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Abstract: We propose a new strategy using a sandwich approach for the detection of two HF
biomarkers: tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10). For this purpose, magnetic
nanoparticles (MNPs) (MNPs@aminodextran) were biofunctionalized with monoclonal antibodies
(mAbs) using bis (sulfosuccinimidyl) suberate (BS3) as a cross-linker for the pre-concentration of
two biomarkers (TNF-α and IL-10). In addition, our ISFETs were biofunctionalized with polyclonal
antibodies (pAbs) (TNF-α and IL-10). The biorecognition between pAbs immobilized on the ISFET
and the pre-concentrate antigen (Ag) on MNPs was monitored using electrochemical impedance
spectroscopy (EIS). Our developed ImmunoFET showed a low detection limit (0.03 pg/mL) toward
our target analyte when compared to previously published electrochemical immunosensors. It
showed a higher sensitivity than for other HF biomarkers. Finally, the standard addition method
was used to determine the unknown concentration in artificial saliva. The results matched with the
expected values well.

Keywords: heart failure; interleukin-10; tumor necrosis factor-α; electrochemical impedance spec-
troscopy; saliva analysis

1. Introduction

The World Health Organization (WHO) estimates that heart failure (HF) will affect
26 million people globally, making it one of the foremost causes of death worldwide [1].
The economic cost of HF is large, and the growing numbers and frequent hospitalizations
transform this pathology into a huge economic issue for health care systems; for example,
in 2012 HF resulted in costs estimated at around USD 31 billion, which amounts to 10%
of the entire health expenditure that is devoted to cardiovascular diseases in the United
States (US). However, the total costs are expected to increase by 127% between 2012 and
2030, making it an urgent issue that requires addressing [2]. Also, the overall estimated
cost for the European Union is currently EUR 192 billion per year [3].

Tumor necrosis factor-alpha (TNF-α) is a pro-inflammatory cytokine with a polypeptide
biochemistry. It is produced as a hormone by either activated monocytes or macrophages.
Its main function is to control several biological processes, including the activation of host
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immunity against neoplastic cell growth, the increased expression of antigens related to allergic
reactions [4,5], and cachexia development [6] (cachexia arises from persistent and vasopressor-
resistant widening of blood vessels, driven by elevated nitric oxide production that amplifies
the presence of the inducible form of nitric oxide synthase, resulting in a states of shock) [7], in
addition to its activation role in a multitude of inflammatory processes [8].

In healthy subjects, salivary levels of TNF-α can range from a few units to several
dozen [9], whereas HF patients are expected to have greatly increased concentrations up to
hundreds of units [7,10–12]. Clinical and experimental evidence that proves TNF-α’s effects
in HF patients continues to accrue. It is firmly established that patients experiencing the
onset of heart failure (HF) exhibit elevated concentrations of TNF-α in their bloodstream.
Furthermore, there is a direct correlation between TNF-α levels and prognosis. The levels
of circulating TNF-α are accountable for the reduced expression of myocardial TNF-α
receptors observed in heart failure [13]. Patients with chronic HF exhibit high circulating
levels of TNF-α, which are associated with increased severity of their disease [7]. Nu-
merous studies have also confirmed that TNF-α concentration in saliva correlates with its
concentration in serum [14], making TNF-α another ideal HF-related salivary biomarker.
Moreover, TNF-α concentrations are greater in whole saliva when compared to parotid
saliva [15], thus requiring a non-selective sampling of the oral fluid.

Unlike TNF-α, human cytokine synthesis inhibitory factor (CSIF), more commonly
known as interleukin-10 (IL-10), plays an anti-inflammatory role and consequently is
considered by many to have a protective role in HF [16,17]. IL-10’s biochemistry is that of a
37 kDa homodimer with each monomer made up of 18.5 kDa, 160-amino-acid chains [18].
The cytokine is formed by various cell types, in particular inflammatory cells such as
macrophages and T lymphocytes. It functions as the main inhibitor for cytokine synthesis,
macrophage activity [16], and the extracellular matrix metalloproteinases [16,19]. IL-10
is found both as a membrane-bound and as a soluble protein [20]. It also prevents the
formation of reactive oxygen intermediates [21] and increases soluble TNF-α receptor
release [22], which counteracts the actions of TNF-α [23–26]. IL-10 is upregulated in
inflammatory processes as an immune modulator [27–29]. Based on these indications, IL-10
is reported to downregulate pro-inflammatory cytokine production, such as IL-1, IL-6, and
TNF-α in numerous cell types, and correlate with HF severity [30–32]. Administration
of IL-10 externally protects against acute lung injury that is caused by oxidative stress,
mediated by TNF-α [33], which is amplified by the IL-10 antibody [34]. IL-10 has been
documented to alleviate the other negative effects of TNF-α [21]. Additionally, IL-10 is
known to alter the protease–anti-protease balance in favor of matrix preservation, thus
stimulating the healing of injured myocardium [35]. The regulation of its receptor plays
a crucial role in its effects on the tissues [36,37] and the expression of these receptors is
changed in patients with HF. IL-10 is usually determined in blood, urine, and saliva [38–47].
The expected levels for IL-10 are from a few units to a few tens of pg/mL [9].

Various techniques were employed to quantify TNF-α/IL-10 and other biomarkers
with the aim of predicting the initial indicators of inflammation [48,49]. These include
enzyme-linked immunosorbent assays (ELISAs) [50,51], bioassays [52], radio-immunoassays
(RIAs) [53], surface plasmon resonance [54], and other methods [55]. However, the exten-
sive use of these techniques is limited mainly by the requirement for sophisticated technical
skills, high instrumentation cost, long run-time, and the impossibility to perform a real-
time measurement. Electrochemical biosensors can deliver a timely and reliable medical
diagnosis, with benefits including real-time detection, transportability, low-cost operation,
and ease of use [56,57]. There have been more than one hundred published papers on
electrochemical affinity sensors for the detection of these cytokines and two main review
papers [58,59]. Two types of electrochemical immunosensors have been designed: label-
free immunosensors or sandwich-type immunosensors. Nanomaterials such as carbon
nanotubes, graphene, fullerene, quantum dots, and metallic nanoparticles were used for the
amplification of the voltametric signal of the modified electrodes. The obtained detection
limits were in the range of pg/mL. Another method of amplification is the use of antibody-
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functionalized magnetic nanoparticles that are magnetically captured on the surface of the
electrode (SPCE) for the detection of TNF-α through an amperometric immunosandwich
assay with an LOD of 2 pg/mL [60]. A graphene conductive polymer paper-based sensor
was recently developed for the impedimetric detection of TNF-α with an LOD of 5.97 pg/mL.
Specifically, biologically sensitive field-effect transistors (BioFETs) represent a highly prevalent
category of electronic sensors for biomolecular detection, and their potential in biomedical
applications has been extensively demonstrated [61,62]. Detection limits of 1 pg/mL and
5 pg/mL were obtained in Ref. [63] and in Ref. [64], respectively.

In this work, a novel and appealing sandwich method is presented for detecting
TNF-α and IL-10. For this purpose, a silicon-nitride-based ISFET was biofunctionalized by
immobilizing polyclonal anti-TNF-α/anti-IL-10 antibody on its surface after activation with
11-triethoxysilyl undecanal (TESUD) by a vapor-phase method in a saturated medium using
the nucleophilic substitution reaction between the aldehyde and the N-terminus of the anti-
bodies [47,56,63–67]. Meanwhile, magnetic nanoparticles (MNPs) (MNPs@aminodextran)
were biofunctionalized with monoclonal antibodies (mAbs) using BS3 as a cross-linker
to pre-concentrate two biomarkers (TNF-α and IL-10). Analyte detection was performed
through electrochemical impedance spectroscopy (EIS) due to its capacity to discern vari-
ations in resistance and capacitance when antibody–antigen recognition occurs, thereby
enhancing device sensitivity. The quantification of TNF-α/IL-10 concentration in artificial
saliva samples was achieved using the standard addition method (SAM). The results ob-
tained validate our biosensor as a promising tool for TNF-α/IL-10 detection in saliva. To
our knowledge, this represents the first silicon-nitride-based ISFET utilizing this strategy
for TNF-α/IL-10 detection.

2. Materials and Methods
2.1. Materials and Chemicals

The wire-bonding process was carried out utilizing aluminum wire (Ø 25 µm) with
the Kulicke&Soffa (Singapore) 4523A digital instrument. The ISFET underwent activation
using UV/Ozone ProcleanerTM (BioForce, Konstanz, Germany) to create -OH groups
on its surface. All experiments were conducted within a Faraday cage at room temper-
ature (20 ± 2 ◦C). BVT Technologies (Strážek, Czech Republic) provided the counter
platinum electrode and the reference Ag/AgCl electrode. EIS measurements were per-
formed using a VMP3 multichannel potentiostat from Biologic-EC-Lab (Seyssinet-Pariset,
France), and data acquisition and modeling were implemented with EC-Lab software
(V11.30, BioLogic, Seyssinet-Pariset, France). To investigate the surface morphology of
the MNPs fixed onto the ISFET, scanning electron microscopy (SEM) was employed with
an FEI Quanta FEG 250. BioTechne (R&D Systems, Noyal-Châtillon-sur-Seiche, France)
supplied recombinant human IL-10 (217-IL-005), human monoclonal anti-IL-10 antibody
(MAB217-SP), human polyclonal anti-IL-10 antibody (AF-217-SP), recombinant human
TNF-α (210-TA-005/CF), human monoclonal anti-TNF-α (MAB610-SP), human/mouse
polyclonal anti-TNF-α (AF-410-SP), sterile phosphate buffer saline solution (PBS), and PBS
containing 0.1% bovine serum albumin (97063-660). HyTest (Turku, Finland) provided re-
combinant human NT-proBNP (8NT2). Various chemicals including urea (57-13-6), mucin
from porcine stomach (84082-64-4), sodium phosphate dibasic (Na2HPO4) (7558-79-4),
anhydrous calcium chloride (CaCl2) (10043-52-4), potassium chloride (KCl) (7447-40-7),
sodium chloride (NaCl) (7647-14-5), sodium hydroxide (NaOH) (1310-73-2), magnesium
nitrate (Mg(NO3)2) (13446-18-9), sodium bicarbonate (NaHCO3) (144-55-8), phosphate
buffer saline solution (PBS) tablets (MFCD00131855), ethanolamine (purity ≥ 98%), and
pure ethanol (purity 95.0%) (64-17-5) were purchased from Sigma-Aldrich (Saint-Quentin-
Fallavier, France). 11-triethoxysilyl undecanal (TESUD, 90%) (116047-42-8) was purchased
from ABCR (Karlsruhe, Germany). Bis (sulfosuccinimidyl) suberate (BS3) (82436-77-9) was
purchased from Thermo Fisher Scientific (Waltham, MA, USA). Ultrapure water (resistivity
> 18 MΩ cm) was produced by the Elga PURELAB Classic system (Veolia, Aubervière,
France). PBS tablets were used to create PBS buffer by dissolving it in ultrapure water, thus
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yielding a 0.01 M phosphate buffer (pH 7.4) with 0.0027 M potassium chloride and 0.137 M
sodium chloride as indicated by the supplier. EPO TEK H70E2LC epoxy resin (Parts A and
B) was supplied from Epoxy Technology Inc. (Paris, France).

2.2. ISFET Device Fabrication

Ion-sensitive field effect transistor (ISFET) devices featuring a 100 nm thick silicon
nitride gate as a dielectric layer were constructed on fully depleted p-type <100> silicon-on-
insulator (SiO2) substrates. These substrates were polished 4-inch wafers with a resistivity
of 4–40 Ω/cm. An 800 nm silicon oxide insulator was thermally grown (Figure 1a) in a wet
oxidation process at 1100 ◦C. The initial standard photolithographic process delineated
the transistor’s drain and source areas by wet-etching the exposed silicon oxide layer
(Figure 1b). Subsequently, these areas were doped via ion implantation with phosphorus
atoms (Figure 1c) at a dose of 4.2 × 1015 at/cm2 @ 100 keV, defining controlled n-type
regions with a specific number of free charges.
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Figure 1. (a) The 800 nm SiO2 wet oxidation; (b) drain and source area wet-etching; (c) phosphorus
ion implantation for n-type region formation; (d) gate and bulk definition through wet-etching;
(e) 78 nm SiO2 thermally grown and 100 nm Si3N4 with LPCVD as insulator material for ISFET
gate; (f) 1st of 2 photolithographic processes for gate definition; (g) 2nd photolithography and RIE
process; (h) lift-off resist definition for metallic contacts; (i) 150 nm of Pt over 15 nm of Ti PVD process;
(j) lift-off process for metallic part definition; (k) passivation bilayer of 400 nm Si3N4 over 400 nm
SiO2 CVD process; (l) final ISFET device.

The second photolithography step in the photolithographic process determined the
gate of the ISFET and the bulk’s window contact (Figure 1d), later forming a 100 nm thick
silicon nitride layer through low-pressure chemical vapor deposition (LPCVD) over a ther-
mally grown 78 nm thick silicon oxide layer (Figure 1e). A double photolithographic process
with hard-baked resist (Figure 1f,g) defined the gate’s structure through an anisotropic
reactive ion-etching (RIE) process.

Next was the deposition and insulation of a lift-off photolithographic resist (Figure 1h),
defining metallic contacts and traces from electric pads to the ISFET’s source and drain. For
metallic contacts and electric pads, a 150 nm conductive layer of platinum over a 15 nm
layer of titanium, acting as a diffusion barrier, was deposited through a physical vapor
deposition (PVD) sputtering process (Figure 1i). Finally, the metallic bilayer was defined
by lifting off the resist (Figure 1j) with an ultrasonic bath of acetone.

The final step in the planar process technology for ISFET fabrication involved protect-
ing the device’s surface from environmental damage using a double passivation layer that
covers the entire surface, except for the open active areas like the 20 µm × 400 µm sensitive
gate ISFET area, the reference electrode, and the electric pads (Figure 1k). This passivation
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layer consisted of 400 nm of Si3N4 over 400 nm of SiO2, deposited using a plasma-enhanced
chemical vapor deposition (PECVD) method.

To use the ISFET devices in liquid solutions, the silicon wafer was cut into pieces,
and the resulting chips were pasted onto a printed circuit board (PCB) using EPO TEK
H70E2LC epoxy resin from Epoxy Technology (France). Wire-bonding was performed
with Kulicke&Soffa 4523 (Figure 2), using 25 µm diameter aluminum wires. Subsequently,
the bonding wires, the external areas of the chip, and the electric tracks on the PCB were
enclosed in the same epoxy resin to protect them from exposure during the experiments
(Figure 3). Lastly, the reference electrode (RE) based on Ag/AgCl was produced through
electrochemical deposition of Ag on a platinum microelectrode, utilizing sodium nitrate
(NaNO3) (1 M) and silver nitrate (AgNO3) (25 mM) at pH 1. The deposited silver layer
underwent chlorination through overnight incubation of the RE in a HCl (1 M) solution. A
comprehensive description of the RE fabrication process can be found in prior work by our
group [68,69]. As a standard procedure, we perform an electrical characterization of the
devices when a batch is fabricated, and the typical values that we measure for the leakage
currents are on the order of IG = 10–100 pA for the gate current and ID = 1–10 nA for the
drain current.
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2.3. Synthesis and Characterization of MNPs
2.3.1. Seed Magnetic Latex Particle Preparation

An amphiphilic polymer (polyacrylic acid containing hydrophobic groups) solution
with a concentration equal to 0.5 g/L and pH = 9 was used as a stabilizing agent to
wash the oil-in-water magnetic emulsion three times. Deionized water was employed
for the last emulsion wash under nitrogen. A 2 g dispersion of the stabilized magnetic
emulsion was placed in a 50 mL glass reactor under a nitrogen stream and stirring for
30 min before adding divinyl benzene (DVB) (900 mg) then stirring continued for 1 h before
introducing KPS initiator (potassium persulfate) (18 mg) dissolved in 1 mL of deionized
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water. The polymerization reaction was carried out at 70 ◦C for 20 h, and the polymerization
conversion was determined and found to be 95%.

2.3.2. Preparation of Amine-Containing Dextran Polymer

A mass of 50 g of DextranT40 was dissolved in 250 mL of water before adding NaIO4
(26.4 g) and 1.6-hexamethylenediamine (31.5 g). NaIO4 was employed to obtain an oxidized
dextran solution. The mixture yielded a homogeneous orange solution to which a solution
of sodium borohydride (18.6 g) in 200 mL of 1 mM aqueous potassium hydroxide was
added. The result was a yellow–orange solution. After freeze-drying of the amino dextran
solution over 48 h, 16 g of pale-yellow crystals was obtained, which corresponded to a
yield of 32%.

2.3.3. Adsorption of Amino Dextran onto Magnetic Latex Particles

The prepared seed magnetic latex particles (20 mL at 4 wt.%) were washed thrice
using a solution of Triton X-100 at a 1 g/L concentration before adding 50 mL of amino
dextran solution (13 g/L). The adsorption was carried out under stirring overnight. Finally,
10 mM NaCl solution was used to wash the functionalized magnetic latex particles.

Once the synthesis was completed, these MNPs were characterized by different tech-
niques in order to ensure their quality as magnetic particles and that they carried the right
chemical function that will be implemented for the immobilization of the antibodies.

2.3.4. Transmission Electron Microscopy Analysis

Figure 3 represents a transmission electron microscopy image of the functionalized
magnetic latex particles. As clearly shown, the magnetic core is surrounded by a polymer
shell. This shell mainly results from the polymerization step, whereas the adsorbed amino
dextran’s thickness cannot be seen on the surface of the particles.

2.3.5. Hydrodynamic Particle Size

The hydrodynamic size (Dh) of the prepared functional magnetic latex particles was
measured using dynamic light scattering, and the obtained size distribution is shown in
Figure 4. The prepared magnetic latex particles are submicron in size, with narrow size
distribution, and the average hydrodynamic size was found to be 302 nm. The observed
narrow size distribution reflects the absence of aggregated particles.
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antibody were prepared using the supplier’s procedure at 0.5 g L−1 in RB01 buffer. Subse-
quently, they were diluted using the standard solution to 10 µg mL−1 and they were kept at
−20 ◦C until use. Their corresponding antigens (IL-10 and TNF-α) were similarly prepared
at 0.1 g L−1 in the RB02 buffer.

NT-proBNP antigen was diluted with PBS 1× and stored at −80 ◦C until use. Before
use, 10 µL of each antigen solution was carefully defrosted at 4 ◦C for 15 min before further
diluting it in PBS 1× to standard working solutions.

2.5. Preparation of Artificial Saliva (AS)

Artificial saliva (AS) was prepared in accordance with the following literature [64].
First, 0.6 mg/mL of sodium phosphate dibasic (Na2HPO4), 0.4 mg/mL of potassium
chloride (KCl), 4 mg/mL of urea, 0.6 mg/mL of anhydrous calcium chloride (CaCl2),
0.3 mg/mL of sodium bicarbonate (NaHCO3), 4 mg/mL of mucin from porcine stomach,
and 0.4 mg/mL of sodium chloride (NaCl) were dissolved together using an ultrasonic
bath for 20 min until homogeneity in Millipore Milli-Q nanopure water (resistivity > 18 MΩ
cm) which was produced by a Millipore reagent water system. Upon complete dissolution,
the pH was readjusted with 0.1 M of sodium hydroxide (NaOH) to the value of 7.2. The
prepared AS was stored at 4 ◦C until further use.

2.6. Sample Preparation

TNF-α and IL-10 were quantified in AS by performing the standard addition method.
A constant volume of AS (5 µL) was added to each of four 1.5 mL Eppendorf tubes. The first
concentration was fixed to a final volume of 1 mL with 950 µL of PBS 1× only (Aliquot 1).
The remaining concentrations had an additional 30, 60, and 90 µL of a 100 g/mL TNF-
α/IL-10 standard solution incorporated in them, respectively. Finally, each concentration
was then completed to 1 mL with PBS 1× (Aliquots 2, 3, and 4) [63,65,66]. Every standard
solution and sample underwent analysis in quadruplicate (n = 4). EIS analyses were
conducted following the description provided in the subsequent subsection.

2.7. Biofunctionalization of MNPs

The general process for MNP biofunctionalization requires that 10 µL of a mother
solution containing MNPs@aminodextran (size about 300 nm, 0.02% solid content) [70] be
rinsed with 1 mL of 10 mM PBS 1× (pH 7.4). MNP immobilization was carried out by using
a magnetic rack placed beside the tube. The rinsing was repeated three times to ensure
no residue remained. Amine groups present on the MNPs were activated by incubating
MNPs in 200 µL of bis (sulfosuccinimidyl) suberate (BS3) (cross-linker) (10 µg/mL) at room
temperature (20 ± 2 ◦C) under soft stirring (33 rpm) for 10 min. The residual BS3 was
then removed, and the MNPs were washed twice using 200 µL of PBS 1×. Then, 100 µL
of mAb (10 µg/mL) was added, and the mixture was slowly stirred at room temperature
for 3 h, until mAb-MNPs@aminodextran (mAb-TNF-α) and mAb-IL-10 complexes were
finally obtained. The MNPs were immobilized again by a magnetic rack, and the solvent
was removed. Afterwards, 500 µL of 1% ethanolamine in PBS 1× was added to the tube
to deactivate the unreacted sites on the MNPs. The mixture was stirred (33 rpm) at room
temperature for 30 min. After that, the unreacted ethanolamine was removed, and the
complex was washed two times with 1 mL of 10 mM PBS 1×. A magnetic rack was used
to immobilize the nanoparticles and remove only the supernatants. Then, Ag was pre-
concentrated by incubating the functionalized MNPs in Ag standard solution for 30 min
to allow the formation of the complex with the MNPs@aminodextran-antibody (Ag-Ab-
MNPs). Different Ag concentrations (5, 10, 20 pg/mL) were tested for both TNF-α and
IL-10. Then, EIS measurements were carried out to characterize the ImmunoFETs.

2.8. Biofunctionalization of the ImmunoFET

The biofunctionalization procedure was the same for each biomarker and included the
following steps: the chip was initially cleaned by sonication in acetone, then thoroughly
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rinsed with Milli-Q water. The device was then irradiated with UV/Ozone ProcleanerTM

(BioForce, Germany) to activate its surface by creating active hydroxyl groups (-OH) on
which to graft the silane aldehydes. Then, the vapor-phase method was used to allow the
activated surface to react with (11-triethoxysilyl) undecanal (TESUD). Afterward, the chips
were heated in an oven at 100 ◦C for 1 h and then rinsed with pure ethanol and dried under
nitrogen flow. Subsequently, the functionalized devices were incubated in a 10 µg/mL
standard solution of the target pAb-TNF-α/pAb-IL-10. Finally, to prevent non-specific
binding during the detection, the remaining active aldehyde groups were deactivated using
ethanolamine solution (1% in PBS 1×) for 45 min at room temperature (20 ± 2 ◦C).

2.9. Electrochemical Measurements

EIS measurements were made in 7 mL PBS 1× using a frequency window of 10 kHz to
10 Hz at two frequency points per decade and a fixed voltage amplitude of 75 mV (Eac) with-
out an applied potential (Edc) (0 V) versus the Ag/AgCl reference. EIS spectra were fitted
with the Randomize (5000 iterations) + Simplex method (fit stopped at 5000 iterations) with
the Randles equivalent circuit model [R1 + Q2/R2]: R1 is the electrolyte solution’s resistance
(PBS 1×), the parallel elements are Q2 (the coefficient of the constant phase element), and R2
is the charge transfer resistance (Rct). The R2 is obtained after measuring each TNF-α/IL-10
antigen concentration with the ISFET. It is then normalized by subtracting it along with the
R2 of the corresponding antibody from the same ISFET. Then, the result is divided by, again,
the same R2Ab of the antibody following this equation: |R2Ag − R2Ab|/R2Ab to find the
value ∆R/R. Each ∆R/R is then plotted against its corresponding antigen concentration.

3. Results
3.1. Coupling the Immunomagnetic Pre-concentration Process with the ImmunoFET

The use of MNPs to perform a sandwich assay is a common strategy for the develop-
ment of biosensors. This method is used to avoid the matrix effect that is a major obstacle
for electrochemical biosensors. It also acts as a signal amplifier. However, their use increases
the complexity of the biosensor by adding more steps, which ultimately increases its cost.

To confirm the binding between MNPs@aminodextran-antibody (Ag-mAb-MNPs)
and the target pAb bound onto the chip, scanning electron microscopy (SEM, FEI Quanta
FEG 250 instrument, ELCMI, Zarogoza, Spain) images were taken. An example of the
“capturing” of the Ag-Ab-MNPs by pAb is presented in Figures 5 and 6, respectively, for
Ab = IL-10 and Ab = TNF-α. The pAb-Ag-mAb-MNP complexes remained on the surface
of the electrode even after aggressive rinsing with PBS 1×. These images clearly show that
the area of the gate of the ImmunoFET is completely covered by the MNPs; this proves that
the interaction between the MNPs covered with the antibodies and antigen reacted in the
right way with the pAb immobilized on the gate of the ImmunoFET.
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3.2. Determination of HF Biomarker in Standard Solutions by ImmunoFET

Standard solutions containing the target biomarker (e.g., TNF-α, IL-10) in increasing con-
centrations (0.1, 2, 5 pg/mL) were prepared for analysis by EIS to investigate the ImmunoFET’s
responsiveness when combined with MNPs functionalized with mAb (TNF-α/IL-10). The
ImmunoFET was incubated in each sample for 45 min, and then EIS measurements were
performed. By way of illustration, Figure 7A shows Nyquist plots obtained by analyzing IL-10
standard solutions in PBS 1×. Detection of IL-10 from 0.1 pg/mL to 5 pg/mL increased the Rct,
forming a clear distinction between each observable concentration analyzed and confirming
that our ImmunoFETs are highly sensitive to IL-10. Figure 7B shows the sensitivity curves
obtained using the ImmunoFET functionalized with mAb-IL-10 by analyzing standard solutions
containing possible interfering species, represented by the other target HF biomarkers (e.g.,
NT-proBNP, TNF-α). A good correlation (R2 always > 0.99) between analyte concentration
and EIS signals (intended as ∆R/R = (R2Ag − R2Ab)/R2Ab, with R2 = Rct) was found for each
biomarker. Interference studies were also carried out to confirm the selectivity of the devices.
The developed ImmunoFETs were shown to be highly selective toward IL-10 when compared
to the other HF biomarkers. The Rct of NT-proBNP (red) (R2 = 0.7555 with a slope of 0.0019)
and TNF-α (blue) (R2 = 0.524 with a slope of 0.0013) was much lower than that IL-10 (R2 = 0.991
with a slope of 0.0452). The sensitivity of our ImmunoFETs was twenty-four times higher than
that for NT-proBNP and thirty-five times higher than that for TNF-α which proves the high
overall performance of the developed ImmunoFET.
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Figure 7. (A) Nyquist plots obtained by analyzing IL-10 standard solutions in PBS 1× (concentration
range 0.1–5 pg/mL; Frequency range 10 kHz–10 Hz; Eac 75 mV; and Edc 0 V); (B) Sensitivity curves
obtained using ImmunoFET functionalized with pAb-IL-10 and by analyzing standard solutions con-
taining interfering species (e.g., NT-proBNP, TNF-α) in the same concentration range after repeating
it 3 times.

The same methodology was used for the characterization of the ImmunoFET for the
detection of TNF-α in PBS 1×. The ImmunoFET exhibits a linear increase in electrochemical
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impedance response upon combining MNPs with the specific antigen TNF-α, in a range of
antigen concentrations from 0.1 pg/mL to 5 pg/mL (Figure 8). The obtained ImmunoFET
did not exhibit any significant change when subjected to NT-proBNP and IL-10 interferents
(Figure 8B), revealing high specificity of the ImmunoFET to TNF-α.
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Figure 8. (A) Nyquist plots obtained by analyzing TNF-α standard solutions in PBS 1× (concentration
range 0.1–5 pg/mL; Frequency range 10 kHz–10 Hz; Eac 75 mV; and Edc 0 V); (B) Sensitivity curves
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containing interferences (e.g., NT-proBNP, TNF-α) in the same concentration range.

The analytical performance of our developed ImmunoFETs was compared to those of
the published electrochemical immunosensors for the detection of TNF-α/IL-10 (Table 1).
The detection limit of ImmunoFETs is in the lower range, and its detection range falls in the
range of concentrations of TNF-α/IL-10 for a healthy person and for a person with HF. In
addition, this system is easy to use, small in size, and has strong potential as a point-of-care
testing system.

Table 1. Comparison of different electrochemical immunosensors for TNF-α/IL-10 detection.

Technique Electrode Immobilizing
Biomolecules Analyte Linear Range LOD Reference

EIS Substrate
“HfO2” mAb-IL-10 PBS 1× 0.1 pg/mL–50

ng/mL - [57]

EIS Au mAb-IL-10 PBS 1× 1–15 pg/mL 0.3 pg/mL [71]

EIS Substrate
“Si3N4” mAb-IL-10 PBS 1× 0.1–50 pg/mL 0.3 pg/mL [72]

EIS ISFET “Si3N4” pAb-IL-10 AS 0.1–5 pg/mL 0.03 pg/mL This work

EIS Au mAb-TNF-α AS 1–15 pg/mL 1 pg/mL [73]

Mott–
Schottky

Substrate
“Si3N4” mAb-TNF-α AS 1–30 pg/mL 1 pg/mL [74]

Amperometry Au mAb-TNF-α AS 1–15 pg/mL 0.3 pg/mL [75]

Electrical
measurement ISFET “Si3N4” mAb-TNF-α AS 5–20 pg/mL 5 pg/mL [64]

EIS ISFET “Si3N4” pAb-TNF-α AS 0.1–5 pg/mL 0.03 pg/mL This work

3.3. Determination of HF Biomarkers in Artificial Saliva Using the Standard Addition Method

To simulate the analyte quantification in an “unknown” sample, samples containing
the target biomarker (IL-10) in artificial saliva (AS) were also analyzed. An AS sample
was spiked with the analyte (1000 pg/mL), and then 5 µL of it was added to four 1.5 mL
Eppendorf tubes. To reach a final volume of 1 mL, 950 µL of PBS 1× was added to the
first Eppendorf tube (Aliquot 1). IL-10 standard solution in PBS 1× (100 pg/mL) was
then added in increasing volumes to the next Eppendorf tube, and each tube was then
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made up to volume (1 mL) with PBS 1× (Aliquots 2, 3, and 4). The EIS measurement was
carried out for each prepared sample. By way of illustration, Figure 9 shows Nyquist plots
obtained by analyzing the “unknown” AS sample obtained by performing the standard
addition method for detecting IL-10. Figure 9B shows the corresponding calibration curve
obtained by performing a linear data fitting. The signal linearly increased with the sample
concentration, proving the efficiency of IL-10 detection. This curve was used to extrapolate
IL-10 concentration in the “unknown sample.” As can be seen from R2 = 0.9951, the
experimental points are aligned, the Y-intercept corresponds to IL-10 concentration in
the sample without the standard addition (Aliquot 1), and the X-intercept (in absolute
value), multiplied by the corresponding dilution factor, represents IL-10 concentration in
the “unknown” sample. The obtained concentration (4.83 × 200 = 968 pg/mL) was in good
agreement with the expected concentration (1000 pg/mL) [47,60–62].
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Figure 9. (A) Nyquist plots obtained by analyzing IL-10 in AS samples by performing the standard
addition method (Frequency range 10 kHz–10 Hz, Eac 75 mV, and Edc 0 V); (B) Calibration curve
obtained by performing the standard addition method to detect IL-10 in AS samples.

The prepared samples containing the target biomarker (TNF-α) in AS were also an-
alyzed using the same procedure described before. Figure 10 shows the Nyquist plots
(Figure 10A) and the corresponding calibration curve (Figure 10B), obtained by perform-
ing a linear data fitting. This curve was used to extrapolate TNF-α concentration in the
“unknown sample”. As can be seen from R2 = 0.9948, the experimental points are aligned,
Y-intercept corresponds to TNF-α concentration in the sample without the standard addi-
tion (Aliquot 1), and the X-intercept (in absolute value), multiplied by the corresponding
dilution factor, represents TNF-α concentration in the “unknown” sample. The obtained
concentration (4.95 × 200 = 991 pg/mL) was in good agreement with the expected concen-
tration (1000 pg/mL).
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For both experiments, the obtained results for both the “unknown samples” corre-
sponding to IL-10 and TNF-α were in excellent concordance with what was prepared before
spiking the AS samples.

4. Conclusions

In conclusion, we successfully optimized the protocol for the biofunctionalization of
MNPs with monoclonal antibodies with their corresponding antigens. In addition, our
ISFET was successfully biofunctionalized with a polyclonal antibody. The interaction be-
tween the pAb immobilized onto the ISFET and the antigen pre-concentrate with MNPs was
then studied using electrochemical impedance spectroscopy. Our developed ImmunoFET
showed good sensitivity and selectivity toward our target analyte with a low detection
limit (0.03 pg/mL) when compared to other HF biomarkers. Finally, the standard addition
method was used in order to determine the unknown concentration in artificial saliva. The
results showed a good agreement with the expected values. The global analytical system
will be integrated into a microfluidic point-of-care microsystem, including both stages:
immunomagnetic preconcentration and EIS detection on the immunoFET.
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