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Abstract 

Detailed kinetic models are valuable tools for a clear understanding of the dynamics of 

complex reacting systems based on radical-chain mechanisms, such as combustion and 

oxidation. Gas-phase automatic kinetic generators, such as EXGAS, RMG, MAMOX, 

NetGen, REACTION, and GENESYS can be used to establish a detailed network of reaction 

pathways and the rates associated with each reaction. The range of applications of these gas-

phase kinetic generators can be extended to liquids through diffusional and solvation 

corrections directly applied to the gas-phase thermo-kinetic data. In this work, a flexible 

framework is proposed for the calculation of the solvation correction involving closed-shell 

(i.e., non-free radical) and open-shell (i.e., free radicals) molecules. This novel model relies 

on the Peng-Robinson cubic equation of state (EoS) combined with a quantum-based 

continuum solvation model (COSMO-RS) through an advanced mixing rule. Unlike most 

predictive equations of state, the proposed model requires only pure compound inputs: critical 

temperature (    ), critical pressure (    ), acentric factor (  ), and the screening charge 

distribution ( -profile). These inputs were obtained for C/H/O free radicals using group 

corrections applied to the known values of the associated closed-shell molecules (parent 

molecules). The resulting EoS is able to provide fast predictions of solvation quantities of 

closed-shell molecules and C/H/O free radicals with a mean unsigned error of around 0.30 

kcal/mol. The great advantage of this method is that it allows high-throughput computation of 

solvation quantities in pure solvents and mixtures at any temperature (including the 

supercritical domain), which could enable the simulation of complex oxidation kinetics in a 

wide range of applications. 
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1 Introduction 

Kinetic models offer valuable insights into the dynamic behavior of reacting systems. 

Constructing a kinetic model involves creating a network of chemical reactions that 

accurately depict the underlying mechanism of a given chemical process. Subsequently, each 

reaction is attributed a rate law, shedding light on the temporal progression of these reactions.  

For simple systems involving a small number of reactions, the construction of the 

mechanism and its pathways can be done manually based on the knowledge acquired through 

other disciplines such as organic chemistry and biochemistry [1]. However, when dealing 

with complex chemical processes characterized by extensive networks of reactions, the task of 

manually constructing a kinetic model can quickly become too laborious or even unfeasible. 

Fortunately, recent strides in computational chemistry have opened the door to the 

implementation of the so-called automatic kinetic generators, which alleviate this challenge 

by enabling the automated construction of complex reaction networks.  

In short, automatic kinetic generators are based on perfect gas approximations for the 

computation of the required thermochemical properties (often employing the group additivity 

method originally formulated by Benson [2]), along with established rate rules and predefined 

reaction templates [3]. Some examples of automatic kinetic generators are EXGAS, RMG, 

MAMOX, NetGen, REACTION, and GENESYS. They have been widely used to describe 

complex free radical chain mechanisms taking place in gas phase, such as pyrolysis, 

combustion or atmospheric oxidation phenomena [4].  

Nonetheless, in some applications of industrial interest, those oxidation mechanisms take 

place in liquid phase. A notable illustration of this is the Hock process, where cumene 

undergoes oxidation reactions in a liquid medium to yield phenol [5,6]. This process attracts a 

lot of attention because phenol is a crucial precursor for the synthesis of a wide range of 

organic chemicals and polymers. Another noteworthy example is the oxidation of 

cyclohexane to produce KA oil (a mixture of cyclohexanone K and cyclohexanol A), which is 

a vital intermediate in the Nylon manufacturing process [7,8]. The liquid-phase oxidation 

mechanism can also play an important role in advanced wastewater treatments. An intriguing 

illustration can be found in the Fenton oxidation process [9], where hydroxyl free radicals are 

generated through the reaction of hydrogen peroxide with an iron catalyst to promote the 

degradation of organic pollutants. Regarding the energetic transition context, liquid phase 

oxidation is also the driven mechanism behind fuel ageing, which turns to be a major 

drawback when it comes to the use of biofuels in aircraft [10–12]. Modelling the physical 

process governing fuel ageing is therefore a necessary first step to control and limit this 

undesirable phenomenon.  

The above examples demonstrate that there is a demand for kinetic models capable of 

describing complex mechanisms in liquid phase. However, and in agreement with the 

literature, developing detailed kinetic models for such cases remains a challenge mainly 

because of the thousands of solvent-dependent thermo-kinetic data they demand. Yet, not 

only are thermo-kinetic experimental data scarcer in pure solvents, and virtually non-existent 

for complex mixtures, but there are no liquid-phase data for the free radicals at the heart of 

chain radical mechanisms. Because of this, the approach adopted in the literature is to extend 

the gas-phase mechanism to the condensed phase by adding corrections to the gas-phase 

thermochemical and kinetic data. For instance, rate constants for bimolecular reactions can be 

extended to liquids by incorporating diffusional and solvation effects, as shown in equation 

(1) [13]. 
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 is the effective reaction rate in liquid-phase, the term      is the rate of 

diffusion, in which   is the sum of radii of the reactants, and   is the sum of the diffusivities 

of the reacting species that can be estimated by the Stokes-Einstein relation [14]. The intrinsic 

reaction rate     
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Equation (2) can be directly used to correct gas-phase bimolecular rate constants. The 

property v
‡

sol G  is the solvation Gibbs energy of activation, i.e., the difference between the 

solvation chemical potentials of the transition-state (TS) structure (denoted solv TS,liqg ) and 

those of the reactants ( solv ,i liqg ), as shown in equation (3) [13].  

 solv solv TS,liq solv
‡

reactant ,liqi

i

G g g       (3) 

The solvation chemical potential of component  ,         , is defined as the isothermal and 

isobaric change in the chemical potential when a molecule  , devoid of kinetic energy, is 

transferred from a perfect gas phase into a liquid  phase [15,16].  

To clarify, the relations between activation properties (denoted by symbol ‡ ) and solvation 

energy are graphically illustrated in Figure 1. 

 

Figure 1. Potential energy surfaces associated with gas-phase and liquid-phase reactions. 

Graphical illustration of activation and solvation energies.  

There are many methods available to predict         , such as linear solvation energy 

relationships (LSERs) [17], machine-learning [17–19], continuum and discrete solvation 

models [20–22], and equations of state (EoS) [22,23]. 

The EoS approach, in particular, has already been successfully implemented in 

autoxidation kinetic simulations of pure n-alkanes using the UMR-PRU cubic EoS [24] to 

generate values of          [11,25]. Nonetheless, in such simulations, the solvation Gibbs 

 

‡

exp( )
ga

g
B s

as

k T

R

G
k

h T
T

 
   

 

 

s

ga

‡

olv

l siq exp
RT

G
k k

 
  








 

Thus: 
activation Gibbs energy

 in the i

‡

solv
l

 li

iq

qu d

‡( )
expB

G
k

k T

h R

G

T

 
 
  

  
 
 



 



6 4 4 7 4 48

 

 
 



Predicting Solvation Energies of Free Radicals and Their Mixtures: A Robust Approach Coupling the Peng-Robinson and COSMO-RS models 

4 

energy of free radical species present in the kinetic mechanism was approximated as the 

solvation Gibbs energy of their parent molecules, i.e., their closed-shell version with a  -

atom added on the radical site. As an example, ethyl hydroperoxide 2 5C H OOH  is the parent 

molecule of the peroxyl radical 2 5C H OOg. However, this approximation turns out to be valid 

in non-polar liquid phase only (see Figure 3 of [11]), which can be an important source of 

error in simulations in polar media. 

This approximation between free radicals and parent molecules seemed necessary because 

the pure compound and mixture inputs that are required by the cubic EoS (i.e., critical 

temperatures, critical pressures, acentric factors, and binary interaction parameters) are not 

available for free radicals. In addition, the existing models enabling to predict these input 

properties are limited to closed-shell molecules and, therefore, cannot be applied to radicals.  

To overcome these limitations, the present work introduces new predictive methods to 

generate those inputs for free radicals based on simple and easy-to-use group contribution 

methods for the calculation of critical constants and acentric factors. Moreover, following a 

previous study of our group on the prediction of solvation energies of closed-shell molecules 

[26], a quantum-based continuum solvation model was incorporated into the tc-PR cubic EoS 

making it possible to predict the complex molecular interactions within mixtures (this 

solvation model relies on the well-established COSMO-RS approach).  

Although the model proposed in this paper is totally new, some rare studies in the literature 

rely on a similar approach [27–30]. These studies have demonstrated that employing such a 

combination can yield reliable predictions of phase equilibria and solubility data across the 

entire fluid region of a phase diagram (liquid, vapor, and supercritical). A major advantage of 

this type of model is that it does not require binary interaction parameters as input and can 

therefore predict the thermodynamic properties of systems involving unstable or unusual 

molecules, such as free radicals, for which there is very little experimental data in the 

literature. 

2 Modeling section 

2.1.1 Predicting solvation quantities from an EoS 

For a given temperature ( ), pressure ( ) and composition (molar fractions  ), the 

solvation chemical potential of a solute   in a liquid phase (              can be calculated with 

an equation of state (EoS) as follows [16,22,23]: 

 
( , , ) ( , , )

( , , ) ln m i
solv i

P V T P T P
g T P RT

RT

  
   

  

z z
z   (4) 

This approach relies on the calculation of the fugacity coefficient of solute   (   , and the 

estimation of the molar volume of the liquid phase (  ). Both can be straightforwardly 

estimated by a cubic equation of state. To do this, we need first to calculate the EoS 

parameters of each pure compound (i.e., the attractive parameter, covolume and translation 

parameter, see their definitions below). Knowing these parameters, the mixture properties of 

interest can then be estimated at the specified temperature, pressure and composition. The 

following sections show how to calculate the properties of closed-shell molecules. A method 

adapted for free radicals is then proposed. 

2.1.2 The Peng-Robinson EoS for pure molecular compounds (closed-shell molecules) 

Cubic EoS are well-known for their good trade-off between accuracy and computational 

cost. In a previous study that dealt with solvation energies of closed-shell solutes [26], a state-
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of-the-art version of the Peng-Robinson cubic EoS [31,32] was considered: the tc-PR EoS 

(translated-consistent Peng-Robinson) [33,34]. For a pure compound  , this EoS is defined as 

follows: 

 
( )

( ) ( )( ) ( )

i

m i i m i m i i i m i i

a TRT
P

V c b V c V c b b V c b
 
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  (5) 

Where, for a compound  ,       is the attractive parameter,    is the co-volume of the non-

translated cubic EoS (simply called “co-volume” thereafter), and    is the volume translation. 

Based on the knowledge of the critical temperatures (    ) and critical pressures (    ), the co-

volume (  ) and the attractive parameter at the critical temperature (         or simply     ) 

can be obtained from equations (6) and (7). 
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Where,    and    are universal constants depending on the version of the cubic EoS 

considered. For the Peng-Robinson EoS: 
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The calculation of the parameter    for other temperatures than the critical one is done 

through the so called α-functions.  
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α-functions are the core of every cubic EoS since they ensure its accuracy for a wide 

temperature range. Several α-functions are available in the literature, for instance, Soave [35], 

Boston-Mathias , Mathias-Copeman [36], and Twu 91 [37]. In the case of the tc-PR EoS, the 

Twu 91 α-function [37,38] was chosen among the other options due to its thermodynamic 

consistency (see details on this topic in [39]) and accuracy achieved by using compound-

specific parameters fitted to experimental data (  ,   , and   ) [34]. The formulation of the 

Twu 91 α-function is given below. 

  ( 1)
, , ,( ) exp 1

    
  

i i i iN M M N
i r i ir i r iT T L T   (10) 

When the parameters   ,   , and    are not available, generalized correlations based on 

acentric factors (  ) can also be used instead [39].  Note that these correlations are not valid 

for quantum fluids such as    and He. 
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A temperature-independent volume translation parameter (  ) is added to improve the 

accuracy in predicting volumetric properties. The value of    is calculated to ensure that the 

equation of state replicates the experimental saturated liquid molar volume at a given 

temperature - in the present case, at         . Optimal values for    are given in [34], but 

they can also be predicted by correlations based on critical constants and acentric factors, as 

shown in equation (12) [34,40].  
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2.1.3 Calculation of mixture EoS parameters from advanced mixing rules 

For dealing with mixtures, the formulation of the cubic EoS is essentially the same, see 

equation (5), but the parameters      ,   , and    become mixture parameters (      ,     , 
and     ) that are functions of the composition of the system ( ). The pure compound 

parameters and the mixture parameters are related through the so-called mixing rules. Inspired 

from the works of Huron and Vidal, and Michelsen [41,42], the following advanced mixing 

rules were proposed for   -component mixtures [26,43,44].  
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The mixture parameters      and      depend only on the pure compound parameters (   

and   ), and the mixture composition  . The calculation of the attractive parameter of the 

mixture (   ) requires the estimation of the residual Gibbs excess energy (    
   

), which is 

related to the residual activity coefficient of each compound in the mixture (  
    , as shown 

in equation (16) [43]. It is recalled here that the residual part of an activity coefficient model 

refers to its enthalpic (or non-combinatorial) contribution. Any activity coefficient model with 

a residual contribution can be used in this equation. As in a previous study [26], COSMO-RS 

was used to calculate residual activity coefficients. 
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In the COSMO-RS framework, the prediction of residual activity coefficients depends 

exclusively on pure compound information, which stands for the probability distribution of 

the polarization charge density ( ) over molecular cavity surfaces [45]. This distribution, 

obtained through quantum calculations, is represented in a histogram called σ-profile (denoted 

as       for a pure compound  ). An example of σ-profile is given in Figure 2. 

 

Figure 2. Example of a σ-profile histogram (1-propanol), where    is the total COSMO cavity 

area,       the probability distribution of the polarization charge density (σ). 

As it requires neither experimental data nor fitted binary interaction parameters [46], the 

COSMO-RS model is particularly interesting for predicting activity coefficients involving 

free radicals. Details of the formulation of the COSMO-RS version of the model used in the 

mixing rule are given elsewhere [26]. 

2.2 Adapting the EoS approach for dealing with free radicals 

All the procedure presented above can be applied to closed-shell molecules only, since the 

pure compound parameters (  ,   , and   ) cannot be estimated for free radicals due to a lack 

of knowledge of critical properties (     and     ), and acentric factors (  ) for such species. 

For this reason, a new method was developed in this work to enable the prediction of the pure 

compound parameters without the a priori knowledge of     ,      and   . In addition, a fast 

method to predict σ-profiles of these radicals is also proposed. 

2.2.1 Proposal of group contribution methods to predict   ,   , and   of molecules and free 

radicals 

The starting point for the following discussion is the empirical observation that power 

functions of both the co-volume (  ) and the attractive parameter at the critical point (    ) 

show a linear dependence on molecular weight (     for a homologous series of compounds, 

as pinpointed in Figure 3. This linear behavior tends to prove that    and      can be predicted 

by the concept of group additivity. Based on this, a simple and easy-to-use group contribution 

method is proposed in equations (17) and (18). 
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Figure 3. Linear dependence of power functions of      and    with respect to the molecular 

weight (MW) of pure compounds sorted by homologous family. Note that the linearity is 

achieved when the exponents of    and      are 0.80 and 0.67, respectively. 
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In the equations above, 
jgN  is the occurrence of the group    in the molecule  , whereas 

jc,[g ]A  and 
j[g ]B  are the contributions of the functional group    to the properties      and   , 

respectively. The parameters     and    are the exponents of the power functions of      and 

  , and they turn to be 0.67 and 0.80, respectively (more details on this will be given in 

Appendix 1). Note that the expressions of             and           with respect to      and 

     come from equations (6) and (7). The methodology used for the determination of the 
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group contributions 
jc,[g ]A  and 

j[g ]B  for molecular species and free radicals is detailed in 

section 3.2. 

Once      and    are known, the critical temperature (    ) and pressure (    ) of a molecule 

or a free radical can be estimated by equations (19) and (20) which were derived from 

equations (6) and (7). 
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To summarize, at this step of the procedure, the proposed group-contribution method 

allows the determination of the critical attractive parameter             , the co-volume   , 

as well as the critical properties      and      of radicals. 

It now remains to determine the attractive parameter of free radicals for temperatures other 

than the critical one. As mentioned above, this is done through the use of an α-function, as 

shown in equation (9). However, determining the α-function value at any temperature without 

having, at least, a good estimation of the acentric factor (    is a tricky task. When 

experimental vapor-pressure data are available, the best and most robust option is to fit the 

parameters involved in the -function to these data. Since vapor-pressure data of free radicals 

cannot be measured, it is proposed to consider the Soave α-function which shows the simple 

formulation given by equation (21). 

  
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Such an α-function contains a single component-dependent parameter (  ), estimated – as 

a general rule – from a generalized correlation based on the acentric factor (  ) [47]. As 

mentioned above, the acentric factors of free radicals are never known and therefore, another 

approach has to be proposed. In this study, the idea is to estimate    by group contribution. In 

order to achieve this goal, a specific group contribution method has been developed with the 

aim of estimating not    but the value of the attractive parameter    at     (see equation (22)

). The reason for this is that         and    are directly related and that         is more 

suitable than    for the application of the group contribution concept. 
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Where, 
j0,[g ]A  is the contribution of the functional group    for the calculation of      . 

Note that a group contribution method can be envisaged because a linear behavior is obtained 

when a power function of       is plotted as a function of the molecular weight for most of 

homologous series of compounds, as illustrated in Figure 4. Note also that in this particular 

instance, the exponent of the power function,    , is equal to 0.48, and the rationale behind 

this choice is elaborated in Appendix 1. 

As mentioned above, the methodology used for the determination of the group 

contributions      is detailed in section 3.2. 
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Figure 4. Linear dependence of power functions of       with respect to the molecular weight 

(MW) of pure compounds sorted by homologous family. Note that the linearity is achieved for 

an exponent value of (0)ia  equal to 0.48. 

By combining Eqs. (9) and (21) and by setting the reduced temperature    to 0, the 

expression for the parameter    is obtained. 
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Where both       and      are calculated by group contribution (equations (17) and (22), 

respectively). Once    is known, the α-function can be calculated for any temperature by 

means of equation (21). Note that the critical temperature (    ), required for such a 

calculation, is obtained from equation (19). Once     ,    and    are known, one can perform 

pure compound calculations using the PR-EoS based on the Soave alpha-function. 

At this step, we recall that the acentric factors are input parameters used in generalized 

correlations for the volume translation parameter,    [40] (see, e.g., Eq. (12)), which improves 

the molar volume prediction of liquid solvents. For the majority of solvents, acentric factors 

are readily available from experimental databases. When dealing with unconventional 

solvents, whose critical properties and acentric factors are not readily available, acentric 

factors must be predicted. The prediction of the acentric factor relies on its definition, as 

outlined in the equation (24).  

 
,

10
,

( 0.7 )
log 1

 
    

  

sat
i c i

i
c i

P T T

P
  (24) 

Where,   
   , the vapor pressure of pure component  , can be calculated with the non-

translated version of the PR-EoS at a reduced temperature of 0.7 (i.e.,            . The      

and      properties can be obtained by group contribution using equations (19) and (20).  

Note that for highly diluted solutes (mole fraction close to zero), their volume translation 

(  ) has no impact on the calculation of the total volume translation of the liquid phase (see 

equation (14)). For closed-shell solutes, if the acentric factor is known, the volume correction 

can be calculated by the correlation presented in equation (12). For the sake of simplicity, the 
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volume translation of a free radical (   ) can be taken to be equal to that of its parent 

molecule (   ): 

   XHX
c c  (25) 

For parent molecules (and consequently the free radicals associated) whose acentric factor 

is unknown, the volumetric correction can be assumed to be zero, without impacting 

significantly the accuracy of the method (this correction is essentially relevant for solvent 

molecules). In this study, all the acentric factors of the parent molecules were known, so it 

was possible to calculate the volumetric correction,    , for all of them. 

2.2.2 Fast prediction of σ-profiles of molecules and free radicals 

σ-profiles are the inputs used for establishing the connection between the attractive 

parameters of pure components and the attractive parameter of the corresponding mixture 

through the calculation of residual activity coefficients that appear in the mixing rule (see 

equation (15)). As previously stated, σ-profiles are originally obtained by quantum chemistry 

calculations, which are often very time-consuming. This is why the  -profiles of usual 

molecules are generally stored in databases. For instance, the database provided with the 

software COSMOTherm (version 2016 onwards) includes more than 10,000 molecules.  

For the molecules that are not present in this database, the quantum-chemical calculations 

need to be performed. An option to shortcut the need for quantum-based calculation is to use 

a group contribution approach [26,48,49], which is less accurate, but provides a much faster 

generation of σ-profiles.  

  

j[g ]

1

( ) ( )

For discrete values of 3.0, 3.0  e/nm²

Step:  = 0.1 e/nm²



   

   




g

j

n

i m g m

j

m

p N p

  (26) 

In this study, the GC-based approach to predict σ-profiles was extended to free radicals by 

simply adding functional groups containing radical sites. 

2.2.3 Decomposition scheme into functional groups 

For the sake of simplicity, the proposed GC-methods rely on a first-order group 

decomposition scheme (second or third order methods take into account the chemical 

environment of the 1
st
 order molecular groups and are much more complex to be 

implemented). 

Basically, four different group contribution methods are proposed in this study, for the 

calculation of     ,   ,      , and       . All these methods share the same group 

decomposition scheme based on UNIFAC functional groups. These groups were divided into 

two categories: 

1. Conventional UNIFAC groups ( ). Example:           . 
2. Specific UNIFAC groups            to mimic the loss of a hydrogen atom by a given 

molecule (            must be read "   minus  " and therefore, is equivalent to a 

negative group "minus H"). Such a group needs to be added to the decomposition in 

elementary groups of the parent molecule to describe the corresponding free radical. It 

simply can be seen as a correction to bring to the parent molecule. An example of such 

a group is:                 
          . 
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Therefore, in this framework, the decomposition of a free radical X  
 into functional 

groups is equal to the decomposition of its parent molecule XH in addition to the correction 

group for free radicals. As an example, let us consider the free radical formed from a generic 

molecule with a known decomposition. The radical formation reaction is given in Figure 5. 

 

Figure 5. Generic reaction for the formation of a free radical. 

The decomposition of both parent molecule and free radical would be as follows: 

1 2 3

1 2 3 3 3

Parent molecule (XH): [ ]:1, [ ]:1, [ ]:1

Free radical (X ): [ ]:1, [ ]:1, [ ]:1,  [ ( ) ]:1

g g g

g g g g g g
 

2.2.4 Recipe for applying the proposed group contribution methods to free radicals 

To perform mixture calculations with the proposed equation of state, we need to provide 

the following pure compound inputs for every compound in the system: 

  Attractive parameter at  : ,( ) ( , )i c i ia T a T m   

  Co-volume:    

  Volume translation:    

  σ-profile:       

For the generic free radical of Figure 5, these parameters are calculated using the group 

contribution methods introduced above. First of all, the attractive parameter at the critical 

point (    ), the co-volume (  ) and the attractive parameter at     (     ), of such a radical 

are calculated following equations (17), (18) and (22), as follows: 

 
1 2 3 3 3

free radical

parent molecule correction

c,X
c,[ ] c,[ ] c,[ ]2 c,[ ( ) ]

1 1 1 1

ac

g g g g g
a

a
A A A A

R

 





 
         
 
 

g

6 4 7 4 8

6 4 4 4 4 4 7 4 4 4 4 4 8 6 44 7 4 48

 (27) 

 
1 2 3 3 3

free radical

parent molecule correction

[ ] [ ] [ ] [ ( ) ]
1 1 1 1

b

X
g g g g g

b

b
B B B B

R

 





 
         
 
 

g

64 7 48

6 4 4 4 4 7 4 4 4 4 8 6 4 7 4 8

  (28) 

 

0

1 2 3 3 3

free radical

parent molecule correction

0,[ ] 0,[ ] 0,[ ]2 0,[ ( ) ]

(0)
1 1 1 1

a

X
g g g g g

a

a
A A A A

R

 





 
         
 
 

g

6 44 7 4 48

6 4 4 4 4 4 7 4 4 4 4 4 8 6 44 7 4 48

  (29) 

What is interesting about the proposed decomposition scheme is that the part of the group 

contribution method that corresponds to the parent molecule can be calculated using 

experimental inputs of      ,      , and    , as shown below. By doing so, the accuracy of 

the method is expected to be increased, especially for small molecules. 
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3 3

free radical parent molecule

correction
2

c, c,

2 ,[ ( ) ]
c,

1

ac ac

X XH

c g g
a XH

a T
A

R P

 

 



   
     

     

g

6 4 7 4 8 6 4 7 4 8
6 44 7 4 48

  (30) 

 
3 3

parent moleculefree radical

correction

c,

[ ( ) ]
c,

1

b b

XHX
g g

b XH

b T
B

R P

 

 



   
     

  
  

g

64 7 48 6 4 7 48
6 4 7 4 8

  (31) 

 

0 0

3 3

parent moleculefree radical

correction
2

c,

2 0,[ ( ) ]
c,

2 2

(0) (0)
1

with: (0) (1 )  and 0.37464 1.54226 0.26992

 

 





              


       

g

6 44 7 4 48 6 4 4 4 7 4 4 48
6 44 7 4 48a a

XH XHX
g g

a XH

XH XH XH XH XH

a T
A

R P

m m

  (32) 

Note that the parent molecule must be described by the Soave   function, which predicts a 

finite limit for     , and not by the Twu 91 function which diverges at    . 

The critical temperature of the free radical,      , can be obtained from       and      , 

using equation (19), the     coefficient can be deduced from equation (23), which, in turn, 

enables the calculation of the free radical α-function at a given temperature   by means of 

equation (21). It is recalled that, for simplicity, the volume translation parameter of the free 

radical (   ), is approximated as being equal to that of its parent molecule (   ), which can be 

obtained, for instance, by the generalized correlation given in equation (12).  

Finally, a GC method for predicting the σ-profile of the free radical,        , based on a 

correction to be made to the parent molecule        ,  is applied, as shown in equation (33). 

  
3 3

correctionfree radical parent molecule

[ ( ) ]
( ) ( ) ( )m XH m mX g g

p p p 
       

    
g

6 4 44 7 4 4 486 4 7 4 8 6 4 7 4 8
  (33) 

In the equation above, the parent molecule σ-profile is obtained from a database of 

quantum-calculated σ-profiles and the method will be referred to in the remainder of the text 

as a GC-based correction method. 

If a parent molecule is not present in the database, the group contribution method 

developed in [26] can be used instead, as shown in equation (34). A slight degradation of the 

results could be observed in such a case. 

  

1 2 3 3 3

parent molecule correctionfree radical

[ ] [ ] [ ] [ ( ) ]
( ) 1 ( ) 1 ( ) 1 ( ) ( )

For discrete values of 3.0, 3.0  e/nm²

Step:  = 0.1 

m g m g m g m mX g g

m

p p p p p 
               

      

   



g

6 4 44 7 4 4 486 4 4 4 4 4 4 4 4 7 4 4 4 4 4 4 4 486 4 7 4 8

e/nm²

  (34) 
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3 Technical details 

3.1 Functional groups considered in this work 

The set of  -type groups is the same as that used in a previous publication [26], which 

comprises 134 UNIFAC groups. For the specific groups involving radical sites           , 
ten types of free radicals involved in oxidation mechanisms were considered, as summarized 

in Table 1.  

Table 1. Types of C/H/O free radicals considered in this study. 

# Radical category Example of molecule 
Specific groups (correction) 

for radicals 

1 Primary 
 

 2 3    CH CH     

2 Secondary 

 

  2    CH CH     

3 Tertiary 
 

     C CH     

4 Vinyl 
 

 2 2    CH C CH CH    

 

5 Acetylenic 
 

     C C C CH      

6 Benzyl 

 

 2 3    AC CH AC CH    

 

7 Phenyl 

 

     AC ACH     

8 Carbonyl 
 

     R C O R CH O      

 

9 Alkoxyl 

 

     R O R OH      

10 Peroxyl 

 

     R O O R O OH      

 

 

Based on the C/H/O radical types presented in Table 1, 42 specific groups            were 

identified. The reader is referred to Appendix 2 to see the groups ( ) and corrections 

          ,  available. The parameter values for each group are given in the supplementary 

material. 

  

O

O

O
O
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3.2 Parametrization of the group contribution methods 

3.2.1 σ-profiles 

Based on the group decomposition of closed-shell molecules and free radicals, a 

multilinear regression algorithm was implemented to determine the contribution of each 

group   and correction            in the calculation of σ-profiles. The quantum-based σ-

profiles of 1613 molecules (from the COSMOTherm database v.2016) and 135 free radicals 

(generated in this work with Turbomole v.2016) were used as reference for such a regression. 

These σ-profiles were obtained at the BP-TZVPD-FINE level of theory. It should be noted 

that only the most stable conformer configuration of the parent molecule was considered. 

3.2.2 EoS parameters and critical constants  

For closed-shell molecules, the optimization of the group contribution parameters, i.e., 

ic,[g ]A , 
i[g ]B , and 

i0,[g ]A , were determined through a multilinear regression algorithm based 

on the experimental values of     ,     , and    of the set of 1613 molecules used for the 

prediction of σ-profiles.  

For radical species, the same method could not be implemented due to the lack of 

experimental critical data and acentric factors. Consequently, group parameters were fitted 

differently: 

1. Following the work of Hsieh and Lin [50] in which the parameter    of molecules was 

correlated to the volume of their cavity ( cav
iV ) within a continuum dielectric medium 

(multiplied by Avogadro’s number,   ) [51], a multilinear regression algorithm was 

used to calculate the contributions of the 134 UNIFAC groups (
i[g ]V ) and the 42 

corrections for radicals (
[ ( ) ]g g

V
g ), using the same power that was applied to the    

parameter (equation (18)),  but in this case using cavity volumes cav
iV , as shown in the 

equation (35). For this regression, the cavity volume of 1613 molecules and 135 

radicals were considered. Therefore, the free radical correction was calculated by 

simply making 
[ ( ) ] [ ( ) ]g g g g

B V
 

g g . Note that, for the UNIFAC groups, the 
i[g ]B  

values fitted from     data obtained experimental values of     ,     , and   were 

retained. 

 
j

cav

[g ]

1

b g

j

n

A i
g

b j

N V
N V

R





 
    
   (35) 

2. As for the corrections               and               (84 parameters from 42 groups), they 

were fitted to the solvation Gibbs energy data using a Nelder-Mead optimization 

algorithm. For this purpose, a pseudo-experimental database for the solvation of the 

135 free radicals infinitely diluted in 78 pure solvents were generated using the 

software COSMOTherm, also at the BP-TZVPD-FINE level of theory. The temperature 

range considered was between 298 and 398 K, resulting in a databank containing 

52260 data points. 

The calculations with COSMOTherm used the full set of conformers for the solvents and 

only the most stable conformer for the solutes (free radicals). We checked that using only the 

most stable conformer for the solute molecule does not significantly reduce the accuracy of 

the model. On average, the deviations are less than 0.1 kcal/mol, as it will be seen in section 

4.2.2. 



Predicting Solvation Energies of Free Radicals and Their Mixtures: A Robust Approach Coupling the Peng-Robinson and COSMO-RS models 

16 

For adjusting the parameters of free radical groups used in the cubic EoS, the objective 

function    given in equation (36) was employed. 

    
2

COSMOTherm EoS

solv solv
k k

1

  
 



 
    

 

N

X X
k

OF g g   (36) 

Where  
COSMOTherm

solv
k

 

X

g  is the value of the solvation Gibbs energy of the radical 
 X  

obtained with the COSMOTherm software and  
EoS

solv
k

 

X

g  is the solvation Gibbs energy 

of the same radical calculated with the proposed EoS, for the  -th of   experimental points. 

Note that the reference data generated by COSMOTherm do not require pressure as an 

input since it uses a pressure independent continuum solvation model to perform the 

calculations (COSMO-RS). However, both temperature and pressure conditions must be set 

when using an equation of state approach to predict solvation properties. Knowing that:  

- The solvation Gibbs energies of the components of a liquid mixture vary little with 

pressure due to the incompressible nature of liquids, 

- At a given temperature, a mixture containing a solute infinitely diluted in a solvent is 

liquid at a pressure higher than the vapor pressure of the solvent. 

Consequently, we assumed that each of the isothermal mixing data generated by 

COSMOTherm was at a pressure equal to the vapour pressure of the solvent. The 

calculations with the cubic EoS were carried out by an in-house MATLAB routine, with the 

COSMO-RS parametrization published in a previous work [26]. In the optimization 

process, the pure compound parameters of free radicals were calculated through equations 

(30) to (33). Note that experimental data were used for the critical temperature (  ), critical 

pressure (   ), and acentric factor ( ) of parent molecules. Additionally, quantum-based σ-

profiles of parent molecules were considered in the calculation of free radicals σ-profiles 

through equation (33). It was stipulated that for each radical correction group there were at 

least 3 free radicals in the database. Note that some groups correspond to entire molecules, 

and therefore, they have only 1 representative radical. For example, the correction for the 

free radical formed from methane, [   
       ], is applicable only to this free radical, in 

particular. 

3.3 Deviations analysis 

To assess the deviations in predicting the cubic EoS parameters, the critical constants, and 

acentric factors for closed-shell molecules, we employed the Mean Percentage Error (MPE). 

This statistical measure is calculated by equation (37), in which    is the predicted value of 

the property,     is its reference value (experimental from the DIPPR database).   is the size 

of the dataset.  

 
µ

µ
1

1 N
i i

i i

y y
MPE

N y


    (37) 

Given that solvation Gibbs energy values often approach zero, employing absolute 

deviations becomes more apt for this quantity. In this instance, we relied on the mean 

unsigned error (MUE) for the deviation evaluation, whose definition is given in (38). In this 

case,    is the values of          calculated by the equation of state and     is its reference value 

(experimental from the CompSol database for closed-shell molecules or calculated with 

COSMOTherm for free radicals).  
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 µ

1

1 N

i i

i

MUE y y
N 

    (38) 

4 Results 

4.1 GC-methods applied to closed-shell molecules 

4.1.1 Prediction of critical constants and EoS parameters 

Figure 6 (panels a and b) compares the PR EoS pure compound parameters,      and   , 

obtained using experimental critical inputs (abscissa axis in the parity plots) and the GC-

method proposed in this study (ordinate axis), for 1613 closed-shell molecules. The calculated 

results are in good agreement with the experimental ones, since the mean percentage errors 

for all data is below 8% for both EoS parameters.  

It was found that the method provided satisfactory predictions of      and    for most 

families of compounds. Larger deviations were obtained for organic salts, some cyclic and 

aromatic compounds, polyols, glycerides, as well as, some carboxylic acids and esters, 

especially the polyfunctional ones. The detailed deviation results by chemical families are 

given in the supplementary material.   

  

  

Figure 6. Parity plots for the predictions of the PR-EoS parameters (     and   ) and critical 

constants (     and     ) of 1613 closed-shell molecules using the group contribution methods 

proposed in this work. 
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Once the parameters      and    have been determined, it becomes possible to derive the 

critical constants of the molecules (     and     ) using equations (19) and (20). The parity 

plots for the prediction of the critical constants are also given in Figure 6. Again, a 

satisfactory agreement between predicted and experimental data is obtained, especially for 

    . As shown in Table 2, the accuracy achieved with the proposed first-order GC method is 

lower than with more sophisticated predictive models based on second and third-order GC 

approaches or machine learning (ML), but on the other hand, the dataset considered here is 

the much larger one. 

Table 2. Mean Percentage Errors (MPE) for different models in the prediction of critical 

temperatures and pressures. 

Reference Method Dataset (         )        
           

    

[52] 2
nd

 order GC 285 / 289 0.85 2.89 

[53] 3
rd

 order GC 587 / 573 0.90 2.20 

[54] ML 917 / 684 0.40 5.00 

[55] ML 888 / 782 1.30 3.82 

This work 1
st
 order GC 1613 / 1613 3.02 6.78 

 

If we now shift our focus to the prediction of the Soave α-function parameter (  ) via the 

calculation of      , we can see in Figure 7 that reasonably accurate predictions of this α-

function parameter can be made, with deviations remaining below 8% on average. 

Additionally, Table 3 provides a comparative analysis of the acentric factor predictions using 

diverse models. Note that, with respect to our proposed approach, the acentric factors were 

calculated in accordance with its definition (see equation (24)). 

  

Figure 7. Parity plots for the predictions of       and    of 1613 closed-shell molecules 

using the group contribution methods proposed in this work. 

Table 3. Mean Percentage Errors (MPE) for different models in the prediction of acentric 

factors. 

Reference Method Dataset (    )        
    

[56] 2
nd

 order GC 181 2.99 

[54] ML 614 6.90 

[55] ML 524 8.74 

This work 1
st
 order GC 1613 12.9 

 

Predicting acentric factors poses a formidable challenge due to their reliance on the size 

and polarizability of molecules. Table 3 shows that the differences between experimental and 
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predicted acentric factors are significantly larger than those associated with predictions of 

critical constants such as      and      . As expected, the first-order group contribution 

approach exhibited greater deviations in comparison to more advanced methods. This result 

must be balanced by the larger data set used here to fit the group parameters compared to 

other methods. 

In any event, it is important to emphasize that the comparison results presented in Table 2 

and Table 3 provide only a preliminary indication of the accuracy of each approach. A more 

comprehensive evaluation would require testing the methods on the same dataset. 

4.1.2 Predictions of solvation Gibbs energy of closed-shell molecules 

In order to validate the proposed group contribution methods for the prediction of solvation 

Gibbs energy data, we first considered only the solvation of closed-shell molecules, for which 

experimental data are available in the literature [16]. Four different versions of the proposed 

equation of state were evaluated, as shown in Table 4.  

- The first two versions (V1 and V2) are semi-predictive. Both of them use experimental 

inputs to estimate the pure component EoS parameters (       ,   function parameters, 

  ). The difference between versions V1 and V2 lies in the way the  -profiles of the 

molecules are estimated: V1 considers a quantum-chemical approach while V2 uses a 

GC method. It is recalled that the  -profiles influence the COSMO-RS calculations and 

in particular the estimation of the residual activity coefficients (see Eq. (16)) which are 

needed to estimate the mixture EoS parameters.  

- The last two versions (V3 and V4) use fully predictive methods for the estimation of 

pure-component EoS parameters. Similar to V1 and V2, the only difference between 

these versions concerns the way the  -profiles are estimated (quantum calculations 

versus group contributions). 

 

Table 4. Different versions of the PR-EoS used to predict the solvation Gibbs energy of 

closed-shell molecules. 

Model      and    α-function    σ-profile 

V1  

(tc-PR EoS + 

Quantum-based 

σ-profiles) 

experimental values 

of  
     and      from 

DIPPR 

Twu 91 α-function 

using optimized 

values of  ,  , and   

from [34] 

Optimized 

values from 

[34] 

Quantum-based σ-

profiles extracted from 

the COSMOTherm 

database (TZVPD-FINE) 

V2 

(tc-PR EoS + 

GC-based σ-

profiles) 

experimental values 

of  
     and      from 

DIPPR 

Twu 91 α-function 

using optimized 

values of  ,  , and   

from [34] 

Optimized 

values from 

[34] 

GC-based σ-profiles 

calculated by equation 

(26) 

V3 

(PR EoS + GC 

methods for 

pure-component 

parameters + 

quantum-based 

σ-profiles) 

Predicted by the 

GC-methods 

proposed in 

equations (17) and 

(18) 

Soave α-function with 

   predicted through 

the GC- method 

proposed in equations 

(22) and (23) 

Generalized 

correlations 

[34,40] using 

predicted values 

of     ,     , and 

     

Quantum-based σ-

profiles extracted from 

the COSMOTherm 

database (TZVPD-FINE) 

V4 

(PR EoS + GC 

methods for 

pure-component 

parameters + 

GC-based σ-

profiles) 

Predicted by the 

GC-methods 

proposed in 

equations (17) and 

(18) 

Soave α-function with 

   predicted through 

the GC- method 

proposed in equations 

(22) and (23) 

Generalized 

correlations 

[34,40] using 

predicted values 

of     ,     , and 

     

GC-based σ-profiles 

calculated by equation 

(26) 
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The results obtained for the solvation Gibbs energy of closed-shell molecules are 

summarized in Table 5. They were classified according to the association behavior of the 

binary system, i.e., the ability to form hydrogen bonds. Four types of association can be 

identified for a binary mixture [22]: 

1. Binary mixtures in which association does not take place, like mixtures involving 

hydrocarbons (non-polar and non-associating molecules). 

2. Binary mixtures in which only self-association takes place. For example, binary 

mixture containing alcohols (polar and self-associating molecules) and hydrocarbons. 

A self-associating molecule is one that contains both hydrogen donor and acceptor 

sites. 

3. Binary mixtures in which only cross-association takes place. They are mixtures of 

hydrogen-donor and hydrogen-acceptor molecules, like the one of chloroform and 

acetone. 

4. Binary mixtures in which cross and self-association take place. Any mixtures 

containing associating molecules, with one of them being a self-associating. 

Table 5. Deviation results for the prediction of solvation Gibbs energy data of infinitely 

diluted closed-shell molecules considering all versions of the model introduced in Table 4. 

The dataset comprises 65120 experimental points extracted from the CompSol database [16]. 

The results without parentheses correspond to the mean unsigned error (MUE), whereas the 

results in parentheses correspond to the standard deviation (SD), both in kcal/mol. 

Type of association Dataset 
Model version 

V1 V2 V3 V4 

1. Non-associating mixtures 32214 
0.19 

(0.32) 

0.24 

(0.40) 

0.41 

(0.56) 

0.45 

(0.59) 

2. Self-association only 15642 
0.39 

(0.57) 

0.65 

(0.84) 

0.61 

(0.77) 

0.84 

(1.01) 

3. Cross-association only 1050 
0.39 

(0.53) 

0.37 

(0.55) 

0.41 

(0.55) 

0.39 

(0.58) 

4. Cross and self-association 16214 
0.37 

(0.58) 

0.43 

(0.64) 

0.51 

(0.74) 

0.56 

(0.82) 

All data 65120 
0.28 

(0.37) 

0.39 

(0.45) 

0.48 

(0.46) 

0.57 

(0.52) 

 

As expected, the semi-predictive version V1 is the most accurate one since it does not use 

any input obtained from the group contribution methods. Moreover, the universal constants of 

COSMO-RS have been fitted based on this version of the model [26], which confirms its 

better performance. Consequently, the versions based on inputs calculated by group 

contribution method (especially the version V4, in which the EoS parameters and σ-profiles 

are obtained by GC), provide predictions with greater deviations with respect to the 

experimental data considered. Caution should be exercised for mixtures in which only self-

association takes place, especially for the version of the model that relies entirely on GC-

inputs. In any case, the proposed versions of the EoS are suitable to be extended to free 

radicals since they are able to give satisfactory predictions for the solvation Gibbs energies of 

closed-shell solutes. 
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4.2 GC-methods applied to C/H/O free radicals 

4.2.1 Prediction of σ-profiles of free radicals 

Before discussing the modelling results of solvation Gibbs energies, it is noteworthy to 

take a look at the free radical σ-profiles obtained through the GC-based correction method 

(see Eq. (33)). Some comparisons between σ-profiles calculated from quantum chemistry and 

from the GC-based correction method are proposed in Figure 8. 

 

   

   

   

Figure 8. Examples of free radical σ-profiles predicted by the GC-based correction method 

(equation (33)). The blue lines are the reference σ-profiles of the radicals obtained through 

DFT and COSMO calculations at the BP-TZVPD-FINE level of theory. The orange lines are 

the σ-profiles obtained by applying the GC correction to the quantum chemical σ-profiles of 

parent molecules.  

As it can be seen in Figure 8, good predictions of σ-profiles can be obtained using the GC-

based correction method. The most significant deviations arise in the non-polar region, for 

charge density values ( ) between      and          
 
, which has a less pronounced 

impact on the calculation of activity coefficients than in regions of high values of screening 

charge (for both the positive or negative side of the histogram).  
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As stated below Eq. (33), it is important to recall that, for the prediction of the free radical 

σ-profiles in Figure 8, quantum-calculated σ-profiles of the parent molecules were considered. 

The same could be done with σ-profiles obtained with the group contribution concept, which 

would lead to similar results, but with larger deviations than in the previous case. 

4.2.2 Effect of conformers on the prediction of solvation Gibbs energies 

As a first analysis, we will focus on investigating whether relying solely on the most stable 

conformer compromises the accuracy of COSMOTherm in predicting solvation Gibbs 

energies. In Table 6, we present evaluations for two cases: the first one incorporates all 

conformers into the calculation, while the second considers only the most stable ones (for 

both solute and solvent molecules). Following the same classification of binary mixtures used 

above (see Table 5), the results are categorized based on their association behavior. Again, 

experimental data extracted from the COMPSOL database were used. 

Table 6. Prediction of experimental solvation Gibbs energy data using COSMOTherm. 

Effect of using conformers in the accuracy of the model in terms of mean unsigned errors 

(MUE).  The confomers were taken from the cosmo files base provided with the 

COSMOTherm software.   

Type of association Dataset 

MUE (kcal/mol) 

All conformers 
Most stable 

conformer only 

1. Non-associating mixtures 25979 0.23 0.28 

2. Self-association only 17229 0.33 0.37 

3. Cross-association only 1206 0.23 0.24 

4. Cross and self-association 23384 0.33 0.37 

All data 67798
*
 0.29 0.33 

*This dataset is slightly bigger than in the Table 5, because in the previous case only molecules with known 

decomposition into functional groups were considered. 

It was found that for most of the binary systems, employing only the most stable conformer 

leads to a slight decrease in the model accuracy. However, it is noteworthy that a good level 

of precision is consistently maintained, with a mean unsigned error of only 0.33 kcal/mol, 

against 0.29 kcal/mol when all conformers are considered. This analysis is significant because 

it validates the data generated by COSMOTherm on the solvation Gibbs energy of free 

radicals. Note that this database was constructed based only on the most stable conformation 

of free radicals, keeping all the solvent conformations, since they were available in the 

COSMOTherm database. 

4.2.3 Prediction of solvation Gibbs energies of free radicals 

Turning now to the prediction of solvation energies of C/H/O free radicals, Figure 9 details 

the results obtained for each type of free radical considered in this study. In this base case, the 

semi-predictive version of the model is considered, relying on equations (30) to (33) for the 

calculation of the EoS pure parameters and σ-profiles of free radicals. Note that these 

equations are based on experimental values of     ,     , and    , along with quantum-based σ-

profiles of parent molecules (GC-based correction methods are used). 
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Figure 9. Parity plots for the solvation Gibbs energy of different types of free radicals in a set 

of 80 solvents for temperatures between 298 and 398 K. The EoS version V1 was used (see 

Table 4). The σ-profiles of free radicals were obtained from the GC-correction applied to the 

quantum-calculated σ-profiles of parent molecules. 

In general, the predictions of the solvation Gibbs energy performed with the proposed 

model showed a good correlation with the pseudo-experimental database generated for free 

radicals using the COSMOTherm software. The mean unsigned error (MUE) obtained for the 

entire dataset was about             . However, when a fully predictive version, entirely 

based on group contribution methods, is used to predict the EoS parameters and σ-profiles, 

the deviations increase, as shown in Table 7. This table compares the mean unsigned errors 

and standard deviations between the two versions of the model. 
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Table 7. Deviation results for the prediction of solvation Gibbs energy of infinitely diluted 

free radicals in a set of 84 solvents. Two versions of the model are used: one based on 

experimental data for pure component EoS parameters and quantum chemical data for the  -

profile (model version V1, the same used to generate the results presented in Figure 9) and 

the other based entirely on group contribution methods (model version V4). The results 

without parentheses correspond to the mean unsigned error (MUE), whereas the results in 

parentheses correspond to the standard deviation (SD), both in kcal/mol. 

Radical type Dataset 

Inputs for the parent molecule on which the free radical 

corrections are applied 

Exp-input (    ,     ,   ) 

QM  -profile 

GC-input (    ,  ,   ) 

GC  -profile 

Primary 9360 
0.33 

(0.26) 

0.56 

(0.57) 

Secondary 5850 
0.28 

(0.26) 

0.53 

(0.43) 

Tertiary 2730 
0.20 

(0.20) 

0.42 

(0.40) 

Vinyl 6480 
0.14 

(0.15) 

0.37 

(0.28) 

Acetylenic 2440 
0.09 

(0.11) 

0.24 

(0.19) 

Benzyl and Phenyl 3900 
0.14 

(0.16) 

0.52 

(0.34) 

Alkoxyl 7410 
0.25 

(0.25) 

0.35 

(0.37) 

Peroxyl 7020 
0.28 

(0.25) 

0.65 

(0.59) 

Carbonyl 7020 
0.22 

(0.25) 

0.39 

(0.49) 

All data 52260 
0.23 

(0.24) 

0.47 

(0.47) 

 

Note that the values of the universal constants of COSMO-RS as well as the correction 

parameters for free radicals have been estimated to get optimal results with the semi-

predictive version V1 of the proposed EoS. Naturally, the model reaches its maximum 

accuracy for this case. The COSMO-RS universal constants as well as the correction 

parameters for free radicals determined for version V1 are retained in the fully predictive 

version V4. Using the version V4 entirely based on group contribution for both solvent and 

solute represents the worst-case scenario in which no experimental and quantum-based input 

is available. This explains the increase in the mean unsigned errors presented in Table 7 for 

such a fully predictive version of the model. Nevertheless, this version stands out for its 

versatility in acquiring all the required inputs through rapid group contribution calculations. 

It is important to bear in mind that critical constants and acentric factor (    ,     , and   ) 

are experimentally accessible for the majority of solvents, and their σ-profiles can readily be 

sourced from databases or generated from DFT calculations. Consequently, the challenge 

frequently revolves around acquiring the necessary data for the solute molecules. A large 

range of closed-shell solutes benefits from the availability of     ,     ,   , and  -profiles. 

Thus, the proposed GC-based methods serve as valuable support for scenarios where such 

data may not be readily accessible, as is the case with free radical species. 

As a result, when the solvent parameters are determined through the semi-predictive 

model, (i.e., incorporating both experimental and quantum-calculated inputs), and the solute 

parameters are obtained by the GC methods within the fully predictive version, the resulting 

deviations generally fall within the range of values shown in Table 7. 
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4.2.4 How the solvation Gibbs energy of C/H/O free radicals varies with respect to their 

parent molecules? 

As mentioned in the introduction, previous kinetic studies dealing with the oxidation of n-

alkanes in the liquid phase have assumed that the solvation Gibbs energy of free radicals is 

exactly the same as that of their parent molecules. It now remains to assess the applicability of 

this assumption. To this end, Figure 10 evaluates the variation of the solvation Gibbs energy 

between the different types of free radicals and their parent molecules in two opposite types 

of solvents: non-associating solvents (non-polar solvents in which there is no hydrogen 

bonding at all, represented here by n-alkanes) and self-associating solvents (polar solvents in 

which hydrogen bonding takes place with associating solutes, represented here by n-alcohols). 

 
Figure 10. Average absolute difference between the solvation Gibbs energy of free radicals 

and their parent molecules in n-alkanes and n-alcohols. 

It is found that in n-alkanes, all radicals have solvation Gibbs energies close to their parent 

molecules. However, in self-associating solvents such as n-alcohols, the alkoxyl, peroxyl and 

carbonyl radicals show significant changes in the solvation behavior when compared to their 

parent molecules. The explanation for this is that these radicals have a reduced hydrogen 

bonding network due to the loss of the H atom from a hydrogen donor site. Since hydrogen 

bonding stabilizes the solute in the liquid phase, the fact that the free radicals have fewer 

hydrogen bonding sites than their parent molecule leads to higher values of            (in most 

cases is up to              higher). 

To illustrate this, let us take the molecule 1-propanol, as an example, and then form two 

different radicals from it: a primary alkyl radical obtained by removing an H atom from the 

CH3 group, and an alkoxyl radical obtained by removing an H atom from the OH group. We 

then solvate these molecules in a self-associating solvent such as ethanol. The results are 

shown in Figure 11. 
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Figure 11. Solvation Gibbs energy for n-propanol (blue line) and its primary (orange line) 

and alkoxyl (green line) radicals in ethanol calculated with tc-PR/COSMO-RS model. The 

blue dots represent real experimental data for the n-propanol/ethanol system extracted from 

the CompSol database [16]. 

It can be seen that the solvation energy of the alkoxy radical is significantly lower (in 

absolute value) than that of its parent molecule due to the reduction in the number of 

hydrogen bonds. In such cases, it is not advisable to assume that the solvation energy of the 

radical is the same as that of the parent molecule. 

From the COSMO theory standpoint, the loss of the hydrogen donor site is directly 

reflected in the σ-profile obtained, as shown in Figure 12. It can be seen that the hydrogen 

bond donor region of the alkoxy radical completely disappears, and a significant 

transformation occurs in the hydrogen bond acceptor region. Conversely, the σ-profile of the 

primary radical undergoes comparatively minor changes in the non-polar region, which, in 

turn, has a less pronounced influence on the calculation of interaction energies and activity 

coefficients within the COSMO-RS framework. 

 

Figure 12. BP-TZVPD-FINE σ-profiles of 1-propanol (blue line), its primary (orange line) 

and its alkoxyl radical (green line). 
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4.3 Solvation Gibbs energy of C/H/O free radicals in mixtures 

4.3.1 Surrogate fuel blends 

To discuss the solvation of free radicals in mixtures, blends of fuels and biofuels were 

chosen as study cases. The first example is a SP95E10 fuel used in spark ignition (Otto cycle) 

engines. To simplify the problem, the SP95E10 fuel can be simulated as a RON 95 surrogate 

fuel. Note that RON stands for Research Octane Number, which means that a RON 95 fuel 

contains 95% iso-octane and 5% n-heptane (volume basis). The SP95E10 fuel also contains 

10% of oxygenated compounds in its composition which is assumed here to be ethanol only. 

In this study, we fix the proportions of iso-octane and n-heptane according to RON 95, and 

vary the amount of ethanol.  

As far as diesel engines are concerned, the surrogate fuel considered in this study is a 

mixture of n-dodecane and m-xylene with a composition in of 77 % and 23 % by volume, 

respectively. To this mixture of hydrocarbons, biodiesel was added at a molar fraction ranging 

from 0 to 100%. Biodiesel are esters obtained from the transesterification reaction of 

vegetable oils with short-chain alcohols. In this study methyl-palmitoleate was considered to 

represent a biodiesel molecule.  

4.3.2 Solvation of peroxyl radicals in the surrogate fuel blends 

Considering the pivotal role that peroxyl radicals play in the fuel autoxidation mechanism, 

we have chosen them, along with alkyl radicals, as illustrative examples. In the context of 

Otto cycle fuel blends (RON 95 + ethanol), Figure 13 provides insights into the solvation of a 

peroxyl radical derived from 2-heptyl hydroperoxide and a secondary radical derived from n-

heptane. Furthermore, the same figure shows the solvation results for a peroxyl radical 

formed from 2-decyl hydroperoxide and a benzyl radical generated from m-xylene within the 

diesel surrogate fuel blend (n-dodecane + m-xylene + methyl palmitoleate). A good level of 

agreement is observed between the predictions generated by the cubic EoS and 

COSMOTherm, with diesel fuel showing a better agreement between the two methods. 

  

Figure 13. In (a), the effect the of ethanol concentration in a RON 95 surrogate fuel on the 

solvation Gibbs energy of a peroxyl and a secondary radical. In (b), the effect of the methyl 

palmitoleate concentration in a diesel surrogate fuel on the solvation Gibbs of a peroxyl and 

a benzyl radical. The results were obtained with the proposed EoS (semi-predictive version) 

and compared with COSMOTherm 
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5 Conclusion 

The Peng-Robinson (PR) cubic equation of state (EoS) with advanced mixing rules and 

using COSMO-RS as the activity coefficient (  ) model was extended to mixtures containing 

closed-shell molecules and free radicals. Our aim was to propose a model that would allow 

fast calculation of solvation Gibbs energy of free radicals. This extension was done by means 

of group contribution-based correction methods developed to predict the PR-EoS parameters 

(    ,   , and      ) and the COSMO-RS screening charge distribution ( -profiles) of free 

radicals from the values of their associated closed-shell molecules. 

The accuracy of the proposed model in predicting solvation Gibbs energy data was tested 

for closed-shell molecules and free radicals. A good correlation between the calculated and 

reference data was obtained for both cases.  

Regarding the change in solvation energy between free radicals and parent molecules, it 

was observed that hydrogen bonding (or association) plays an important role. Some 

conclusions can be drawn in this respect: 

  In non-associating solvents (such as n-alkanes), the difference in solvation Gibbs energy 

between free radicals and parent molecules tends to be small, for all types of free radical. 

  Alkyl radicals (primary, secondary, tertiary, vinyl, acetylenic, benzyl, and phenyl) have 

solvation Gibbs energies close to those of their parent molecules, regardless of the nature 

of the solvent (associating or non-associating).  

  The formation of alkoxyl, peroxyl, and carbonyl radicals significantly changes the 

association behavior. Their solvation Gibbs energy tends to increase significantly in 

associating solvents compared to their parent molecule. 

We believe that this work can be a springboard for the development of flexible kinetic 

generation frameworks. Our approach, which involves the use of a cubic EoS incorporating 

COSMO-RS as the    
model within the mixing rules, has the ability to predict solvation 

properties for solutes in both liquid and supercritical solvents. This feature distinguishes it 

from the COSMO-RS model alone, as the latter is applicable to incompressible liquids far 

from the critical region (see Figure 5 of [26]). This opens the door to a new range of 

applications, such as supercritical combustion. In addition, the proposed EoS offers the ability 

to predict solvation properties in mixtures, a task that cannot be achieved by other high-

throughput methods such as Abraham's model or machine learning. This valuable feature 

extends its utility beyond solvent mixtures, allowing compositional changes in any species 

involved in the mechanism to be accounted for through the calculation of solvation quantities. 

However, we would like to draw the reader's attention to the fact that, as it stands, the 

proposed model does not allow the complete modelling of oxidation mechanisms in the liquid 

phase, as we have not yet proposed a method for describing the solvation energies of the 

transition states that determine the value of the activation energy of the process (see equation 

(3) and Figure 1 in the introduction). Predicting these energies using the methodology 

presented in this article (i.e. based on a COSMO-type solvation model coupled to a cubic 

equation of state) is a natural and obvious extension of our work.  

Furthermore, we suggest that further research should be undertaken to include radical sites 

involving other atoms, such as  ,  , and  . In a second step, the inclusion of transition state 

groups can also be performed using the same methodology. 
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Appendix 1: Determination of the exponents    ,     and     for the power functions of 

    ,   , and      

It was discussed in section 2.2 that the optimal exponents for the power functions of      

and    are 0.67 and 0.80, respectively. These values were obtained by minimizing objective 

functions, as shown in Figure 14. In this figure, the accuracy of the group contribution 

methods in predicting the constants      and    (in terms of the mean percentage error - MPE) 

is plotted as a function of the value set for the exponents     and   . It was found that the 

values 0.67 and 0.80 minimized the MPE obtained. 

 

 

Figure 14. Plot of the objective functions to be minimized to determine the exponents of the 

power functions used to calculate      and   . MPE is the mean percentage error (MPE) 

between      and    calculated by group contribution methods and using experimental values 

of critical temperatures and pressures, considering a database of 1613 molecules. 

A further minimization was then performed to determine the value of the    , the exponent 

involved in the GC method for the parameter (0)ia . This latter is used to estimate the Soave 

α-function shape parameter (  ). As shown in Figure 15, the optimal value for     turns out 

to be 0.48. 
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Figure 15. Plot of the objective functions to be minimized to determine the exponents of the 

power functions used to calculate   . MPE is the mean percentage error (MPE) between    

calculated by a group contribution method and experimental values of acentric factors, 

considering a database of 1613 molecules. 

  



Predicting Solvation Energies of Free Radicals and Their Mixtures: A Robust Approach Coupling the Peng-Robinson and COSMO-RS models 

32 

Appendix 2: Functional groups and radical corrections 

The UNIFAC groups considered in this study are given in Table 8, while the specifically-

defined groups for free radicals are given in Table 9. Note that the parameters associated with 

each group to be used in the proposed GC methods are given in the supplementary material, 

together with example decomposition schemes of 1613 molecules and 135 free radicals.  

It should be noted that some groups in Table 8 are abbreviations for entire molecules. For 

example, ACRYL stands for 2-propenenitrile (or acrylonitrile), DMF for dimethylformamide, 

DOH for glycol, NMP for n-methyl-2-pyrrolidinone, MORPH for morpholine, and so on. 

Note also that the notation "AC" corresponds to aromatic carbons, and that "#" corresponds to 

a triple bond. 

Table 8. List of UNIFAC functional groups. 

# Group # Group # Group # Group # Group 

1 [CH3] 31 [CHNH2] 61 [CH2SH] 91 [AMH2] 121 [NH3] 

2 [CH2] 32 [CH3NH] 62 [FURFURAL] 92 [AMHCH3] 122 [SO2] 

3 [CH] 33 [CH2NH] 63 [DOH] 93 [AMHCH2] 123 [C(=O)OOH] 

4 [C] 34 [CHNH] 64 [I] 94 [AM(CH3)2] 124 [CH2OOH] 

5 [CH2=CH] 35 [CH3N] 65 [BR] 95 [AMCH3CH2] 125 [C-O-OH] 

6 [CH=CH] 36 [CH2N] 66 [CH≡C] 96 [AM(CH2)2] 126 [CHOOH] 

7 [CH2=C] 37 [ACNH2] 67 [C≡C] 97 [C2H5O2] 127 [CHOOCH2] 

8 [CH=C] 38 [C5H5N] 68 [DMSO] 98 [C2H4O2] 128 [CH3OOC] 

9 [C=C] 39 [C5H4N] 69 [ACRY] 99 [CH3S] 129 [CH2ONO2] 

10 [ACH] 40 [C5H3N] 70 [CL-(C=C)] 100 [CH2S] 130 [CHONO2] 

11 [AC] 41 [CH3CN] 71 [ACF] 101 [CHS] 131 [H2C=O] 

12 [ACCH3] 42 [CH2CN] 72 [DMF] 102 [MORPH] 132 [CH3OOH] 

13 [ACCH2] 43 [COOH] 73 [CF3] 103 [C4H4S] 133 [CH2CCO] 

14 [ACCH] 44 [HCOOH] 74 [CF2] 104 [C4H3S] 134 [H2O2] 

15 [OH] 45 [CH2CL] 75 [CF] 105 [C4H2S] 
  

16 [CH3OH] 46 [CHCL] 76 [COO] 106 [H2]   
17 [H2O] 47 [CCL] 77 [SIH3] 107 [O2]   
18 [ACOH] 48 [CH2CL2] 78 [SIH2] 108 [N2]   
19 [CH3CO] 49 [CHCL2] 79 [SIH] 109 [CO] 

  
20 [CH2CO] 50 [CCL2] 80 [SI] 110 [CO2]   
21 [CH=O] 51 [CHCL3] 81 [SIO] 111 [H2S] 

  
22 [CH3COO] 52 [CCL3] 82 [NMP] 112 [CH4]   
23 [CH2COO] 53 [CCL4] 83 [CCL3F] 113 [C2H2]   
24 [HCOO] 54 [ACCL] 84 [CCL2F] 114 [C2H4]   
25 [CH3O] 55 [CH3NO2] 85 [HCCL2F] 115 [C2H6]   
26 [CH2O] 56 [CH2NO2] 86 [HCCLF] 116 [C3H6]   
27 [CHO] 57 [CHNO2] 87 [CCLF2] 117 [C3H8]   
28 [THF] 58 [ACNO2] 88 [HCCLF2] 118 [C4H10]   
29 [CH3NH2] 59 [CS2] 89 [CCLF3] 119 [Ar] 

  
30 [CH2NH2] 60 [CH3SH] 90 [CCL2F2] 120 [Cl2]   
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Table 9. List of specific groups for free radicals. Note that groups that represent entire 

molecules are indicated by name in the index. The secondary group “33” is different from 

group “31” because in 33 resonance can occur, changing the position of the radical site, as 

explained below. 

# Correction group # Correction group 

H-atom Phenyl 

1 [       ] 23 [        ] 

Acetylenic Primary 

2 [  ≡       ≡  ] 24 [          ] 

3 [   
       ] 25 [  

           ]butane-primary 

Alkoxyl 26 [  
          ]ethane-primary  

4 [       ] water 27 [          ] methane-primary 

5 [         ] 28 [              ] methanol-primary 

6 [    
         ] methanol 29 [  

          ]propane-primary 

7 [           ]  30 [  
          ]propene-primary 

8 [           ]phenol  Secondary 

Benzyl 31 [         ] 

9 [              ] 32 [  
           ]butane-secondary 

10 [             ] 33 [         ]resonance 

Carbonyl and carboxyl 34 [  
          ]propane-secondary 

11 [           ] Tertiary 

12 [           ] 35 [       ] 

13 [           ] Vinyl 

14 [             ] 36 [           ] 

15 [             ] formicacid 37 [             ] 

16 [             ] formicacid 38 [                 ] ethene-vinyl 

Peroxyl 39 [                 ] ethenone-vinyl 

17 [   
        ] hydrogen-peroxide 40 [             ] 

18 [                   ]  41 [               ]  

19 [             ] 42 [  
          ]propene-vinyl 

20 [               ] methylhydroperoxide   
21 [               ] 

  
22 [               ] 

  
 

In Table 9, some of groups are also whole small molecules. This was done because the first 

molecules in a homologous series with a small molecular weight tend to deviate from the 

trend of the group contribution method. In this sense, the inclusion of these groups improves 

the accuracy of the method. Note also that groups in which the unpaired electron is 

delocalized due to resonance effects have also been treated separately. For example, an alkyl 

radical formed near a carbonyl is actually either alkyl (secondary) or alkoxyl radical, as 

indicated in the figure below. 
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Figure 16. Resonance hybrid of a secondary radical formed in the α position of a carbonyl 

(C=O). Note that this radical is either alkyl (secondary) or alkoxyl. 
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