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Summary/Abstract 

 

At tripartite synapses, astrocytes are in close contact with neurons and contribute to various 

functions, from synaptic transmission, maintenance of ion homeostasis and glutamate uptake 

to metabolism. However, disentangling the precise contribution of astrocytes to those 

phenomena and the underlying biochemical mechanisms is remarkably challenging. This 

notably results from their highly ramified morphology, the nanoscopic size of the majority of 

astrocyte processes, and the poorly understood information encoded by their spatiotemporally 

diverse calcium signals. This book chapter presents selected computational models of the 

involvement of astrocytes in glutamatergic transmission. The goal of this chapter is to present 

representative models of astrocyte function in conjunction with the biological questions they 

can investigate. 
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1. Introduction 
 

In this chapter, we present diverse computational models of astrocytes on a wide range of 

spatiotemporal scales. Our goal is to equip the reader with a concise overview of the available 

models so that they can use them to investigate research questions of interest. Astrocytes are 

glial cells that are essential to numerous functions of the central nervous system, from brain 

development, metabolism, and homeostasis to brain injury repair. They interact with 

numerous cell types simultaneously. Notably, astrocytes communicate with both blood 

vessels at specialized subcellular compartments – endfeet – and with neurons at tripartite 

synapses, where the astrocyte is in apposition to presynaptic and postsynaptic elements (1). 

This intercellular communication is believed to be mediated by astrocyte Ca2+ signals (2). 

One of the largest challenges in the field is to unravel the biochemical reactions that underlie 

astrocyte function (3). Because of the complex nanoscopic morphology of astrocytes and the 

various spatiotemporal properties of astrocyte signals, characterizing their involvement in the 

brain (patho-)physiology is hindered by technical difficulties, such as the resolution of live 

microscopy (2, 4). Computational models of astrocytes have been implemented to overcome 

those limitations and have provided valuable insights into the involvement of astrocytes in 

synaptic function (5–7).  

A computational model is a simplification of a system that describes its elements, their states, 

and their interactions. Computational models can guide experimentalists towards the most 

relevant experiments by forming a theoretical framework to characterize and predict the 

function of the system of interest (5, 8, 9). Those models can be used to run studies that 

would be unfeasible or time-consuming experimentally, in a fully controllable manner. 

Computational models thus make it possible to go beyond correlational observations and to 

propose causal relationships that govern the dynamics of the system of interest. When data is 

rare or difficult to get experimentally, models can be used to generate vast amounts of 

synthetic realistic datasets.  

Biophysical models (10) describe detailed chemical reactions based on experimental data of a 

biological phenomenon. The advantage of this type of modeling paradigm is that it can 

provide quantitative, testable predictions. The potential disadvantage of this approach can be 

its high computational cost, i.e. a large amount of time or memory required to run the 

simulations. Another type of approach is phenomenological modeling (the FitzHugh-Nagumo 

model (11) is a good example), which aims at mimicking the phenomenon of interest without 

describing its biophysical details. Those models are less computationally-expensive, allowing 

simulations of larger systems and/or reduced simulation time. For more details on the insights 

gained by experimentalists from computational models and vice versa, the reader can refer to 

(12) and to dedicated books (13, 14). 
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Several reviews of computational astrocyte models have been published recently that have 

contributed to a better understanding of astrocyte function in the brain (5–7), and new ones 

emerge at a fast pace. The review paper by Oschmann et al. (5) summarizes astrocyte models 

from the subcellular to the network level. The book chapter from Denizot et al. (6) presents 

the recent developments in astrocyte modeling approaches at the cellular and subcellular 

levels that accompanied advances in experimental techniques. Manninen et al. (7) provide a 

historical overview of computational astrocyte models. Lastly, the book “Computational 

Glioscience” (15) gives detailed insights into various computational models of neuron-glia 

interactions. We believe that robust and insightful collaborative work between theoreticians 

and experimentalists relies on the implementation of models that are accessible, reusable 

(FAIR principles: Findable, Accessible, Interoperable, Reusable) (16), as well as reproducible 

and replicable (8, 17, 18). In this line, we provide links to the code of each publicly available 

model (Table 1) and describe the validation of the model against experimental data whenever 

the latter was performed. 

In this chapter, rather than presenting an exhaustive list of astrocyte models, we present a few 

selected models that are most representative of the diversity of the existing models and 

highlight the type of biological questions they can investigate. The chapter is organized as 

follows: we present models of glutamatergic transmission at the tripartite synapse (Section 2), 

the involvement of astrocytes in glutamate uptake (Section 3), ion homeostasis (Section 4), 

and metabolism (Section 5). Then, we introduce models that study astrocyte structure-

function coupling (Section 6) and astrocyte networks (Section 7). We end the chapter with 

concluding remarks (Section 8) and a list of resources (Section 9). 

2. Signal transmission at tripartite synapses 

Astrocytes can contact pre- and postsynaptic neurons, forming so-called tripartite synapses 

(1). The astrocyte subcompartments that communicate with neurons at synapses are often 

referred to as perisynaptic astrocyte processes (PAPs). Glutamate released by active 

glutamatergic presynaptic neurons binds to G-protein-coupled receptors at the astrocyte 

membrane, which triggers a series of chemical reactions that allow the formation of Ca2+ 

signals in the astrocyte cytosol. Those Ca2+ signals are essential to various brain functions, 

from synaptogenesis to memory consolidation (19, 20). They are believed to have a variety of 

downstream effects that can modulate neurotransmission and synaptic plasticity, such as the 

release of gliotransmitters (e.g., adenosine triphosphate (ATP), D-Serine, and glutamate) by 

the astrocyte into the synaptic cleft (21) or changes in extracellular ion concentrations (more 

on this in Section 4). Gliotransmission has long been debated (22, 23) and a growing body of 

literature supports the existence of such neuron-astrocyte communication (24, 25). The 

influence of astrocyte Ca2+ signals and astrocyte-neuron communication on synaptic 

transmission and plasticity are still poorly understood. Computational models have been 

developed to study those interactions and to predict the coupling between neuronal and 

astrocyte activity. 

In this section, we present three models of signal transmission at tripartite synapses (26–28), 

highlighting the different approaches and strategies that have been used as well as the 
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different insights that can be gained from those models (Figure 1). As glutamate uptake and 

ionic homeostasis are covered in Sections 3 and 4, we here focus on models of neuronal 

activity-induced astrocyte Ca2+ dynamics and gliotransmission. Those models can be used to 

predict how astrocyte activity can modulate neurotransmission in various physiological 

conditions. 

 

 

Figure 1: Models of signal transmission at tripartite synapses. Neuron-astrocyte 

communication at synapses has been modeled using different strategies: simulating 

neuronal activity-induced Ca2+ activity in astrocytes with (e.g., Gordleeva et al. model (26)) 

or without (e.g., De Pittà et al. model (27) and Nadkarni et al. model (28)) taking into account 

the diffusion of molecules between subcellular compartments. 

 

2.1. Model of glutamate-induced IP3 and Ca2+ oscillations in astrocytes 

In 2009, De Pittà et al. (27) introduced a model in which the astrocyte receives neuronal 

glutamate input. Glutamate then binds to the metabotropic glutamate receptors (mGluRs) at 

the astrocyte membrane. This binding results in an increase in inositol trisphosphate (IP3) 

concentration in the astrocyte cytosol. Subsequently, Ca2+ is released from the endoplasmic 

reticulum (ER) through the opening of IP3 receptor channels (IP3Rs), which leads to IP3-

dependent Ca2+-induced Ca2+ release (CICR) in the cytosol, whereby an increased Ca2+ 

concentration enhances the release of Ca2+ from the ER. At high Ca2+ concentrations, the 

IP3Rs are inactivated and Ca2+ is pumped back into the ER by the sarco-endoplasmic 

https://en.wikipedia.org/wiki/Calcium
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reticulum Ca2+-ATPase (SERCA) pumps. A long-lasting glutamate stimulus leads to high 

cytosolic IP3 concentrations, allowing for the alternation of activation and inactivation of 

Ca2+ channels, and thus Ca2+ oscillations (29). The kinetics of IP3Rs are described with the 

Li-Rinzel model (30) (reviews of IP3R models can be found in (31) and (32)). Besides the 

CICR mechanism, IP3 production by the phospholipase C (PLC) isoenzymes PLCβ and PLCδ 

and IP3 degradation are described by the model. IP3 degradation can occur in two ways, 

through dephosphorylation by inositol polyphosphate 5-phosphatase and Ca2+-dependent 

phosphorylation by IP3 3-kinase. A simplified representation of the modeled chemical 

reactions can be found in Figure 1. In this paper, the authors measured the variation of the 

amplitude and frequency of Ca2+ signals depending on the level of synaptic activity, which is 

modeled as alterations of the glutamate concentration in the extracellular space (ECS).  

In summary, the model describes IP3R-dependent Ca2+ signals in the astrocyte that result 

from neurotransmission at glutamatergic synapses. It has been used in various other models 

to describe astrocyte activity, e.g., (26, 33–35). 

 

2.2. Model of Ca2+ activity in an astrocyte connected to a neuronal network 

To model astrocyte-neuron communication at tripartite synapses, Gordleeva et al. (26) 

simulated the activity of a single astrocyte in a network of 36 neurons. Their goal was to 

investigate the effect of the spatial distribution of Ca2+ signals within the astrocyte on 

gliotransmitter release and the associated modulation of neuronal activity. To do so, the 

authors combined their compartmental model of an astrocyte (36) with their model of a 

neuronal network, which accounts for gliotransmitter release by astrocytes (37). Astrocyte 

morphology is described as the assembly of cellular subcompartments, with a cylindrical 

shape, coupled by IP3 and Ca2+ diffusion (deterministic spatially-extended approach, see 

Section 6 for more details). The astrocyte contains 14 processes, each connected to a different 

synapse amongst the 36 neurons of the network. Astrocyte Ca2+ activity in each process is 

modeled using the IP3R-mediated Ca2+ signaling model from De Pittà et al. (27) (Section 

2.1). In the model from Gordleeva and colleagues, gliotransmitter release is a function of 

cytosolic Ca2+ concentration in distal processes and only occurs when local Ca2+ 

concentration exceeds a given threshold. The neurons are modeled using a conductance-based 

mathematical formalism, the Hodgkin-Huxley model (38). The connectivity of the neural 

network is randomly chosen, with a 20 % probability of connectivity for each pair of neurons. 

Each spike in a presynaptic neuron results in the release of glutamate at synapses, modeled by 

a Poisson process of fixed frequency. This model allows one to simultaneously monitor Ca2+ 

signals in different astrocyte compartments, gliotransmitter release at synapses, and 

postsynaptic neuronal firing. The modeled geometry and reactions are summarized in Figure 

1. 

To investigate the connectivity between active neurons and astrocytes, Gordleeva et al. (26) 

have calculated the cross-correlation between neuronal firing rate and the so-called astrocyte 

firing rate, corresponding to the frequency of the number of Ca2+ signals in the whole 

astrocyte. They found a synchronization of the activity of presynaptic neurons and astrocytes 

with a delay of roughly 2 seconds. They further analyzed the integration of Ca2+ signals 

within the astrocyte and predicted that distal processes were the most active subcompartments 
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of astrocytes, occasionally allowing somatic events to occur, the latter backpropagating to all 

processes. The model was able to predict various effects of astrocyte gliotransmitter release 

on neuronal activity: glutamate-mediated presynaptic potentiation, inhibition of presynaptic 

release, and D-Serine-mediated increase in the postsynaptic current. The authors also 

investigated the effect of local Ca2+ signals in a PAP contacting an active synapse on 

neighboring processes. They found that Ca2+ and IP3 diffusion within the astrocyte can 

activate the release of gliotransmitters in neighboring processes, resulting in the potentiation 

or depression of nearby inactive synapses. Similarly, whole-cell Ca2+ events favored the 

release of gliotransmitters from various processes and thus coordinated the activity of the 

neural circuits connected to the active astrocyte. 

Overall, the model from Gordleeva et al. (26) accounts for the spatial morphology of a single 

astrocyte and its connectivity to various neurons. It is thus well-suited to study the 

modulation of neuronal network activity mediated by the spatiotemporal integration of Ca2+ 

signals within a single astrocyte. Please refer to Section 7 for network models involving 

numerous astrocytes. 

 

2.3. Model of signal transmission at a glutamatergic tripartite synapse 

Nadkarni et al. (28) modeled the closed-loop modulation of synaptic transmission at a 

tripartite synapse in the hippocampus (Figure 1). The model is based on the Bertram et al. 

phenomenological model to describe action potential-driven vesicle release from the 

presynaptic neuron (39). Both asynchronous and action potential-independent 

neurotransmitter release rates are derived from experimental data (40). This release is 

followed by a refractory period (41). The vesicle recycling rates and short-term plasticity are 

determined by the Tsodyks et al. model (42). Thus, the Nadkarni et al. model considers both 

the availability and recovery of neurotransmitter resources. Furthermore, the model describes 

the Ca2+ activity of an astrocyte, the resulting release of gliotransmitters (here glutamate), and 

its effect on synaptic transmission. If a vesicle release event takes place, the glutamate in the 

cleft binds to the postsynaptic receptors and the mGluRs on the membrane of the astrocyte 

process. The former causes an excitatory postsynaptic current, while the latter results in the 

production of IP3, causing the release of Ca2+ from the astrocyte ER (modeled as per 

Nadkarni et al. (43)). The time course of Ca2+ signals in the astrocyte in the model is in 

qualitative agreement with experimental data from rat hippocampal and visual cortex slices 

(44). If the cytosolic Ca2+ levels in the astrocyte are above a threshold, glutamate is released 

from the astrocyte (45, 46), which leads to the potentiation of synaptic transmission (40, 47, 

48). Since the precise mechanisms of gliotransmitter release by the astrocyte were unknown, 

the authors modeled gliotransmission with a slow decay that mirrors the timescale of 

potentiation mediated by astrocytes (48). 

In their study, Nadkarni et al. propose that Ca2+ release from the astrocyte leads to a 

potentiation of neurotransmitter release that can last for minutes. In support of the proposed 

mechanism, the time course of the ER-mediated Ca2+ signal correlates well with the observed 

time course of changes in synaptic transmission. Since these Ca2+ fluxes are not temporarily 

correlated to the action potential-mediated Ca2+ activity, it causes an increase in 

asynchronous release, i.e. in action potential-independent neurotransmitter release, which 

depletes the vesicle resource. The strength of the coupling between the astrocyte Ca2+ and the 
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presynaptic Ca2+ was investigated as an open parameter, ‘𝛂’. An increase in the value of ‘𝛂’ 

thus leads to an enhanced vesicle release rate. The authors found a value of ‘𝛂’ that resulted 

in a neurotransmitter release rate that was concordant with experimental data (47). 

Interestingly, it is the value of ‘𝛂’ and the corresponding increase in release probability that 

seemed to maximize synaptic transmission. The model was robust with respect to a wide 

range of stimulus frequencies, the number of active zones, and basal levels of vesicular 

release probability.  

In summary, the model of Nadkarni et al. describes neuron-astrocyte coupling at tripartite 

synapses and can be used to investigate the complex relationship between astrocyte activity, 

presynaptic vesicular release rate, and vesicle depletion. It can be used to predict the 

modulation of neurotransmitter release rate by astrocytes under a range of stimulus protocols 

and can be extended to calculate downstream changes in plasticity.  

 

2.4. Discussion 

Numerous models have been implemented to study the roles of astrocytes in synaptic 

transmission. In those models, astrocytes mainly respond to neuronal activity through the 

mGluR-dependent activation of IP3R channels that influence Ca2+ dynamics. De Pittà et al. 

(27) modeled astrocyte IP3 and Ca2+ oscillations mediated by glutamatergic transmission; 

Nadkarni et al. (28) described the coupling of neuronal and astrocyte activity in a single 

tripartite synapse; while Gordleeva et al. (26) depicted the spatiotemporal integration of 

astrocyte Ca2+ signals in a whole cell, thus predicting its influence on synaptic transmission at 

various synapses. All three models (Figure 1) describe IP3R channel dynamics using early 

computational models (30, 49) that are based on electrophysiological data such as 

Bezprozvanny et al. (50).  

3. Glutamate uptake  

As much as glutamate release is essential for excitatory transmission in the Central Nervous 

System (CNS), its rapid removal from the ECS is critical for normal brain function. 

Glutamate molecules that linger on and diffuse away from the synaptic cleft can compromise 

the specificity of synaptic signaling (51), a key component of information processing in the 

brain. A prolonged lifespan of glutamate can also cause neuronal cell death through a 

phenomenon referred to as excitotoxicity (52). 

About 90% of all the released glutamate is taken up by astrocytes, making them the primary 

cells responsible for glutamate clearance (53–55). This phenomenon is mediated by its uptake 

by glutamate transporters, which are expressed in all cell types in the CNS, with the highest 

density found in astrocytes (56). Glutamate transporters can be classified as Na+-independent 

and Na+-dependent transporters (56, 57). Even though the affinity of Na+-independent 

transporters is similar to that of Na+-dependent ones, they contribute to less than 5% of the 

total glutamate uptake (56). Na+-dependent glutamate transporters are also referred to as 

excitatory amino acid transporters (EAATs) and consist of several isoforms, e.g., EAAT-1 

(also known as glutamate-aspartate transporter or GLAST in rodents) and EAAT-2 (known as 

glutamate transporter-1 or GLT-1 in rodents). The time course of glutamate uptake can be 
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calculated based on a deconvolution analysis of astrocyte transporter currents such as done by 

Scimemi and Diamond (58). In this section, we present three models of astrocyte glutamate 

uptake (59–61) to study its effect on astrocyte Na+ and Ca2+ dynamics and postsynaptic α-

amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAR) and NMDAR 

activation (Figure 2). 

 

 
Figure 2: Models of glutamate uptake at tripartite synapses. Flanagan et al. (60) and 

Rǎdulescu et al. (59) model the interplay between glutamate uptake by astrocytes at 

tripartite synapses and postsynaptic activity. Additionally, Flanagan et al. describe how those 

interactions can affect gliotransmission. Rǎdulescu et al. instead simulate the influence of 

glutamate uptake on extrasynaptic volume transmission. The Héja & Kardos model (61) 

describes how glutamate uptake alters astrocyte microdomain activity at the single PAP 

level. 

 

3.1. Model of glutamate uptake in relation to glutamate transporter density 

A recent model proposed by Rǎdulescu et al. (59) investigates the effect of the density of 

glutamate transporters on the membrane of PAPs on the opening probability of AMPARs and 

NMDARs at the active (Po-AMPAperi and Po-NMDAperi) and neighboring synapses (Po-

AMPAextra and Po-NMDAextra). To do so, they performed Monte Carlo simulations (particle-
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based approach, see Section 6 for more details), in which glutamate molecules were injected 

at the center of a synaptic cleft and the glutamate concentration profile was monitored at the 

stimulated synapse as well as at six neighboring synapses (Figure 2). Glutamate transporter 

density in astrocytes at different ages in mice (2 weeks to 21 months) was estimated based on 

dot blot experiments. Combining those values with 3D axial STEM tomography 

reconstructions allowed the authors to evaluate the variability of glutamate transporter 

density in different astrocyte subcellular compartments. 

Simulations with the model allowed the authors to infer the effect of the variability of 

glutamate transporter density on synaptic transmission depending on mouse age and the 

subcellular compartment in contact with the synapse. Results indicate that the density of 

glutamate transporters on PAPs as well as the location of the site of glutamate release play an 

important role in shaping glutamate receptor activity at local (Po-AMPAperi and Po-

NMDAperi) and distant (Po-AMPAextra and Po-NMDAextra) synapses. More specifically, the 

higher the glutamate transporter density around a synapse, the lower the extra-synaptic 

activation of glutamate transporters. 

In summary, this model allowed the authors to test the effect of the differential expression 

levels of glutamate transporters that they observed in different astrocyte compartments on the 

local and extra-synaptic activation of NMDARs and AMPARs. Their study also highlights 

the importance of accurate estimates of molecular expression levels to fully grasp the 

spatiotemporal dynamics of glutamatergic signaling. This model can be used to gain insights 

into glutamate concentration profiles in the ECS at tripartite synapses, glutamate receptor 

activity, and glutamate spillover under a range of stimulation protocols.  

 

3.2. Model of glutamate uptake by astrocytes and its effects on post-

synaptic neuronal excitability 

Flanagan et al. (60) extended the tripartite synapse model by De Pittà and Brunel (62) by 

adding a biophysical model of EAAT-2 transporter activity at the astrocyte membrane 

(Figure 2). Thus, they combined in their model glutamate uptake and gliotransmission. 

Additionally, the model also accounts for Na+ (as EAAT-2 is a Na+-dependent glutamate 

uptake transporter) and K+ dynamics. The model includes five compartments: the presynaptic 

and postsynaptic terminals, the soma and process of an astrocyte, and the ECS. The 

phenomenological presynaptic terminal releases glutamate at a given rate and spikes trigger a 

K+ efflux from the presynaptic neuron into the synaptic cleft. The postsynaptic terminal is 

populated with AMPARs and NMDARs. The binding of glutamate to mGluRs on the 

membrane of astrocytes results in the activation of IP3Rs on the ER and leads to Ca2+ release 

into the cytosol (see Section 2). This Ca2+ signal can cause a release of gliotransmitter from 

the perisynaptic compartment of the astrocyte. Moreover, glutamate is taken up by EAAT-2, 

which is accompanied by a Na+ influx into the astrocyte cytosol. The Na+/K+-ATPase pump 

is primarily responsible for maintaining Na+ and K+ gradients across the cell membrane; 

while the Na+-Ca2+ exchanger (NCX) removes Ca2+ from the cell and allows Na+ influx into 

the cell. 

Flanagan et al. simulated three basal glutamate concentrations in the astrocyte. The highest of 

those concentrations (10 mM), non-physiological and chosen to simulate pathological 
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conditions, led to a delayed removal of glutamate by EAAT-2 from the synaptic cleft. They 

hypothesize that this slow removal also occurs in the epileptic brain. Due to the prolonged 

glutamate uptake, the activation of mGluRs was higher, which led to larger IP3-mediated 

Ca2+ oscillations, allowing intracellular Ca2+ concentration to rise above the threshold for 

gliotransmission. This increased glutamate release by the astrocyte triggered a slow inward 

current, which resulted in high-frequency neuronal activity. Interestingly, such a high 

intracellular glutamate concentration in the astrocyte reduced the minimum value of the 

neuronal firing rate that could trigger gliotransmitter release events. 

In summary, the model allows inferring the influence of glutamate uptake and astrocyte 

intracellular glutamate concentration on gliotransmission and the subsequent alterations of 

postsynaptic firing rates. It is well-suited to study the interplay between astrocyte activity and 

the excessive glutamate concentrations measured in the ECS in pathological conditions, such 

as epilepsy. 

 

3.3. A spatial model of glutamate uptake, Ca2+ and Na+ signaling in PAP 

microdomains 

Recently, Héja & Kardos (61) have developed a model at the nanoscale level to investigate 

how glutamate uptake as well as Na+ and Ca2+ activity in the astrocyte cytosol are affected by 

the coverage of the synapse by the astrocyte leaflet. Due to the small size of PAPs, the model 

is both stochastic and spatially extended (see Section 6 for more details). Briefly, the model 

describes glutamate diffusion within the synaptic cleft as well as the diffusion of Na+ and 

Ca2+ within the astrocyte cytosol. The geometry of the synapse is simplified: the presynaptic 

bouton and the postsynaptic spine are cylinder-shaped while the astrocyte process consists of 

a hollow cylinder. Astrocyte process geometries of different sizes are used, enabling to test 

the effect of the astrocyte coverage of the synapse – from loose to tight – on glutamate uptake 

(see Figure 2). Neuronal activity is modeled as a punctual infusion of 5,000 glutamate 

molecules at the center of the presynaptic bouton. The model describes the glutamate uptake 

by EAATs at the plasma membrane of the astrocyte process, which is accompanied by an 

influx of Na+ within the astrocyte cytosol. EAATs can interact with any glutamate molecule 

in their vicinity, here described as a 50x50x50 nm3 interaction space. The model also takes 

into account the activity of the NCX, which is the only source of Ca2+ influx and efflux in this 

model.  

The model by Héja & Kardos has contributed to a better understanding of the dynamics of 

glutamate uptake at individual synapses. They distinguished a sub-population of EAATs on 

the membrane of astrocytes in the tightly-wrapped tripartite synapse configuration that was 

exposed to high glutamate concentrations and was responsible for the majority of glutamate 

uptake. Interestingly, this sub-population was absent in the loosely-wrapped synapse 

configuration. They were further able to characterize the fluctuations of Ca2+ concentration 

resulting from Ca2+ binding and unbinding to and from NCX and showed that those 

fluctuations were remarkably stable, displaying little variability upon changes of Na+ and 

Ca2+ concentrations, neuronal firing rate, NCX activity, or membrane potential. 

Overall, the model from Héja and Kardos is an example of a model focusing on astrocyte-

neuron communication at the single astrocyte process level. Such a model is well-suited to 
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investigate the effect of spatial properties, such as the shape of the astrocyte leaflet (see also 

Section 6), on astrocyte Ca2+ microdomain activity, and glutamate uptake. 

 

3.4. Discussion 

Over the last few decades, experimental and computational studies have characterized the 

biophysical properties and expression levels of astrocyte glutamate transporters in various 

(patho-)physiological conditions, in the mature and developing central nervous system. The 

computational models presented in this section can be used to further our understanding of 

how astrocyte transporters corral glutamatergic transmission (Flanagan et al. (60) and Héja & 

Kardos (61) models) and limit glutamate spillover (Rǎdulescu et al. model (59)). 

4. Ion homeostasis 

Astrocytes express numerous ion transporters, pumps, exchangers, channels, and receptors 

that regulate ion homeostasis and the ECS volume (3). Here, we describe three computational 

models of astrocyte ion homeostasis that provide key insights into the complex interactions 

between ion fluxes, ECS shrinkage, glutamate uptake, gliotransmission, and/or astrocyte Ca2+ 

signaling (Figure 3). The most common ion pumps and transporters described in these models 

(63–65) are i) Na+/K+-ATPase pumps, which actively exchange Na+ (outwards) and K+ 

(inwards) across the plasma membrane; ii) NCX exchangers, which exchange Na+ (outwards) 

and Ca2+ (inwards) – NCX can switch to reverse mode with high intracellular Na+ 

concentrations; iii) EAAT-1/2, which exchange Na+ and glutamate (both inwards) with K+ 

(outwards). Each astrocyte subcompartment, from the soma to PAPs and endfeet, display 

different levels of expression of transporters, pumps, exchangers, channels, and receptors (3, 

59). Hence, the molecular processes underlying ion homeostasis might vary across the 

astrocyte. This is particularly difficult to examine experimentally as astrocyte fine processes, 

which account for about 75% of the astrocyte volume (66), are not resolved by diffraction-

limited light microscopy. 
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Figure 3: Models of ion homeostasis at tripartite synapses. Østby et al. (63) described 

the ECS shrinkage resulting from astrocyte ionic fluxes. The Breslin et al. model (64) 

comprises a synapse (describing both pre- and postsynaptic neurons) encapsulated by an 

astrocyte process. Wade et al. (67) extended the model by adding Ca2+ and Na+ dynamics. 

The Oschmann et al. model (65) describes the interplay between mGluR-dependent and 

glutamate transporter-dependent Ca2+ signaling pathways in the astrocyte. The colored 

arrowheads describe the direction of Na+ (blue), K+ (light red), Ca2+ (dark red), Cl− (green), 

and HCO3− (orange) fluxes.  

 

4.1. Model of astrocyte ion fluxes-mediated ECS shrinkage  

Østby et al. (63) developed a computational model to study the interplay between K+ 

buffering and water transport mechanisms. Ionic transport across the membrane change the 

relative amount of positive and negative charges in the intracellular space (ICS) and the ECS. 

These fluxes of charges modulate the intracellular osmolarity that drives water fluxes at the 

plasma membrane. The model accounts for the variations in Na+, K+, and bicarbonate ion 

(HCO3
−) concentrations in the astrocyte and the ECS. Those ion concentration changes are 

described, together with the volumetric changes of the astrocyte and the ECS, using ordinary 

differential equations (ODEs), while algebraic equations depict Cl− dynamics and astrocyte 

membrane potential. The authors implemented the model to investigate stimulation-induced 

shrinkage of the ECS in the gray and white matter. When active, neurons release K+ and 
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uptake Na+, while astrocytes uptake K+, Na+, and Cl-, which results in a water influx from the 

ECS into the cell by osmolarity. Figure 3 displays the modeled reactions. 

The simulation results indicated that volume changes are controlled by the combined action 

of several processes. The ECS shrinkage seemed to be enhanced by the cotransporters (i.e., 

the Na+-bicarbonate cotransporter, NBC, and the Na+-K+-Cl- transporter, NKCC1). The rise 

in the extracellular K+ concentration following neuronal activation causes an astrocyte 

membrane depolarization, which is sensed by NKCC1 and causes an increase in the influx of 

both Na+ and HCO3
−. Their results further suggested that the activity of the Na+/K+-ATPase 

limited the ECS shrinkage by keeping the intracellular Na+ concentration low, notably in the 

presence of an activity-induced increase of Na+ influx. The low intracellular Na+ 

concentration prevents intracellular osmolarity from reaching high levels, which in turn limits 

water influx from the ECS into the astrocyte. 

In summary, the Østby et al. model describes ionic fluxes in the astrocyte and how they can 

impact the ECS volume during glutamatergic transmission. In several diseases, such as 

cortical spreading depression and epilepsy, the ECS and astrocyte volume is altered (68). 

This model is best suited to study the impact of ionic fluxes in astrocytes on water and ionic 

homeostasis at synapses. 

 

4.2. Model of potassium and sodium microdomains in astrocytes 

Experimental studies showed the presence of ionic microdomains in thin astrocyte processes 

(67), which correspond to small portions of the plasma membrane with inhomogeneous 

distributions of Na+ channels and cotransporters, forming clusters. This spatial organization 

could result from spatially-restricted areas with negatively charged membrane lipids (69). 

Breslin et al. (64) hypothesized that this localized negative charge might result in a slow 

diffusion of cations (positively charged ions) along the astrocyte processes. These localized 

negative charges create potential wells, characterized by a local minimum of potential energy. 

Potential wells restrict cation conduction, attracting and trapping the positive charges in the 

wells created by the negative charge.  

To investigate their hypothesis, the authors proposed a multi-compartmental model of a 

synapse enwrapped by an astrocyte to explore the ion homeostasis in thin astrocyte processes 

and the interplay between the astrocyte and neuronal compartments (Figure 3). With the 

present model, the authors showed that the cation flow restriction forms a K+ microdomain at 

the PAP, referred to as the perisynaptic cradle (PsC) in this study. Moreover, they showed 

that K+ microdomains decrease the electrochemical gradient of K+ and reduce the influx of 

K+ through inward-rectifier K+ channels (Kir), facilitating the return to basal concentrations of 

K+
 in the perisynaptic ECS. Similar microdomains were observed for Na+

. 

To further investigate the effect of such microdomains, Wade et al. (67) extended the Breslin 

et al. model by adding Ca2+ channels onto the plasma membrane (Figure 3). Note that 

intracellular sources of Ca2+ were omitted. The authors tested the hypothesis that Ca2+ 

microdomains can be formed in the PsC and that those depend on Na+ microdomains. Na+ 

microdomains reversed the NCX, instigating an influx of Ca2+ into the astrocyte. Ca2+ 

microdomains in this case were not formed by potential wells but by the reverse mode of the 

NCX. Since Na+ influx through EAAT-2 channels depends on presynaptic glutamate release, 
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the Wade et al. model allows studying the effects of sustained neuronal activity on the intra- 

and extracellular ionic concentrations. The formation of Na+ and Ca2+ microdomains was 

itself sufficient to produce Ca2+ transients, even in the absence of intracellular Ca2+ stores. 

In summary, Breslin et al. and Wade et al. were the first to hypothesize and simulate the 

formation of Na+ and K+ microdomains in PAPs and to test their effect on Ca2+ microdomain 

activity. These models could help to study the effect of the modulation of the volume of 

astrocyte subcompartments on ionic microdomain formation and local ionic fluxes.  

 

4.3. Model of Ca2+ dynamics mediated by two different spatially-segregated 

pathways  

While many computational models of astrocytes focus on one Ca2+ pathway, Oschmann et al. 

(65) examined the interactions between i) glutamate-induced Ca2+ signals and ii) glutamate 

uptake. In this model, it is assumed that the activity of glutamate transporters indirectly 

activates intracellular Ca2+ influx through the activity of NCX, while Na2+ and K+ 

concentration gradients across the plasma membrane are maintained by the activity of the 

Na+/K+-ATPase. The model consists of a system of ODEs describing a single compartment of 

either an astrocyte process or soma divided into three compartments: a cylindrical ICS, a 

cylindrical ER (internal Ca2+ store) within the ICS cylinder, and a cylindrical ECS, which has 

the same volume as the ICS (Figure 3). The model describes the dynamics of the astrocyte 

membrane potential, intracellular and extracellular ion concentrations (Ca2+, Na+, and K+), 

and intracellular IP3 concentration. Diffusion is not described as the model is not spatialized 

(see Section 6).  

On one hand, this model assumes, based on previous experimental studies (70, 71), that 

somatic Ca2+ signals mostly result from mGluR activity-dependent Ca2+ influx. The soma is 

characterized by a low surface-volume ratio and a high ER-ICS volume ratio (ratioER). On the 

other hand, Ca2+ signals resulting from the activity of glutamate transporters are assumed to 

mostly occur near synapses, in PAPs, whose surface-volume ratio is high and ratioER low. 

The authors used this model to investigate whether the activity of NCX and glutamate 

transporters can trigger Ca2+ signals in PAPs. Intracellular Ca2+ concentration in the PAPs 

only increased when the parameter value for the maximal pump rate of the NCX was 

increased. Blocking glutamate uptake by the astrocyte prevented Ca2+ influx through the 

NCX. 

Ziemens et al. (72) used the equation describing the NCX current from the Oschmann et al. 

model to predict that the increased Na+ activity in PAPs measured experimentally upon 

NMDA application triggers NCX-dependent Ca2+ influx (reverse mode) in PAPs.  

In summary, the novelty of the Oschmann et al. model lies in the spatial separation within the 

astrocyte of mGluR- and glutamate transporter-dependent Ca2+ signaling pathways. 

Therefore, the model is best suited for computational studies investigating the distinct Ca2+ 

activity in the soma and PAPs. 

 

4.4. Discussion 

The maintenance of ion homeostasis is critical to ensure the propagation of action potentials 

in neurons and to prevent excitotoxicity. Several computational models have been developed 
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to study ion homeostasis at tripartite glutamatergic synapses. For example, the model from 

Østby et al. can be used to study the interplay between ECS shrinkage, ion uptake, and water 

transport (63). The Breslin et al. (64) and Oschmann et al. models (65) allow for studying the 

involvement of astrocytes in ion homeostasis and glutamate uptake. The Oschmann et al. 

model describes the interplay between two different Ca2+ signaling pathways, while the 

Breslin et al. model allows for studying ionic microdomains in astrocyte leaflets and their 

effect on synaptic homeostasis. Altogether, these models can provide novel insights into the 

mechanisms by which astrocytes contribute to the regulation of ion homeostasis in the brain. 

5. Metabolism  

The idea that metabolic interactions occur between astrocytes and neurons has existed for 

more than a century now (3). It is based on the observation that astrocyte processes are 

intimately juxtaposed to brain capillaries as well as neuronal synapses (73). Astrocytes are 

involved in the uptake of glucose – the main energy source of the brain – from the blood and 

distribute it to other brain cells (73). However, the detailed involvement of astrocytes in the 

metabolic processing of glucose remain unclear and controversial (74). The major 

impediment in achieving a clear understanding of this phenomenon has been the subcellular 

resolution required to monitor metabolic fluxes during neuronal activity in the brain. This has 

been partially overcome by using more accessible experimental model systems like the retina, 

co-cultures of neurons and glial cells, as well as mathematical modeling (75). Despite 

technological advances, the exact role of astrocytes and lactate in brain energy metabolism is 

still unresolved. Lactate is an alternative energy source to glucose. In the brain, lactate is 

produced by both astrocytes and neurons, which convert glucose into lactate through a 

process called aerobic glycolysis. Most investigations agree that lactate is transferred between 

astrocytes and neurons but disagree on the direction of this transfer: 1) astrocyte-to-neuron 

(ANLS) (76) or 2) neuron-to-astrocytes lactate shuttle (NALS) (77). 

Most of the existing computational models of astrocyte metabolism are based on the 

biophysical models proposed either by Aubert et al. (78) or Simpson et al. (79). Both papers 

model the transport and processing of metabolites as a series of coupled differential equations 

that aim to explain experimental data. The second-generation models based on either of these 

models include recent insights and refined parameters (Figure 4) (77, 80). Both models 

predict accurate glucose and lactate transients. However, despite a similar framework, they 

predict the opposite outcomes in the direction of lactate transfer. The differences seem to 

arise primarily from the way the models describe fluxes that are associated with i) the uptake 

of glucose by the astrocyte compartment from the basal lamina, ii) the uptake of glucose by 

the astrocyte compartment from the interstitium, and iii) the uptake of glucose by the 

neuronal compartment. 
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Figure 4: Pathways described by models of astrocyte-neuron metabolic interactions. 

Released glutamate from the presynaptic bouton can activate glutamate receptors (GluRs) 

at the astrocyte and postsynaptic membranes, which is an energetically expensive process. 

Following the uptake of glutamate by astrocytes, glutamate is converted into glutamine and 

transported to neurons, where it is converted back into glutamate by glutaminases (GLSs). 

In neurons, lactate can be used as an energy substrate following its conversion to pyruvate 

by the lactate dehydrogenase-1 (LDH1 ). Astrocytes and neurons take up glucose via 

GLUT1 (glucose transporter 1) and GLUT3 (glucose transporter 3), respectively. 

 

5.1. Top-down model of the compartmentalization of metabolic pathways 

at tripartite synapses 

Previous models that have attempted to resolve the ANLS versus NALS debate have relied 

on a bottom-up approach, wherein the energy needs of each of the biophysical processes 

involved in signaling were accounted for to calculate the total energy needs (79). In contrast, 

the approach by Jolivet et al. (76) is a top-down approach that focuses on the energy that is 

available rather than required to understand the compartmentalization of different 

biochemical reactions involved in metabolic activity in neurons versus astrocytes. To that 

end, they used published datasets that describe the average tissue glucose and oxygen 

utilization at resting and active brain states (81). They measured the linear relationship 

between the total cycling of neurotransmitters and the neuronal oxidative glucose utilization 

(82). This allowed them to calculate the average tissue ATP production at rest and in the 

active state. Jolivet et al. then described the compartmentalization of neuronal and astrocyte 

oxygen and glucose metabolism (Figure 4) and used this information to investigate whether 

glucose is completely oxidized by these cells (based on the calculations by Gjedde et al. 

(81)). This method allows for a quantification of the energy budget of the brain constrained 

by in vitro experimental data and does not have to make any significant assumptions on 
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parameter values. Their results suggest that a larger majority of glucose is taken up by 

astrocytes, while oxygen is mostly consumed by the neurons, and this consumption is 

correlated with neuronal activity. Although the model did not include glycogen, it was able to 

predict a wide range of in vivo data from the human brain. Their key finding that addresses 

the ANLS/NALS controversy is that astrocytes only oxidize a small portion of the glucose 

while neurons oxidize glucose-derived metabolites, which strongly supports the ANLS 

hypothesis since this results in the transfer of glucose-derived metabolites from astrocytes to 

neurons. The amplitude of this transfer goes up with increased neuronal activity. 

In summary, the model quantifies the partitioning of the distribution of energy utilization, 

notably oxygen and glucose, by neurons and astrocytes. It provides a mathematical 

description of the neurovascular coupling at different spatial and temporal scales, describing 

the metabolic activity of neurons and astrocytes as well as the BOLD signal. The model can 

be used to predict the temporal dynamics of the consumption of lactate, glucose, and oxygen 

by the brain tissue. 

 

5.2. Model of lactate and glucose levels in neurons and astrocytes during 

visual stimulation  

The study by Mangia et al. (77) describes a mathematical model of NALS based on the 

Simpson et al. model (79) to gain insights into the compartmentalization of the metabolic 

activity of different brain cells. The model was implemented using in vivo data from the 

human brain, notably magnetic resonance spectroscopy, which quantified temporal changes 

in metabolite concentration during neuronal activity. The model simulates brain glucose and 

lactate levels in astrocytes and neurons (Figure 4), based on concentrations and kinetic rates 

measured experimentally. Parameters that govern the utilization of glucose and lactate by 

astrocytes and neurons were investigated over a wide range of values. Their results suggest 

that physiological parameter values predict NALS. Mangia et al. further demonstrate that 

ANLS is only possible under unrealistic conditions, where astrocytes display a twelve-times 

increased capacity for glucose transport and neurons do not respond to activation with 

increased glycolysis. 

In summary, the main difference between Jolivet et al. (76) and Mangia et al. (77) as well as 

the rest of the ANLS and NALS models, seems to stem from the parameter values used to 

describe the amount of glucose that is entering the astrocyte compared to neurons. The NALS 

models keep the proportion of astrocyte glucose transport at around 20% (77) whereas the 

value of this parameter is more than 50% in ANLS models (83, 84). Predictions from the 

Jolivet et al. and Mangia et al. models may need to be further tested in models of metabolic 

disorders or ischemic stroke to resolve the debate.  

 

5.3. Discussion 

Both ANLS and NALS models agree that glucose is partially transported into astrocytes from 

the blood (85). The debate is about the proportion of this astrocyte glucose transport. The 

supporters of the ANLS models promote the idea that there is a shift in glucose utilization 

from neurons to astrocytes during glutamatergic activity. However, the modeling studies that 

support the NALS mechanism (77, 86) suggest that glucose and not lactate is the main energy 



 

19 

 

substrate in the brain. This conclusion is based on the theoretical prediction that glucose 

transport capacity is larger in neurons than in astrocytes. The supporters of ANLS argue that 

this thesis is not consistent with the absence of a pathological phenotype in transgenic mice 

with decreased expression of the neuron-specific glucose transporter GLUT3 (87). On the 

contrary, a decrease in the expression of GLUT1, the astrocyte-specific glucose transporter, 

leads to pathological conditions (88). The strongest argument against the NALS model is the 

observation that the glucose utilization rate in neurons does not seem to vary depending on 

activity levels (89). The NALS versus ANLS model debate thus remains unresolved to date. 

6. Structure-function coupling  

Astrocytes display a very complex nanoscopic morphology. Around 75 % of the total 

astrocyte volume consists of a meshwork of fine processes that are below the diffraction 

limit, thus unresolved by diffraction-limited light microscopy (90). Such a complex cellular 

nano-architecture has been shown to greatly impact the function of various cell types. For 

example, the shape of dendritic spines controls the local sequestration of signals and thus 

strongly shapes synaptic function (91–93). As modifying cell morphology without altering 

cell physiology is unfeasible experimentally, mathematical and computational modeling 

approaches are essential to investigate geometrical effects on cell signaling. Consequently, an 

increasing amount of astrocyte models describe and account for cell morphology and spatial 

effects. In this section, we present three different computational approaches and three models 

that can be used to study the effect of cell shape on astrocyte physiology at the single-cell 

level (Figure 5). Please refer to Section 7 for models taking into account the topology of 

astrocyte networks. 

Before describing the three models, we provide a brief overview of modeling approaches 

taking into account the effects of cell geometry, referred to as spatially-extended approaches: 

⚫ Deterministic spatially-extended approaches describe the average behavior of 

populations of molecules within compartments. They are often referred to as 

compartmental models. Reactions within each compartment are described by ordinary 

differential equations. 

⚫ Stochastic spatially-extended approaches consider that molecular interactions are 

probabilistic events. There are two main stochastic approaches, described below. For 

more details, see (94).  

1. Particle-based approaches, also referred to as particle-tracking or microscopic 

models, describe the position and state of all the molecules being modeled. 

Diffusing molecules are then tracked individually during simulation time. 

2. Voxel-based approaches, also referred to as population-based or mesoscopic, 

divide the modeled space into small compartments: voxels, most often cubes or 

tetrahedra. Each compartment is considered well-mixed and diffusion events are 

described as modifications of the number of molecules in two adjacent 

compartments. 

⚫ Hybrid approaches divide the system of interest into subcompartments, each describe 

by a different spatially-extended approach. 
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For more details on spatially-extended modeling techniques and tools, please refer to (94–

97).  

 

Figure 5. Modeling strategies to investigate the effects of geometry on astrocyte 

activity depending on the compartment under study. This schematic illustrates the main 

cellular subcompartments that characterize astrocyte morphology as well as examples of 

modeling techniques used depending on the compartment being modeled. Compartmental 

models such as implemented by Cresswell-Clay et al. (98) and Savtchenko et al. (99) are 

best suited to model Ca2+ signal propagation and coupling within a whole astrocyte, while 

spatial models of fine processes such as developed by Héja et al. (61) and Denizot et al. 

(100) make it possible to study the effect of spatial factors such as cell morphology and Ca2+ 

channels distribution on local microdomain activity. 

 

6.1. ASTRO: a tool to simulate astrocyte activity in realistic astrocyte 

ultrastructures at the whole-cell level 

ASTRO (99) is a computational tool for simulating astrocyte activity and is based on the 

NEURON software framework (101). In addition to developing ASTRO, Savtchenko et al. 

(99) have developed an algorithm that creates geometries of single astrocytes based on 

experimental 3D reconstructions. The resulting geometries are adapted to be compatible with 

NEURON software, thus consisting of trees of 1D compartments. By adding processes 

randomly to those geometries, the ASTRO software allows the user to vary the tissue volume 

fraction occupied by processes as well as their surface-to-volume ratios. Reactions in each 

compartment are described by ODEs (deterministic spatially-extended approach, see above) 
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and compartments are coupled by diffusion (Figure 5). The software has been extensively 

validated against experimental data performed on hippocampal astrocytes from the CA1 

region, obtained with various approaches such as patch-clamp recordings, electrophysiology, 

two-photon excitation imaging, spot-uncaging, fluorescence recovery after photobleaching, in 

vivo Ca2+ imaging, and quantitative correlational electron microscopy. Computational models 

of astrocytes have similar characteristics to those studied experimentally, such as their 

intracellular diffusional connectivity and their passive electrical properties.  

ASTRO extends NEURON by adding features that are relevant for modeling astrocytes, such 

as the description of surface-volume ratios, sites of glutamate application, as well as the 

number and location of endfeet and gap junctions. Simulations using ASTRO have provided 

new insights into astrocyte activity, predicting various mechanisms controlling astrocyte 

physiology, such as the decrease of Ca2+ wave speed and amplitude caused by increased Ca2+ 

buffering. They further predicted that local K+ efflux can efficiently prevent the spatial spread 

of elevations of intracellular K+ concentration resulting from K+ uptake. Finally, the detailed 

compartmentalization of the model allows for changing local characteristics of astrocyte 

activity, such as the local Ca2+ channel cluster size. This allowed Savtchenko et al. to 

illustrate the complex interplay between the inter-Ca2+ channel cluster distance, the associated 

Ca2+ activity, and its fluorescence readout, mediated by Ca2+ indicators.  

The ASTRO tool can be used to test the effect of diverse characteristics of subcellular 

astrocyte subcompartments on cellular dynamics at the whole-cell level, such as membrane 

voltage spread, input resistance, and the generation of Ca2+ waves. 

 

6.2. A multicompartmental model of Ca2+ activity in an astrocyte 

Cresswell-Clay et al. (98) have developed a model that divides the astrocyte into different 

major compartments. Reactions involved in Ca2+ signaling differ depending on the location 

within the cell and Ca2+ diffuses between compartments. Ca2+ can enter PAPs following 

neuronal stimulation. This reaction depends on Ca2+ influx through Ca2+ channels at the 

plasma membrane such as the NCX. Larger processes contain some ER and are characterized 

by IP3R-dependent Ca2+ signaling, including Ca2+-induced-Ca2+ release. Ca2+ removal results 

from the activity of ATPases at the plasma membrane and the membrane of the ER (SERCA 

pumps). Larger compartments, i.e., the soma and five major branches, are non-spatial (single 

point models), connected to the rest of the astrocyte subcompartments by Ca2+ diffusion in 

the cytosol and the ER (see Figure 5).  

Cresswell-Clay et al. have used this model to study the influence of neuronal input properties, 

such as its amplitude or frequency, and diffusive properties, such as Ca2+ diffusion coefficient 

in the cytosol or ER, on Ca2+ spikes in the soma of the astrocyte. They found that 

concentrating neuronal inputs onto fewer astrocyte processes and increased synchrony of 

Ca2+ signals in processes facilitated the emergence of somatic Ca2+ spikes. Their results 

further suggested that cell morphology influenced Ca2+ activity. In particular, an increased 

somatic volume was associated with a decreased somatic spike probability. Further, they 

found that an increased Ca2+ diffusion coefficient in the cytosol facilitated the emergence of 

somatic spikes so that fewer process spikes were needed to result in a somatic event. Finally, 

Ca2+ diffusion within the ER led to a non-monotonic variation of Ca2+ somatic spikes with the 
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neuronal input intensity, caused by Ca2+ depletion in the ER for high neuronal input 

frequencies.  

In summary, the Cresswell-Clay et al. model has improved our understanding of the 

integration of neuronal inputs by single astrocytes by varying spatial factors, such as the 

distribution of neuronal inputs over the astrocyte and diffusional properties in the cytosol and 

the ER, which cannot be performed experimentally. This model is best suited for studying the 

interactions between astrocyte compartments of different sizes in response to neuronal 

activity, notably the integration and propagation of Ca2+ signals at the whole-cell level.  

 

6.3. A spatial model of Ca2+ activity in a perisynaptic astrocyte process 

Most astrocyte-neuron communication occurs in fine PAPs that contain a very low number of 

molecules and ions so that the kinetics of the associated reactions are highly stochastic. 

Stochastic spatially-extended approaches are best suited to model astrocyte physiology at this 

spatial scale. The model from Denizot et al. (100) corresponds to a model of IP3R-dependent 

Ca2+ signals in fine processes (Figure 5), implemented both in 2D, with a custom-made 

particle-based simulator, and in 3D, using the voxel-based STEPS software (102). The latter 

allows running simulations at the nanoscale in both simplified 3D shapes of thin processes 

and more realistic ultrastructures reconstructed from electron microscopy, for example. 

Simulations of a non-spatial, non-stochastic implementation of the model highlighted that 

stochasticity was necessary for spontaneous Ca2+ signals to be triggered in fine processes. 

The 2D implementation allowed the authors to explore the range of dynamical behaviors that 

the model displays, suggesting that Ca2+ peak frequency increases when Ca2+ channels are 

organized into spatial clusters. Simulations of the 3D model implementation were performed 

in a simplified astrocyte process morphology in 3D, consisting of a 1 μm-long, 100 nm in 

radius cylinder, which displayed a similar Ca2+ microdomain activity than recorded in 

organotypic cultures of hippocampal astrocytes. Simulations quantified the alteration of Ca2+ 

signals by Ca2+ indicators, which are necessary to perform Ca2+ recordings experimentally. 

Increased concentrations of Ca2+ indicators were notably resulting in a decrease in Ca2+ peak 

amplitude and frequency.  

The model from Denizot et al. has recently been used to investigate the effect of remodeling 

the astrocyte nano-architecture observed in pathological hypo-osmotic conditions (103) on 

local astrocyte Ca2+ activity at tripartite synapses (104). Simulation results suggest that the 

nanoscale reticular morphology of astrocyte processes observed in healthy tissue (105) 

enhances local Ca2+ activity and that this effect is hindered in pathological conditions, which 

was confirmed by Ca2+ imaging experiments. More recently, simulations of this model in 

realistic 3D geometries of PAPs reconstructed from electron microscopy gave new insights 

into the complex interplay between ER shape and distribution, the clustering of Ca2+ 

channels, and Ca2+ buffering mechanisms in regulating microdomain Ca2+ activity at tripartite 

synapses (106). 

The high spatial resolution of this model comes at a high computational cost and simulations 

of hundred seconds of chemical reactions in a fine process take several days to compute, 

which is much slower than the compartmental models of Savtchenko et al. (99) and 

Cresswell-Clay et al. (98), despite simulating smaller subcellular compartments. For that 
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reason, the model from Denizot et al. is best suited to study astrocyte physiology in fine 

processes and can be used to test the effect of spatial factors, such as cell morphology and the 

distribution of Ca2+ channels, on astrocyte microdomain Ca2+ activity. 

 

6.4. Discussion 

In this section, we have presented some of the recent models that take into account the 

complex morphology of astrocytes to investigate the effect of spatial properties of astrocytes 

on their activity. The presented models describe different signaling pathways and cell shapes, 

using different spatial resolutions and accuracy. Such spatially-extended models are useful 

tools to test the effect of factors that might be crucial to astrocyte physiology, such as the 

location and density of gap junctions, the distribution and size of Ca2+ channel clusters, and 

the local variability of astrocyte morphology. As those parameters vary drastically in 

pathological conditions and are often inaccessible experimentally, those models offer 

valuable opportunities to better understand the biochemical processes that underlie astrocyte 

activity and astrocyte-neuron communication in health and disease. 

7. Astrocyte networks 

Astrocytes establish complex networks with the numerous cells they are contacting. Notably, 

in the human brain, a single protoplasmic astrocyte could contact up to 2 million synapses 

residing in its territorial domain (107), forming numerous tripartite synapses (see Section 2) 

(108). Astrocyte and neuronal networks are thus tightly interwoven. Astrocyte activity is 

correlated to neuronal synchronization (109, 110). Yet, the mechanisms by which neuron-

astrocyte communication shapes network activity in health and disease remain poorly 

understood. 

Astrocytes are characterized by non-overlapping spatial domains (111) and are connected to 

neighboring astrocytes through gap junction channels. This coupling allows for the flow of 

small molecules (e.g., IP3) and ions from one cell to another (112). Intercellular Ca2+ waves 

can spread from one astrocyte to up to 70 neighboring cells in rodent cultures (113). Such a 

spatial spread of astrocyte Ca2+ signals can influence the activity of numerous neuronal 

circuits simultaneously. Studying the interplay between astrocyte and neuronal activity at the 

network level is thus crucial to expanding our understanding of brain physiology.  

In this section, we present three computational network models that describe astrocyte-neuron 

networks that take into account the network topology and include hundreds of astrocytes 

(Figure 6).  
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Figure 6: Astrocyte and neuron-astrocyte network models. Verisokin et al. (114) 

modeled the propagation of Ca2+ waves in astrocyte networks. Both Lenk et al. (34) and Li et 

al. (115) models describe the propagation of Ca2+ waves in astrocyte networks coupled with 

the excitatory and inhibitory transmission in neighboring neuronal networks. 

 

7.1. A topologically realistic model of astrocyte networks 

Verisokin et al. (114) have implemented a morphologically-detailed network model of 

astrocytes focusing on the spatial spread of Ca2+ signals (Figure 6). Each astrocyte shape was 

generated by randomly transforming confocal microscope images. In the model, astrocytes 

were randomly placed onto a grid of 0.275 μm/px for the single astrocyte simulations and 

0.55 μm/px for the network simulations, while ensuring that astrocyte territories did not 

overlap. In the model, each astrocyte is subdivided into i) the soma with thick branches, ii) 

the thin astrocyte processes, and iii) the surrounding ECS. In the model, the astrocytes are 

stimulated by glutamate released by connected presynaptic neurons, modeled with a 

stochastic Poissonian distribution. In other words, the neurons are not explicitly modeled. 

Astrocyte activity was described using the mGluR-dependent Ca2+ signaling model by Ullah 

et al. (116). The contribution of the different Ca2+ pathways (i.e., ER- or plasma membrane-

mediated) varied depending on the surface-volume ratio of the subcellular compartment. 

More precisely, ER-mediated Ca2+ signals prevail in the soma and thick branches while 

signals in leaflets are mediated by channels at the plasma membrane. Ca2+ and IP3 diffusion 

are described both within and between astrocytes.  
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The model was able to reproduce Ca2+ activity measured experimentally in terms of duration 

and spatial spread at the single-cell level as well as in terms of spatial spread in the network 

(117). Simulation results indicated that, even though all cells were described similarly, the 

network presented a pacemaker-like behavior, i.e., the spread of signals originated from a 

specific pool of cells. This resulted from differences in cell morphology as well as in the 

astrocyte-to-astrocyte contacts in the network and drove the activation of multicellular Ca2+ 

waves, which often displayed similar spatiotemporal properties.  

The novelty of the Verisokin et al. model is that it simulates the astrocyte Ca 2+ activity within 

realistic cell shapes. This feature makes the model most suitable to study the effect of cell 

morphology on Ca2+ dynamics at the whole cell as well as at the astrocyte network levels.  

 

7.2. A topologically realistic model of neuron-astrocyte networks 

Lenk et al. (34) introduced a neuron-astrocyte network model with a biologically-plausible 

network topology. The simulations aimed to reproduce neuronal spiking recorded from 

rodent co-cultures plated on in vitro microelectrode arrays. In the model, the network 

includes 250 neurons and varying ratios of astrocytes, which are distributed over a 750 × 750 

μm2 2D space. Both cell types are modeled as points in space, i.e., they do not have a 

morphology. The astrocytes are randomly placed in the 2D space and are connected via gap 

junctions if the inter-soma distance between two cells is lower than 100 μm. The neurons, 

thereof 80% excitatory and 20% inhibitory, are randomly distributed in the 2D space, and 

long-distance connections (up to 500 μm) are allowed. 

Of note is that the model currently only connects excitatory neurons with astrocytes due to 

the limited information on interactions between inhibitory neurons and astrocytes at the time. 

Upon incoming spikes, the excitatory neurons release glutamate into the synaptic cleft, which 

activates glutamate receptors at the membrane of the postsynaptic neuron and the 

perisynaptic astrocyte. The astrocyte activity is modeled by Lenk et al. using the model from 

De Pittà et al. (27) (see Section 2.1), to which they added the release of the gliotransmitters 

glutamate and ATP by the astrocyte into the synaptic cleft (Figure 6). 

In the first set of in silico experiments, each excitatory presynaptic neuron was connected to 

an astrocyte, while astrocytes were not coupled. This network topology resulted in increased 

spike and burst rates to pathological levels. Then, simulations were performed in the 

complete neuron-astrocyte network model with 10, 20, or 30% astrocytes, which were 

connected by gap junctions. This topology led to a reduction of the neuronal spiking and 

bursting rates to healthy ranges. Increasing the number of astrocytes shaped neuronal network 

activity by preventing overexcitation. 

In Fritschi et al. (118), the Lenk et al. model was used to investigate four hypotheses on the 

pathological mechanisms involving astrocytes in schizophrenia: i) The number of neurons or 

astrocytes in the network is reduced. ii) There is an effect of astrocyte ATP on postsynaptic 

activity. iii) The release of glutamate from the presynapse and the uptake of glutamate by the 

astrocyte is altered in schizophrenia. iv) The excitatory and/or inhibitory synaptic strength, 

i.e., the coupling between neurons is stronger in this disease. 

In summary, Lenk et al. modeled the communication between neurons and astrocytes in 

networks with a high number of cells. The network topology is highly controllable by the 
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model user, which makes the model useful to study the effect of network topology on 

neuronal and astrocyte activity in 2D and 3D (119–121). 

 

7.3. A network model of GABA-evoked neuron-astrocyte communication  

Li et al. (115) developed a model of extracellular GABA (γ-aminobutyric acid) activation of 

astrocytes, resulting in IP3-mediated Ca2+ signals (Figure 6). The neurons are modeled using 

the leaky integrate-and-fire (LIF) formalism (122), which describes a neuron as an electrical 

circuit composed of a capacitor (C) in parallel with a resistor (R), such as in an RC circuit. 

When a current is injected into the model, the LIF neuron acts as a resistor, and, in the 

absence of an input current, the membrane potential discharges exponentially to its resting 

value. Excitatory and inhibitory neurons differ in the model only by their initial excitatory 

and inhibitory conductances. The presynaptic neurons express glutamate receptors (e.g., 

NMDARs and mGluRs) and GABA receptors (e.g., GABABRs). The model further describes 

the activity of NMDA and AMPA receptors in the postsynaptic neurons.  

The astrocytes express mGluRs at their plasma membrane, whose activation leads to IP3-

evoked Ca2+ signaling (see Section 2). The novelty of this model is to incorporate GABABRs 

at the astrocyte plasma membrane, whose activation also results in IP3 synthesis. 

The 2D network model comprises 500 neurons (400 excitatory and 100 inhibitory), with a 20 

% connection probability, and 400 astrocytes. The cells are uniformly distributed onto a 10 x 

10 mm2 planar grid. The astrocytes in the network are on average connected to 100 

neighboring excitatory synapses and four astrocytes. The model simulates the response of the 

network to an injection of exogenous GABA in the ECS. At the synaptic level, the model 

describes the activation of GABABRs in the astrocyte and the presynaptic neuron. In the 

presynaptic neuron, the activation of GABABRs decreases glutamate release probability, 

which counteracts the increased glutamate release from the astrocyte. Changes in GABA 

concentrations are based on the presynaptic release and exogenous input and then decay 

exponentially. The results of this work suggest how elevated extracellular GABA 

concentrations can increase the duration and amplitude of astrocyte Ca2+ signals in a 

concentration-dependent manner. Without external GABAergic stimuli, the astrocyte Ca2+ 

oscillations were slower and more similar to those measured in healthy conditions.  

Overall, the Li et al. model describes the effects of GABA release on glutamatergic synaptic 

transmission and is thus suitable for studying the interplay between excitatory and inhibitory 

signaling in neuron-astrocyte networks. 

 

7.4. Discussion 

Astrocytes and neurons in the brain form interconnected networks. Verisokin et al. (114) 

modeled the influence of cell morphology on Ca2+ activity in astrocyte networks. The model 

framework is similar to Savtchenko et al. (99) (Section 6.1) but with fewer biochemical 

details, thus facilitating the simulation of astrocyte activity at the network level. Li et al. 

(115) and Lenk et al. (34) models describe the interactions between neurons and astrocytes. 

These models do not describe cell morphology but rather concentrate on neuron-astrocyte 

communication through neuro- and gliotransmission at the network level. This section 

illustrates how computational network models can be used to test different hypotheses related 
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to gliotransmission and its effect on neuronal activity (see (22, 23) for reviews on the current 

debates). 

8. Concluding remarks 

One of the biggest unresolved questions in neuroscience lies in understanding the 

physiological roles played by glial cells, the ‘other half of the brain’, in different anatomical 

regions and brain states. By now, it is well established that astrocytes, the most abundant glial 

cell type, display a rich repertoire of functions that operate over diverse spatiotemporal 

scales. Since most of the ‘currency’ of these cells (i.e., glutamate, ATP, Ca2+ signals, etc.) is 

common to that of neurons, disambiguating their precise contribution to brain function in 

health and disease has been challenging. The history of neuroscience tells us that 

groundbreaking discoveries have often materialized through a synergy between experimental 

insights and mathematical and computational models (123–127). In the last two decades, we 

have witnessed a deluge of experimental investigations targeting astrocytes, which has helped 

deepen our understanding of their contribution to brain function. However, making sense of 

the resulting high-dimensional data is a major challenge, so that a modeling framework 

equivalent to that of neurons is critical to fill in the missing gaps. A model is an abstraction 

with an immediate goal to reduce the dimensionality of the problem under consideration. 

Thus, this minimal representation of the system carries information about the components 

that are critically involved in a function of interest. The iterative and trial-and-error process 

of building minimal representations (or models) is typically based on a key observation from 

experiments and a modeling intuition (a good example is the Hodgkin-Huxley model of 

action potential propagation (38)). In this scheme, variables, timescales, and parameters can 

be systematically explored; what does not fit is thrown out and new components are brought 

in. Computational models of astrocytes range widely in scale; from the nanoscopic 

interactions of individual molecules to intercellular processes at the network level. Besides 

the spatial scale, the temporal scales of these models also vary largely (from milliseconds to 

seconds).  

We envision the reader selecting sections and models that are relevant to the experiments 

they are running and the data obtained. We further aim to provide a concise overview of the 

types of models that are available, together with a glimpse window into their usage. Our aim 

with this book chapter is to highlight how computational models complement experiments in 

the quest for unraveling neuron-astrocyte communication at glutamatergic synapses to foster 

collaboration between neuroscience disciplines. 

9. List of resources 

ModelDB (https://senselab.med.yale.edu/ModelDB/) and CellML (https://www.cellml.org/)  

are the main open-access databases that host numerous models of neurons and astrocytes. 

Table 1 provides the links to the models described in this chapter that are available online. 

 

Table 1: Websites with the code of available models 
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Section Model Website 

2.1. De Pittà et al. https://github.com/mdepitta/comp-glia-

book/tree/master/Ch5.DePitta 

3.1. Rǎdulescu et al. https://github.com/scimemia/Glutamate-transporters-

estimates 

4.1. Østby et al. https://models.physiomeproject.org/exposure/d9de93b128da3

22a4d50f24589980ea1/ostby_oyehaug_einevoll_nagelhus_pl

ahte_zeuthen_voipio_lloyd_ottersen_omholt_2008.cellml/vie

w 

4.3. Oschmann et al. (partially available) 

https://github.com/FranziOschi/AstroMultiComp 

6.1. Savtchenko et 

al. 

https://senselab.med.yale.edu/ModelDB/ShowModel?model=

243508#tabs-1 

6.2. Cresswell-Clay 

et al. 

https://github.com/FSUcilab/Compartmental_model_astrocyt

es 

6.3. Denizot et al. https://senselab.med.yale.edu/ModelDB/ShowModel?model=

247694#tabs-1 

7.1. Verisokin et al. https://zenodo.org/record/4552726#.Yrr28C8RppR 

7.2. Lenk et al. https://github.com/kerstinlenk/INEXA_FrontCompNeurosci2

020 
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