary data. However, if it is not a restart,
the simulation initializes itself based on the provided input parameters.

(iv) Calculating all the required quantities to solve Eqs. (1-2).

● If the magnetic equilibrium and electromagnetic perturbations are obtained
using another code, such as FAR3d, an external HDF5 file containing this
information is read. The HDF5 file includes the parametric form of the
magnetic surfaces given in generalized coordinates, represented by R(ρ, θ, ζ)

and Z(ρ, θ, ζ). Additionally, the file contains the contra-variant components of
the equilibrium magnetic field. In the cylindrical coordinate system, denoted
by (R,Z,φ), while in the Boozer coordinate system, denoted by ρ, θ, ζ, as
described in the next section.
If the magnetic equilibrium and all the required quantities are computed within
TAPaS, such as in the case of circular or analytically derived geometries,
the values of R(ρ, θ, ζ) and Z(ρ, θ, ζ) are determined by applying the relevant
analytical formulas.
● In order to perform various calculations and coordinate transformations,

TAPaS computes the contra- and covariant metrics (gij and gij), the Jacobian
of the transformations, and the gradients of different quantities. Additionally,
depending on the chosen equilibrium, TAPaS determines the functions ρ(R,Z)
and θ(R,Z). These functions are crucial for coordinate transformations
from Cartesian coordinate system to Boozer coordinate system. By knowing
the Cartesian coordinates (xp, yp, zp) of a particle, one can easily obtain
its cylindrical coordinates (Rp, Zp, φp). Subsequently, by interpolating the
values of ρ(R,Z) and θ(R,Z) at the corresponding cylindrical coordinates
(Rp, φp, Zp), the particle’s Boozer coordinates (ρp, θp, ζp) can be determined.
● In the case where the equilibrium is obtained from an external data source,

TAPaS undertakes a crucial task of identifying the intersection points between
the cylindrical grid lines, represented by R and Z, and the last available
magnetic surface. These intersection points are essential for the subsequent
computations.
Then, a corrective algorithm is employed to address a specific concern arising
from points that lie in proximity to the last available closed surface but reside
outside the physical domain. This algorithm ensures the proper handling of
such points, mitigating any potential issues and preserving the integrity of the
simulation. The challenge of determining the coordinates (ρp, θp, ζp) within the
cylindrical coordinate system will be discussed in a dedicated sub-section (see
Section 2.6). This sub-section will provide a detailed analysis of the methods
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employed to address this challenge, presenting the intricacies involved and
offering solutions to overcome the associated complexities.
● When the equilibrium is read from an external file, TAPaS implements

an algorithm to address interpolation issues that may arise near the last
available closed surface and the magnetic axis. To ensure accurate trajectory
calculations for charged particles in close proximity to this surface, slight
adjustments are made to the ρ(R,Z) and θ(R,Z) functions, as will be discussed
in the next section.

(v) The main loop is started.
● If the used version is the full orbit one, the following steps are applied for each

particle:
– The electromagnetic fields are estimated at the particle positions by

applying the recently implemented 3D bspline interpolation.
– The particle coordinates are transformed to Cartesian CS.
– Eq.(3) is solved as discussed in Section 2.1.
– The particle coordinates are transformed back to Boozer CS to test if the

particle remains inside the toroidal device.
– If the particle crossed the last available magnetic surface, it is marked as

lost, and its trajectory is no longer integrated. However, in the gyro-kinetic
version of the code where circular or analytically derived equilibria were
used, the code allows for the possibility of following the particle dynamics
outside the toroidal device.

– The particle’s velocity is updated by solving Eq.(4) with Boris method.
– Magnetic moment and the parallel velocity are calculate for the particle.
– Every ndiag, the chosen 1D, 2D, and 3D diagnostics are applied and stored

in HDF5 file.
● Otherwise, the guiding-centre algorithm, detailed in [42], is applied.

(vi) At the end of the main loop, a restart file is produced.

The main steps implemented in TAPaS are schematically indicated in Fig.2.

2.6. Numerical challenges faced in TAPaS

Interpolation plays a crucial role in TAPaS as it is frequently applied to estimate fields
at particle positions in the toroidal coordinate system or determine particle toroidal
coordinates after solving Eqs (1)-(2) in the Cartesian coordinate system.

Two interpolation methods available in the current extended version of the code
are Lagrange and B-spline interpolation. Lagrange interpolation is well-suited for
interpolating quantities in 1D and 2D, while B-splines offer greater stability and
accuracy in 3D. Lagrange interpolation can exhibit oscillations between data points,
particularly when using high-degree polynomials or closely spaced data (known as the
Runge phenomenon), which becomes more pronounced in 3D cases. In contrast, B-
spline interpolation tends to be more stable and less prone to oscillations owing to the
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Particle

 point outside LCS

 point inside LCS

Intersection points

generated points

Figure 3: The upper part of a poloidal cross-section of an axi-symmetric equilibrium.
The blue curve represents the last available surface, while the mauve-shaded region
corresponds to the complete interpolation rectangle and the gray-shaded region
represents a boundary interpolation rectangle.

local support of the basis functions, which allows for better control of the influence of
nearby data points. Both methods can be extended to higher-dimensional spaces (nD),
but they come with a significant computational cost as they involve tensorial products
of 1D interpolation functions.

However, the specific implementation of B-spline interpolation in TAPaS is more
computationally and resource-intensive compared to Lagrange interpolation. This is
because, in the case of B-splines, an additional linear system of equations must be solved
each time the electromagnetic fields are updated. This additional step arises from the
fact that the B-spline projection coefficients of a function do not directly correspond
to its values at the grid points (aka modal interpolation). Therefore, these coefficients
need to be determined by solving the resulting linear system, using the values of the
function at the grid points. The details of the interpolation methods are provided in
Appendix B.

Problems can also arise when the values needed for the interpolation fall outside
the last available magnetic surface, where no data exists. Also, numerical errors in some
equilibrium codes can significantly increase near the magnetic axis and in the vicinity
of the last available surface, leading to inaccurate integration of particle trajectories
in these regions. Therefore, in TAPaS we have to face this kind of numerical issues.
In addition, independently of the accuracy of the magnetic equilibrium, another issue
that has been addressed in TAPaS is related to the inherent complexity of realistic
fusion device geometries. Interpolating fields accurately in such complicated geometries
presents additional challenges, and appropriate techniques must be employed to mitigate
potential errors. In this section, we discuss these two issues separately.
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Figure 4: Left Frame: two examples of particle trajectories: one traversing the magnetic
axis (blue curve) and another in close proximity to the last closed surface (red curve).
Right Frame: trajectories of a passing particle and a trapped banana particle, obtained
using both the full orbit (blue curves) and guiding center versions of TAPAS (red curves).

2.6.1. Interpolation of fields in the vicinity of the last available magnetic surface
In order to interpolate the fields at the particle position, it is necessary to obtain
the toroidal coordinates of the particle, since the fields are calculated in toroidal
geometry. This process involves calculating the cylindrical coordinates (Rp, Zp, φp)

corresponding to the new Cartesian position (xp, yp, zp), and then the corresponding
toroidal coordinates (ρp, θp, ζp) can be obtained using Lagrange interpolation.

Nevertheless, the process of interpolation can introduce certain challenges. In the
case of a 2D axi-symmetric equilibrium, when applying 2D Lagrange interpolation to
approximate a quantity at a specific location, it is necessary to know its values at
16 points within the neighborhood of the interpolation point. This particular region,
depicted as the mauve-shaded and gray-shaded rectangles in Fig.3, will be referred to
as the interpolation rectangle throughout the discussion.

In some cases, certain nodes of the interpolation rectangle may lie outside the last
closed surfaces, as illustrated by the gray-shaded rectangle in Fig.3. In this figure, a
particle that follows a trajectory that brings it close to the last magnetic surface is
shown as a blue circle. Two interpolation rectangles are shown: the first one (mauve-
shaded) does not contain the particle, and all its nodes are located within the physical
domain. However, although the second interpolation rectangle (gray-shaded) contains
the particle, four of its nodes (represented by black circles at the top right) exist
outside the physical domain. This can be problematic as it introduces inaccuracies
in the interpolation process and affect the particle trajectory calculation since the
corresponding toroidal coordinates (ρ, θ, ζ) are not defined at those nodes. To accurately
solve this problem, we apply the following steps:

(i) Initially, an attempt is made to find an interpolation rectangle where all its nodes
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lie within the physical domain. This rectangle is preferred as it guarantees that
the toroidal coordinates (ρ, θ, ζ) are defined for all the nodes, allowing for accurate
interpolation. If it is not possible to find an interpolation rectangle that satisfies
that criterion, the focus shifts to identifying the interpolation rectangle with the
fewest nodes located outside the physical domain. This approach aims to minimize
the impact of nodes falling outside the physical domain on the accuracy of the
interpolation.

(ii) If N nodes of the interpolation rectangle fall outside the physical domain, an inverse
problem of Lagrange interpolation is solved to determine the field values at these
nodes. This is done as follows

● We search for the complete interpolation rectangle that shares the largest area
with the rectangle containing the particle while being entirely situated within
the physical domain (e.g., the mauve-shaded rectangle in Fig.3).
● We arbitrarily generate N points that exist inside both the complete rectangle,

which is the mauve-shaded rectangle in Fig.3, and the particle rectangle, which
is the gray-shaded rectangle in Fig.3. These points are represented as dark-
green circles in Fig.3. It is worth noting that while the intersection points
between cylindrical grid lines and the last closed surface can be used, they can
be problematic as they may be located very close to the nodes that exist outside
the physical domain. Consequently, this leads to ill-conditioned Lagrange basis
functions, where Li ≈ 0 and fi →∞, where fi is the value to be calculated (see
Appendix B).
● We approximate the coordinates (ρ, θ, ζ) at generated points using the

complete interpolation rectangle.
● Knowing the values of (ρ, θ, ζ) at the generated points, we then solve the

inverse Lagrange interpolation problem to assign physical values to the nodes
outside the physical domain. In other words, we find the values of (ρ, θ, ζ) at
the nodes outside the domain such that they interpolate those given at the
randomly generated points.

(iii) Once the interpolation rectangle is completely determined, we can employ it to
approximate the values (ρp, θp, ζp) corresponding to the particle position.

We observed that the choice of interpolation order used to calculate the values of the
function at the generated points required to fully determine the interpolation rectangle
can have a significant impact on the trajectory of the particle. This is because low-order
interpolations can introduce numerical drifts and thereby result in poor accuracy. For
example, in certain cases, we observed that linear interpolation may introduce numerical
drifts, resulting in particle losses at the mid-plane of the device. Hence, in TAPaS, we
consistently employ cubic interpolation. As an example of the strategy outlined above,
the red curve in the left frame of Fig.3 shows the trajectory of a trapped particle in
DIII-D tokamak moving in the vicinity of the last closed surface, and whose trajectory
is determined using the algorithm described above to find its coordinates in toroidal
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geometry.

2.6.2. Interpolation near the magnetic axis TAPaS relies on magnetic equilibrium,
which is obtained analytically or numerically using equilibrium codes, to construct
the toroidal geometry specific to a particular device. The external simulation coupled
with TAPaS solves the dynamic equations within this coordinate system. However,
depending on the external simulation and/or equilibrium code used, TAPaS may
sometimes define equilibrium quantities starting from a closed magnetic surface located
at a distance ∆r from the magnetic axis. As a consequence, equilibrium quantities
and/or electromagnetic perturbations are not defined within the first closed surface: for
instance, this situation arises when TAPaS is coupled with GYSELA5D, which solves
the gyrokinetic equation by excluding the center r = 0 to prevent the divergence of
certain quantities like the metric, gradient, and others. Therefore, it becomes necessary
to develop a method for extrapolating fields when particles enter this region.

Several strategies can be employed to address this issue. For example, one approach
is to approximate the first closed surface around the magnetic field as a circle and
use the corresponding analytical formula to calculate equilibrium quantities at the
particle’s position. A more realistic approximation involves treating the first closed
surface as an ellipse or utilizing a formula derived from solving the Grad-Shafranov
equation analytically to extrapolate different quantities when particles enter the first
closed surface.

However, when employing any of these strategies, we observed two distinct effects
that can occur separately or simultaneously. The first effect is that the particle motion
exhibits an arbitrary unphysical diffusion behavior when it approaches the magnetic
axis, followed by a numerical drift comparable to (or larger than) its Larmor radius upon
exiting that region. Although the errors arising from this behavior can be quantified,
the second effect, which involves unphysical particle trapping near the magnetic axis, is
more subtle. Identifying this effect becomes challenging during simulations, making it
difficult to measure, yet it can significantly impact the simulation, particularly in cases
involving the injection of energetic particles near the magnetic axis.

Following the previous discussion, we have developed a straightforward procedure
that utilizes a second-order Taylor expansion in 2D (3D expansion for 3D equilibriums,
such as in the case of stellarator devices), to approximate equilibrium fields within the
first closed surface. Subsequently, if we intend to calculate a quantity f at the particle’s
position (ρp, θp, ζp) when ρp < ρ1 (where ρ1 represents the radius of the first closed surface
in the generalized toroidal coordinate system), we can apply the following relationship:

f(ρp, θp, ζp) = f(ρi, θi, ζi) +
3

∑
j=1

∂f

∂xj
∣ρi,θi,ζi(x

j − xjp) +
3

∑
j=1

3

∑
k=1

∂2f

∂xjxk
∣ρi,θi,ζi(x

j − xjp)(x
k − xkp)

(28)
where xj and xk refer to ρ, θ, and ζ.

Problems near the magnetic axis can be addressed by using another equilibrium
code, such as DESC [46], known for its higher accuracy in this region. But this choice
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is not always practical since it will also require replacing the equilibrium code in the
external simulation coupled with TAPaS.

The impact of employing the Taylor expansion method on the particle trajectory
is illustrated in the left frame of Fig.4. Here, we plot with blue color the projection
onto the poloidal cross-section of the trajectory of a trapped particle in the DIII-D
tokamak, where equilibrium quantities close to the magnetic axis were estimated via
Eq.(4). The simulation lasted for 106τTAPaS ≈ 10−3 sec, where τTAPaS ≈ 10−9 sec is the
characteristic time of TAPaS. The extended duration was selected to ensure that the
particle traverses the first closed surface multiple times. As anticipated, the resulting
trajectory, represented by the blue curve in the left frame of Fig.4, follows closely to the
expected physical path, exhibiting negligible numerical drift over the entire simulation
period.

2.7. Guiding Center vs full orbit

As a benchmark for the full orbit version of the code, we performed numerical
experiments to compute particle trajectories using both the full orbit version and the
previously implemented guiding center version for circular geometry, and upgraded here
to account equilibriums derived from numerical codes or an analytical solution of the
Grad-Shafranov equation using expansion methods.

An essential assumption of gyro-kinetic theory is the adiabatic conservation of
the magnetic moment, made possible by the presence of a strong background guide
field. Given the validity of this assumption, which depends on several factors such as
the strength and profile of the guide field, electromagnetic perturbations, and particle
energy, trajectories calculated with the guiding center version accurately approximate
those obtained via the full orbit version, which is confirmed in Fig.4.

In the right frame of Fig.4, trajectories for two particles —passing and trapped—
are plotted. Both particles have equal initial energies: EEP = 4Eth, where Eth is
the reference energy. While both particles were initialized at θ = 0, their radial
initializations differ, with the passing particle at ρ = 170ρr and the trapped particle
at ρ = 50ρr, where ρr denotes the reference length. The blue and red curves represent
trajectories for the full orbit and guiding center versions, respectively. As illustrated,
the guiding center approximation accurately captures the particle’s trajectory in this
scenario. Additionally, this test provides also a benchmark for particle initialization in
6D phase space starting from an initialization in 5D phase space, as discussed in Section
2.3.

2.8. Performance of the parallel algorithm of TAPaS

The simulations presented in this work were performed on the French Jean-Zay
supercomputer (HPE SGI 8600 system), which comprises two partitions: CPU and
GPU partitions. The CPU partition employed for this paper consists of 1528 compute
nodes, each equipped with 2 Intel Cascade Lake processors (20 cores per processor and



Transport and losses of energetic particles with the new full-orbit TAPaS code 18

10
1

10
2

0

1

2

3
10

4

A
c
c
e
le

ra
ti
o
n
 

8

9

10

11

10
1

10
2

10
0

10
1

10
2

CPU

CPU (ideal)

GPU

GPU (ideal)

10
1

10
2

0

1

2

3
10

4

2.8

2.9

3

3.1

3.2
CPU time

GPU time

Acceleration

10
1

10
2

10
0

10
1

CPU

GPU

CPU (ideal)

GPU (ideal)

Figure 5: Simulation time (left frames) and speedup (right frames) for circular geometry
(top frames) and reconstructed magnetic equilibrium of DIII-D tokamak (bottom
frames) as a function of the number of nodes for CPU (black curves) and GPU (red
curves) partitions on Jean-Zay supercomputer.

192 GB of shared memory per node). While the GPU nodes used here consist of 2
processors and 4 Nvidia Tesla V100 GPUs, each equipped with 32GB of memory. The
compute nodes are interconnected by an Intel Omni-Path network (OPA).

In this section, we discuss the scaling analysis of the new full-orbit version of the
code on Jean-Zay supercomputer. In addition to evaluating the performance of the full-
orbit scheme, we focus also on the impact of bspline interpolation on overall performance,
particularly when integrating the 3D electromagnetic perturbation calculated by an
external code. We also investigate the effects resulting from considering realistic D-
shape equilibrium (here the magnetic equilibrium for DIII-D tokamak), obtained by
fitting experimental data and reconstructing magnetic equilibrium using numerical codes
such as VMEC; an important step as particles along their trajectory are checked at every
time step if they become close to the magnetic axis or the last available closed surface,
introducing more if-conditions into the algorithm that might affect code performance.

Two criteria were employed to measure performance. The first criterion is the
acceleration defined as the ratio between the time on CPU nodes (with one MPI process
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per code) and the time on an equal number of GPU-accelerated nodes (one MPI process
per GPU). The second criterion, speedup, is defined as tN/tN0 , where N represents the
number of nodes in the corresponding simulation and N0 is the number of nodes in
the reference simulation. Here, t denotes the time required to complete the relevant
simulation. Further, deviations from the ideal speedup were also estimated.

To investigate the parallel implementation performance of bspline interpolation, a
number of simulations were performed using the full-orbit version of TAPaS, initializing
particles in circular geometry. The 3D electromagnetic perturbations were obtained
from an electrostatic turbulence simulation performed using the gyro-kinetic code
GYSELA5D. In these simulations, Np ∼ 2.7 × 108 particles were uniformly initialized
in 6D phase space.

The top-left frame of Fig.5 shows simulation time on the left-y axis as a
function of the number of nodes for both CPU (black curves) and GPU (red curves)
implementations, alongside the acceleration on the right-y axis. Interestingly, an
acceleration factor within the range of [7.75 − 11] was gained. The decrease in
acceleration with increasing the number of nodes can be attributed to having smaller
number of particles per node, leading to faster calculations on the CPU node. The top-
right frame of the figure illustrates speedups and their deviations from the ideal speedup
for both CPU and GPU implementations. Despite a larger deviation in the GPU
implementation from the ideal speedup, the GPU implementation enables achieving
a large acceleration factor when the full-orbit version with bspline interpolation and
circular geometry is employed.

The performance analysis of the code when using the full-orbit version with realistic
geometry, requiring special treatment of particles near the magnetic axis and the last
available closed surface, involved initializing TAPaS with approximately ∼ 1.34 × 108

particles uniformly distributed in 3D spatial space. Particle initialization in velocity
space start with initializing them in (E,Λ) space (see Section 2.3). These particles were
mono-energetic (E = 16.93 keV) and uniformly initialized in pitch angle (−1 ≤ λ ≤ 1). The
initial coordinates of the particles in velocity space (vx, vy, vz) were calculated applying
coordinate transformation as outlined in Section 2.3.

The bottom-left frame of Fig.5 shows the simulation time (left-y axis) and the
acceleration factor (right-y axis) as a function of the number of nodes for both CPU
(black curves) and GPU (red curves) implementations. In this scenario, an acceleration
factor within the range of [2.8−3.15] was reached, notably smaller than that achieved for
circular geometry. This discrepancy largely results from interpolation issues arise when
particles become close to the magnetic axis and the last available closed surface, implying
the need for further optimizations to reach better acceleration factor. Moreover, the
speedups in the full-orbit version with numerically/experimentally calculated geometry,
depicted in the bottom-right frame of Fig.5, are almost identical for both CPU and
GPU implementations. Nevertheless, a slightly larger deviation from the ideal speedup
is evident in the GPU implementation as the number of nodes increases.
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Figure 6: Left frame: the temporal evolution of magnetic energy (orange curve), kinetic
energy (blue curve), and zonal flow (green curve). Right frame: the variations in the
amplitude of the poloidal magnetic field at predefined radial positions.

3. FAR3d simulation of high-β NBI-induced Alfvén Eigenmode activities

In this section, we briefly outline the results of Far3d simulations that have been
employed in TAPaS to investigate the dynamics of energetic particles in the presence
of Alfvén eigenmodes. A nonlinear simulation has been performed with FAR3d [34]‡ to
investigate the behavior of Alfvén eigenmodes in the presence of energetic particles
(Deuterium) resulting from NBI heating. Magnetic equilibrium was computed via
the VMEC code, incorporating up to 15 poloidal mode numbers. Initial profiles for
energetic particle density and temperature were obtained from the TRANSP code. In
the FAR3d simulation, the energetic particle temperature peaks at the magnetic axis
(TEP = 21 keV) with βEP = 3%, while the thermal plasma temperature remains around
Tth ≈ 2.1 keV. During this nonlinear simulation, 139 Fourier mode m/n pairs were
chosen: n = 0 (m = −14 → 14), n = 3 (m = −20 → 20), and n = 6 (m = −52 → 52).
These mode numbers were determined through linear stability analysis conducted using
the linear version of FAR3d. This analysis scanned the growth rates and frequencies
of different toroidal modes numbers. It was shown [43] that the dominant modes span
n = 1 → 6 for various linear simulations with different values of βEP . In this context,
the n = 3 toroidal mode family exhibited the largest growth rates, hence its selection.
Meanwhile, the choice for the n = 6 mode family stems from the instability of its
associated modes for large values of βEP , which the case of the non-linear simulation we
performed (βEP = 3%).

Fig.6 shows the temporal evolution of electromagnetic and kinetic energies of
the thermal plasma, represented by the dashed-orange and blue curves, respectively.
Additionally, it illustrates the behavior of the zonal flow structure, indicated by the
green curve, in the left frame. As expected, the evolution of thermal plasma energies
unfolds in three distinct stages: the initial phase, which corresponds to very small
amplitude perturbations before the emergence of various unstable modes, extends until

‡ (See Appendix Appendix C for a brief description of the code
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t = 100τA, an intermediate linear phase until t = 224τA, characterized by the exponential
growth of unstable modes, implying energy exchange between energetic particles and
the background thermal plasma, and a third phase showing the non-linear saturation of
unstable modes and persists until the end of the simulation at t = 2500τA. Throughout
both the linear and non-linear phases of these unstable modes, the interaction between
Alfvén eigenmodes and energetic particles may result in significant losses of energetic
particles, and thus degrade the confinement performance which is discussed later.
Furthermore, as demonstrated in the left frame of Fig.6, the evolution of zonal flows also
follows a similar pattern in terms of energies and experiences these same three distinct
phases. These zonal flows are characterized by the poloidally and toroidally averaged
poloidal velocity, i.e. ⟨vθ⟩θ,ζ ≈

∂Φ̃m=0,n=0
∂ρ , and it can play a key role in the transport of

energetic particle.
The right frame of Fig.6 illustrates the behavior of the amplitudes of the poloidal

component of the magnetic perturbation over time at various pre-selected radial
positions. As depicted in the figure, these amplitudes increase as the system enters
the saturation phase, but the rate of growth differs at different radial locations, with
the most significant increase occurring near the magnetic axis at ρ = 0.2. Furthermore,
we observe that the behavior in regions beyond ρ = 0.4 is quasi-steady, indicating that
the amplitudes do not exhibit sudden changes over time, i.e. MHD bursts.

In contrast, this quasi-steady state behavior is not observed in the inner plasma, as
shown by the blue and orange curves in the right frame of Fig.6 for ρ = 0.2 and ρ = 0.4,
respectively. At these specific locations, we observe quasi-steady behavior for extended
time intervals, followed by MHD burst events characterized by abrupt fluctuations in
the amplitudes. During these events, the amplitudes increase and subsequently return
to their values prior to the event. Indeed, the occurrence of these MHD burst events at
these specific locations is closely correlated with the concentration of Alfvén eigenmode
activities in those regions, as shown in Fig.7 and Fig.8. However, the investigation
of the dependence of these burst events on βEP[43] have shown that they become
less pronounced for energetic particles with smaller values of βEP, and they can even
disappear entirely when βEP ≤ 1% [43].

Fig.6 highlights two essential considerations regarding coupling Far3d with TAPaS.
First, the energy evolution curves show all characteristic times involved in the dynamics.
On the another hand, the fluctuation evolution in the amplitude of the poloidal
component of the magnetic field (i.e., the right frame of Fig.6) gives access to the shortest
characteristic time scales in the studied scenario, given that the amplitude values are
saved at each time step, set here as dt = 0.025τA. TAPaS time step, therefore, should be
smaller than the shortest timescale (τs) observed in the external code. In this paper, this
condition is satisfied, as the characteristic frequency in TAPaS is the gyro-frequency
time Ωc, approximately 103τ−1s . Then, at time tn, the electromagnetic perturbation are
linearly interpolated using their values at tprev and tnext, satisfying tprev ≤ tn ≤ tnext,
which are computed externally by Far3d.

Fig.7 presents the perturbations of the electrostatic potential (top frames) and the
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Figure 7: Electrostatic Perturbation (top frames column), and radial component of the
magnetic field (bottom frames) at three different times: the linear phase (left), the
initial stage of saturation phase (middle), and a later stage of saturation phase (right),
as obtained from FAR3d simulations of Alfvén eigenmodes.

radial component of the magnetic field (bottom frames). These fields are computed
at three distinct times: t = 185τA (top row), t = 460τA (middle row), and t = 1930τA
(bottom row). These time instances were deliberately selected during the linear growth
phase of unstable modes, the early stages of the non-linear phase, and late stage in the
saturation phase, coinciding with an MHD burst event occurring around t = 1930τA.

During the linear phase of the simulation, the dominant mode pairs were 9/3,
−9/ − 3, 10/3, and −10/ − 3, all of which were localized near the magnetic axis within
the inner region of the plasma. This concentration is evident in the profiles of Φ and
Bρ presented in Fig.7. However, it is challenging to distinguish between these different
modes in these profiles because they are localized in the same region, with their extrema
occurring nearly simultaneously. This mode localization explains why MHD burst events
occur at radial positions within the inner plasma, as demonstrated in the right frame of
Fig.6.

As we transition into the non-linear phase, new Alfvén eigenmodes start to
contribute to the dynamics. To highlight this point, we plot in Fig.9 the kinetic energy
of thermal plasma(top-left), its magnetic energy (top-right), and the energetic particles
energy (bottom) for the strongest 10 Alfvén eigenmodes (i.e. excluding modes with
n = 0). As shown in the figure, although the mode 9/3 appears as the dominant one,
the contributions of other modes become evident and cannot be neglected.

Moreover, during the early stages of the saturation phase (i.e., at approximately
tτA = 460), we observe contributions from other modes, including 11/3, −11/ −
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Figure 8: The first ten dominant Fourier mode pairs (m/n) of the electrostatic potential
as obtained from FAR3d simulation at three distinct time points: the linear phase (top-
left), the initial stage of saturation phase (top-right), and a later stage of saturation
phase (bottom), as obtained from FAR3d simulations of Alfvén eigenmodes.

3,1/0,−1/0. Fig.8 displays the first ten dominant modes in electrostatic perturbations
in the top and bottom-left frames where we also show the contribution resulting from
the modes n = 0. This component dominates during the non-linear phase, except for
the magnetic stream function, where interestingly, it is not the dominant one. This
holds true for magnetic perturbations Bρ and Bθ as well. To emphasize this point,
the bottom-right frame of Fig.8 shows the first ten dominant modes, including the 0/0

mode. It becomes evident that this mode is not among the dominant ones; instead,
in this case, the dominant mode is 1/0, as shown in the bottom-right frame of Fig.7,
and which extends over the entire plasma region forming an envelope for the remaining
modes [43].

In summary, Far3d simulations performed in this study to investigate the nonlinear
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Figure 9: Kinetic (top-left) and magnetic (top-right) energies for the first 10 dominant
Alfvén eigenmodes in the thermal plasma, and energies of the energetic particles for the
first 10 dominant modes (bottom). These curves were plotted by averaging the original
curves sampled at every Alfvén time using a time window of width 32τA to smooth out
the high frequencies while keeping an accurate approximation of the mode energy.

behavior of Alfvén eigenmodes, utilizing the DIII-D equilibrium of discharge #159243

with βEPs = 3%, indicate that both the linear and nonlinear phases are mainly dominated
by modes i/3 where i = 8,9,10,11. Furthermore, the temporal evolution of fluctuations
in the radial magnetic field reveals the emergence of MHD-burst activities characterized
by an abrupt increase in amplitude. This increase is found to be associated, as will
be discussed elsewhere, with an increase in the radial flux of energetic particles toward
the last available closed magnetic surface; implying a larger particle losses compared
to scenarios where MHD-burst events do not excited, as observed when βEP is below a
critical value, as will be detailed in a forthcoming paper.

4. Transport and losses of energetic Deuterium with TAPaS

The 3D electromagnetic perturbations obtained with FAR3d have been introduced in
TAPaS to investigate the impact of Alfvén eigenmode activities on the dynamics of
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Figure 10: Fraction of lost particles, defined as flost =
Np,lost(tend)

Np
, for various simulations

considered in this paper. The vertical line indicates the moment electromagnetic
perturbations were initiated, prior to which only prompt losses were present.

energetic particles initialized at different energies and radial positions. The study
conducted with TAPaS involved mono-energetic particle beams uniformly initialized
in poloidal and toroidal directions, as well as in pitch angle (i.e., −1 ≤ λ ≤ 1). While the
radial initialization was also uniform, the particles were initialized in two different radial
intervals for different simulations: 0.038a ≤ ρ ≤ 0.3a (hereafter, the inner region) and
0.3a ≤ ρ ≤ 0.57a (hereafter, the outer region). These radial initializations were selected
to involve regions where AEs activities are more pronounced, while also expanding two
radial intervals: one in proximity to the magnetic axis and another situated farther from
it.

To study the effects of the co-existence of the magnetic equilibrium and the
electromagnetic perturbations on the energetic particles, we scanned two energies. These
simulations covered two energy levels (EEPs = 65Eth and EEPs = 115Eth), where Eth ≈ 2

keV is the thermal energy of the background plasma. For each level of energy, we
performed a total of 8 simulations, each involving a particle count of Np = 1.6 × 106.
Furthermore, for both investigated scenarios—when considering only the equilibrium
and when it is coupled with electromagnetic perturbations—two sets of simulations
were performed: one considering collisions and the other omitting them. In simulations
that include collisions, the characteristic time of the stochastic part of collision operator
is τc = 103τTAPaS ≈ 10−6sec. Therefore, the time step in Eq.(9) is 1000 times larger than
that used for integrating particle trajectories.

In total, 16 simulations were performed. In the following subsections, we start
by studying the prompt losses (i.e., losses of charged particles in the absence of
electromagnetic perturbations). Subsequently, we focus on the effects of including the
electromagnetic perturbation resulting from Alfven eigenmodes, as discussed in Section
3.
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4.1. Prompt Losses

In the presence of a non-uniform magnetic equilibrium (e.g., a toroidal magnetic
field proportional to 1/R), particles can be categorized as co-passing, counter-passing,
or trapped. Losses in the presence of only the equilibrium magnetic field strongly
depend on particle type. These losses occur when certain particles have orbits that
intersect with the device wall, leading to their loss during their first orbit within the
device. To analyze and characterize these losses, we performed a total of 8 simulations,
each involving a particle count of Np = 1.6 × 106. These simulations covered two
energy levels (EEPs = 65Eth and EEPs = 115Eth). For each energy level, two sets of
simulations were performed—one considering collisions and the other omitting them.
In simulations that include collisions, the characteristic time of the stochastic part is
τc = 103τTAPaS ≈ 10−6sec. Therefore, the time step in Eq.(9) is 1000 times larger than
that used for integrating particle trajectories. Additionally, the particles were radially
initialized within two specific radial intervals: 0.038a ≤ ρ ≤ 0.3a (hereafter, the inner
region) and 0.3a ≤ ρ ≤ 0.57a (hereafter, the outer region).

Fig.10 shows, up to the moment indicated by the vertical line, the cumulative
distribution function of the fraction of lost particles in the presence of only the magnetic
equilibrium, denoted as flost =

Np,lost(t)

Np
, over time for the set of simulations where

collisions were omitted (i.e. prompt losses). It is observed that for both simulated
energies, almost all losses occur before t = 300τA. Throughout this paper, blue curves
represent the case where particles initialized in the inner region (i.e. closer to magnetic
axis), while red curves correspond to particles initialized in the outer region. As a
consistent observation for the scanned energies, we observe that particles initialized in
the outer region exhibit larger losses. For EEPs = 65Eth (EEPs = 115Eth), the total
prompt losses (i.e. before the vertical line) were 3.3% and approximately 17.8% (15.9%
and 33.4%) for inner and outer regions, respectively.

To better understand these losses, the top frames of Fig.13 show the fraction of lost
particles at the end of various simulations, defined by flost =

Np,lost(tend)

Np
, as a function of

the initial parallel velocity of the particles. As shown by the blue curves in the figure, for
both simulated energies, the average value of v∣∣ for lost particles peaks at a value of 5,
normalized to the reference velocity in TAPaS. However, while lost particles at higher
energy (EEPs = 115Eth) explore a wider interval in v∣∣ for the initialization in the inner
region, this interval remains comparatively small compared to the case when particles
are initialized in the outer region, as illustrated by the red curves in the bottom frame of
Fig.13. Two factors contribute to this behavior. Firstly, the main part of losses results
from trapped particles with orbit widths intersecting with the wall. On the other hand,
with an increase in the energy of charged particles, there is a growing contribution to
losses from co-passing and counter-passing particles.

To gain insight into this behavior, we present the prompt losses exhibited by
each particle type for two energetic particle beams (EEPs = 65Eth and EEPs = 115Eth)
in Fig.11. The left and right frames correspond to the low and high-energy cases,
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Figure 11: Fractions of different particle types are represented by the blue bars: left
bars for co-passing particles, middle bars for counter-passing particles, and right bars
for trapped particles. The corresponding prompt losses of each type are shown by the
orange bars -notice these losses are calculated as the number of lost particles of a specific
class divided by the total number of particles of that class. The top frames correspond
to radial initialization in the inner region, while the bottom frames represent radial
initialization in the outer region. The left frames are associated with particle energy
EEPs = 65Eth, and the right frames correspond to particle energy EEPs = 115Eth.

respectively, while the top and bottom frames represent radial initialization of the
particles in the inner and outer regions, respectively.

As shown in the left frames of Fig.11, in the case of low energy (EEPs = 65Eth),
most losses originate from trapped particles when particles are initialized closer to the
magnetic axis. Losses from co-passing and counter-passing particles are completely
negligible (e.g., the contribution of co-passing particles to total losses is approximately
0.7%). However, when particles are initialized in the outer region, losses from co-passing
and counter-passing particles amount to about 2.2% and 10.5%, respectively, as shown
in the bottom-left frame of the figure.

As the energy of the particles increases (EEPs = 115Eth), losses resulting from
trapped particles also increase for both radial initializations. As indicated in the right
frames of Fig.11, 62% of trapped particles are lost when they are initialized in the inner
region, while this ratio increases to 79% for the outer region. Moreover, as shown in
the top-right frame, the contribution of co-passing and counter-passing particles to the
losses remains negligible, while for radial initialization in the outer region shown in
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Figure 12: Top frames: Number of lost particles as a function of v∣∣ and µ for initialization
in the inner and outer regions in the left and right frames, respectively. Bottom frames:
Number of lost particles as a function of v∣∣ and ρ for initialization in the inner and outer
regions in the left and right frames, respectively.

the bottom-right frame, co-passing and counter-passing particles are now responsible
for approximately 9% and 26.6% of the total losses, respectively. As expected, this
is further supported by the results illustrated in the top frames of Fig.13 showing the
fraction of lost particles as a function of their initial parallel velocity for both simulated
energies.

A straightforward implication of assuming a strong guide field is the conservation of
the magnetic moment. Since this quantity is proportional to the perpendicular kinetic
energy of charged particles (i.e., µ = Ek,⊥/B), plotting the 2D distribution of the number
of lost particles as a function of their initial v∣∣ and µ completes the picture. In the
top frames of Fig.12, we plot, for EEPs = 115Eth, the number of lost particles in the
initial v∣∣ − µ plane of the phase space for both radial initializations. The top-left frame
corresponds to the initialization in the inner region, while the top-right frame illustrates
the initialization in the outer region. In both frames, the majority of losses arise from
trapped particles, and as expected, from those trapped particles with large perpendicular
energy. This is easily understood since higher perpendicular energy implies a larger
perpendicular velocity of particles, resulting in more drifts and wider orbit widths.
Finally, the bottom frames of Fig.12 display the number of lost particles as a function
of ρ and v∣∣. These figures reveal an interesting property for both radial initializations:
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Figure 13: Fraction of lost particles at the end of various simulations, defined as
flost =

Np,lost(tend)
Np

. The left frames correspond to lower energy, while the right ones
highlights the results for the higher energy. In the top frames, only the magnetic
equilibrium is considered, while in the bottom frames, electromagnetic perturbations
were included.

particles initialized farther from the magnetic axis explore wider intervals along the v∣∣
direction in phase space.

In simulations involving collisions, we observed their overall impact on dynamics to
be negligible for the simulated time window, as the collision frequency considered is three
order of magnitude smaller than the reference frequency of TAPaS. Additionally, during
extended simulations lasting for t = 2.6 seconds with only the equilibrium included, the
detrapping and trapping effects of collisions on particles were also observed. In other
words, collisions change the type of particles by, for example, allowing for a diffusion-
like region to exist close to the head of loss cone in velocity space, and thus detrapping
the charged particle resulting in a co-passing or counter-passing particle. However,
due to the time limit imposed by the nonlinear simulations presented in the previous
section, exploring the long-term effects of collisions in the presence of electromagnetic
perturbation will require performing longer nonlinear simulations with Far3D code.

In conclusion, prompt losses exhibit dependence on particle type, energy, and radial
initialization. Lower-energy prompt losses are dominated by trapped particles for both
radial initializations. Conversely, for higher energies, the contribution of co-passing
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Figure 14: The impact of electromagnetic perturbations on particle losses at EEPs =

115Eth presented as a function of v∣∣ and µ in the top frames, and of v∣∣ and ρ in the
bottom frames.

and counter-passing particles to the losses becomes more pronounced (see Fig.11) when
particles are initialized farther from the magnetic axis. On the other hand, the effects
of collisions in the investigated regime were found to be negligible due to their longer
characteristic time and the duration of the time window simulated by the non-linear
simulation.

4.2. Transport and losses of energetic particles in the presence of Alfvén eigenmodes

In this section, our primary focus is to analyze the effects of including electromagnetic
perturbations resulting from AEs activities on the overall losses of energetic particles.
In particular, we investigate the losses that occur after the prompt losses are saturated,
where first-orbit losses are no longer dominant; i.e., the electromagnetic perturbations
are activated during this stage. To achieve this, a series of simulations was performed
for two radial initializations: 0.038a ≤ ρ ≤ 0.3a (inner region) and 0.3a ≤ ρ ≤ 0.57a (outer
region). These simulations involved a particle number Np = 1.6×106 and a total duration
of 3000τA. The beam energies and other initial parameters were maintained as described
in the previous subsection 4.1, and electromagnetic perturbations were introduced in all
simulations at t = 502τA.

The effects of including electromagnetic perturbations on particle losses over time
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are illustrated in Fig.14 for EEPs = 65Eth and EEPs = 115Eth in the left and right frames,
respectively. For EEPs = 65Eth, the total losses at the end of the simulations were 9.1%

(blue curve) for the radial initialization in the inner region and 23% (red-dashed curve)
for that in the outer region. In comparison to prompt losses, this implies that in this
case, the increase in losses due to the presence of AEs activities is 5.8% and 5.2% for
the radial initializations in the inner region and the outer region, respectively. On the
another hand, the losses at the end of simulations for EEPs = 115Eth (right frame of the
figure) are 18.4% (blue curve) for 0.038a ≤ ρ ≤ 0.3a with an increase of around 2.5%

compared to prompt losses, and 37.3% (red-dashed curve) for 0.3a ≤ ρ ≤ 0.57a with an
increase of around 3.9% compared to the prompt losses. Another interesting feature is
that the losses resulting from including electromagnetic perturbations for the case of
low energy (left frame of Fig.14) are larger compared to prompt losses than in the case
of higher energy (right frame of Fig.14).

To understand this result, the fraction of particle losses, defined as flost =
Np,lost(tend)

Np
,

is plotted in the bottom frames of Fig.(13) as function of the initial values of v∣∣. For the
case of EEPs = 65Eth shown in the bottom-left frame, it is evident that the values of v∣∣
around which the largest losses occur remain approximately equal to the case when only
prompt losses exist (top-left frame). However, as shown in the bottom-left frame, the
losses are both larger compared to those shown in the top-left frame and expand wider
intervals of v∣∣. The differences are more challenging to recognize for the EEPs = 115Eth

case shown in the right frames, where the largest values remain centered around the
same values for both cases when including electromagnetic perturbations (bottom-right
frame) and when they are absent (top-right frame). Moreover, the values of flost are
slightly larger in the bottom-right frame, mainly for the radial initialization close to the
magnetic axis (blue curve).

To further quantify the differences in losses due to the presence of AEs, we plot
in Fig.14 on a log scale the number of lost particles resulting only from the inclusion
of the perturbations at the end of simulations for EEPs = 115Eth (i.e. Np,lost EMs =

Np,total losses−fp,prompt losses). In the top frames, we show the projection Np,lost EMs(v∣∣, µ)

for 0.038a ≤ ρ ≤ 0.3a and 0.3a ≤ ρ ≤ 0.57a in the left and right frames, respectively, while
in the bottom frames, we plot the corresponding Np,lost EMs(v∣∣, ρ).

For the initialization closer to the magnetic axis (left frames), we notice that the
main contribution to the losses in the presence of AEs is due to the trapped particles,
as evident in the top-left frame. This result is consistent with the losses of different
types of particles shown in the top-left frame of Fig.11, where only 15% of the trapped
particles were lost (compare also with Fig.13). On the other hand, passing particles
have a larger contribution to losses when initialized in the outer region, as illustrated in
the top-right frame of Fig.14. This result can be understood for the scenarios discussed
in this paper since lost particles explore a wider range of v∣∣ when initialized further from
the magnetic axis, as shown in the bottom frames of Fig.14. The additional losses can
then be partially attributed to passing particles whose first orbits intersect with the last
available closed magnetic surface, a result that also applies when only the prompt losses
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Figure 15: Top frames: the number of confined particles as a function of ρ for
EEPs = 115Eth (solid curves and dashed curves represent cases where only the
magnetic equilibrium and when AEs are included, respectively). Bottom frames: the
number density of confined particles at the end of the simulations in the presence of
electromagnetic perturbation resulting from AEs activities.

are considered, as shown in Fig.11.
The influence of AEs on the spatial distribution of particles is illustrated in

Fig.15. In the top frames, we show the number of confined particles at the end of
the simulations as a function of the radius-like variable ρ for EEPs = 115Eth and the
two radial initializations considered in this paper. Solid lines represent the case where
only the magnetic equilibrium is considered, while the dashed curves correspond to
the simulations where electromagnetic perturbations were included. In the investigated
scenarios of this paper, we notice that the effect of magnetic equilibrium is to redistribute
the particles in the radial direction. It is evident then that the presence of AEs results
in more losses, as shown by the dashed curves in the top frames. However, although
these losses are small compared to the prompt losses (solid curves) as discussed above
(c.f. right frame of Fig.10), we notice that the interval around the region with the
maximum number of particles exhibits the largest losses since the fraction of particles
with the largest energies exists in this region. Additionally, we recall that the duration
of the AEs simulations performed here is fixed by the external simulation (i.e., in our
case, Far3D code as discussed in section 3). The results reported in Fig.10 correspond
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to Far3D simulations extending over 2500τA = 0.7 msec, where in these simulations
τA = 2.97 × 10−7sec, which can be very short compared to the duration of an AEs pulse
that can last for a fraction of second [19]. Therefore, with longer simulations, it is
expected that the losses of energetic particles will possibly further increase due to the
wave-particle interactions between energetic particles and the AEs.

Another way to visualize the spatial distribution of confined particles is by plotting
the normalized energetic particle number density (i.e., nEPs(R,Z)) in the poloidal plane
at the end of simulations in which electromagnetic perturbations were included, as shown
in the bottom frames of Fig.15. In the bottom-left frame of the figure, nEPs is displayed
for the radial initialization in the inner region, while the bottom-right frame presents
nEPs for the initialization in the outer region. These frames illustrate that the particles
are redistributed in the poloidal plane, with the maximum value of the density, occurring
approximately at the average value of the initial radial interval with larger values of
density on the high-field side of the poloidal cross-section, a trend that becomes more
pronounced when particles are initialized further from the magnetic axis.

5. Conclusions and future work

In this paper, we discuss the recent upgrades implemented in the TAPaS code. These
updates involved developing a full-orbit version of the code to resolve particle dynamics
in the 6D phase space by implementing the Boris scheme to solve the equations of motion
for charged particles. Additionally, the code was extended to handle realistic geometries
with coordinate systems based on magnetic equilibrium obtained through approximate
analytical solution (e.g., analytical solutions of the Grad-Shavranov equation using
expansion methods [57]), numerical methods (e.g., employing the VMEC code[58]),
or experimental data (e.g., fitting experimental data with TRANSP[59] and EFIT[60]).
The new updates also included the implementation of the Metropolis-Hastings sampling
method for initializing particles. Furthermore, collisions were introduced through an
operator acting on particle velocity in phase space. These updates, associated with the
newly implemented multi-dimensional bspline interpolation and a correction algorithm
near the last available magnetic surface, enabled us to couple TAPaS with other codes,
such as the gyro-fluid code Far3D[33] or the full-f gyrokinetic code GYSELA[37].

By coupling TAPaS with the Far3D code, we studied the transport and losses of
EPs in the presence of Alfvén eigenmodes in the DIII-D tokamak. Far3D simulation
was performed for βEP = 0.03. Linear analysis revealed that within this phase, the
n = 3 EAE family at f ≈ 160 exhibited the maximum growth rate and prominently
dominated by 9/3, 10/3, and 11/3 modes; while the nonlinear phase, characterized by
MHD burst events, possibly resulting from modes overlap, was primarily dominated by
the 9/3 RSAE mode [43].

In TAPaS, the particles were mono-energetic and uniformly initialized in both
toroidal and poloidal angles for two radial initializations: 0.008a ≤ ρ ≤ 0.0285a and
0.3a ≤ ρ ≤ 0.58a. We have shown that the prompt losses (i.e. first orbit losses) of
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energetic particles are larger for higher energies and when initialized further from the
magnetic axis. Moreover, as expected we have shown that the prompt losses strongly
depend on the particle type, while the effect collisions on the losses was negligible for
the time window simulated in this paper.

In the presence of AEs activities, we once again observed that the effects of collisions
remain negligible. On the other hand, the losses of energetic particles increase with
the inclusion of electromagnetic perturbations for both simulated beam energies. This
rise in losses is primarily attributed to the enhancement in trapped particle losses (as
classified with respect to equilibrium) and contributions resulting from passing particles,
mainly in scenarios where particles are initialized in the outer region. Moreover, the
ratio between losses resulting from AEs activities and the prompt losses was larger for
energetic particles with lower energy since the prompt losses of trapped particles in this
case were smaller compared to energetic particles with higher energy (c.f. Fig.11).

The simulations performed in this paper, aimed at testing the new tools developed
in TAPaS to account for realistic geometries and to investigate energetic particle
transport in 6D phase space by adopting simple uniform initialization of mono-energetic
particles in phase space. Further simulations with more realistic particle initialization
are necessary to model experiments. This includes simulating parallel and perpendicular
Neutral Beam Injection (NBI) at specific toroidal angles, which will require employing
the Metropolis algorithm to sample radial profiles of density and temperature for
different species. Another crucial aspect to consider longer non-linear simulations to
study the effect of collisions with the background plasma on the transport of energetic
particles, as collisions play a important role in slowing down these particles and
consequently affect their losses and transport, depending on their energy and the length
of Alfvén eigenmode events. This will be explored in a forthcoming paper.
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Appendix A. Coordinate transformations

The co- and contra-variant representations of a vector Q read

Q = Qiei (A.1a)

Q = Qi∇x
i (A.1b)

where ∇xi = ∂xi

∂X , ei = ∂X
∂xi , and the co- and contra-variant components of Q are linked to

each other through the metric tensor g by the relations

Qi = gijQj (A.2a)

Qi = gijQ
j (A.2b)

with the contra-variant and co-variant representations of the metric tensor are,
respectively,

gij = ∇xi ⋅ ∇xj (A.3a)

gij = ei ⋅ ej (A.3b)

where the Einstein’s notation over the repeated indexes is implicit. The norm of ei
does not necessarily equal one. Therefore, we use the notation êi to denote the unit
vector ei/∥ei∥. Knowing the metric tensor and one of the two representations of Q, one
can use Eqs. (A.1) to find the other representation. In the most general case where
the equilibrium magnetic field is 3D and φ does not necessarily coincide with x3, the
Jacobian matrix of the transformation between cylindrical and generalized coordinates
read

[J] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂x1R ∂x2R ∂x3R

∂x1Z ∂x2Z ∂x3Z

∂x1φ ∂x2φ ∂x3φ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.4)

The Jacobian matrix of the inverse transformation straightforwardly reads

[J]
−1
=
1

J

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂x2Z∂x3φ − ∂x3Z∂x2φ ∂x3R∂x2φ − ∂x2R∂x3φ ∂x2R∂x3Z − ∂x3R∂x2Z

∂x3Z∂x1φ − ∂x1Z∂x3φ ∂x1R∂x3φ − ∂x3R∂x1φ ∂x1Z∂x3R − ∂x3Z∂x1R

∂x1Z∂x2φ − ∂x2Z∂x1φ ∂x2R∂x1φ − ∂x1R∂x2φ ∂x1R∂x2Z − ∂x2R∂x1Z

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.5)

where J = det [J]. From the chain rule, one easily finds

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

dR

dZ

dφ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= [J]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

dx1

dx2

dx3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

dx1

dx2

dx3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= [J]
−1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

dR

dZ

dφ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.6)
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Assuming (x1, x2, x3) = (ρ, θ,φ) and a 2D equilibrium, we have ∂x3 = 0, ∂x1φ =

∂x2φ = 0 and ∂x3φ = 1. The Jacobian matrix of the inverse transformation therefore
reduces to

[J]
−1
= [
[Jred]

−1
0

0 1
] (A.7)

with

[Jred]
−1
=
1

J
[
∂θZ −∂θR

−∂ρZ ∂ρR
] (A.8)

where J = ∂ρR∂θZ − ∂ρZ∂θR. Owing to the relation dxi = ∇xi ⋅ dX, one can write

∇ρ =
1

J
(∂θZ∇R − ∂θR∇Z) (A.9)

∇θ =
1

J
(−∂ρZ∇R + ∂ρR∇Z) (A.10)

In the cylindrical coordinate system, the contra-variant and co-variant basis vectors
coincide with each other along the R and Z directions, i.e. eR = ∇R, eZ = ∇Z, whereas
eφ = R∇φ. In TAPaS, when the geometry (R(ρ, θ,φ) and Z(ρ, θ,φ)) is obtained from
another numerical code such as VMEC, the contra-variant and co-variant metrics can
be calculated using Eqs. (A.3) and Eqs (A.9)-(A.10). However, it is important to note
that for 3D equilibria, such as in the case of stellarators, the ∂x3 terms do not vanish. As
a result, the inverse Jacobian is no longer a block-diagonal matrix as shown in Eq.(??).
Eqs (A.9)-(A.10) would need to be modified accordingly to account for this additional
dependence on the x3 coordinate. This modification ensures accurate calculations and
consistent representation of the magnetic equilibrium in the 3D case.

Since in TAPaS, the equations of motion are solved in Cartesian coordinates, one
has to obtain the j-th Cartesian component of a vector Q. Eq.(A.1b) must be multiplied
by the corresponding unit vector, denoted as ej, where j can be either x, or y, or z.
The transformation can be expressed as follows:

Qj = Qi∇x
i ⋅ ej (A.11)

where xi = ρ, θ,φ. The Cartesian unit vectors are given in cylindrical coordinates by

ex = sinφeR + cosφeφ, ey = cosφeR − sinφeφ, ez = eZ (A.12)

where eφ = R∇φ. Therefore, substituting Eq.(A.12) in Eq.(A.11), and using Eqs. (A.9)-
(??), one finds, for 2D equilibria, the following transformation equations

Qx =
sinφ

J
∂θZQρ −

sinφ

J
∂ρZQθ +

cosφ

R
Qφ (A.13)

Qy =
cosφ

J
∂θZQρ −

cosφ

J
∂ρZQθ −

sinφ

R
Qζ (A.14)

Qz = −
∂θR

J
Qρ +

∂ρR

J
Qθ (A.15)

The aforementioned transformations have been implemented in TAPaS, enabling the
computation of the Cartesian components of the electromagnetic fields necessary for
solving Eq.(4) .
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Appendix B. Interpolation methods

Appendix B.1. Multi-dimensional Lagrange interpolation

In TAPAS, we implement both linear and cubic Lagrange interpolation for both 1D and
2D cases. A general formula for Lagrange interpolation of order q in an n-dimensional
space can be written as follows:

f(x1,p, x2,p,⋯, xn,p) =
q+1

∑
i1=1

⋯

q+1

∑
in=1

Li1(x1,p)⋯Lin(xn,p)f(x1,i1 ,⋯, xn,in) (B.1)

where
Lil(xl,p) =

q

∏
k≠il

xl,p − xl,k
xl,il − xl,k

(B.2)

For example, in 2D space and for cubic interpolation, we substitute q = 3 and n = 2 into
the previous equation, yielding:

f(xp, yp) =
4

∑
i=1

⋯
4

∑
j=1

Li(xp)⋯Lj(yp)f(xi, yj) (B.3)

with
Li(xp) =

q

∏
k≠i

xp − xk
xi − xk

(B.4)

In TAPaS, Lagrange interpolation is employed for both 1D and 2D cases, primarily for
interpolating equilibrium quantities at the particle position. Additionally, it is used to
adjust the grid in the cylindrical coordinate system to avoid interpolation errors arising
from the presence of some interpolation nodes outside the physical domain, specifically
beyond the last closed magnetic surface, where certain fields are not defined. This
approach guarantees accurate interpolation of the necessary quantities across the entire
computational domain, enhancing the overall reliability of the simulations. However, it
should be noted that the accuracy of the interpolation scheme can have a significant
impact on the trajectory of the particle. Inaccuracies introduced by using a low-order
interpolation method can lead to numerical drift, which in certain scenarios can result
in particle losses close to the last closed surface. Therefore, choosing an appropriate
interpolation method with sufficient accuracy is crucial for maintaining the integrity of
particle trajectories in the simulation.

Appendix B.2. Multi-dimensional bspline interpolation

As mentioned earlier in this section, in addition to cubic Lagrange interpolation (given
by Eq.(B.1)), TAPaS also offers the option of using B-spline interpolation in 1D, 2D,
and 3D. B-spline interpolation is primarily employed for interpolating electromagnetic
perturbations obtained through the coupling of TAPaS with another code. This choice
ensures numerical stability and accurate integration of particle trajectories.
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Similar to Lagrange interpolation, B-spline interpolation can be formulated in a
tensorial form for a space of n dimensions. However, for the purposes of this discussion,
we will focus on the 2D case as it provides a compromise between the simplicity of 1D
and the complexity of 3D, while still covering the various aspects of the method. In
2D space, the interpolated field f at the particle position (xp, yp) can be expressed as
follows:

f(xp, yp) ≈
Nx−2

∑
i=−3

Ny−2

∑
j=−3

ηi,jBi,3(xp)Bj,3(yp) (B.5)

where Bi,3 and Bj,3 are the B-spline basis functions along x and y directions, respectively,
and ηi,j are the (Nx + 2)(Ny + 2) B-spline coefficients that need to be calculated
beforehand. It is important to note that the previous definition does not assume
any specific order of interpolation, and all points in the computational domain can
in principle be used when appropriate boundary conditions are considered. In TAPaS,
we implement cubic B-spline interpolation. The basis function along a given direction,
such as x, is expressed as follows:

Bi,3(x) =
1

(∆x)3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x − xi)3, xi ≤ x < xi+1

(∆x)3 + 3(∆x)2(x − xi+1) + 3(∆x)(x − xi+1)2 − 3(x − xi+1)3, xi+1 ≤ x < xi+2

(∆x)3 + 3(∆x)2(xi+3 − x) + 3(∆x)(xi+3 − x)2 − 3(xi+3 − x)3, xi+2 ≤ x < xi+3

(xi+4 − x)3, xi+3 ≤ x < xi+4

0,otherwise

(B.6)
The tensor ηi,j represents the projection coefficients tensor of rank 2d that needs to be
computed during the update of the electromagnetic fields. To determine the elements of
this tensor, a total of (Nx+2)×(Ny+2) equations are required. Among these equations,
(Nx×Ny) are obtained from the values of the function at the grid points. The remaining
equations arise from the boundary conditions, which can be either periodic (e.g., in the
toroidal and poloidal directions) or natural (e.g., in the radial direction). In the case
of natural boundary conditions, the second derivative of the approximated function
vanishes at the boundaries.

In TAPaS, interpolation methods used for time and space are different. While
cubic B-spline interpolation is available for temporal interpolation, linear interpolation
is employed for the fields at the particle position in time. On the other hand, cubic B-
spline interpolation is utilized for spatial interpolation. In TAPaS, the electromagnetic
fields are read from external simulation at two time steps ts and te, while the particle
exists at time tn with ts < tn < te. To correctly interpolate the fields at the particle
postion at tn, the following procedure is followed:

● The fields at the particle position x are interpolated using cubic B-spline
interpolation at both ts and te. This step ensures that the fields are accurately
represented at those time instances.
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● Once the fields are interpolated at x for ts and te, they are linearly interpolated at
tn using the field values at ts and te. This linear interpolation allows for estimating
the fields at the specific time tn when the particle exists.

By performing these interpolation steps, TAPaS effectively combines cubic B-spline
interpolation in space and linear interpolation in time to obtain the fields at the particle’s
position and time.

Appendix C. Brief overview of FAR3d

The nonlinear version of FAR3d code solves a system of equations for both the thermal
plasma and an arbitrary number of energetic particle populations. Regarding the
thermal plasma, the code evolves nonlinear equations for the perturbed fields: Ohm’s law
for the perturbed magnetic stream function ψ, an equation for the parallel component
of the vorticity U , and another two for both the perturbed pressure p and the parallel
velocity of the plasma v∥, where the the model assumes vE×B to be the dominant plasma
velocity. For the energetic particles, the code solves two additional equations for each
particle population. These equations are derived by taking the first two moments of
the gyrokinetic equation, allowing for the inclusion of wave-particle interactions via a
two-pole energetic ion closure model [31], resulting in equations for the parallel velocity
vEP,∥ and density nEP of the energetic particles.

FAR3d makes use of Fourier decomposition of various fields on rational magnetic
surfaces in both toroidal and poloidal directions within the Boozer coordinate system
[48, 49]. Subsequently, a nonlinear evolution equation is solved for each mode using
an implicit multi-step finite difference method in the radial direction. The nonlinearity
inherent in the original system of equations in real space is incorporated through the
convolution terms present in the equations for each mode. These convolution terms
account for the interaction of the corresponding mode with all the other remaining
modes.

The equilibrium fields, including the magnetic field and magnetic flux surfaces,
are obtained through numerical calculations by solving the ideal magnetohydrodynamic
(MHD) equation using the VMEC code [58] that implements a variational method to
minimize the total energy of the plasma, resulting in the determination of the magnetic
flux surfaces. FAR3d then establishes the Boozer coordinate system and evolves various
perturbed quantities according to the chosen equilibrium profiles. The selection of
poloidal and toroidal mode numbers (m/n) that determine the modes evolved by the
code is done in a way that is compatible with the safety factor profile involved in
the equilibrium calculation. Additionally, the code has the capability to read initial
and equilibrium values for different fields from an external file. These values can be
obtained through analytical methods, experimental measurements, or using codes such
as TRANSP [59] that allows for the determination of profiles and transport coefficients
by combining experimental results with the solution of particle and energy balance
equations.
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