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Abstract 

Time-delay and Doppler estimation is crucial in various engineering fields, as estimat-
ing these parameters constitutes one of the key initial steps in the receiver’s opera-
tional sequence. Due to its importance, several expressions of the Cramér–Rao Bound 
(CRB) and Maximum Likelihood Estimation (MLE) have been derived over the years. 
Previous contributions started from the assumption that the transmission process 
introduces an unknown phase, which hindered the explicit consideration of the time-
delay parameter in the carrier-phase component in theoretical derivations. However, 
this contribution takes into account this additional term under the assumption 
that such an unknown phase is inferred and compensated for. This new condition leads 
to the derivation of a novel MLE. Subsequently, a closed-form expression of the achiev-
able Mean Squared Error (MSE) for the time-delay and Doppler parameters is provided 
for the asymptotic region, assuming the signal is band-limited. Both expressions 
are validated via Monte Carlo simulations. This analysis reveals five distinct regions 
of operation of the MLE, refining existing knowledge and providing valuable insights 
into time-delay estimation

Keywords: Cramér–Rao bound, Time-delay and Doppler estimation, Band-limited 
signals, Maximum likelihood estimator

1 Introduction
Time-delay and Doppler estimation holds a pivotal role across various engineering 
domains, encompassing navigation, radar, reflectometry, sonar, and communication fields, 
to name a few [1–9], where it serves as the initial step in the receiver’s operational sequence 
[5, 8, 9]. When designing and evaluating estimation techniques for these applications, it 
becomes imperative to grasp the attainable performance’s ultimate benchmark in terms of 
Mean Squared Error (MSE). This valuable information can be provided by the Cramér–
Rao bound (CRB) [10], the most widely used lower bound on MSE, renowned for its ease 
of calculation in various scenarios (see [4, §8.4] and [11, Part III]). Furthermore, the CRB 
effectively approximates the MSE of the Maximum Likelihood Estimator (MLE) in the 
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asymptotic region of operation, particularly in cases involving large sample sizes or high 
Signal-to-Noise Ratios (SNRs) under the Gaussian conditional signal model (CSM) [12, 13]. 
Consequently, multiple CRB expressions have emerged over recent decades for the time-
delay and Doppler estimation problem. These expressions encompass a spectrum of signal 
types, ranging from finite narrow-band signals [2, 14–22] to finite wide-band signals [14, 
17, 20, 23–26], and even infinite bandwidth signals [27]. All these previous investigations 
consider that the wave transmission process introduces an unknown phase element, due 
to the assumption of incomplete knowledge regarding the propagation medium, the char-
acteristics of transmitter and/or receiver antennas (including the phase center and hyper-
frequency electronics), and/or the radio-frequency equipment. The studies reviewed tend 
to combine the phase term with the amplitude component, treating the resulting complex 
parameter as one entity. As a result, subsequent derivations rely on this unified parameter 
without clarifying the impact of the different sources it comprises. This tendency may be 
the reason why there appears to be a gap in existing literature addressing scenarios in which 
part of this unknown phase elements can be estimated and rectified, which would give way 
to more detailed estimation performance formulations. Indeed, nowadays, there are appli-
cations in which the unknown phase component introduced by the wave transmission pro-
cess can be calibrated [3] at a predefined pace, ensuring its stationarity from calibration to 
calibration. This is evident in some scenarios such as navigation with static emitters and 
a moving receiver, commonly referred to as anchors and tags in robotics, where the pri-
mary task is to navigate among predetermined waypoints. One practical example is found 
in warehouse robots used in logistics [28]. Among various types of robots offering vary-
ing functionality, those employed in automated storage and retrieval systems (AS/RS) are 
specifically designed to automate the inventory process. They accomplish this by retriev-
ing goods for shipment or use and returning items to their designated storage locations. 
At each of these well-known storage locations, the receiver remains static. Consequently, 
its position and velocity are known, allowing it to estimate the phase components associ-
ated with the transmission process [3]. These components are then compensated for as the 
receiver progresses towards the next predetermined waypoint. Building upon these consid-
erations, this article begins by introducing the signal model in Sect. 2 as a specific instance 
of the Gaussian CSM. The latter accommodates the description of a wideband band-limited 
signal considering the influence of the Doppler effect. Given this general scenario, a novel 
MLE (different from the commonly used [24]) is presented in Sect. 3. Then, a closed-form 
expression of the associated CRB is derived in Sect. 4, based on the Slepian-Bangs formula 
[10] and the band-limited signal assumption. In Sect. 5, the relationship between the CRB 
and the ambiguity function, known for the standard CSM [2, §10] [5, §3.9.4], is extended 
to the considered signal model. Then, such results are particularized for two simplified 
scenarios in Sect. 6. The first one considers the narrowband signal model, i.e. the Doppler 
effect does not have an impact on the baseband signal samples. Next, the second one con-
siders that the Doppler effect is known and perfectly compensated, which constitutes a case 
of monoparametric (time-delay) estimation problem. The obtained CRB and MLE equa-
tions are validated through Monte Carlo simulations in Sect. 7, where the MLE’s MSE con-
vergence to the CRB is shown under specific SNR conditions, known as ”SNR Threshold”. 
These outcomes enable the assessment on how each signal component (carrier-phase and 
base-band signal) impacts the achievable MSE for time-delay and Doppler estimation as a 
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function of the SNR. This analysis reveals five regions of operation of the MLE, in contrast 
to the widely known three regions of operation [29–32]. Finally, the paper’s main findings 
and contributions are summarized in Sect. 8.

2  General signal model
The signal model utilized in this manuscript is based on the well-known CSM [12, 13], 
and it is formulated according to previous contributions in the same topic [24–26, 32, 
33]. The latter is assumed to be the result of a direct transmission of a band-limited sig-
nal a(t) modulated by a carrier waveform with frequency Fc across the line of sight (LoS) 
between a transmitter T and a receiver R. The band-limited signal a(t) with bandwidth B 
can be expressed as

and the Fourier Transform (FT) to the frequency domain f is given by

with N ′
1,N

′
2 ∈ Z , and B is the length of the support of A(f ). The radial distance between 

T and R is defined as

with PT (t) the transmitter position and PR(t) the receiver position. Note that DTR(t) 
changes over time depending on relative velocity. Then, the distance used in the ranging 
operation can be redefined as DTR(t; η) = cτ (t; η) , with c the speed of light, and τ (t; η) 
the time-delay depending on time and on the parameters characterizing the radial dis-
tance between T and R. For navigation, radar and sonar systems, the radial distance is 
usually approximated to the first order, as

Note that τ is the time-delay due to the propagation path and (1− b) is the dilatation 
induced by the Doppler effect. Using (4), the complex analytic signal at the output of the 
receiver’s antenna can be expressed as [25]

with wc = 2πFc , φ(t; η) = ψ + ϕ(t; η) , α ∈ R
+ the signal’s amplitude, and nA(t) ∈ R a 

zero-mean additive white Gaussian noise (AWGN). Parameter ψ represents the phase 
component stemming from the transmitter and/or receiver antenna characteristics 
(including center of phase and hyper-frequency electronics) and/or the radio-frequency 
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(4)
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d

c
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v

c
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(
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)
.

(5)xR(t) = αa′(t; η)ejwct + nA(t),

(6)a′(t; η) = a(t; η)e−jφ(t;η), a(t; η) = a((1− b)(t − τ)),
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electronics. Parameter ϕ(t; η) is the phase component associated the propagation path 
which depends on τ and b (4). As discussed in the introduction, this study considers 
applications in which the unknown phase component introduced by the wave transmis-
sion process can be calibrated [3] at a predefined pace, ensuring its stationarity from 
calibration to calibration. In other words, it is assumed that ψ is known and compen-
sated for during the observation interval, resulting in φ(t; η) = ϕ(t; η) . Subsequently, 
the received signal at the output of the Hilbert filter can be expressed as,

with n(t) a complex centered circular Gaussian noise with unknown variance σ 2
n  . Note 

that other contributions [17, 20, 23–26, 30, 31] assume that ψ is unknown yielding the 
following standard signal model at the output of the Hilbert filter,

where one cannot differentiate ψ from wcτ , leading to an unknown complex amplitude 
term α′ = αej(ψ−wcτ) ∈ C . The acquisition of N ′ = N ′

2 − N ′
1 + 1 samples from (7) is con-

sidered, where (N ′
1 ≪ N1, N

′
2 ≫ N2) and

which yields the following observation vector

where n ∼ CN (0, σ 2
n IN ′) . The set of unknown parameters to be estimated are 

ǫT = (σ 2
n ,α, η

T) , where α is a real positive valued scalar variable as opposed to the state-
of-the-art case.

3  Maximum likelihood estimator
Given the Gaussian nature of the likelihood distribution, the MLE of η is obtained through 
the following well-known mean-squared error minimization

where a′(η) = [Re{a′(η)}, Im{a′(η)}]T and x = [Re{x}, Im{x)}]T . Moreover, 
�A = A(AHA)−1AH and �⊥

A = I−�A are orthogonal projectors over S and S⊥ , 

(7)x(t) = αa′(t; η)+ n(t), a′(t; η) = a(t; η)e−jwc(τ+b(t−τ)),

(8)x(t) =
(
αej(ψ−wcτ)

)
a(t; η)e−jwcb(t−τ) + n(t),

(9)Ts = 1/Fs, Fs ≥ B,

(10)x = αa′(η)+ n, x =
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respectively, where S = span(A) , with A being a matrix, represents the linear span of the 
set of its column vectors. Furthermore,

denotes the unconstrained estimator of α [34], when the condition α > 0 is not applica-
ble. Minimizing the cost function in (12) results in

Since 
∥∥∥�⊥

a′(η)x

∥∥∥
2
= �x�2 −

∥∥�a′(η)x
∥∥2 , (13) leads to
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2
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}2
.

Thus, for any given η , the minimization of (14) with respect to α results in

where 1D denotes the indicator function of subset D of RN ′ , and the solution of (14) with 
respect to (η,α ≥ 0) is then given by 
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4   Cramér–Rao bound (CRB)

Let us denote ǫ0 =
((

σ 2
n

)0
,α0, η0

)T
 the true value of ǫ . As shown in [35], in case of a 

parameter constraint, the CRB is unchanged at a regular point, i.e. where no equality con-
straint is active. Thus for α > 0 , the CRB is obtained from the inversion of the standard 
Fisher Information Matrix (FIM),

Given the Gaussian nature of the signal model under study, the FIM is derived from the 
Slepian-Bangs formula [10] where x ∼ N

(
mx(ǫ),Cx(ǫ)

)
,

The present study focuses on the derivation of CRBη|ǫ(ǫ) = F−1
η|ǫ(ǫ) , which for the CSM 

is given by [10]

The term �(η) from (19) can be also expressed as a function of a′(η) to provide a closed-
form expression under the assumption of band-limited signals. Since

by considering the following relationships, 

 Then, (20) can be rewritten as

Given the derivative of a′(t; η) with respect to η,
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that is, 

 A convenient matrix version of (22) is obtained applying (23) as follows, 

 where W and w are obtained after applying the Nyquist-shannon theorem as in [24], so 
that the resulting terms are expressed in the continuous-time domain, giving way to the 
following closed-form expressions: 

 Under the previously introduced matrix notation, the terms W and w are given by

Each of the elements of (26) have been derived in previous contributions, for instance 
[32], and are

∂a′(t; η)
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where D = diag
(
N ′
1, . . . ,N

′
2

)
 and

Thanks to (24a) and (24b), (22) can be expressed in a more compact form. This is,

with

Finally, the CRB for the time-delay and Doppler estimation is obtained as,

The result obtained in (32) can be compared to the one in [24, Eq.(25)], which provides 
the asymptotic estimation performance of the time-delay and Doppler for the signal 
model introduced in (8). Note that the main difference is the addition of extra terms 
dependent on wc , which become, in most applications, the predominant terms due to 
the order of magnitude of wc . Whenever these terms are predominant, the CRB behaves 
as a parametric function purely dependent on the signal to noise ratio and on the carrier 
frequency.
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�1,2 = (1− b)

(
w2
cRe{w2} + 2wcIm{w4} + Re{W4,3} + wc

Re{w3}Im{w∗
2}

w1
−

Re{w3w
∗
4}

w1

)
,

�2,1 = �1,2,

�2,2 = w2
cRe{W2,2} + w2

c

Im{w2}
2

w1
− 2wcIm{W4,2} + Re{W4,4}

+ 2wc
Re{w4}Im{w2}

w1
−

Re{w4}
2

w1
.

(32)CRBη|ǫ(ǫ) = F−1
η|ǫ(ǫ) =

σ 2
n

2Fsα2

[
�1,1 �1,2

�2,1 �2,2

]−1

=

[
CRBτ |ǫ CRBb,τ |ǫ

CRBτ ,b|ǫ CRBb|ǫ

]
.



Page 9 of 21Bernabeu et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:47  

5  Ambiguity function
Since (16b)

the ambiguïty function can be defined as the score function without noise, that is1

 Firstly, since according to (33a) �
(
η; η0

)
=

(
α0

)2
a′
(
η0
)T

�a′(η)a
′
(
η0
)
 , its first derivative 

can be expressed as 

and its second derivative as

 Secondly, considering the properties of the projector �⊥
a′(η),

the derivative terms in (34) can be recast as 

 Therefore, after substituting expression (36b) in (34b), one obtains

η̂ = arg max{
η|Re

{
a′(η)Hx(ǫ0)

}
>0

}

{∥∥∥�a′(η)x
(
ǫ0
)∥∥∥

2
}
,

(33a)�

(
η; η0

)
=
∥∥∥�a′(η)a

′
(
η0
)
α0

∥∥∥
2

(33b)

=
(
α0

)2
(
a′(η)Ta′

(
η0
))2

a′(η)Ta′(η)
=

(
α0

)2 Re
{
a′(η)Ha′

(
η0
)}2

Re
{
a′(η)Ha′(η)

}

�

(
η; η0

)
=
(
α0

)2∥∥∥a′
(
η0
)∥∥∥

2
Re

{
a′(η)Ha′

(
η0
)

�a′(η)�
∥∥a′

(
η0
)∥∥

}2

.

(34a)






∂�
�
η;η0

�

∂ηp
=

�
α0

�2
a′
�
η0
�T ∂�a′(η)

∂ηp
a′
�
η0
�
,

∂�
�
η;η0

�

∂ηp
= −

�
α0

�2
a′
�
η0
�T ∂�⊥

a′(η)

∂ηp
a′
�
η0
�
,

(34b)






∂2�
�
η;η0

�

∂ηp∂ηp′
=

�
α0

�2
a′
�
η0
�T ∂2�a′(η)

∂ηp∂ηp′
a′
�
η0
�
,

∂2�
�
η;η0

�

∂ηp∂ηp′
= −

�
α0

�2
a′
�
η0
�T ∂2�⊥

a′(η)

∂ηp∂ηp′
a′
�
η0
�
.

(35)
�⊥

a′(η) = I−�a′(η), �a′(η)�
⊥
a′(η) = 0 = �⊥

a′(η)�a′(η), �⊥
a′(η) = �⊥

a′(η)�
⊥
a′(η),

(36a)
∂�⊥

a′(η)

∂ηp
= �⊥

a′(η)

∂�⊥
a′(η)

∂ηp
+

∂�⊥
a′(η)

∂ηp
�⊥

a′(η),

(36b)

∂2�⊥
a′(η)

∂ηp′∂ηp
=

∂�⊥
a′(η)

∂ηp′

∂�⊥
a′(η)

∂ηp
+�⊥

a′(η)

∂2�⊥
a′(η)

∂ηp′∂ηp
+

∂2�⊥
a′(η)

∂ηp′∂ηp
�⊥

a′(η) +
∂�⊥

a′(η)

∂ηp

∂�⊥
a′(η)

∂ηp′
.

1 Although in some references of the open literature α0 is omitted [2, 5, 36], we prefer to use the definition below result-
ing from the general multiple sources case.
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Note that since

expression (37) reduces to

Moreover as

(37) is reformulated as

 Finally, 

and

 which generalizes the known result for the standard CSM (8) [2, §10] [5, §3.9.4].

(37)

∂2�
�
η0; η0

�

∂ηp∂ηp′
= −

�
α0

�2
a′
�
η0
�T ∂2�⊥

a′(η0)

∂ηp∂ηp′
a′
�
η0
�

= −
�
α0

�2
a′
�
η0
�T





∂�⊥
a′(η0)
∂ηp′

∂�⊥
a′(η0)
∂ηp

+
∂�⊥

a′(η0)
∂ηp

∂�⊥
a′(η0)
∂ηp′

+

�⊥
a′(η0)

∂2�⊥
a′(η0)

∂ηp′∂ηp
+

∂2�⊥
a′(η0)

∂ηp′∂ηp
�⊥

a′(η0)



a′
�
η0
�
.

�⊥
a′(η)a

′(η) =
(
a′(η)T�⊥

a′(η)

)T
= 0,

∂2�
�
η0; η0

�

∂ηp∂ηp′
= −

�
α0

�2




a′
�
η0
�T ∂�⊥

a′(η0)
∂ηp′

∂�⊥
a′(η0)
∂ηp

a′
�
η0
�
+

a′
�
η0
�T ∂�⊥

a′(η0)
∂ηp

∂�⊥
a′(η0)
∂ηp′

a′
�
η0
�





= .− 2
�
α0

�2



∂�⊥

a′(η0)

∂ηp
a′
�
η0
�



T
∂�⊥

a′(η0)

∂ηp′
a′
�
η0
�
.

�⊥
a′(η)a

′(η) = 0 ⇒
∂�⊥

a′(η)

∂ηp
a′(η)+�⊥

a′(η)

∂a′(η)

∂ηp
= 0,

∂2�
(
η0; η0

)

∂ηp∂ηp′
= −2

(
α0

)2
(
−�⊥

a′(η0)

∂a′
(
η0
)

∂ηp

)T(
−�⊥

a′(η0)

∂a′
(
η0
)

∂ηp′

)

= −2
(
α0

)2 ∂a′
(
η0
)

∂ηp

T

�⊥
a′(η0)

∂a′
(
η0
)

∂ηp′
= −2

(
α0

)2
eTp�

(
η0
)
ep′ .

(38a)�

(
η0 + dη; η0

)
≃ �

(
η0; η0

)
+

1

2
dηT

∂2�
(
η; η0

)

∂η∂ηT

∣∣∣∣∣
η0

dη

(38b)≃
(
α0

)2∥∥∥a′
(
η0
)∥∥∥

2
(
1− dηT

(
�
(
η0
)

∥∥a′
(
η0
)∥∥2

)
dη

)
,

(38c)

CRBη|ǫ

(
ǫ0
)
= F−1

η|ǫ

(
ǫ0
)
, Fη|ǫ

(
ǫ0
)
=

2
(
α0

)2
(
σ 2
n

)0 �

(
η0
)
=

−1
(
σ 2
n

)0
∂2�

(
η; η0

)

∂η∂ηT

∣∣∣∣∣
η0

,
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6  A simplified signal model: the narrowband signal model
This contribution finds it valuable to explore simpler observation models, such as the 
narrowband model, which assumes that the baseband signal remains unaffected by the 
Doppler effect. Therefore, the model presented in (7), can be simplified as follows

the discrete vector a′(η) defined in (10) simply becoming

which does not change the MLE expression (16b). However, it is required to update the 
CRB expression for this particular signal model, since now

As noted above, ∂a′(t; η)/∂η can be expressed using matrix notation (23) where Q and v 
terms are given by

Following the same procedure as in Sect. 4, W and w are redefined as

were each of the elements were already introduced in (27). Again, �(η) is

with

The latter terms can be compared with other studies, which provide the asymptotic esti-
mation performance of the time-delay and Doppler estimation considering a narrow-
band signal and a complex signal amplitude, for instance in [30]. Again, as it could be 

(39)x(t) = αa′(t; η)+ n(t), a′(t; η) = a(t − τ )e−jwc(τ+b(t−τ)),

(40)a′(η) =




a
�
N ′
1Ts − τ

�
e−jwc(τ+b(N ′

1Ts−τ))

...

a
�
N ′
2Ts − τ

�
e−jwc(τ+b(N ′

2Ts−τ))



,

∂a′(t; η)

∂η
=

(
∂a′(t;η)

∂τ
∂a′(t;η)

∂b

)
= −

(
∂a(t−τ)

∂t + jwc(1− b)a(t − τ )

jwc(t − τ )a(t − τ )

)
e−jϕ(t;η).

(41)Q =

�
jwc(1− b) 0 1

0 jwc 0

�
, v(t; η) =




a(t − τ )

(t − τ )a(t − τ )
∂a(t−τ)

∂t



.

(42)W =




w1 w∗

2 w∗
3

w2 W2,2 w∗
4

w3 w4 W3,3



 , w =




w1

w2

w3



 ,

(43)�(η) = Fs

[
�1,1 �1,2

�2,1 �2,2

]
,

(44)

�1,1 = W3,3 + Re{w1}(1− b)2 w2
c −

Re{w3}
2

w1
+ Im{w3}(1− b)2wc,

�1,2 = Re{w2}(1− b)w2
c −

Re{w3}Im{w2}

w1
wc − Im

{
w∗
4

}
wc,

�2,1 = �1,2,

�2,2 = W2,2w
2
c −

Im{w2}
2

w1
w2
c .
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observed for the case of the wideband signal model, extra terms can be found in the FIM 
which are dependent on the carrier frequency wc . These are denoted as ��1,1 for the 
first diagonal term and ��1,2 for the non-diagonal term.

As previously mentioned, in most applications, those terms are going to be predominant 
due to the order of magnitude of wc.

6.1  Narrowband signal model with known and compensated Doppler effect

In the event that the Doppler effect is known and thus compensated, the only remain-
ing variable of interest for the estimation performance assessment is τ . In such case, 
(7) can be simplified to

the discrete vector a′(η) defined in (10) simply becoming

Note that for the signal model defined in (46), the MLE’s expression is particularized for 
η � τ , and (16b) yields

In order to compute the CRB for this particular signal model, it suffices to update the 
derivative of a′(t; η) with respect to η , which reduces to

with q =
[
jwc 1

]
 and v(t; τ ) =

[
a(t − τ )
∂a(t−τ)

∂t

]
 , yielding

Last, the ambiguity function (33b) becomes

and its relationship with the CRB reads

(45)
��1,1 = Re{w1}(1− b)2w2

c + Im{w3}(1− b)wc,

��1,2 = ��2,1 = Re{w2}(1− b)w2
c .

(46)x(t) = αa′(t; τ )e−jwcτ + n(t), a′(t; τ ) = a(t − τ )e−jwcτ ,

(47)a′(η) � a′(τ ) =




a
�
N ′
1Ts − τ

�

...
a
�
N ′
2Ts − τ

�



e−jwcτ = a(τ )e−jwcτ .

(48)�τ = arg max�
τ |Re

�
ejwcτ

�
a(τ )Hx

��
>0

�




Re

�
ejwcτ

a(τ )Hx

�a(τ )�

�2



.

∂a′(τ )

∂τ
= −

(
∂a(t − τ )

∂t
+ jwca(t − τ )

)
ejwcτ = −qv(t; τ )e−jwcτ ,

(49)�(η) � �(τ ) = Fs

(
w2 −

Re{w3}
2

w1
+ w2

c w1 + 2wcIm{w3}

)
.

�(τ 0 + dτ ; τ 0) =
(
α0

)2∥∥∥a(τ 0)
∥∥∥
2
× Re

{
a(τ 0 + dτ )Ha(τ 0)∥∥a(τ 0 + dτ )

∥∥∥∥a(τ 0)
∥∥e

jwcdτ

}2

,
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Moreover, at the vicinity of τ 0 , since a
(
τ 0+dτ

)H
a
(
τ 0

)

�a(τ 0+dτ)��a(τ 0)�
∈ R , then

where �a

(
τ ; τ 0

)
 is the ambiguity function of the baseband signal a(t) for the CSM (7), 

and for the standard CSM (8) if a(t) is real valued [24]. Expression (51) is essential to 
predict (and understand) the behaviour of τ̂  (48) with respect to the SNR.

7  Validation of CRB and MLE expressions
The simulations outlined in this section aimed to achieve three main objectives. Firstly, 
the primary goal was to validate the accurate derivation of the CRB and MLE expres-
sions. This is demonstrated by showing that the MSE of the MLE gradually approaches 
its minimum value, as defined by the CRB, with increasing SNR. This lower bound acts 
as a benchmark, providing valuable insights into the optimal estimation performance 
of the time delay ( τ ) for all the signal models presented and the Doppler effect (b) for 
Sect.  2 and 6. To contextualize this assessment, an additional CRB simulation was 
included based on the narrow-band signal model in [30], following the approach pointed 
out in (8). Secondly, the simulations aimed at illustrating the expected performance deg-
radation due to the addition of the Doppler unknown in Sect. 6 compared to the model 
outlined in Sect. 6.1. Thirdly, due to the dependency of all signal models on Fc , and also 
on Fs for Sect. 2 and Sect. 6, the simulations sought to analyze their impact on estima-
tion performance exploring several values for such parameters.

To achieve these objectives, a testing setup was designed employing a GPS L1 C/A 
signal [37], which is composed by a periodic Gold CDMA sequence of 1023 chip modu-
lated by a Binary Phase Shift Keying (BPSK) at frequency Fc . An integration time of 1ms   
set, together with a Doppler effect of 500 Hz. The SNR at the output of the MLE (16b) 
(also known as the matched filter [10]) for the true parameter η0 can be determined as

Note that the FIM can be expressed as Fη|ǫ(ǫ) = SNRout

aHa
�(η) . To verify the MLE and 

CRB expression, a set of simulations were conducted comprising 1000 Monte-Carlo 
runs for different values of Fc and Fs , with Fs being defined as multiples of the baseband 
signal bandwidth.

(50)CRBτ |ǫ

(
ǫ0
)
=

1

Fτ |ǫ
(
ǫ0
) , Fτ |ǫ

(
ǫ0
)
=

2
(
α0

)2
(
σ 2
n

)0 �(τ) =
−1

(
σ 2
n

)0
∂2�

(
τ ; τ 0

)

∂2τ

∣∣∣∣∣
τ 0

.

(51)

�

(
τ 0 + dτ ; τ 0

)
≃ �a

(
τ 0 + dτ ; τ 0

)
cos (wcdτ )

2, �a

(
τ ; τ 0

)
=

(
α0

)2
Re

(
a(τ )Ha

(
τ 0
)

�a(τ )�

)2

,

(52)

SNRout =

Re

{(
a′(η)
�a′(η)�

)H(
α0a′

(
η0
))}2

E

[
Re

{(
a′(η)
�a′(η)�

)H
n

}2
]

∣∣∣∣∣∣∣∣∣∣
η=η0

=

(
α0

)2∥∥a′
(
η0
)∥∥2

(σ 0
n )

2

2

=
2�a�2

(
σ 0
n

)2
(
α0

)2
.
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To enhance clarity, the nomenclature used to denote the various derivations pre-
sented in the succeeding sections is introduced next. The MLE (16b) and CRB (32) for 
the general signal model discussed in Sect. 2 are denoted as MLEτ |η and CRBτ |η for ( τ ) 
parameter, and MLEb|η and CRBb|η for (b) parameter. In the case of the narrowband 
context of Sect. 6, the corresponding CRB matches CRBτ |η from the wideband model. 
The main reason is that for the selected simulation scenario (commonly used in the 
GNSS community), the Doppler effect does not affect the baseband signal samples 
and therefore the wideband model converges to the narrowband model. Then, for the 
signal model in Sect. 6.1 the designation used is MLEτ and CRBτ . The MLE and CRB 
from [30] are denoted MLEmτ |η and CRBm

τ |η , and are also simulated for comparison pur-
poses since they characterize the standard CSM (8). As a brief reminder, it is impor-
tant to note that in the present work, the signal model used does not incorporate 
the carrier-phase component into the parameter α . This contrasts with the approach 
taken in references [30, 32], as the primary objective in this case is to investigate how 
the carrier-phase component influences the overall performance.

By shifting focus to the results presented in Figs. 1, 2, 3, 4, 5, 6, 7 and 8, significant 
insights are identified. Figure 1 shows the MLEτ |η , CRBτ |η and CRBm

τ |η for Fs = [1, 2, 5] 
and Fc = 1575.42MHz . A foremost observation is that the MLEτ |η converges asymp-
totically to CRBτ |η for any given Fs value, thus validating the theoretical framework 
presented in Sect.  4 for the time-delay parameter. Moreover, two interesting points 
can be drawn. On the one side, increasing Fs decreases the SNR threshold, i.e. the 
SNRout level required for the MLEτ |η convergence to the CRBτ |η . On the other side, 
in the region before the SNR threshold, there is a SNRout below which the MLEτ |η 
behaves as the classical unconstrained MLE, since it converges to CRBm

τ |η.
Figure 2, illustrates the ambiguity function derived in Sect. 5, which facilitates the 

interpretation of the MLE and CRB behaviour, and whose relationship to the simpli-
fied scenario of the general signal model was described in Sect. 6.1. Note in (51), that 
the term cos(2πFc(τ − τ ) ) exhibits characteristics resembling a Dirac comb sampling 
the ambiguity function �a(τ , τ0) of the baseband signal a(t) (51). Figure 2 shows how 
this sampling process results in the generation of an ambiguity function �(τ , τ0) dis-
playing multiple local maxima within the main lobe of �a(τ , τ0) . Consequently, given 
the high SNR condition, the MLE score function in (12) converges towards a sampled 
version of �a(τ , τ0) . The MLE parameter τ0 remains in proximity to the maximum 
maximorum of �(τ , τ0) , specifically close to τ0 , exhibiting a variance associated with 
the curvature of �(τ , τ0) in the vicinity of τ0 , denoted as CRBτ |ǫ when ǫ = ǫ0.

Figure  3 shows the MLEτ , MLEτ |η as well as the error levels defined by CRBm
τ |η , 

CRBτ |η and CRBτ . Notably, CRBτ consistently exhibits lower MSE levels than CRBτ |η . 
This discrepancy confirms the negative effect on the estimation performance due to 
the uncertainty introduced by the unknown Doppler effect term (b) in (44), which 
was assumed to be known and compensated for in (49). The MSE difference between 
CRBτ |η and CRBτ remains approximately 6 dB across all SNR values. It is observed as 
well that MLEτ converges to the associated CRBm

τ |η before reaching lower MSE levels. 
The difference in performance can be justified by the fact that the Doppler and time-
delay estimation are no longer decoupled. A well-known result in the state of the 
art is that for any instance of the CSM based on a real valued basedband signal, the 
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estimation performance between the Doppler and time-delay components are decou-
pled, i.e. the FIM for time-delay and Doppler is diagonal [30, 32]. However, the FIM 
obtained in (32) is not diagonal, indicating that the different parameters are involved 
in one another’s FIM, which degrades the resulting estimation performance.

Figures 4, 5 and 6 delve into the impact of the carrier frequency Fc on the obtained 
results, due to the dependency of the discussed MLE and CRB on such parameter 
(32). In addition, they include CRBm

τ |η for comparison with the standard CSM (8). 
Such figures highlight the following relationship: lower values of Fc degrade the time-
delay estimation performance while allowing an earlier convergence of the MLEτ |η to 
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Fig. 1 CRBmτ |η , CRBτ |η and MLEτ for Fc = 1540 MHz, and Fs = [1, 2, 5]
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the CRBτ |η . This can be clearly seen, for instance in Fig. 4, where it is observed that, 
for Fs = 1 , the higher the value selected for Fc , the smaller the MSE error defined by 
the CRB. This reduction in the resulting MSE seems to come at the cost of shifting 
the convergence point to higher values of SNR. This pattern is also observed in Figs. 5 
and 6. A numeric comparison supporting this discussion is provided in Tables  1 
and 2. Table 1 shows that CRBτ |η is shifted farther down from CRBm

τ |η towards lower 
MSE levels as the value selected for Fc increases. The opposite happens when Fs is 
increased. In contrast, Table  2 shows that the same adjustments in Fc and Fs that 
lower the MSE levels of CRBτ |η , yield an increase in the SNRout required for MLEτ |η to 
attain CRBτ |η . Figures 4, 5 and 6 together with Tables 1 and 2 prove that the impact of 
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Fig. 3 CRBmτ |η , CRBτ |η CRBτ and MLEτ for Fs = 1
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Fig. 4 CRBmτ |η , CRBτ |η , CRBτ and MLEτ for Fs = 1 and Fc(MHz) = [1540, 770, 385]
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Table 1 This table collects the improvement in the MSE [dB] of CRBτ |η with respect to CRBmτ |η , for 
multiples of Fs (9), and Fc in MHz

The higher the difference, the further down CRBτ |η sets apart from CRBmτ |η

MSE difference (dB) Fs = 1 Fs  = 2 Fs  = 5

Fc = 1540 68.52 66.56 62.21

Fc = 770 62.5 60.54 56.19

Fc = 385 56.47 54.52 50.17
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Fig. 5 CRBmτ |η , CRBτ |η and CRBτ |η for Fs = 2 and Fc(MHz) = [1540, 770, 385]
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Fig. 6 CRBmτ |η , CRBτ |η and MLEτ |η for Fs = 5 and Fc(MHz) = [1540, 770, 385]



Page 18 of 21Bernabeu et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:47 

modifying Fc and Fs have an inverse effect on the lowest MSE attained by the CRBτ |η 
and the SNRout required by the MLEτ |η to attain CRBτ |η . In addition, such observed 
impact suggests that Fc and Fs could constitute system design variables to be modified 
to attain specific performance metrics for practical applications.

Figure 7, shows the convergence of MLEb|τ for different values of Fc to the associ-
ated CRBb|η . These results validate the derivations from Sect.  4 for the case of the 
Doppler-frequency parameter.

Figure 8 leverages a larger SNR range to show five distinct operational regions denot-
ing the behavior of the MLEτ |η for Fc = 1540MHz and Fs = 1 . The first region corre-
sponds to SNR values too low to provide discernible trends in the behavior of MLEτ |η . 
The second region shows the SNR range where MLEτ |η starts to converge towards the 
CRBm

τ |η . Once this convergence occurs, the MLEτ |η remains in a third region where its 
MSE aligns with CRBm

τ |η . Subsequently, the MSE decreases again in the fourth region, 
aiming to reach the level defined by CRBτ |η . The second convergence, marking the fifth 
region, showcases consistent MSE levels for subsequent SNR levels.

Table 2 Similarly to Table 1, this table shows the SNRout for which MLEτ |η converges to the different 
CRBτ |η

SNRout of convergence (dB) Fs = 1 Fs = 2 Fs = 5

Fc = 1540 71.5 69 65.5

Fc = 770 66 64 60

Fc = 385 59 58 54
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Fig. 7 CRBb|η and MLEb|η for Fs = 1 and Fc(MHz) = [1540, 770, 385]
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8  Conclusions
This study evaluated the estimation performance of a signal model that can signifi-
cantly improve the accuracy of applications requiring higher levels of precision. For 
example, consider a receiver moving through a predefined set of way-points that 
can periodically measure specific terms of the received signal’s carrier phase at each 
way-point. This information can then be used to enhance the accuracy of time delay 
and Doppler estimation, as shown in this manuscript. This performance assessment 
was conducted parting from the signal model presented in Sect. 2. Then, two novel 
expressions for the associated MLE and CRB were derived in Sects. 3 and 4, respec-
tively. Both contributions are key to not only understand the behavior of time-delay 
and Doppler estimators, but also to provide and idea of the optimal performance. 
The ambiguity function was provided in Sect.  5, which is also useful for character-
izing the performance of time delay and Doppler estimators. In the conducted sim-
ulations, several critical insights were revealed, shaping the understanding of the 
estimation process. The first notable observation involved the validation of derived 
CRB and MLE expressions. This validation was substantiated by the convergence of 
MLE’s MSE to the CRB, affirming the accuracy of these expressions and establishing 
a robust foundation for subsequent analyses. A significant finding emerged regarding 
the impact of Doppler effect compensation on time-delay estimation accuracy within 
the general signal model. The absence of compensation led to a discernible decline 
in accuracy due to the observed coupling between time-delay and Doppler on the 
CRB. Furthermore, the balance between carrier frequency Fc and sampling frequency 
Fs played a pivotal role in influencing the convergence behavior of MLE to the CRB. 
Higher values of Fs led to earlier convergence. Such convergence could be shifted to 
even lower SNR values by reducing the value selected for Fc ; however, that worsened 
the MSE level attained by the CRB. This observation highlighted that the relation-
ship between these frequencies can be crucial for optimizing estimation performance 
during system design stages in practical applications. A comprehensive analysis of 
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Fig. 8 CRBmτ |η , CRBτ |η and the five regions of operation of MLEτ |η , for Fs = 1 and Fc = 1540MHz
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the ambiguity function concerning Fc and Fs unveiled intricate trade-offs. Higher Fs 
yielded a narrower baseband ambiguity function, enhancing accuracy in time-delay 
estimation. Conversely, raising Fc narrowed the lobes in the carrier ambiguity func-
tion, decreasing the achievable MSE, however at the cost of requiring more energy to 
remain in the main lobe. Unlike previous studies that identified three regions of oper-
ation for the MLE, the present work highlighted five distinct regions. From a broader 
perspective, the specific CSM considered here is representative of a class of nonlin-
ear problems in which the likelihood function displays numerous ambiguities that are 
closely spaced. Thus, the present work suggests the presence of five distinct regions 
for the MLE within this class. Last but not least, from a practical perspective, this 
study equips us with the necessary tools to evaluate the advantages of compensating 
for transmission phase when conducting delay and Doppler estimation.
Acknowledgements
Not applicable

Author contributions
Conceptualization, E.C.; Formal analysis, J.B., E.C., L.O.; Funding acquisition, Y.G. and L.O.; Methodology, E.C.; Software, J.B., 
L.O., E.C.; Supervision, L.O., E.C.; Validation, L.O., E.C., A.B., Y.G.; Writing-original draft, J.B., L.O., E.C.; Writing-review & editing, 
A.B. and E.C. All authors read and approved the final manuscript.

Funding
This work was partially supported by CNES, IPSA and DGA/AID project 2021.65.0070.

Availability of data and materials
The data-sets used and/or analyzed during the current study are available from the corresponding author upon reason-
able request.

Declarations

 Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Received: 6 November 2023   Accepted: 7 March 2024

References
 1. D.A. Swick, A Review of Wideband Ambiguity Functions. Technical Report 6994, Naval Res. Lab., Washington DC 

(1969)
 2. H.L. Van Trees, Detection, Estimation, and Modulation Theory, Part III: Radar-Sonar Signal Processing and Gaussian 

Signals in Noise (Wiley, Hoboken, 2001)
 3. U. Mengali, A.N. D’Andrea, Synchronization Techniques for Digital Receivers (Plenum Press, New York, 1997)
 4. H.L. Van Trees, Optimum Array Processing (Wiley-Interscience, New-York, 2002)
 5. D.W. Ricker, Echo Signal Processing (Kluwer Academic, Springer, New York, 2003)
 6. J. Chen, Y. Huang, J. Benesty, Time delay estimation, in Audio Signal Processing for Next-Generation Multimedia Com-

munication Systems, vol. 8, ed. by Y. Huang, J. Benesty (Springer, Boston, 2004), pp.197–227
 7. B.C. Levy, Principles of Signal Detection and Parameter Estimation (Springer, New York, 2008)
 8. F.B.D. Munoz, C. Vargas, R. Enriquez, Position Location Techniques and Applications (Academic Press, Oxford, 2009)
 9. J. Yan et al., Review of range-based positioning algorithms. IEEE Trans. Aerosp. Electron. Syst. 28(8), 2–27 (2013)
 10. S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice-Hall, Englewood Cliffs, New Jersey, 

1993)
 11. H.L.V. Trees, K.L. Bell (eds.), Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking (Wiley/IEEE Press, 

New York, 2007)
 12. P. Stoica, A. Nehorai, Performances study of conditional and unconditional direction of arrival estimation. IEEE Trans. 

Acoust. Speech Signal Process. 38(10), 1783–1795 (1990). https:// doi. org/ 10. 1109/ 29. 60109

https://doi.org/10.1109/29.60109


Page 21 of 21Bernabeu et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:47  

 13. A. Renaux, P. Forster, E. Chaumette, P. Larzabal, On the high-SNR conditional maximum-likelihood estimator full 
statistical characterization. IEEE Trans. Signal Process. 54(12), 4840–4843 (2006). https:// doi. org/ 10. 1109/ TSP. 2006. 
882072

 14. Q. Jin, K.M. Wong, Z.-Q. Luo, The estimation of time delay and doppler stretch of wideband signals. IEEE Trans. Signal 
Process. 43(4), 904–916 (1995)

 15. A. Dogandzic, A. Nehorai, Cramér–Rao bounds for estimating range, velocity, and direction with an active array. IEEE 
Trans. Signal Process. 49(6), 1122–1137 (2001). https:// doi. org/ 10. 1109/ SAM. 2000. 878032

 16. N. Noels, H. Wymeersch, H. Steendam, M. Moeneclaey, True Cramér–Rao bound for timing recovery from a bandlim-
ited linearly modulated waveform with unknown carrier phase and frequency. IEEE Trans. Commun. 52(3), 473–483 
(2004)

 17. Y.S. W. He-Wen, W. Qun, Influence of random carrier phase on true cramér-rao lower bound for time delay estima-
tion. In Proceeding of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Honolulu, 
USA (2007)

 18. J. Johnson, M. Fowler, Cramér-rao lower bound on doppler frequency of coherent pulse trains. In: Proceeding of the 
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Las Vegas, USA (2008)

 19. P. Closas, C. Fernández-Prades, J.A. Fernández-Rubio, Cramér–Rao bound analysis of positioning approaches in GNSS 
receivers. IEEE Trans. Signal Process. 57(10), 3775–3786 (2009)

 20. T. Zhao, T. Huang, Cramér–Rao lower bounds for the joint delay-doppler estimation of an extended target. IEEE 
Trans. Signal Process. 64(6), 1562–1573 (2016)

 21. Y. Chen, R.S. Blum, On the impact of unknown signals on delay, doppler, amplitude, and phase parameter estima-
tion. IEEE Trans. Signal Process. 67(2), 431–443 (2019)

 22. D. Medina, J. Vilà-Valls, E. Chaumette, F. Vincent, P. Closas, Cramér–Rao bound for a mixture of real- and integer-
valued parameter vectors and its application to the linear regression model. Signal Process. 179, 107792 (2021). 
https:// doi. org/ 10. 1016/j. sigpro. 2020. 107792

 23. P.C.C.X.X. Niu, Y.T. Chan, Wavelet based approach for joint time delay and Doppler stretch measurements. IEEE Trans. 
Aerosp. Electron. Syst. 35(3), 1111–1119 (1999)

 24. P. Das, J. Vilà-Valls, F. Vincent, L. Davain, E. Chaumette, A new compact delay, doppler stretch and phase estimation 
CRB with a band-limited signal for GenE. Remote Sens. Appl. Remote Sens. 12(18), 2913 (2020)

 25. C. Lubeigt, L. Ortega, J. Vilà-Valls, L. Lestarquit, E. Chaumette, Joint delay-doppler estimation performance in a dual 
source context. Remote Sens. 12(23) (2020). https:// doi. org/ 10. 3390/ rs122 33894

 26. H. McPhee, L. Ortega, J. Vilà-Valls, E. Chaumette, Accounting for acceleration-signal parameters estimation perfor-
mance limits in high dynamics applications. IEEE Trans. Aerosp. Electron. Syst. 59(1), 610–622 (2023). https:// doi. org/ 
10. 1109/ TAES. 2022. 31896 11

 27. A. Bartov, H. Messer, Lower bound on the achievable DSP performance for localizing step-like continuous signals in 
noise. IEEE Trans. Signal Process. 46(8), 2195–2201 (1998)

 28. R.D.K.K. Azadeh, D. Roy, Robotized and automated warehouse systems: review and recent developments. Transp. 
Sci. 53(4), 917–945 (2019)

 29. R.D.J.V. Nee, J. Siereveld, P.C. Fenton, B.R. Townsend, Synchronization over rapidly time-varying multi-path channels 
for cdma downlink receiver in time-division mode. IEEE Trans. Vehicular Technol. 56(4), 2216–2225 (2007)

 30. D. Medina, L. Ortega, J. Vilà-Valls, P. Closas, F. Vincent, E. Chaumette, Compact CRB for delay, doppler and phase 
estimation - application to GNSS SPP & RTK performance characterization. IET Radar Sonar Navigation 14(10), 
1537–1549 (2020). https:// doi. org/ 10. 1049/ iet- rsn. 2020. 0168

 31. L. Ortega, D. Medina, J. Vilà-Valls, F. Vincent, E. Chaumette, Positioning Performance Limits of GNSS meta-signals and 
HO-BOC signals. Sensors 20(12), 3586 (2020). https:// doi. org/ 10. 3390/ s2012 3586

 32. P. Das, L. Ortega, J. Vilà-Valls, F. Vincent, E. Chaumette, L. Davain, Performance limits of gnss code-based precise 
positioning: Gps, galileo & meta-signals. Sensors 20(8), 2196 (2020). https:// doi. org/ 10. 3390/ s2008 2196

 33. C. Lubeigt, L. Ortega, J. Vilà-Valls, E. Chaumette, Untangling first and second order statistics contributions in mul-
tipath scenarios. Signal Process. 205, 108868 (2023). https:// doi. org/ 10. 1016/j. sigpro. 2022. 108868

 34. B. Ottersten, M. Viberg, P. Stoica, A. Nehorai, Exact and large sample maximum likelihood techniques for parameter 
estimation and detection in array processing, in Radar Array Processing, vol. 4, ed. by S. Haykin, J. Litva, T.J. Shepherd 
(Springer, Heidelberg, 1993), pp.99–151

 35. J.D. Gorman, A.O. Hero, Lower bounds for parametric estimation with constraints. IEEE Trans. Inf. Theory 36(6), 
1285–1301 (1990)

 36. M.I. Skolnik, Radar Handbook (McGraw-Hill Education, Boston, 2008)
 37. P.J.G. Teunissen, O. Montenbruck (eds.), Handbook of Global Navigation Satellite Systems (Springer, Cham, 2017). 

https:// doi. org/ 10. 1007/ 978-3- 319- 42928-1

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/TSP.2006.882072
https://doi.org/10.1109/TSP.2006.882072
https://doi.org/10.1109/SAM.2000.878032
https://doi.org/10.1016/j.sigpro.2020.107792
https://doi.org/10.3390/rs12233894
https://doi.org/10.1109/TAES.2022.3189611
https://doi.org/10.1109/TAES.2022.3189611
https://doi.org/10.1049/iet-rsn.2020.0168
https://doi.org/10.3390/s20123586
https://doi.org/10.3390/s20082196
https://doi.org/10.1016/j.sigpro.2022.108868
https://doi.org/10.1007/978-3-319-42928-1

	On the asymptotic performance of time-delay and Doppler estimation with a carrier modulated by a band-limited signal
	Abstract 
	1 Introduction
	2 General signal model
	3 Maximum likelihood estimator
	4  Cramér–Rao bound (CRB)
	5 Ambiguity function
	6 A simplified signal model: the narrowband signal model
	6.1 Narrowband signal model with known and compensated Doppler effect

	7 Validation of CRB and MLE expressions
	8 Conclusions
	Acknowledgements
	References


